1
|
Liu L, Prata AA, Stuetz RM, Fisher RM. Understanding the role of flux chamber configuration in the measurement of VOC emissions from porous media. CHEMOSPHERE 2024; 366:143423. [PMID: 39341393 DOI: 10.1016/j.chemosphere.2024.143423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The accurate quantification of volatile organic compound (VOC) emission rates from porous media to the air is a challenging problem, as measurements are affected by the chemical and physical characteristics of the porous media, and the operating parameters of the sampling device itself. The main objective of this study is to investigate how flux chamber (the most commonly used sampling device) configurations influence emission rate measurement from three selected porous media. Various parameters were studied, including sweep air flow rate, presence of a mixing fan, headspace volume and thickness of media. Controlled experiments focused on the behaviour of two VOCs commonly found in area sources: acetic acid and 1-butanol. Sweep gas flow rate emerged as the most influential factor, inducing turbulence and dilution over porous media surfaces and impacting emission rate measurements more significantly than headspace volume and fan installation. Variations in porous media properties also affected mass transfer, with emissions from coco coir showing higher mass transfer as its porosity and particle size facilitated gas transportation. While behaviour of acetic acid emission through the media supported the diffusion theory, emission of 1-butanol was affected by a combination of factors, highlighting the role of both diffusive and advective transport mechanisms. Understanding how flux chamber setups and porous media properties influence emission rates is crucial for accurately interpreting data. This knowledge also guides the design of studies, especially when investigating complex sources like biosolids and organic-amended soil.
Collapse
Affiliation(s)
- Lisha Liu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Ademir A Prata
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia; Programa de Pós-Graduação Em Recurso Hídricos e Saneamento, Centro de Tecnologia, Federal University of Alagoas - UFAL, Maceió, Brazil; São Paulo State University (UNESP), Department of Environmental Engineering, IGCE, Campus Rio Claro, Brazil
| | - Richard M Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Ruth M Fisher
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Lopes JRA, Mendonça ZLL, da Silva JPS, Amaral A, Netto AM. Enhancing herbicide adsorption in low-fertility soil using sugarcane biochar: Insights from Imazapic dynamics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104412. [PMID: 39121645 DOI: 10.1016/j.jconhyd.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Biochar amendment has emerged as a potential solution for preventing, remediating, and mitigating agricultural compound pollution. This groundbreaking technique not only improves crucial soil properties like porosity, water retention capacity, cation exchange capacity, and pH, but also intricately impacts the interaction and retention mechanisms of polluting molecules. In this study, we investigate the dynamic of the herbicide Imazapic when subjected to applying pyrolyzed biochars, specifically at temperatures of 300 and 500 °C, within the context of a low-fertility soil characterized as dystrophic Yellow Ultisol (YUd) in a sugarcane cultivation area in Igarassu-PE, Brazil. The biochars were produced from sugarcane bagasse by pyrolysis process in a muffle furnace. In laboratory conditions, with saturated soil columns under steady-state, analyses of the mechanisms involved in interaction and transport and determining hydrodispersive parameters for Imazapic were performed by the two-site nonequilibrium transport model using the CXTFIT 2.0 program. Samples of YUd soil amended with biochar pyrolyzed at 300 °C presented a negligible interaction with Imazapic. However, adding biochar pyrolyzed at 500 °C (BC500) to the soil samples enhanced the adsorption coefficient and improved the interaction with Imazapic. This research points out that biochar produced from agricultural waste biomass, such as sugarcane bagasse specifically pyrolyzed at 500 °C, offers a potential means to adsorb herbicides, reducing their leaching to deeper layers of the amended soils and the risk of groundwater contamination and potential environmental negative impacts.
Collapse
Affiliation(s)
- Jéssica Rafaelly Almeida Lopes
- Federal Rural University of Pernambuco, Graduate Program in Environmental Engineering, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, PE 52171-900, Brazil.
| | - Zabele Laís Lyra Mendonça
- Federal Rural University of Pernambuco, Graduate Program in Environmental Engineering, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, PE 52171-900, Brazil.
| | - João Paulo Siqueira da Silva
- Federal University of Pernambuco, Department of Nuclear Energy, Av. Prof. Luiz Freire, 1000 - Curado, PE 50740-545, Brazil.
| | - Ademir Amaral
- Federal University of Pernambuco, Department of Nuclear Energy, Av. Prof. Luiz Freire, 1000 - Curado, PE 50740-545, Brazil.
| | - André Maciel Netto
- Federal University of Pernambuco, Department of Nuclear Energy, Av. Prof. Luiz Freire, 1000 - Curado, PE 50740-545, Brazil.
| |
Collapse
|
3
|
Wei Z, Wei Y, Liu Y, Niu S, Xu Y, Park JH, Wang JJ. Biochar-based materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: Performances, mechanisms, and environmental impact. J Environ Sci (China) 2024; 138:350-372. [PMID: 38135402 DOI: 10.1016/j.jes.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 12/24/2023]
Abstract
Petroleum contamination is considered as a major risk to the health of humans and environment. Biochars as low-cost and eco-friendly carbon materials, have been widely used for the removal of petroleum hydrocarbon in the environment. The purpose of this paper is to review the performance, mechanisms, and potential environmental toxicity of biochar, modified biochar and its integration use with other materials in petroleum contaminated soil and water. Specifically, the use of biochar in oil-contaminated water and soil as well as the factors that could influence the removal ability of biochar were systematically evaluated. In addition, the modification and integrated use of biochar for improving the removal efficiency were summarized from the aspects of sorption, biodegradation, chemical degradation, and reusability. Moreover, the functional impacts and associated ecotoxicity of pristine and modified biochars in various environments were demonstrated. Finally, some shortcoming of current approaches, and future research needs were provided for the future direction and challenges of modified biochar research. Overall, this paper gain insight into biochar application in petroleum remediation from the perspectives of performance enhancement and environmental sustainability.
Collapse
Affiliation(s)
- Zhuo Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA
| | - Yi Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yang Liu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shuai Niu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yaxi Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Jong-Hwan Park
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, South Korea
| | - Jim J Wang
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA.
| |
Collapse
|
4
|
Preparation and Characterization of Apricot Kernel Shell Biochar and Its Adsorption Mechanism for Atrazine. SUSTAINABILITY 2022. [DOI: 10.3390/su14074082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, the preparation of apricot kernel shell biochar by a hydrothermal method and its adsorption mechanism for atrazine was studied by scanning electron microscopy (SEM) and infrared spectrum (FTIR) analytical techniques. The results show that the biochar prepared from the apricot kernel shell has an evenly distributed, nonaggregated carbon microsphere structure and contains a large number of oxygen-containing groups. The higher the preparation temperature is, the more functional groups exist and the better the potential adsorption performance is. The adsorption kinetics of atrazine on apricot kernel shell biochar were fitted with a quasi-second-order kinetic equation (R2 ≥ 0.995, p < 0.05). The isothermal adsorption data were in accordance with the Freundlich model (R2 ≥ 0.911, p < 0.05). The adsorption of atrazine on apricot kernel shell biochar includes two processes: surface adsorption and diffusion. The adsorption capacity of apricot kernel shell biochar for atrazine increases with increasing preparation temperature and decreases with increasing pH and Ca2+ concentration. The adsorption mechanism includes hydrogen bonding and hydrophobic interactions. Therefore, biochar prepared from apricot shells, an agricultural waste, exhibits good adsorption performance for atrazine and has a good application prospect in addressing agricultural non-point source pollution, especially in pesticide residue pollution control.
Collapse
|
5
|
Wu W, Huang Y, Lin D, Yang K. Sorption mechanism of naphthalene by diesel soot: Insight from displacement with phenanthrene/p-nitrophenol. J Environ Sci (China) 2021; 106:136-146. [PMID: 34210429 DOI: 10.1016/j.jes.2021.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 06/13/2023]
Abstract
The nonlinear sorption of hydrophobic organic contaminants (HOCs) could be changed to linear sorption by the suppression of coexisting solutes in natural system, resulting in the enhancement of mobility, bioavailability and risks of HOCs in the environment. In previous study, inspired from the competitive adsorption on activated carbon (AC), the displaceable fraction of HOCs sorption to soot by competitor was attributed to the adsorption on elemental carbon fraction of soot (EC-Soot), while the linear and nondisplaceable fraction was attributed to the partition in authigenic organic matter of soot (OM-Soot). In this study, however, we observed that the linear and nondisplaceable fraction of HOC (naphthalene) to a diesel soot (D-Soot) by competitor (phenanthrene or p-nitrophenol) should be attributed to not only the linear partition in OM-Soot, but also the residual linear adsorption on EC-Soot. We also observed that the competition on the surface of soot dominated by external surface was different from that of AC dominated by micropore surface, i.e., complete displacement of HOCs by p-nitrophenol could occur for the micropore surface of AC, but not for the external surface of soot. These observations were obtained through the separation of EC-Soot and OM-Soot from D-Soot with organic-solvent extraction and the sorption comparisons of D-Soot with an AC (ACF300) and a multiwalled carbon nanotube (MWCNT30). The obtained results would give new insights to the sorption mechanisms of HOCs by soot and help to assess their environmental risks.
