1
|
Gu G, Zhang J, Zhou Y, Li W, Peng C, Bi C, Yang S, Li Y, Tao E. Aluminum ion catalyzed proton transfer: Mechanism on promoting highly stable passivation of Cr by soil organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178760. [PMID: 39919659 DOI: 10.1016/j.scitotenv.2025.178760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
Although biochar can passivate chromium (Cr3+) in soil, the low stability is still a challenge to be overcome since the passivation mechanism is dominated by weak interactions (complexation, electrostatic attraction, etc.). In this study, a highly stable passivation of Cr3+ was achieved in soil based on the strategy that the low-energy sp hybridisation orbitals of aluminum (Al3+) induced a decrease in the HOMO energy level, leading to the enrichment of off-domain electrons in carbon-based conjugated systems. It can promote the proton transfer and the ion exchange, facilitating the strong chemical binding of organic matter to Cr3+. It suggested that the introduction of Al3+ significantly enhanced the passivation efficiency, maintaining a growth over 42 days of aging. To achieving a high stable passivation, the key is promoting a higher proportion of organic matter-bound Cr3+ contributing by the introduction of Al3+. DFT calculations further validated thermodynamically that, only Al3+ had the catalytic effect on both proton transfer and Cr3+ passivation compared with K+, Na+, Ca2+, Mg2+, Fe3+, Zr4+. These findings can provide important insights for developing a new generation of passivators which can efficiently stabilize heavy metal.
Collapse
Affiliation(s)
- Gaoyuan Gu
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Jianing Zhang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Yan Zhou
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Wenhui Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology,Dalian 116024, Liaoning, China
| | - Changlong Bi
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai 264005, Shandong, China.
| | - E Tao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
2
|
Zhang H, Li Q, Zhao M, Yang Y, Bai R, Jiang X, Li T. Leaching law of heavy metals in coal gangue: A combination of experimental optimization and simulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136790. [PMID: 39644856 DOI: 10.1016/j.jhazmat.2024.136790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Coal gangue, a solid waste generated during coal mining and washing processes, has caused significant environmental burdens in China. This study aims to optimize and investigate the leaching mechanisms of heavy metals, such as Pb, Zn, and Cu, in coal gangue. The effectiveness of different eluents in removing heavy metals from coal gangue was evaluated by combining experimental methods with software simulations. The leaching conditions (EDTA-2Na concentration of 5 g/L, pH 3, solidliquid ratio of 1:10, leaching time of 4 h, 300 r/min) were optimized to achieve efficient and economical removal of heavy metals. Box-Behnken Design was used to show the key factors of eluant concentration and solid-liquid ratio. The leaching amounts of Pb, Zn, and Cu from coal gangue using EDTA-2Na as a leaching agent were 86 mg/kg, 430 mg/kg, and 66 mg/kg, respectively. The release mechanism and kinetic behavior of heavy metals in the leaching process were studied. The study provided information about leaching mechanisms of heavy metals from coal gangue by experiments and simulations of Visual MINTEQ and DFT that EDTA-2Na enhanced the leaching of heavy metals from coal gangue by enhancing ion exchange and complexation.
Collapse
Affiliation(s)
- Hualin Zhang
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China
| | - Qiong Li
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
| | - Mengfei Zhao
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China
| | - Youming Yang
- School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China
| | - Renbi Bai
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoliang Jiang
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China.
| | - Tinggang Li
- Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Metallurgical engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wu T, Zhou J, Zhou J. Comparison of soil addition, foliar spraying, seed soaking, and seed dressing of selenium and silicon nanoparticles effects on cadmium reduction in wheat (Triticum turgidum L.). CHEMOSPHERE 2024; 362:142681. [PMID: 38914290 DOI: 10.1016/j.chemosphere.2024.142681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Wheat cadmium (Cd) contamination is a critical food security issue worldwide, and selenium (Se) and silicon (Si) are widely reported to reduce Cd accumulation in cereal crops. However, few studies have compared the most effective pathway to reduce Cd accumulation in crops using Se nanoparticles (nano-Se), Si nanoparticles (nano-Si), and their mixtures. Here, we investigated the concentrations of Cd in wheat using four application modes: soil addition, foliar spraying, seed soaking, and seed dressing combined with three different materials. The concentration of Cd in wheat grains can be significantly reduced by 31.30-62.99% and 36.96-51.04% through four applications of nano-Se and soil application and seed soaking of nano-Si, respectively. However, all treatments involving mixtures of nano-Si and nano-Se did not show a reduction in Cd concentration. The applications of both nano-Se and nano-Si can enhance antioxidant enzyme systems and regulate Cd-related gene expression to safeguard wheat tissues from Cd stress. Downregulation of the influx transporter from soil to root (TaNramp5) and from root to shoot (TaLCT1), along with the upregulation of the efflux transporter from cytoplasm to vacuole (TaHMA3), contributed to the nano-Si/nano-Se dependent Cd transport and reduced Cd accumulation in wheat grains. Overall, the application of nano-Se instead of nano-Si, and soil addition rather than foliar spraying, seed soaking, and seed dressing, can be efficiently utilized to reduce grain Cd accumulation from Cd-contaminated soils.
Collapse
Affiliation(s)
- Tianyi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
4
|
Zhou H, Dang Y, Chen X, Ivanets A, Ratko AA, Kouznetsova T, Liu Y, Yang B, Zhang X, Sun Y, He X, Ren Y, Su X. Rapid humification of cotton stalk catalyzed by coal fly ash and its excellent cadmium passivation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52582-52595. [PMID: 39153068 DOI: 10.1007/s11356-024-34514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Due to industrialization, soil heavy metal pollution is a growing concern, with humic substances (HS) playing a pivotal role in soil passivation. To address the long duration of the compost humification problem, coal fly ash (CFA) in situ catalyzes the rapid pyrolysis of the cotton stalk (CS) to produce HS to address Cd passivation. Results indicate that the highest yield of humic acid (HA) (8.42%) and fulvic acid (FA) (1.36%) is obtained when the CS to CFA mass ratio is 1:0.5, at 275 ℃ for 120 min. Further study reveals that CFA catalysis CS humification, through the creation of alkaline pyrolysis conditions, Fe2O3 can stimulate the protein and the decomposition of hemicellulose in CS, and then, through the Maillard and Sugar-amine condensation reaction synthesis HA and FA. Applying HS-CS&CFA in Cd-contaminated soil demonstrates a 26.69% reduction in exchangeable Cd within 30 days by chemical complexation. Excellent maize growth effects and environmental benefits of HS products are the prerequisites for subsequent engineering applications. Similar industrial solid wastes, such as steel slag and red mud, rich in Fe2O3, can be explored to identify their catalytic humification effect. It could provide a novel and effective way for industrial solid wastes to be recycled for biomass humification and widely applied in remediating Cd-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yan Dang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xinyu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Andrei Ivanets
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Alexander A Ratko
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Tatyana Kouznetsova
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Yongqi Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xulong Zhang
- China Customs Science and Technology Research Center, Beijing, 100026, People's Republic of China
| | - Yiwei Sun
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaoyan He
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Environmental Sciences, Yili Normal University, Xinjiang, 835000, Yining, China
| | - Yanjie Ren
- Xinjiang Qinghua Energy Group Co., Ltd, Xinjiang, 844500, Yining, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
5
|
Wang C, Li Y, Wang Y, Zhang Y, Feng J, An X, Wang R, Xu Y, Cheng X. Removal of sulfonamide antibiotics by non-free radical dominated peroxymonosulfate oxidation catalyzed by cobalt-doped sulfur-containing biochar from sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133535. [PMID: 38271878 DOI: 10.1016/j.jhazmat.2024.133535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
The reuse of activated sludge as a solid waste is severely underutilized due to the limitations of traditional treatment and disposal methods. Given that, the sulfur-containing activated sludge catalyst doped with cobalt (SK-Co(1.0)) was successfully prepared by one-step pyrolysis and calcinated at 850 ℃. The generation of CoSx was successfully characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), indicating that the sulfur inside the sludge was the anchoring site for the externally doped cobalt. Cobalt (Ⅱ) (Co2+), as the main adsorption site for peroxymonosulfate(PMS), formed a complex (SK-Co(1.0)-PMS* ) and created the conditions for the generation of surface radicals. The SK-Co(1.0)/PMS system showed high degradation efficiency and apparent rate constants for Sulfamethoxazole (SMX) (91.56% and 0.187 min-1) and Sulfadiazine (SDZ) (90.73% and 0.047 min-1) within 10 min and 30 min, respectively. Three sites of generation of 1O2, which played a dominant role in the degradation of SMX and SDZ in the SK-Co(1.0)/PMS system, were summarized as:sulfur vacancies (SVs), the Co3+/Co2+ cycles promoted by sulfur(S) species, oxygen-containing functional groups (C-O). The degradation mechanisms and pathways had been thoroughly investigated using DFT calculations. In view of this, a new idea for the resource utilization of activated sludge solid waste was provided and a new strategy for wastewater remediation was proposed.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Li
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yukun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yan Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Jingbo Feng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Xiaomeng An
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Rui Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yinyin Xu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China.