Collapse
Affiliation(s)
- Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Yun Huang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
6
|
Gautam RK, Goswami M, Mishra RK, Chaturvedi P, Awashthi MK, Singh RS, Giri BS, Pandey A. Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review. CHEMOSPHERE 2021; 272:129917. [PMID: 35534974 DOI: 10.1016/j.chemosphere.2021.129917] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/25/2020] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Application of agrochemicals in farming sector to control insects and pests; and use of synthetic organic dyes to color the products are increasing continuously due to the rapid growth of industries. During the application process many industries releases toxic agrochemicals and dyes in to the aquatic environment and on land without the proper treatment. Due to their toxicity the disposal of such chemicals is of utmost importance. Biochar offers the ability to remediate these substances from environmental matrices because of their high sorption ability of pollutants from water and soil. This review highlights the development and advancement of biochar-based treatment for abatement of agrochemicals and synthetic organic dyes, involving its technical aspects and the variables connected with removing these kinds of pollutants. Several optimization parameters like temperature, pH, chemical concentration, biochar properties, time, and co-existing ions have been elaborated. Literature survey shows that most of the researches on biochar application have been conducted in the batch mode. Hence there is an urgent need to apply this beneficial technique for the remediation of pollutants at the larger scale in the real water and soil samples. A comprehensive summary on sorption kinetics and adsorption isotherms with regards to pollutant removal is also presented. This review also covers the cost analysis of various techniques where biochar has been used as an adsorbent. Thus this review makes an easy roadmap for the further development in biochar and biochar based composites and expansion of these demanding areas of research in biochar and their applications.
Collapse
Affiliation(s)
- Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mandavi Goswami
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Centre for Energy and Environmental Sustainability (CEES), Lucknow, 226 029, UP, India.
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal), 246174, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mukesh Kumar Awashthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Centre for Energy and Environmental Sustainability (CEES), Lucknow, 226 029, UP, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India.
| |
Collapse
|
7
|
Shan Y, Qin J, Harms H, Wick LY. Electrokinetic effects on the interaction of phenanthrene with geo-sorbents. CHEMOSPHERE 2020; 242:125161. [PMID: 31683161 DOI: 10.1016/j.chemosphere.2019.125161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Interactions with solid matrices control the persistence and (bio-)degradability of hydrophobic organic chemicals (HOC). Approaches influencing the rate or extent of HOC interactions with matrices are thus longed for. When a direct current (DC) electric field is applied to a matrix immersed in an ionic solution, it invokes transport processes including electromigration, electrophoresis, and electroosmotic flow (EOF). EOF is the surface charge-induced movement of pore fluids. It has the potential to mobilize uncharged organic contaminants and, hence, to influence their interactions with sorbing geo-matrices (i.e. geo-sorbents). Here, we assessed the effects of weak DC electric fields on sorption and desorption of phenanthrene (PHE) in various mineral and carbonaceous geo-sorbents. We found that DC fields significantly changed the rates and extent of PHE sorption and desorption as compared to DC-free controls. A distinct correlation between the Gibbs free energy change (ΔG°) and electrokinetic effects such as the EOF velocity was observed; in case of mineral sorbents EOF limited (or even inhibited) PHE sorption and increased its desorption. In strongly sorbing carbonaceous geo-sorbents, however, EOF significantly increased the rates of PHE sorption and reduced PHE desorption by > 99% for both activated charcoal and exfoliated graphite. Based on our findings, an approach linking ΔG° and EOF velocity was developed to estimate DC-induced PHE sorption and desorption benefits on mineral and carbonaceous sorbents. We conclude that such kinetic regulation gives rise to future technical applications that may allow modulating sorption processes e.g. in response to fluctuating sorbate concentrations in contaminated water streams.
Collapse
Affiliation(s)
- Yongping Shan
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany
| | - Jinyi Qin
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany.
| |
Collapse
|
8
|
Okoli CP, Adewuyi GO, Zhang Q, Zhu G, Wang C, Guo Q. Aqueous scavenging of polycyclic aromatic hydrocarbons using epichlorohydrin, 1,6-hexamethylene diisocyanate and 4,4-methylene diphenyl diisocyanate modified starch: Pollution remediation approach. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Gupta GK, Gupta PK, Mondal MK. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:499-511. [PMID: 31109550 DOI: 10.1016/j.wasman.2019.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 05/27/2023]
Abstract
Pyrolysis is an efficient thermochemical route to obtain biofuels in the form of bio-oil, biochar and pyrolytic gas from the processing of biomass. Pyrolysis experiments were performed with teak sawdust to determine the yield and main characteristics of solid, liquid and gaseous products. Experiments were carried out in the temperature range of 400-700 °C in 100 °C intervals, nitrogen flow rate of 150-250 mL/min, packed bed height in between 2 and 8 cm and particle size in between 0.18 and 0.60 mm. The maximum bio-oil and biochar yield were observed at 600 °C (48.8%) and 400 °C (37.42%), respectively. Physical properties (viscosity, density, carbon residue, pH and HHV) of bio-oil were determined and the chemical properties were investigated using FTIR and GC-MS. Further, biochar was characterized with proximate, ultimate, HHV, FTIR, SEM-EDX, BET surface area and XRD analysis. Non-condensable gases coming out during pyrolysis were analyzed using gas chromatography and amount of H2, CH4, CO and CO2 were determined. According to characterization results, bio-oil can be used as biofuel after up gradation or as source of valuable chemicals, biochar can be utilized as solid fuel or seems to be suitable in waste stream purification as it has very high BET surface area. In addition, pyrolytic gases have significant amount of methane and hydrogen that provides good combustion properties.
Collapse
Affiliation(s)
- Goutam Kishore Gupta
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pavan Kumar Gupta
- Gasification and Liquefaction Research Group, CSIR-Central Institute of Mining and Fuel Research (DC), Dhanbad 828108, India
| | - Monoj Kumar Mondal
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
10
|
Su PH, Kuo DTF, Shih YH, Chen CY. Sorption of organic compounds to two diesel soot black carbons in water evaluated by liquid chromatography and polyparameter linear solvation energy relationship. WATER RESEARCH 2018; 144:709-718. [PMID: 30098528 DOI: 10.1016/j.watres.2018.07.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Substantial variability in sorption capacity of black carbon (BC) has been a major challenge for accurate fate and risk assessment of organic pollutants in soils and sediments. 16 model organic sorbates (logKOW = 0.38-4.21) encompassing diverse chemical functionalities were used to probe the sorption capacity of two diesel soot samples representative of graphitic BC (BC1, specific surface area (SSA) = 87 m2/g) and amorphous, oxygenated BC (BC2; SSA = 3.6 m2/g). The BC-water sorption coefficients (logKBC) of the model sorbates were determined using reversed-phase liquid chromatography (RP-LC) on soot-filled columns. It was found that mass-based logKBC's of BC1 (1.64-3.66 L/kgBC) exceeded those of BC2 (0.68-3.48 L/kgBC) consistently for all model sorbates. However, area-normalized logKBC's of BC2 were larger than those of BC1, suggesting that the overall sorption was more favored on the oxygenated sorbent per area basis. Linear solvation energy relationships (LSERs) for sorption onto BC1 and BC2 were found to be logKBC = (2.49 ± 0.65)E + (-2.71 ± 0.88)S + (1.17 ± 0.46)A + (2.52 ± 0.34)V and logKBC = (1.12 ± 0.39)E + (-1.68 ± 0.32)S + (-3.70 ± 0.57)B + (4.37 ± 0.38)V + (-1.51 ± 0.22), respectively. The LSERs indicated that sorption onto soot was generally enhanced with increasing non-specific van der Waals and decreasing cavitation cost (i.e., eE, sS, and vV terms). The logKBC difference between BC1 and BC2, ΔlogKBC, appeared to be correlated with the H-bonding capacity of the sorbates but not logKOW. Analysis of literature and experimental logKBC's revealed that logKBC and logSSA across different types of BC (i.e., soot, char, charcoal, activated carbon) were linearly correlated for benzene and toluene (r2 = 0.88-0.91). This work illustrates the utility of RP-LC in determining the sorption coefficients of high-capacity sorbents and suggests the possibility of a unified sorption model for the continuum of black carbon.
Collapse
Affiliation(s)
- Po-Hsin Su
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taiwan
| | - Dave Ta Fu Kuo
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon City, Hong Kong; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Chih-Yu Chen
- Department of Environmental Engineering & Science, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Yang K, Jiang Y, Yang J, Lin D. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:64-70. [PMID: 29053999 DOI: 10.1016/j.envpol.2017.10.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Knowledge of adsorption behavior of organic contaminants on high heat temperature treated biochars is essential for application of biochars as adsorbents in wastewater treatment and soil remediation. In this study, isotherms of 25 aromatic compounds adsorption on biochars pyrolyzed at 700 °C from biomass including wood chips, rice straw, bamboo chips, cellulose, lignin and chitin were investigated to establish correlations between adsorption behavior and physicochemical properties of biochars. Isotherms were well fitted by Polanyi theory-based Dubinin-Ashtakhov (DA) model with three parameters, i.e., adsorption capacity (Q0) and adsorption affinity (E and b). Besides the negative correlation of Q0 with molecular maximum cross-sectional areas (σ) of organic compounds, positive correlations of Q0 with total pore volume (Vtotal) and average diameter of micropore (D) of biochars were observed, indicating that adsorption by biochars is captured by the pore-filling mechanism with molecular sieving effect in biochar pores. Linear solvation energy relationships (LSERs) of adsorption affinity (E) with solvatochromic parameters of organic compounds (i. e., αm and π∗) were established, suggesting that hydrophobic effect, π-π interaction and hydrogen-bonding interaction are the main forces responsible for adsorption. The regression coefficient (π1) and intercept (C) of obtained LSERs are correlated with biochar H/C and Rmicro, respectively, implying that biochars with higher aromaticity and more micropores have stronger π-π bonding potential and hydrophobic effect potential with aromatic molecule, respectively. However, hydrogen-bonding potential of biochars for organic molecules is not changed significantly with properties of biochars. A negative correlation of b with biochar H/C is also obtained. These correlations could be used to predict the adsorption behavior of organic compounds on high heat temperature treated biochars from various biomass for the application of biochars as sorbents and for the estimating of environmental risks of organic compounds in the present of biochars.
Collapse
Affiliation(s)
- Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Yuan Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jingjing Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
12
|
Rao MA, Di Rauso Simeone G, Scelza R, Conte P. Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol. CHEMOSPHERE 2017; 186:193-201. [PMID: 28778017 DOI: 10.1016/j.chemosphere.2017.07.125] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Phenanthrene (Phe) and pentachlorophenol (PCP) are classified as persistent organic pollutants and represent serious concern for the environment as they are toxic and ubiquitous. Biochar based remediation is an emerging technology used in water and soil contamination. In this study we used poplar (BP) and conifer (BC) biochars to remediate water and soil contaminated by Phe and PCP. BP and BC were able to remove completely either Phe or PCP from contaminated water within one to three days. When biochar was confined in a porous membrane, BC and BP maintained their sorption efficiency for several remediation cycles. However, in these conditions BC allowed faster Phe removal. In soil remediation experiments, addition of two biochar rates, i.e. 2.5 and 5 mg g-1, strongly reduced Phe extractability (up to 2.7% of the initially added Phe with the larger BC dose). This was similar to the behavior observed when compost was applied in order to verify the role of soil organic matter in the fate of both contaminants. PCP extractability was reduced only up to 75% (in average) in all samples including those with compost amendment. Only larger amount of biochar (20 and 50 mg g-1) allowed reduction of the extractable PCP and nullified phytotoxicity of the contaminant.
Collapse
Affiliation(s)
- Maria A Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055, Portici, Italy
| | - Giuseppe Di Rauso Simeone
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055, Portici, Italy.
| | - Rosalia Scelza
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055, Portici, Italy
| | - Pellegrino Conte
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, viale delle Scienze edificio 4, 90128, Palermo, Italy
| |
Collapse
|
13
|
Yavari S, Malakahmad A, Sapari NB. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17928-17940. [PMID: 27255313 DOI: 10.1007/s11356-016-6943-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Biochar is the bio-solid material produced by pyrolysis. The biochar properties are controlled by feedstock and pyrolysis variables. In this study, the impacts of these production variables on biochar yield and physicochemical properties including pH, cation exchange capacity (CEC), total organic carbon (TOC) content, surface area, and pore volume and size were investigated. Rice husk (RH) and oil palm empty fruit bunches (EFB) were used as biomass. The biochars were produced at temperature range of 300 to 700 °C, heating rate of 3 to 10 °C/min and retention time of 1 to 3 h. The pyrolysis conditions were optimized using response surface methodology (RSM) technique to maximize the values of the responses. Analysis of variance (ANOVA) of the results demonstrated that the data fitted well to the linear and quadratic equations. Temperature was found to be the most effective parameter on the responses followed by retention time and heating rate, sequentially. CEC, TOC, surface area, and pore characteristics were evaluated as biochar properties determining their sorption potential. The optimum conditions for the maximum values of the properties were temperatures of 700 and 493.44 °C and time of 3 and 1 h for RH and EFB biochars, respectively. Heating rate at 3 °C/min was found to be the best rate for both biochars. The structure of EFB biomass was more sensitive to heating than rice husk. The biomass type and the production variables were demonstrated as the direct effective factors on biochar yield and physicochemical properties.
Collapse
Affiliation(s)
- Saba Yavari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri, Iskandar, Malaysia.
| | - Amirhossein Malakahmad
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri, Iskandar, Malaysia
| | - Nasiman B Sapari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri, Iskandar, Malaysia
| |
Collapse
|
14
|
Liu XQ, Ding HS, Wang YY, Liu WJ, Jiang H. Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char with Ultra-High Adsorption to 1-Naphthol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2602-2609. [PMID: 26849350 DOI: 10.1021/acs.est.5b04536] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Massively produced sewage sludge brings a serious problem to environment. Pyrolysis is a promising and bifunctional technology to dispose the sewage sludge and recover energy, in which a large amount of pyrolytic sludge char is also produced. In this study, we proposed a value-added utilization of sludge char. We prepared an adsorbent with ultrahigh capacity for hydrophobic organic pollutant (1-naphthol) by pyrolysis of sludge and removal of the ash moiety from the sludge char. The adsorptive behavior of the adsorbent is strongly dependent on the pyrolytic temperature of sludge, and the maximum adsorption capacity of 666 mg g(-1) was achieved at 800 °C, which is comparable to deliberately modified graphene. Further exploration indicated that the robust adsorption to 1-naphthol is attributed to the catalytic effect of ash in sludge which facilitated the formation of more orderly graphitic structures and aromaticity at high pyrolytic temperatures.
Collapse
Affiliation(s)
- Xiao-Qing Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Hong-Sheng Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Yuan-Ying Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Wu-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China
| |
Collapse
|
15
|
Hale SE, Arp HPH, Kupryianchyk D, Cornelissen G. A synthesis of parameters related to the binding of neutral organic compounds to charcoal. CHEMOSPHERE 2016; 144:65-74. [PMID: 26347927 DOI: 10.1016/j.chemosphere.2015.08.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/28/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
The sorption strength of neutral organic compounds to charcoal, also called biochar was reviewed and related to charcoal and compound properties. From 29 studies, 507 individual Freundlich sorption coefficients were compiled that covered the sorption strength of 107 organic contaminants. These sorption coefficients were converted into charcoal-water distribution coefficients (K(D)) at aqueous concentrations of 1 ng/L, 1 µg/L and 1 mg/L. Reported log K(D) values at 1 µg/L varied from 0.38 to 8.25 across all data. Variation was also observed within the compound classes; pesticides, herbicides and insecticides, PAHs, phthalates, halogenated organics, small organics, alcohols and PCBs. Five commonly reported variables; charcoal production temperature T, surface area SA, H/C and O/C ratios and organic compound octanol-water partitioning coefficient, were correlated with KD values using single and multiple-parameter linear regressions. The sorption strength of organic compounds to charcoals increased with increasing charcoal production temperature T, charcoal SA and organic pollutant octanol-water partitioning coefficient and decreased with increasing charcoal O/C ratio and charcoal H/C ratio. T was found to be correlated with SA (r(2) = 0.66) and O/C (r(2) = 0.50), particularly for charcoals produced from wood feedstocks (r(2) = 0.73 and 0.80, respectively). The resulting regression: log K(D)=(0.18 ± 0.06) log K(ow) + (5.74 ± 1.40) log T + (0.85 ± 0.15) log SA + (1.60 ± 0.29) log OC + (-0.89 ± 0.20) log HC + (-13.20 ± 3.69), r(2) = 0.60, root mean squared error = 0.95, n = 151 was obtained for all variables. This information can be used as an initial screening to identify charcoals for contaminated soil and sediment remediation.