| |
Collapse
|
6
|
Zhang S, Yao Y, Li J, Wang L, Wang X, Tian S. Multi-factorial investigation of the effect of biochar of the secondary medicinal residue of snow lotus on the adsorption of two azo dyes, methyl red and methyl orange. Microsc Res Tech 2023; 86:1416-1442. [PMID: 37177906 DOI: 10.1002/jemt.24343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Azo dye residues pollute water, which are difficult to decompose, and posing a major threat to the ecological environment. The residues of Chinese medicine still have many possibilities for use after its medicinal value has been brought into play. In this study, secondary residue biochar activation (Na2 CO3 -modified, SBA) and secondary residue biochar (unmodified, SBC) were prepared from the secondary residue of snow lotus at 200-600°C. Surface features were obtained by Brunauer-Emmett-Teller N2 method and combined with scanning electron microscopy, and their structures were analyzed by x-ray diffraction spectroscopy, Fourier infrared and near-infrared spectroscopy. The effects of five factors, including initial concentration, contact time and adsorption temperature and so forth, on the adsorption of methyl red (MR) and methyl orange (MO) solutions were investigated. Results showed that the biochar yield, specific surface area, and pore size increased after modification. modification promoted the formation of the internal structure aromatization and oxygen-containing functional groups. Adsorption experiments showed that the surroundings pH = 8, the dyes adsorption concentration of 8 mg/L, adsorption temperature of 20-40°C and time of about 1 h were more stable. Under the condition, the removal of MO by SBA could reach approximately 60%-80% (480-640 mg/g), while the removal of MR could reach more than 90% (>720 mg/g).The charcoal prepared and modified under high temperature conditions was more effective for MO adsorption, while MR relied on low temperature effectively. This study provides a new choice of adsorbent for MR and MO and finds a new direction for the utilization of snow lotus residues.
Collapse
Affiliation(s)
- Sha Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yanna Yao
- R&D department, Xinjiang Tianshan Lian Pharmaceutical (Co., Ltd.), Changji, Xinjiang, China
| | - Junlong Li
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Linyang Wang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinyu Wang
- R&D department, Xinjiang Tianshan Lian Pharmaceutical (Co., Ltd.), Changji, Xinjiang, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Yang L, Zhao J, Huang Q, Wang J, Xu C, Xu Y, Liu L. Release behavior of fertilizers and heavy metals from iron-loaded sludge biochar in the aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122163. [PMID: 37429492 DOI: 10.1016/j.envpol.2023.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In this study, the release behavior of fertilizers (NH4+-N, PO43- and K) and heavy metals (Mn, Zn, Ni, Cu, Pb and Cr) from iron-loaded sludge biochar (ISBC) was investigated to evaluated the feasibility and risks of ISBC as a slow release fertilizer. Their release capacity was significantly enhanced with decreasing initial pH, increasing solid-liquid ratio (RS-L) and rising temperature (p < 0.05). When the initial pH, RS-L and temperature were separately 5 (fertilizers)/1 (heavy metals), 1:5 and 298 K, the final concentrations of NH4+-N, PO43-, K, Mn, Zn and Ni were 6.60, 14.13, 149.4, 53.69, 72.56, and 1.01 mg L-1, while the maximum concentrations of Cu, Pb and Cr were 0.94, 0.77, and 0.22 mg L-1, respectively. Due to the tiny difference between the R2 values, revised pseudo-first-order and pseudo-second-order kinetics models described their release behavior well, suggesting that physical and chemical interactions played an important role. Activation energies greater than 40 kJ mol-1 indicated that the rate-controlling steps of the release of NH4+-N, PO43- and Ni were chemical reactions, while chemical reactions and diffusion together determined the release rates of K, Mn, Zn, Cu, Pb and Cr because their activation energies were in the range of 20-40 kJ mol-1. The increasingly negative ΔG and positive ΔH and ΔS suggested that their release was a spontaneous (except Cr) and endothermic process with an increase of randomness between the solid-liquid interface. The release efficiency of NH4+-N, PO43- and K were in the ranges of 28.21%-53.97%, 2.09%-18.06% and 39.46%-66.14%, respectively. Meanwhile, the pollution index and evaluation index of heavy metals were in the ranges of 33.31-227.4 and 4.64-29.24, respectively. In summary, ISBC could be used as a slow-release fertilizer with low risk when the RS-L was less than 1:40.