Collapse
Affiliation(s)
- Sarah E Hale
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Hans Peter H Arp
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Darya Kupryianchyk
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Gerard Cornelissen
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Plant and Environmental Sciences (NMBU), Norwegian University of Life Sciences, 5003 Ås, Norway; Department of Applied Environmental Sciences (ITM), Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
16
|
Kupryianchyk D, Hale S, Zimmerman AR, Harvey O, Rutherford D, Abiven S, Knicker H, Schmidt HP, Rumpel C, Cornelissen G. Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar. CHEMOSPHERE 2016; 144:879-887. [PMID: 26421628 DOI: 10.1016/j.chemosphere.2015.09.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Carbonaceous materials like biochars are increasingly recognized as effective sorbent materials for sequestering organic pollutants. Here, we study sorption behavior of two common hydrophobic organic contaminants 2,2',5,5'-tetrachlorobiphenyl (CB52) and phenanthrene (PHE), on biochars and other carbonaceous materials (CM) produced at a wide range of conditions and temperatures from various feedstocks. The primary aim was to establish structure-reactivity relationships responsible for the observed variation in CM and biochar sorption characteristics. CM were characterized for their elemental composition, surface area, pore size distribution, aromaticity and thermal stability. Freundlich sorption coefficients for CB52 and PHE (i.e. LogK(F,CB52) and K(F,PHE), respectively) to CM showed a variation of two to three orders of magnitude, with LogK(F,CB52) ranging from 5.12 ± 0.38 to 8.01 ± 0.18 and LogK(F,PHE) from 5.18 ± 0.09 to 7.42 ± 1.09. The highest LogK(F) values were observed for the activated CM, however, non-activated biochars produced at high temperatures (>700 °C) sorbed almost as strongly (within 0.2-0.5 Log units) as the activated ones. Sorption coefficients significantly increased with pyrolysis temperature, CM surface area and pore volume, aromaticity, and thermal stability, and decreased with H/C, O/C, (O + N)/C content. The results of our study contribute to the understanding of processes underlying HOC sorption to CM and explore the potential of CM as engineered sorbents for environmental applications.
Collapse
Affiliation(s)
| | - Sarah Hale
- Norwegian Geotechnical Institute, Oslo, Norway
| | - Andrew R Zimmerman
- Department of Geological Sciences, The University of Florida, Gainesville, USA
| | - Omar Harvey
- Geography and Geology, The University of Southern Mississippi, Hattiesburg, USA
| | | | - Samuel Abiven
- Department of Geography, University of Zürich, Zürich, Switzerland
| | | | | | | | - Gerard Cornelissen
- Norwegian Geotechnical Institute, Oslo, Norway; Institute for Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway; Department of Applied Environmental Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
17
|
Manariotis ID, Fotopoulou KN, Karapanagioti HK. Preparation and Characterization of Biochar Sorbents Produced from Malt Spent Rootlets. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02698] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ioannis D. Manariotis
- Department of Civil Engineering,
Environmental Engineering Laboratory and ‡Department of
Chemistry, University of Patras, Patras 265 04, Greece
| | - Kalliopi N. Fotopoulou
- Department of Civil Engineering,
Environmental Engineering Laboratory and ‡Department of
Chemistry, University of Patras, Patras 265 04, Greece
| | - Hrissi K. Karapanagioti
- Department of Civil Engineering,
Environmental Engineering Laboratory and ‡Department of
Chemistry, University of Patras, Patras 265 04, Greece
| |
Collapse
|
18
|
Yavari S, Malakahmad A, Sapari NB. Biochar efficiency in pesticides sorption as a function of production variables--a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13824-41. [PMID: 26250816 DOI: 10.1007/s11356-015-5114-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/22/2015] [Indexed: 05/27/2023]
Abstract
Biochar is a stabilized, carbon-rich by-product derived from pyrolysis of biomass. Recently, biochar has received extensive attentions because of its multi-functionality for agricultural and environmental applications. Biochar can contribute to sequestration of atmosphere carbon, improvement of soils quality, and mitigation of environmental contaminations. The capability of biochar for specific application is determined by its properties which are predominantly controlled by source material and pyrolysis route variables. The biochar sorption potential is a function of its surface area, pores volume, ash contents, and functional groups. The impacts of each production factors on these characteristics of biochar need to be well-understood to design efficient biochars for pesticides removal. The effects of biomass type on biochar sorptive properties are determined by relative amounts of its lingo-cellulosic compounds, minerals content, particles size, and structure. The highest treatment temperature is the most effective pyrolysis factor in the determination of biochar sorption behavior. The expansion of micro-porosity and surface area and also increase of biochar organic carbon content and hydrophobicity mostly happen by pyrolysis peak temperature rise. These changes make biochar suitable for immobilization of organic contaminants. Heating rate, gas pressure, and reaction retention time after the pyrolysis temperatures are sequentially important pyrolysis variables effective on biochar sorptive properties. This review compiles the available knowledge about the impacts of production variables on biochars sorptive properties and discusses the aging process as the main factor in post-pyrolysis alterations of biochars sorption capacity. The drawbacks of biochar application in the environment are summarized as well in the last section.
Collapse
Affiliation(s)
- Saba Yavari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Darul Ridzuan, Malaysia,
| | | | | |
Collapse
|
19
|
Zhang W, Zheng J, Zheng P, Qiu R. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions. CHEMOSPHERE 2015; 134:438-445. [PMID: 25989523 DOI: 10.1016/j.chemosphere.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/15/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist.
Collapse
Affiliation(s)
- Weihua Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Juan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Pingping Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
20
|
Chiou CT, Cheng J, Hung WN, Chen B, Lin TF. Resolution of Adsorption and Partition Components of Organic Compounds on Black Carbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9116-9123. [PMID: 26114972 DOI: 10.1021/acs.est.5b01292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Black carbons (BCs) may sequester non-ionic organic compounds by adsorption and/or partition to varying extents. Up to now, no experimental method has been developed to accurately resolve the combined adsorption and partition capacity of a compound on a BC. In this study, a unique "adsorptive displacement method" is introduced to reliably resolve the adsorption and partition components for a solute-BC system. It estimates the solute adsorption on a BC by the use of an adsorptive displacer to displace the adsorbed target solute into the solution phase. The method is validated by tests with uses of activated carbon as the model carbonaceous adsorbent, soil organic matter as the model carbonaceous partition phase, o-xylene and 1,2,3-trichlorobenzene as the reference solutes, and p-nitrophenol as the adsorptive displacer. Thereafter, the adsorption-partition resolution was completed for the two solutes on selected model BCs: four biochars and two National Institute of Standards and Technology (NIST) standard soots (SRM-2975 and SRM-1650b). The adsorption and partition components resolved for selected solutes with given BCs and their dependences upon solute properties enable one to cross-check the sorption data of other solutes on the same BCs. The resolved components also provide a theoretical basis for exploring the potential modes and extents of different solute uptakes by given BCs in natural systems.
Collapse
Affiliation(s)
- Cary T Chiou
- †Department of Environmental Engineering and Sustainable Environment Research Center, National Cheng Kung University, Tainan 70701, Taiwan
- ‡United States Geological Survey, Denver Federal Center, Denver, Colorado 80225, United States
| | - Jianzhong Cheng
- §State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, People's Republic of China
| | - Wei-Nung Hung
- ∥Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Baoliang Chen
- ⊥Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tsair-Fuh Lin
- †Department of Environmental Engineering and Sustainable Environment Research Center, National Cheng Kung University, Tainan 70701, Taiwan
| |
Collapse
|
21
|
Srinivasan P, Sarmah AK, Smernik R, Das O, Farid M, Gao W. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:495-505. [PMID: 25644846 DOI: 10.1016/j.scitotenv.2015.01.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
In this study, we pyrolysed six waste derived biomass: pine sawdust (PSD), paunch grass (PG), broiler litter (BL), sewage sludge (SS), dewatered pond sludge (DWP), and dissolved air-floatation sludge (DAF) into biochar. Biochars were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy, inductively-coupled plasma mass spectrometry, (13)C-solid-state nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy to evaluate their feasibility for potential agronomic and environmental applications. Syngas produced during the pyrolysis process was also analyzed to determine the energy values. Results show that PSD biochar has the utmost potential for carbon sequestration and contaminant remediation due to its high surface area, aromaticity and carbon content. Additionally given its low ash content, PSD biochar could also potentially be used as filler in wood plastic biocomposites. Low levels of heavy metals (Cr, Cu, Zn, As, Cd, Hg, and Pb) in all biochars suggest that biochars are also applicable for land application according to the United States Environmental Protection Agency regulation 40 CFR part 503. The composition of syngas evolved during the pyrolysis of feedstocks showed little difference in the calorific values, ranging from 12-16 MJ/dsm with PSD having the maximum calorific value of 16 MJ/dsm.
Collapse
Affiliation(s)
- Prakash Srinivasan
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Ron Smernik
- School of Earth and Environmental Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Oisik Das
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Mohammed Farid
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, 20 Symonds Street, Auckland, New Zealand
| | - Wei Gao
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, 20 Symonds Street, Auckland, New Zealand
| |
Collapse
|
22
|
Smernik RJ, Kookana RS. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils. CHEMOSPHERE 2015; 119:99-104. [PMID: 24972176 DOI: 10.1016/j.chemosphere.2014.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content.
Collapse
Affiliation(s)
- Ronald J Smernik
- Soils Group, School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Rai S Kookana
- Soils Group, School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia; CSIRO, Land & Water, PMB 2, Glen Osmond SA 5064, Australia
| |
Collapse
|
23
|
Ogbonnaya OU, Adebisi OO, Semple KT. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2635-2643. [PMID: 25277257 DOI: 10.1039/c4em00396a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biochar is a carbon rich product from the incomplete combustion of biomass and it has been shown to reduce bioavailability of organic contaminants through adsorption. This study investigated the influence of 0%, 1%, 5% and 10% of two different particle sized wood biochars (≤2 mm and 3-7 mm) on the bioaccessibility of (14)C-phenanthrene (10 mg kg(-1)) in aged soil. The extent of (14)C-phenanthrene mineralisation by phenanthrene-degrading Pseudomonas sp. inoculum was monitored over a 14 day period in respirometric assays and compared to hydroxypropyl-β-cyclodextrin (HPCD) aqueous extraction. Notably, biochar amendments showed significant reduction in extents of mineralisation and HPCD extraction. Linear correlations between HPCD extractability and the total amount mineralised revealed good correlations, with 2 mm biochar showing a best fit (r(2) = 0.97, slope = 1.11, intercept = 1.72). Biochar reduced HPCD extractability and bioaccessibility of (14)C-phenanthrene to microorganisms in a similar manner. Biochar can aid risk reduction to phenanthrene exposure to biota in soil and HPCD can serve as a useful tool to assess the extent of exposure in biochar-amended soils.
Collapse
Affiliation(s)
- O U Ogbonnaya
- EcoSystems Environmental Management Services Ltd, 8 Rasheed Alaba Williams Street, Off Admiralty Way, Lekki Peninsula, Lagos, Nigeria.
| | | | | |
Collapse
|
24
|
Sun J, Lian F, Liu Z, Zhu L, Song Z. Biochars derived from various crop straws: characterization and Cd(II) removal potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:226-31. [PMID: 24859708 DOI: 10.1016/j.ecoenv.2014.04.042] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 05/22/2023]
Abstract
Five types of biochars prepared from four crop straws and one wood shaving at 600 °C were characterized, and their sorption to Cd(II) were determined to investigate the differences in capacity to function as sorbents to heavy metals. Surface areas and pore volumes of the biochars were inversely correlated to the lignin content of raw biomass. The biochars derived from crop straws displayed more developed pore structure than wood char due to the higher lignin content of wood. Sorption capacity of the biochars to Cd(II) followed the order of corn straw>cotton straw>wheat straw>rice straw>poplar shaving, which was not strictly consistent with the surface area of the chars. The surface characteristics of chars before and after Cd(II) sorption were investigated with scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy, which suggested that the higher sorption of Cd(II) on corn straw chars was mainly attributed to cation exchange, surface precipitation of carbonate, and surface complexation with oxygen-containing groups. This study indicated that crop straw biochars exhibit distinct sorption capacities to heavy metals due to various surface characteristics, and thus the sorption efficiency should be carefully evaluated specific to target contaminant.
Collapse
Affiliation(s)
- Jingkuan Sun
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong 256600, China
| | - Fei Lian
- Centre for Research in Ecotoxicology and Environmental Remediation, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China.
| | - Zhongqi Liu
- Centre for Research in Ecotoxicology and Environmental Remediation, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhengguo Song
- Centre for Research in Ecotoxicology and Environmental Remediation, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| |
Collapse
|
25
|
Lattao C, Cao X, Mao J, Schmidt-Rohr K, Pignatello JJ. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4790-4798. [PMID: 24758543 DOI: 10.1021/es405096q] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chars from wildfires and soil amendments (biochars) are strong adsorbents that can impact the fate of organic compounds in soil, yet the effects of solute and adsorbent properties on sorption are poorly understood. We studied sorption of benzene, naphthalene, and 1,4-dinitrobenzene from water to a series of wood chars made anaerobically at different heat treatment temperatures (HTT) from 300 to 700 °C, and to graphite as a nonporous, unfunctionalized reference adsorbent. Peak suppression in the NMR spectrum by sorption of the paramagnetic relaxation probe TEMPO indicated that only a small fraction of char C atoms lie near sorption sites. Sorption intensity for all solutes maximized with the 500 °C char, but failed to trend regularly with N2 or CO2 surface area, micropore volume, mesopore volume, H/C ratio, O/C ratio, aromatic fused ring size, or HTT. A model relating sorption intensity to a weighted sum of microporosity and mesoporosity was more successful. Sorption isotherm linearity declined progressively with carbonization of the char. Application of a thermodynamic model incorporating solvent-water and char-graphite partition coefficients permitted for the first time quantification of steric (size exclusion in pores) and π-π electron donor-acceptor (EDA) free energy contributions, relative to benzene. Steric hindrance for naphthalene increases exponentially from 9 to 16 kJ/mol (∼ 1.6-2.9 log units of sorption coefficient) with the fraction of porosity in small micropores. π-π EDA interactions of dinitrobenzene contribute -17 to -19 kJ/mol (3-3.4 log units of sorption coefficient) to sorption on graphite, but less on chars. π-π EDA interaction of naphthalene on graphite is small (-2 to 2 kJ/mol). The results show that sorption is a complex function of char properties and solute molecular structure, and not very predictable on the basis of readily determined char properties.
Collapse
Affiliation(s)
- Charisma Lattao
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station , 123 Huntington Street, P.O. Box 1106, New Haven, Connecticut 06504-1106, United States
| | | | | | | | | |
Collapse
|
26
|
Xi Z, Chen B. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents. J Environ Sci (China) 2014; 26:737-748. [PMID: 25079403 DOI: 10.1016/s1001-0742(13)60501-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 06/03/2023]
Abstract
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater.
Collapse
Affiliation(s)
- Zemin Xi
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Oleszczuk P, Zielińska A, Cornelissen G. Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) content. BIORESOURCE TECHNOLOGY 2014; 156:139-145. [PMID: 24495539 DOI: 10.1016/j.biortech.2014.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
The objective of the study was to identify the effect of various biochars on the content of freely dissolved (Cfree) PAHs in sewage sludge. Apart from the evaluation of biochars obtained from various materials, the study also included the determination of the effects of biochar particle sizes and biochar production temperature on their ability to bind PAHs in sewage sludge. Increase in biochar dose caused a gradual reduction of Cfree PAHs content, but only up to the biochar dose of 5%. Depending on the kind of initial material from which the biochar was produced, the reduction of Cfree PAHs content in sewage sludge varied from 17.4% to 58.0%. Both the temperature and the particle size of biochar had an effect on PAH free concentration reduction. Biochars characterised by a low polarity index (O/C or (O+N)/C) reduced the level of Cfree PAHs better than biochars with a higher polarity index value.