Collapse
Affiliation(s)
- Lijiao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; School of Civil and Hydraulic Engineering, Xichang University, Xichang, 615000, China.
| | - Qingxia Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jinchao Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Chengtao Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
8
|
Li D, Shan R, Gu J, Zhang Y, Zeng X, Lin L, Yuan H, Chen Y. Co-pyrolysis of textile dyeing sludge/litchi shell and CaO: Immobilization of heavy metals and the analysis of the mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:382-392. [PMID: 37776809 DOI: 10.1016/j.wasman.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
To relieve the secondary contamination of heavy metals (HMs), the synergistic effect of co-pyrolysis of textile dyeing sludge (DS)/litchi shell (LS) and CaO on the migration of HMs was demonstrated in this study. The proportions of Cu, Zn, Cr, Mn, and Ni in the F4 fraction increased to 75%, 55%, 100%, 50%, and 62% at the suitable CaO dosages. When 10% CaO was added, the RI value of DLC-10% was reduced to 7.89, indicating low environmental risk. The characterizations of the physicochemical properties of biochar provided support for the HMs immobilization mechanism. HMs combined with inorganic minerals or functional groups to form new stable HMs crystalline minerals and complexes to achieve immobilization of HMs. The pH value and pore structure also play an important role in improving the immobilization performance of HMs. In conclusion, the results provided a new direction for the subsequent harmless treatment of HMs-enriched waste.
Collapse
Affiliation(s)
- Danni Li
- College of Energy, Xiamen University, Xiamen 361102, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Jing Gu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Yuyuan Zhang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, PR China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen 361102, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen 361102, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China
| | - Haoran Yuan
- College of Energy, Xiamen University, Xiamen 361102, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China.
| | - Yong Chen
- College of Energy, Xiamen University, Xiamen 361102, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
9
|
Hu J, Shen Y, Zhu N. Optimizing adsorption performance of sludge-derived biochar via inherent moisture-regulated physicochemical properties. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:70-81. [PMID: 37413847 DOI: 10.1016/j.wasman.2023.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Understanding the impact of abundant inherent moisture in sewage sludge on the physicochemical properties and adsorption applications of sludge-derived biochar (SDB) contributed significantly to promoting economical sludge reuse. The moisture (0-80%) contributed to the development of micropore and mesopore in SDB at 400 °C, resulting in a maximum increase in specific surface area (SSA) and total pore volume (TPV) of SDB by 38.47% (84.811-117.437 m2/g) and 92.60% (0.0905-0.1743 m3/g), respectively. At 600/800 °C, moisture only facilitated mesopore formation, while was exacerbated with increasing moisture content. Despite reduction in SSA during this stage, TPV increased by a maximum of 20.47% (0.1700-0.2048 m3/g). The presence of moisture during pyrolysis led to an increase in the formation of 3-5 thickened benzene rings and defective structures in SDB, along with more C=O, O-C=O/-OH, pyrrole N, pyridine N, and thiophene. As a result, moisture (40%/80%) increased the maximum adsorption capacity (76.2694-88.0448/90.1190 mg/g) of SDB (600 °C) for tetracycline, mainly due to enhanced pore filling effect and hydrogen bonding induced by improved physicochemical properties. This study offered a novel approach for optimizing the performance of SDB adsorption applications by manipulating the sludge moisture, which is critical for practical sludge management.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanwen Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Li J, Pan L, Li Z, Wang Y. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163895. [PMID: 37146809 DOI: 10.1016/j.scitotenv.2023.163895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) in biochar derived from pyrolysis of sludge or manure is the main issue for its large-scale application in soils for carbon sequestration. However, there is a paucity of efficient approaches to predict and comprehend the HM migration during pyrolysis for preparing low HM-contained biochar. Herein, the data on the feedstock information (FI), additive, total concentration of feedstock (FTC) of HM Cr and Cd, and pyrolysis condition, were extracted from the literature, to predict total concentration (TC) and retention rate (RR) of Cr and Cd in sludge/manure biochar using ML for mapping their migration during pyrolysis. Two datasets for Cr and Cd were compiled with 388 and 292 data points from 48 and 37 peer-review papers. The results indicated that the TC and RR of Cr and Cd could be predicted by the Random Forest model with test R2 of 0.74-0.98. Their TC and RR in biochar were dominated by the FTC and FI, respectively; while pyrolysis temperature was the most important to Cd RR. Moreover, potassium-based inorganic additives decreased the TC and RR of Cr while increased those of Cd. The predictive models and insights provided by this work could aid the understanding of HM migration during manure and sludge pyrolysis and guide the preparation of low HM-contained biochar.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China.
| | - Lanjia Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
11
|
Chan YH, Lock SSM, Chin BLF, Wong MK, Loy ACM, Foong SY, Yiin CL, Lam SS. Progress in thermochemical co-processing of biomass and sludge for sustainable energy, value-added products and circular economy. BIORESOURCE TECHNOLOGY 2023; 380:129061. [PMID: 37075852 DOI: 10.1016/j.biortech.2023.129061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
To achieve the main goal of net zero carbon emission, the shift from conventional fossil-based energy/products to renewable and low carbon-based energy/products is necessary. Biomass has been perceived as a carbon-neutral source from which energy and value-added products can be derived, while sludge is a slurry waste that inherently contains high amount of minerals and organic matters. Hence, thermochemical co-processing of biomass wastes and sludge could create positive synergistic effects, resulting in enhanced performance of the process (higher conversion or yield) and improved qualities or characteristics of the products as compared to that of mono-processing. This review presents the current progress and development for various thermochemical techniques of biomass-sludge co-conversion to energy and high-value products, and the potential applications of these products from circular economy's point of view. Also, these technologies are discussed from economic and environmental standpoints, and the outlook towards technology maturation and successful commercialization is laid out.
Collapse
Affiliation(s)
- Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
12
|
Zhengfeng S, Ming C, Geming W, Quanrong D, Shenggao W, Yuan G. Synthesis, characterization and removal performance of Cr (Ⅵ) by orange peel-based activated porous biochar from water. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
13
|
Li K, Zhang D, Niu X, Liu M, Tang Z, Zhong Y, Yu X, Zhu Y. CO2 adsorption mechanisms on activated nano-sized biocarbons: Investigation through in situ DRIFTS, quasi in-situ XPS and XRD. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
14
|
Badiger SM, Nidheesh PV. Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1329-1348. [PMID: 37001152 DOI: 10.2166/wst.2023.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-μg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.