Collapse
Affiliation(s)
- Patryk Oleszczuk
- Department of Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| | - Anna Zielińska
- Department of Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Gerard Cornelissen
- Department of Environmental Engineering, Norwegian Geotechnical Institute NGI, Oslo 16, Norway; Department of Applied Environmental Sciences (ITM), Stockholm University, Stockholm, Sweden; Institute for Plant and Environmental Sciences, University of Life Sciences (UMB), 5003 Ås, Norway
| |
Collapse
|
28
|
Xi Z, Chen B. The effect of structural compositions on the biosorption of phenanthrene and pyrene by tea leaf residue fractions as model biosorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3318-3330. [PMID: 24234757 DOI: 10.1007/s11356-013-2266-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
To enhance the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) by natural biosorbent, sorption of phenanthrene and pyrene onto raw and modified tea leaves as a model biomass were investigated. Tea leaves were treated using Soxhlet extraction, saponification, and acid hydrolysis to yield six fractions. The structures of tea leaf fractions were characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The amorphous cellulose components regulated the sorption kinetics, capacity, and mechanism of biomass fractions. The adsorption kinetics fit well to pseudo-second-order model and isotherms followed the Freundlich equation. By the consumption of the amorphous cellulose under acid hydrolysis, both the aliphatic moieties and aromatic domains contributed to total sorption, thus sorption capacities of the de-sugared fractions were dramatically increased (5–20-fold for phenanthrene and 8–36-fold for pyrene). All de-sugared fractions exhibited non-linear sorption due to strong specific interaction between PAHs and exposed aromatic domains of biosorbent, while presenting a relative slow rate because of the condensed domain in de-sugared samples. The availability of strong sorption phases (aromatic domains) in the biomass fractions were controlled by polar polysaccharide components, which were supported by the FTIR, CHN, and SEM data.
Collapse
|
29
|
Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8472-83. [PMID: 23589248 DOI: 10.1007/s11356-013-1659-0] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/18/2013] [Indexed: 05/22/2023]
Abstract
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang J, He M. Effect of dissolved organic matter on sorption and desorption of phenanthrene onto black carbon. J Environ Sci (China) 2013; 25:2378-83. [PMID: 24649667 DOI: 10.1016/s1001-0742(12)60328-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sorption and desorption of phenanthrene (PHE) onto black carbon (BC) extracted from sediments were studied in the presence of three types of dissolved organic matter (DOM), including L-phenylalanine (L-PH), peptone and citric acid. The nonlinearity of the sorption isotherms increased in the presence of DOM. The presence of L-PH reduced the sorption capacity and desorption hysteresis because of the solubilization of PHE in L-PH solution. Peptone at 50-500 mg/L also led to a decrease in sorption attributed to solubilization, although the sorbed peptone on the BC surface could slightly increase PHE sorption. Unlike L-PH and peptone, citric acid enhanced the sorption capacity and irreversibility of PHE on BC mainly due to the strong sorption of citric acid on the BC surface. Our results may help to understand the different impacts of DOM on the distribution and transport of PAH in the environment.
Collapse
|
31
|
Valili S, Siavalas G, Karapanagioti HK, Manariotis ID, Christanis K. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:252-258. [PMID: 23764506 DOI: 10.1016/j.jenvman.2013.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/24/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Malt spent rootlets (MSR) are biomaterials produced in big quantities by beer industry as by-products. A sustainable solution is required for their management. In the present study, MSR are examined as sorbents of a hydrophobic organic compound, phenanthrene, from aqueous solutions. Raw MSR sorb phenanthrene but their sorptive properties are not competitive with the respective properties of commercial sorbents (e.g., activated carbons). Organic petrography is used as a tool to characterize MSR after treatment in order to produce an effective sorbent for phenanthrene. Chemical and thermal (at low temperature under nitrogen atmosphere) treatments of MSR did not result in highly effective sorbents. Based on organic petrography characterization, the pores of the treated materials were filled with humic colloids. When pyrolysis at 800 °C was used to treat MSR, a sorbent with new and empty pores was produced. Phenanthrene sorption capacity was 2 orders of magnitude higher for the pyrolized MSR than for raw MSR.
Collapse
Affiliation(s)
- Styliani Valili
- Department of Chemistry, University of Patras, Patras 26504, Greece
| | | | | | | | | |
Collapse
|
32
|
Semple KT, Riding MJ, McAllister LE, Sopena-Vazquez F, Bending GD. Impact of black carbon on the bioaccessibility of organic contaminants in soil. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:808-816. [PMID: 23608746 DOI: 10.1016/j.jhazmat.2013.03.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 03/05/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
The ability of carbonaceous geosorbents (CGs) such as black carbon (BC) to extensively sorb many common environmental contaminants suggests that they potentially possesses qualities useful to the sequestration of harmful xenobiotics within contaminated land. Presently, however, there is limited understanding of the implications for the bioaccessibility, mobility and environmental risk of organic contaminants while sorbed to BC in soil and sediment, in addition to the inherent toxicity of BC itself to terrestrial flora and fauna. We review both the processes involved in and factors influencing BC sorption characteristics, and ultimately consider the impacts BC will have for bioavailability/bioaccessibility, toxicity and risk assessment/remediation of contaminated land. We conclude that while the application of BC is promising, additional work on both their toxicity effects and long-term stability is required before their full potential as a remediation agent can be safely exploited.
Collapse
Affiliation(s)
- Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | |
Collapse
|
33
|
Hale SE, Jensen J, Jakob L, Oleszczuk P, Hartnik T, Henriksen T, Okkenhaug G, Martinsen V, Cornelissen G. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8674-8683. [PMID: 23802136 DOI: 10.1021/es400917g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of the present study was to evaluate the secondary ecotoxicological effects of soil amendment materials that can be added to contaminated soils in order to sequester harmful pollutants. To this end, a nonpolluted agricultural soil was amended with 0.5, 2, and 5% of the following four amendments: powder activated carbon (PAC), granular activated carbon, corn stover biochar, and ferric oxyhydroxide powder, which have previously been proven to sequester pollutants in soil. The resulting immediate effects (i.e., without aging the mixtures before carrying out tests) on the springtail Folsomia candida, the earthworm species Aporectodea caliginosa and Eisenia fetida, the marine bacteria Vibrio fischeri, a suite of ten prokaryotic species, and a eukaryote (the yeast species Pichia anomalia) were investigated. Reproduction of F. candida was significantly increased compared to the unamended soil when 2% biochar was added to it. None of the treatments caused a negative effect on reproduction. All amendments had a deleterious effect on the growth of A. caliginosa when compared to the unamended soil, except the 0.5% amendment of biochar. In avoidance tests, E. fetida preferred biochar compared to all other amendments including the unamended soil. All amendments reduced the inhibition of luminescence to V. fischeri, i.e., were beneficial for the bacteria, with PAC showing the greatest improvement. The effects of the amendments on the suite of prokaryotic species and the eukaryote were variable, but overall the 2% biochar dose provided the most frequent positive effect on growth. It is concluded that the four soil amendments had variable but never strongly deleterious effects on the bacteria and invertebrates studied here during the respective recommended experimental test periods.
Collapse
Affiliation(s)
- Sarah E Hale
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk? AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3020349] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Marchal G, Smith KEC, Rein A, Winding A, Trapp S, Karlson UG. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. CHEMOSPHERE 2013; 90:1767-1778. [PMID: 22921652 DOI: 10.1016/j.chemosphere.2012.07.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/17/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of (14)C-labelled phenanthrene (≤5 μg L(-1)) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84±2.3%, 87±4.1%, and 53±1.2% for water, MSM and TSB, respectively), followed by charcoal (35±2.2%, 32±1.7%, and 12±0.3%, respectively) and compost (1.3±0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56±11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost was fully desorbed and biodegraded.
Collapse
Affiliation(s)
- Geoffrey Marchal
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Kasozi GN, Nkedi-Kizza P, Li Y, Zimmerman AR. Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 169:12-19. [PMID: 22659728 DOI: 10.1016/j.envpol.2012.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 04/23/2012] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
Sorption of two s-triazines, atrazine and ametryn, by carbonatic soils, Histosols, Spodosols and Oxisols was examined. Linear isotherms were observed and sorption coefficients (K(d)) of both compounds were significantly lower (α = 0.05) onto carbonatic soils compared to non-carbonatic soils. Furthermore, among carbonatic soil types, the marl-carbonatic soils had the lowest sorption affinities. K(d) and organic carbon content were highly correlated, suggesting predominant influence of organic carbon in the sorption of the s-triazine, except in Oxisols and Spodosols where variations suggest other factors. Upon removal of organic matter (OM) using sodium hypochlorite and hydrogen peroxide, the K(d) values were reduced by ~90%, indicating minimal contribution of mineral surfaces. Thus OM compositional differences likely explain the large variation in s-triazine sorption within and between soil orders. This study highlights the need to consider OM composition in addition to quantity when determining pesticide applications rates, particularly for carbonatic soils.