Collapse
Affiliation(s)
- Sourabh M Badiger
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Fan Z, Zhou X, Peng Z, Wan S, Gao ZF, Deng S, Tong L, Han W, Chen X. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals. CHEMOSPHERE 2023; 317:137929. [PMID: 36682641 DOI: 10.1016/j.chemosphere.2023.137929] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) is a frequent and challenging issue for countries with big populations, due to its massive output, significant hazard potential, and challenging resource utilization. Pyrolysis can simultaneously realize the reduction, harmlessness and recycling of SS. Co-pyrolysis offers a wide range of potential in terms of increasing product quality and immobilizing heavy metals (HMs), thanks to its capacity to use additives to address the mismatch between SS characteristics and pyrolysis. High-value utilization potential of SS biochar is the key to evaluating the advancement of treatment technology. A further requirement for using biochar resources is the immobilization and bioavailability reduction of HMs. Due to the catalytic and synergistic effects in the co-pyrolysis process, co-pyrolysis SS biochar exhibits enhanced functionality and has been applied in soil improvement, pollutant adsorption and catalytic reactions. This review focuses on the research progress of different additives in improving the functionality of biochar and influencing the behavior of HMs. The key limitation and challenges in SS co-pyrolysis are then discussed. Future research prospects are detailed from seven perspectives, including pyrolysis process optimization, co-pyrolysis additive selection, catalytic mechanism research of process and product, biochar performance improvement and application field expansion, cooperative immobilization of HMs, and life cycle assessment. This review will offer recommendations and direction for future research paths, while also assist pertinent researchers in swiftly understanding the current state of SS pyrolysis research field.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Sha Wan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Luling Tong
- Wuhan Planning & Design Institute, Wuhan, 430000, China
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| |
Collapse
|
16
|
Yu H, Xiao H, Cui Y, Liu Y, Tan W. High nitrogen addition after the application of sewage sludge compost decreased the bioavailability of heavy metals in soil. ENVIRONMENTAL RESEARCH 2022; 215:114351. [PMID: 36116488 DOI: 10.1016/j.envres.2022.114351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) fertilizer is highly significant in agricultural production, but long-term N addition causes changes in quality indicators, such as soil organic matter (SOM), thus affecting the absorption and accumulation of organic pollutants. Therefore, paying more attention to organic fertilizers in the development of green agriculture is necessary. However, the accumulation of heavy metals (HMs) contained in organic fertilizers (especially sewage sludge compost (SSC)) in the soil can cause environmental contamination, but how this cumulative reaction changes with the long-term N addition remains unclear. Here the SSC impact on the bioavailability of five typical HMs (cadmium-Cd, chromium-Cr, copper-Cu, lead-Pb and arsenic-As) in the soil-plant system before and after SSC application was demonstrated through a field study in soils with different application rates of 0, 100 and 300 kg N ha-1yr-1, respectively. Our results showed that SSC application increased the concentration of most HMs in soil profiles and plant systems (wheat roots and grains), but the accumulation rate of HMs and most bioaccumulation values (BAC-bioaccumulation coefficient and BCF-bioconcentration factor) in plant systems were both lower in high-N addition soil than that in the low-N group. Moreover, speciation distribution results further indicated that SSC application increased the LB (liable available form, including F1-water soluble, F2-ion exchangeable, and F3-bound to carbonates) form of HMs and decreased the PB (potentially available form, including F4-humic acids and F6-fraction bound to organic matter) form of HMs in high-N addition soil, respectively. Those results suggested that HM bioavailability in high-N addition soil was lower than that in low-N addition soil when applied with SSC. Overall, this study found that increasing soil N content can inhibit the bioavailability of HMs when applying SSC, providing suggestions for optimizing the trialability and risk assessment of SSC application.
Collapse
Affiliation(s)
- Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yili Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanji Liu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
17
|
Novel preparation of sludge-based spontaneous magnetic biochar combination with red mud for the removal of Cu2+ from wastewater. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Hu J, Zhao L, Luo J, Gong H, Zhu N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129437. [PMID: 35810514 DOI: 10.1016/j.jhazmat.2022.129437] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Conversion of sewage sludge to biochar for contaminants removal from water achieves the dual purpose of solid waste reuse and pollution elimination, in line with the concept of circular economy and carbon neutrality. However, the current understanding of sludge-derived biochar (SDB) for wastewater treatment is still limited, with a lack of summary regarding the effect of modification on the mechanism of SDB adsorption/catalytic removal aqueous contaminants. To advance knowledge in this aspect, this paper systematically reviews the recent studies on the use of (modified) SDB as adsorbents and in persulfate-based advanced oxidation processes (PS-AOPs) as catalysts for the contaminants removal from water over the past five years. Unmodified SDB not only exhibits stronger cation exchange and surface precipitation for heavy metals due to its nitrogen/mineral-rich properties, but also can provide abundant catalytic active sites for PS. An emphatic summary of how certain adsorption removal mechanisms of SDB or its catalytic performance in PS-AOPs can be enhanced by targeted regulation/modification such as increasing the specific surface area, functional groups, graphitization degree, N-doping or transition metal loading is presented. The interference of inorganic ions/natural organic matter is one of the unavoidable challenges that SDB is used for adsorption/catalytic removal of contaminants in real wastewater. Finally, this paper presents the future perspectives of SDB in the field of wastewater treatment. This review can contribute forefront knowledge and new ideas for advancing sludge treatment toward sustainable green circular economy.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Kang K, Loebsack G, Sarchami T, Klinghoffer NB, Papari S, Yeung KKC, Berruti F. Production of a bio-magnetic adsorbent via co-pyrolysis of pine wood waste and red mud. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:124-133. [PMID: 35728476 DOI: 10.1016/j.wasman.2022.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The efficient reduction of accumulated waste biomass and red mud by converting them into a value-added magnetic adsorbent is both difficult and tempting in terms of sustainability. This study focused on investigating the reaction mechanism of co-pyrolysis of different biomasses, including pine wood, cellulose, and lignin, with red mud at 500, 650, and 800 °C, and the comprehensive characterizations of the produced bio-magnetic particles. The performance of biomass and red mud based magnetic adsorbents is also evaluated, and their primary adsorption mechanisms for organic pollutants are revealed by using different organic model compounds. The samples produced at 800 °C showed the best performance. For example, the sample prepared using red mud and pine wood at 800 °C showed the highest adsorption capacity of ibuprofen, which was 21.01 mg/g at ∼pH 4.5, indicating strong π stacking interactions as the dominant adsorption mechanism. When compared to lignin-rich biomass, adsorbents composed of cellulose-rich biomass showed greater adsorption efficacy. The findings show that co-pyrolysis of biomass with red mud can reduce waste while also producing a flexible adsorbent that is magnetically separable and effective at absorbing different organic contaminants from water.
Collapse
Affiliation(s)
- Kang Kang
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| | - Griffin Loebsack
- Department of Chemistry, Western University, London, Ontario, Canada
| | - Tahereh Sarchami
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Naomi B Klinghoffer
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Sadegh Papari
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Western University, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada
| | - Franco Berruti
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| |
Collapse
|
20
|
Zuhara S, Mackey HR, Al-Ansari T, McKay G. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. BIOMASS CONVERSION AND BIOREFINERY 2022:1-30. [PMID: 35855911 PMCID: PMC9277991 DOI: 10.1007/s13399-022-03011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 °C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.
Collapse
Affiliation(s)
- Shifa Zuhara
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hamish R. Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Tareq Al-Ansari
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
21
|
Liu Y, Gao W, Liu R, Zhang W, Niu J, Lou X, Li G, Liu H, Li Z. Removal of phosphorus using biochar derived from Fenton sludge: Mechanism and performance insights. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10763. [PMID: 35822693 DOI: 10.1002/wer.10763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
A phosphorus removal biochar adsorbent was prepared from Fenton sludge. The adsorption process was optimized, and its phosphorus adsorption mechanism was discussed. It was found that the phosphorus adsorption performance of biochar prepared from single Fenton sludge (FBC-400) was better than that of co-pyrolysis of Fenton sludge and bamboo powder. The optimum condition was that Fenton sludge pyrolyzed at 400°C (FBC-400). FBC-400 had a larger specific surface area than that prepared by co-pyrolysis with bamboo powder. And the high content of iron element could provide a higher surface charge of the biochar, thereby increasing the electrostatic adsorption of phosphorus onto FBC-400. The phosphorus adsorption was highly pH dependent by FBC-400, which can enhance electrostatic adsorption and increase adsorption capacity in acidic conditions. The effect of coexisting anion on adsorption performance was mainly affected by CO3 2- , reducing the adsorption capacity by at least 49%, whereas other anions had no obvious interference. The adsorption process of FBC-400 accorded with the pseudo-second-order kinetic model and the Langmuir model, which indicated that the adsorption process was monolayer adsorption and mainly chemical adsorption, and the maximum saturated phosphorus adsorption capacity was 8.77 mg g-1 . The mechanisms for phosphorus adsorption were electrostatic adsorption and inner-sphere complexing. 1 M NaOH was used for desorption, and the adsorption capacity remained at 81% in the fifth cycle. PRACTITIONER POINTS: The Fenton sludge biochar usage as an adsorbent could be a win-win strategy to convert waste biomass to valuable - product. The adsorption process accorded with the Langmuir model, the maximum phosphorus adsorption capacity was 8.77 mg/g at 25°C. The adsorption mechanisms were electrostatic adsorption and inner-sphere complexing. 1M NaOH was used for desorption, and the adsorption capacity remained at 81% in the fifth cycle.