Collapse
Affiliation(s)
- G N Kasozi
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
37
|
Shih YH, Su YF, Ho RY, Su PH, Yang CY. Distinctive sorption mechanisms of 4-chlorophenol with black carbons as elucidated by different pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 433:523-529. [PMID: 22842752 DOI: 10.1016/j.scitotenv.2012.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/01/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Black carbon (BC) has been considered as an important sorbent in the environment in recent years due to its high sorption capacity and unique sorption behavior. Sorption characteristics of black carbons from two main sources were investigated to get a better understanding of organic chemical fate in the environment. The present study showed sorption mechanisms of 4-chlorophenol, a common organic contaminant in the surroundings, in two kinds of black carbons, soot surrogate (BC1) and environmental char (BC2) derived from rice straw. Sorption capacity of 4-chlorophenol was much higher in BC1 than on BC2 due to the larger surface area of BC1. However, the surface-area normalized sorption coefficients (sorption capacity per surface area) of BC2 were higher than those of BC1, indicating electrostatic attraction and actions of polar foundational groups on BC2 can react with 4-chlorophenol. With increasing temperature, sorption of BC1 decreased but the sorption of BC2 significantly increased at pH 10 and only slightly increased at pH 4. An exothermic sorption reaction was found for BC1; however, an endothermic reaction of chemical sorption occurred on BC2 at pH 10 due to the electrostatic attraction. At pH4, sorption capacity of BC2 decreased and the small positive sorption enthalpy indicated that less electrostatic attractions occurred because of the neutral form of 4-chlorophenol and the domination of mainly hydrophobic interactions.
Collapse
Affiliation(s)
- Yang-hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan ROC.
| | | | | | | | | |
Collapse
|
38
|
Sopeña F, Semple K, Sohi S, Bending G. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. CHEMOSPHERE 2012; 88:77-83. [PMID: 22464863 DOI: 10.1016/j.chemosphere.2012.02.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
There is considerable current interest in using biochar (BC) as a soil amendment to sequester carbon to mitigate climate change. However, the implications of adding BC to agricultural soil for the environmental fate of pesticides remain unclear. In particular, the effect of biochars on desorption behavior of compounds is poorly understood. This study examined the influence of BC on pesticide chemical and biological accessibility using the herbicide isoproturon (IPU). Soils amended with 1% and 2% BC showed enhanced sorption, slower desorption, and reduced biodegradation of IPU. Addition of 0.1% BC had no effect on sorption, desorption or biodegradation of IPU. However, the mineralization of (14)C-IPU was reduced by all BC concentrations, reducing by 13.6%, 40.1% and 49.8% at BC concentrations of 0.1%, 1% and 2% respectively. Further, the ratio of the toxic metabolite 4-isopropyl-aniline to intact IPU was substantially reduced by higher BC concentrations. Hydroxypropyl-β-cyclodextrin (HPCD) extractions were used to estimate the IPU bioaccessibility in the BC-amended soil. Significant correlations were found between HPCD-extracted (14)C-IPU and the IPU desorbed (%) (r(2)=0.8518, p<0.01), and also the (14)C-IPU mineralized (%) (r(2)=0.733; p<0.01) for all BC-amended soils. This study clearly demonstrates how desorption in the presence of BC is intimately related to pesticide biodegradation by the indigenous soil microbiota. BC application to agricultural soils can affect the persistence of pesticides as well as the fate of their degradation products. This has important implications for the effectiveness of pesticides as well as the sequestration of contaminants in soils.
Collapse
Affiliation(s)
- Fatima Sopeña
- School of Life Sciences, Wellesbourne Campus, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Sun K, Gao B, Ro KS, Novak JM, Wang Z, Herbert S, Xing B. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 163:167-173. [PMID: 22325445 DOI: 10.1016/j.envpol.2011.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Sorption of two herbicides, fluridone (FLUN) and norflurazon (NORO), by two types of biochars, whole sediment, and various soil/sediment organic matter (OM) fractions including nonhydrolyzable carbon (NHC), black carbon (BC) and humic acid (HA) was examined. The single-point organic carbon (OC)-normalized distribution coefficients (K(OC)) of FLUN and NORO at low solution concentration (C(e)=0.01S(W), solubility) for HA, NHC, and BC were about 3, 14, and 24 times and 3, 16, and 36 times larger than their bulk sediments, respectively, indicating the importance of different OM fractions in herbicide sorption. This study revealed that aliphatic moieties of the hydrothermal biochars and aromatic moieties of NHC samples, respectively, were possibly responsible for herbicide sorption. The hydrothermal biochar and condensed OM (i.e., NHC and BC) showed relatively high or similar herbicide sorption efficiency compared to the thermal biochar, suggesting that the hydrothermal biochar may serve as an amendment for minimizing off-site herbicide movement.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Water Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | |
Collapse
|
40
|
KRUPADAM REDDITHOTAJ. Nanoporous Polymeric Material for Remediation of PAHs Polluted Water. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.633591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Hale SE, Hanley K, Lehmann J, Zimmerman A, Cornelissen G. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10445-10453. [PMID: 22077986 DOI: 10.1021/es202970x] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, the suitability of biochar and activated carbon (AC) for contaminated soil remediation is investigated by determining the sorption of pyrene to both materials in the presence and absence of soil and before as well as after aging. Biochar and AC were aged either alone or mixed with soil via exposure to (a) nutrients and microorganisms (biological), (b) 60 and 110 °C (chemical), and (c) freeze-thaw cycles (physical). Before and after aging, the pH, elemental composition, cation exchange capacity (CEC), microporous SA, and sorption isotherms of pyrene were quantified. Aging at 110 °C altered the physicochemical properties of all materials to the greatest extent (for example, pH increased by up to three units and CEC by up to 50% for biochar). Logarithmic K(Fr) values ranged from 7.80 to 8.21 (ng kg(-1))(ng L(-1))(-nF) for AC and 5.22 to 6.21 (ng kg(-1))(ng L(-1))(-nF) for biochar after the various aging regimes. Grinding biochar to a smaller particle size did not significantly affect the sorption of d(10) pyrene, implying that sorption processes operate on the subparticle scale. Chemical aging decreased the sorption of pyrene to the greatest extent (up to 1.8 log unit for the biochar+soil). The sorption to AC was affected more by the presence of soil than the sorption to biochar was. Our results suggest that AC and biochar have a high sorption capacity for pyrene that is maintained both in the presence of soil and during harsh aging. Both materials could therefore be considered in contaminated land remediation.
Collapse
Affiliation(s)
- Sarah E Hale
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806, Oslo, Norway.
| | | | | | | | | |
Collapse
|
42
|
Yan C, Yang Y, Liu M, Nie M, Zhou JL. Phenanthrene sorption to Chinese coal: importance of coal's geochemical properties. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:86-92. [PMID: 21621328 DOI: 10.1016/j.jhazmat.2011.04.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
Phenanthrene (Phen) was chosen as the probe compound for determining the sorption of PAHs to a series of different coal samples from China. Based on elemental analysis and nuclear magnetic resonance (NMR) spectra analysis, coal samples were characterized with different metamorphic evolutional degrees. The experimental sorption data were fitted well by the Freundlich model, suggesting enhanced sorption capacity and strong nonlinearity of coal samples. The combined partition and adsorption model yielded a better fit than the Freundlich isotherm, indicating that adsorption dominated the sorption at low aqueous concentrations. Correlations between coal properties and sorption capacity values indicated that C%, H/C and O/C atomic ratios were the key factors controlling the sorption behavior. Compared to total carbon, BC might play more important role in the sorption of Phen to coal samples. Moreover, there existed nonlinear relationships between combined carbon, aromatic and aliphatic carbon contents and log K(Fr) and n values, respectively, indicating the significance of aromatic and aliphatic carbon in the coal sorption behavior.
Collapse
Affiliation(s)
- Caixia Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
43
|
Chen B, Yuan M, Liu H. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. JOURNAL OF HAZARDOUS MATERIALS 2011; 188:436-442. [PMID: 21345579 DOI: 10.1016/j.jhazmat.2011.01.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 05/27/2023]
Abstract
To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N(2) surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K(d)) followed the order of PN > BL > OP > RR > WC, ranged from 2484 ± 24.24 to 5306 ± 92.49 L/kg. Except the WC sample, the K(d) values were negatively correlated with sugar content, polar index [(N+O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K(oc)) were linearly correlated with octanol-water partition coefficients (K(ow)) of PAHs, i.e., logK(oc) = 1.16 log K(ow)-1.21. The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants.