Collapse
Affiliation(s)
- Yanfang Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Wei Gao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Rui Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wenjing Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Jianrui Niu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Xiaoyue Lou
- Tianjin Redsun Water Industry Company Limited, Tianjin, China
| | - Gong Li
- Tianjin Redsun Water Industry Company Limited, Tianjin, China
| | - Haoyun Liu
- Tianjin Redsun Water Industry Company Limited, Tianjin, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
22
|
Li Y, Yang X, Zhu M, Dong L, Jiang H, Xu Q, Zhou H, Han Y, Feng L, Li C. Synergistic effect of combined hydrothermal carbonization of Fenton's reagent and biomass enhances the adsorption and combustion characteristics of sludge towards eco-friendly and efficient sludge treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153854. [PMID: 35189214 DOI: 10.1016/j.scitotenv.2022.153854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The amount of lignocellulose biomass and sludge is enormous, so it is of great significance to find a treatment combining the two substances. Co-hydrothermal carbonization (Co-HTC) has emerged as an efficient approach to dispose sludge. However, the improvement of sludge upgrading and combustion performance remains an important challenge during the Co-HTC of sludge. In this work, the Co-HTC of sludge and Fenton's reagent at different mixing ratios was proposed to achieve sludge reduction. Moreover, the addition of two kinds of biomass improved the adsorption capacity and combustion performance of hydrochars. When sludge and sawdust were the Co-HTC at the mass ratio of 1:3, the liquid phase Pb concentration decreased notably to 18.06%. Furthermore, the adsorption capacity of hydrochars was further improved by modification, which was in accordance with pseudo-second-order kinetics. Particularly, the hydrochars derived from the Co-HTC had higher heating value (HHV) and could be used as a clean fuel. This study proposed a new technical route of combining the HTC with Fenton's reagent and lignocellulose biomass, which could be served as a cleaner and eco-friendly treatment of sludge.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Xingru Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Mingyu Zhu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Hao Jiang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Yongming Han
- College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lu Feng
- Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Chengfei Li
- Faculty of intelligent manufacturing, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
23
|
Characteristics of Biochars Derived from the Pyrolysis and Co-Pyrolysis of Rubberwood Sawdust and Sewage Sludge for Further Applications. SUSTAINABILITY 2022. [DOI: 10.3390/su14073829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study investigated the characteristics of biochars derived from the pyrolysis of rubberwood sawdust (RWS) and sewage sludge (SS) and their co-pyrolysis at mixing ratios of 50:50 and 75:25. Biochars were produced at 550 °C through slow pyrolysis in a moving bed reactor and then characterized. Results showed that the rubberwood sawdust biochar (RWSB) had high carbon content (86.70 wt%) and low oxygen content (7.89 wt%). By contrast, the sewage sludge biochar (SSB) had high ash content (65.61 wt%) and low carbon content (24.27 wt%). The blending of RWS with SS at the mentioned ratios helped enhance the gross and element contents of the biochar samples. The elemental analysis of the biochars was also reported in the form of atomic ratios (H/C and O/C). The functional groups of biochars were observed by Fourier-transform infrared spectroscopy (FTIR). X-ray fluorescence spectroscopy (XRF) revealed that the biochar from SS contained a high content of inorganic elements, such as Si, Ca, Fe, K, Mg, P, and Zn. The pH of the biochars ranged from 8.41 to 10.02. Brunauer, Emmett, and Teller (BET) and scanning electron microscopy (SEM) showed that RWSB had a lower surface area and larger pore diameter than the other biochars. The water holding capacity (WHC) and water releasing ability (WRA) of the biochars were in the range of 1.01–3.08 mL/g and 1.19–52.42 wt%, respectively. These results will be the guideline for further application and study of biochar from RWS, SS, and blended samples.
Collapse
|