Collapse
Affiliation(s)
- Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028, China.
| | | | | |
Collapse
|
44
|
Sullivan J, Bollinger K, Caprio A, Cantwell M, Appleby P, King J, Ligouis B, Lohmann R. Enhanced sorption of PAHs in natural-fire-impacted sediments from Oriole Lake, California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2626-2633. [PMID: 21405084 DOI: 10.1021/es103817q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Surface sediment cores from Oriole Lake (CA) were analyzed for organic carbon (OC), black carbon (BC), and their δ(13)C isotope ratios. Sediments displayed high OC (20-25%) and increasing BC concentrations from ∼0.40% (in 1800 C.E.) to ∼0.60% dry weight (in 2000 C.E.). Petrographic analysis confirmed the presence of fire-derived carbonaceous particles/BC at ∼2% of total OC. Natural fires were the most likely cause of both elevated polycyclic aromatic hydrocarbon (PAH) concentrations and enhanced sorption in Oriole Lake sediments prior to 1850, consistent with their tree-ring-based fire history. In contrast to other PAHs, retene and perylene displayed decreasing concentrations during periods with natural fires, questioning their use as fire tracers. The occurrence of natural fires, however, did not result in elevated concentrations of black carbon or chars in the sediments. Only the 1912-2007 sediment layer contained anthropogenic particles, such as soot BC. In this layer, combining OC absorption with adsorption to soot BC (using a Freundlich coefficient n = 0.7) explained the observed sorption well. In the older layers, n needed to be 0.3 and 0.5 to explain the enhanced sorption to the sediments, indicating the importance of natural chars/inertinites in sorbing PAHs. For phenanthrene, values of n differed significantly between sorption to natural chars (0.1-0.4) and sorption to anthropogenic black carbon (>0.5), suggesting it could serve as an in situ probe of sorbents.
Collapse
Affiliation(s)
- Julia Sullivan
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sami S, Rahimi A. Non-isothermal modelling of H2S removal in a biofilter. ENVIRONMENTAL TECHNOLOGY 2011; 32:373-381. [PMID: 21780705 DOI: 10.1080/09593330.2010.500312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study the biodegradation of H2S in the air in a biofilter is modelled in the non-isothermal operating condition. For this purpose, using conservation laws of heat and mass transfer and considering the physical and chemical phenomena occurring in a biofilter, the governing equations in non-isothermal, isothermal, steady, and unsteady-state operations are obtained and solved numerically. The model results are compared with the available experimental data and also with the results of the isothermal model. The comparisons are made both in steady and unsteady-state situations. The results show that considering the heat effects on the modelling of a biofilter improves the accuracy of the model results. Furthermore, the effects of some operating parameters on the removal efficiency of biofilter are investigated.
Collapse
Affiliation(s)
- Samaneh Sami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
46
|
Zhang J, He M. Effect of surfactants on sorption and desorption of phenanthrene onto black carbon. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:15-22. [PMID: 21291023 DOI: 10.2175/106143010x12681059116536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sorption and desorption of phenanthrene onto black carbon extracted from sediment were studied in the presence of a cationic surfactant (cetyltrimethylammonium bromide [CTAB]), an anionic surfactant (sodium dodecylbenzene sulfonate [SDBS]), and a nonionic surfactant (Triton X-100 [TX100]), to examine the role of surfactants in sorption and desorption. Nonlinearity of the sorption isotherms increased in the presence of surfactants. The CTAB enhanced the sorption capacity and irreversibility of phenanthrene on black carbon. However, the presence of SDBS reduced the sorption capacity and desorption hysteresis. Unlike CTAB and SDBS, the influence of TX100 on sorption was concentration-dependent. Low levels of TX100 increased sorption, as a result of the sorption of TX100 on the black carbon surface. High levels of TX100 led to a decrease in sorption because of the solubilization of phenanthrene in TX100 solution. Our results may help to understand the different effects of surfactants on the distribution and transport of polycyclic aromatic hydrocarbons in the environment.
Collapse
Affiliation(s)
- Jinghuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing, China
| | | |
Collapse
|
47
|
Xia X, Dai Z, Zhang J. Sorption of phthalate acid esters on black carbon from different sources. ACTA ACUST UNITED AC 2011; 13:2858-64. [DOI: 10.1039/c1em10072f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Zhang J, He M. Effect of structural variations on sorption and desorption of phenanthrene by sediment organic matter. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:432-438. [PMID: 20875926 DOI: 10.1016/j.jhazmat.2010.08.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 05/28/2023]
Abstract
Sorption and desorption isotherms of phenanthrene (PHE) on sediment organic matter (SOM) prepared at different combustion temperature were studied to examine the impact of SOM structure on sorption and desorption. With the increase of combustion temperature from 0 to 400°C, the aromatic groups (-CC) in SOM samples increased, while the aliphatic groups (-CH, -CH(2)) and polar structures (-C-O, -OH) decreased. When the combustion temperature increased to 500°C, aliphatic structures, polar structures and most aromatic structures were burnt out, and the mineral materials were dominant in the sample. The increase of combustion temperature decrease the sorption isotherm nonlinearity index n value, and enhanced the adsorption capacity and desorption hysteresis for PHE on SOM. However, higher n value, lower sorption capacity and sorption irreversibility were presented in the sample treated at 500°C (T500). Positive correlations between single-point organic carbon-normalized distribution coefficient log K(oc) values and aromatic carbon (p<0.01) and negative correlations between log K(oc) values and aliphaticity or H/C ratios (p<0.05) were observed. There was a negative relation between hysteresis index (HI) value and aromatic carbon (p<0.01) and a negative trend of the sorption isotherm nonlinearity index n values and aromatic carbon (p<0.01). The above results indicated the dominance of aromatic structures in the sorption nonlinearity, sorption capacity and desorption hysteresis of PHE on SOM.
Collapse
Affiliation(s)
- Jinghuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
49
|
Zhou Z, Shi D, Qiu Y, Sheng GD. Sorptive domains of pine chars as probed by benzene and nitrobenzene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:201-206. [PMID: 19656597 DOI: 10.1016/j.envpol.2009.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/03/2009] [Accepted: 07/17/2009] [Indexed: 05/28/2023]
Abstract
Chars were generated by pyrolyzing pine wood at temperatures between 300 degrees C and 700 degrees C for 6 h and at 500 degrees C for 10-300 min. Their organic content and surface acidity decreased, and BET surface area increased, with increasing pyrolytic temperature and time. The uptake of benzene and nitrobenzene increased with increasing pyrolytic temperature and time with isotherms characterized by a transition from less to more concave-downward. The isotherms with low-temperature and short-time chars were fitted to the dual Langmuir-partition model, whereas those with high-temperature chars to the dual-Langmuir model. Calculations suggest that the organic phases of chars functioned as partition media and the uptake of benzene and nitrobenzene on carbonized chars occurred first in micropores via pore-filling and later in larger pores through capillary condensation and adsorption. It is concluded that chars may be considered to consist of the partition domain, the high-energy micropores domain and the low-energy large pores domain.
Collapse
Affiliation(s)
- Zunlong Zhou
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | |
Collapse
|
50
|
Huang W, Chen B. Interaction mechanisms of organic contaminants with burned straw ash charcoal. J Environ Sci (China) 2010; 22:1586-1594. [PMID: 21235190 DOI: 10.1016/s1001-0742(09)60293-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Black carbons (e.g., charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment. To further elucidate their interaction mechanism, sorption of polar (p-nitrotoluene, m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated. The sorption isotherms fitted well with Freundlich equation, and the Freundlich N values were all around 0.31-0.38, being independent of the sorbate properties and sorbent types. After sequential removal of ashes by acid treatments (HCl and HCl-HF), both adsorption and partition were enhanced due to the enrichment of charcoal component. The separated contribution of adsorption and partition to total sorption were quantified. The effective carbon content in ash charcoal functioned as adsorption sites, partition phases, and hybrid regions with adsorption and partition were conceptualized and calculated. The hybrid regions increased obviously after de-ashed treatment. The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850 degrees C), 10 kinds of precursors of charcoal/biochar, and 10 organic sorbates.
Collapse
Affiliation(s)
- Wenhai Huang
- Department of Environmental Science, Zhejiang University, Hangzhou 310028, China.
| | | |
Collapse
|