1
|
Li Y, Zhang C, Yang M, Liu J, He H, Ma Y, Arai Y. Effects of carbonate on ferrihydrite transformation in alkaline media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:288-297. [PMID: 38258502 DOI: 10.1039/d3em00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alkaline media widely exist in natural and engineered systems such as semiarid/arid areas, radioactive waste sites, and mine tailings. In these settings, the commonly occurring iron (oxyhydr)oxides differed in their ability to influence the fate of nutrients and contaminants. Due to the substantially increased atmospheric carbon dioxide (CO2) concentration, carbonate stands to increase in these media. However, how increasing carbonate affects the transformation of poorly crystalline iron (oxyhydr)oxides (e.g., two-line ferrihydrite) under alkaline conditions still remains unclear. Here, kinetics of ferrihydrite transformation were evaluated at pH ∼10 as a function of [carbonate] = 0-286 mM using synchrotron-based X-ray and vibrational spectroscopic techniques. The results showed that carbonate slowed down ferrihydrite transformation slightly and suppressed goethite formation, but promoted hematite formation regardless of its concentration. At low carbonate concentration (11.42 mM), the effect of carbonate on product formation was obvious due to the weak inner-sphere complex; however, at high carbonate concentration (80-286 mM), the effect was retarded because of the adsorption equilibrium of carbonate as well as the initial carbonate adsorption followed by desorption. Moreover, carbonate modified the morphology of hematite from rhombic to ellipsoidal to honeycomb and goethite from rod-like to needle-like to spindle-like due to the inner-sphere adsorption-desorption of carbonate and adsorption of hydroxyl ions on reactive sites of iron (oxyhydr)oxides in alkaline media. The results suggest that the concurrently increasing carbonate with enhanced atmospheric CO2 could control the transformation and occurrence of iron (oxyhydr)oxides in natural and engineered environments and have important implications for the biogeochemical cycles of iron and carbon.
Collapse
Affiliation(s)
- Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaoqun Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Meijun Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, 999078, Macau, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Zheng CW, Zhou C, Luo YH, Long M, Long X, Zhou D, Bi Y, Yang S, Rittmann BE. Coremoval of Energetics and Oxyanions via the In Situ Coupling of Catalytic and Enzymatic Destructions: A Solution to Ammunition Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:666-673. [PMID: 36445010 DOI: 10.1021/acs.est.2c05675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ammunition wastewater contains toxic nitrated explosives like RDX and oxyanions like nitrate and perchlorate. Its treatment is challenged by low efficiency due to contaminant recalcitrance and high cost due to multiple processes needed for separately removing different contaminant types. This paper reports a H2-based low-energy strategy featuring the treatment of explosives via catalytic denitration followed by microbial mineralization coupled with oxyanion reduction. After a nitrate- and perchlorate-reducing biofilm incapable of RDX biodegradation was coated with palladium nanoparticles (Pd0NPs), RDX was rapidly denitrated with a specific catalytic activity of 8.7 gcat-1 min-1, while biological reductions of nitrate and perchlorate remained efficient. In the subsequent 30-day continuous test, >99% of RDX, nitrate, and perchlorate were coremoved, and their effluent concentrations were below their respective regulation levels. Detected intermediates and shallow metagenome analysis suggest that the intermediates after Pd-catalytic denitration of RDX ultimately were enzymatically utilized by the nitrate- and perchlorate-reducing bacteria as additional electron donor sources.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130024, China
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, Arizona85281, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
3
|
Bai H, Yang Y, Yuan H, Liu X, Ni C. Preparation of Fe 3O 4@Fe(0) immobilized enzyme to enhance the efficient degradation of methoxychlor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:917-929. [PMID: 35908032 DOI: 10.1007/s11356-022-22265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The presence of methoxychlor (MXC) in soil and wastewater is considered a nonnegligible environmental threat. Herein, Fe3O4@Fe(0) was obtained by NaBH4 reduction of Fe3O4 nanoparticles and served as a carrier for laccase to construct catalyst. The catalyst was evaluated for the degradation of MXC in treated wastewater and soil with 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) being used as cocatalyst. The removal rate of MXC in wastewater and soil was found to be 89% and 88% in optimum conditions, and the influences of initial MXC concentration, pH, and temperature on the degradation rate were evaluated. The metabolites including 2-methylpentane, 3-methylpentane, and n-pentane of MXC were identified, and possible degradation mechanisms were proposed. Overall, this work successfully demonstrates not only the ability to degrade MXC in different circumstances but also provides a new idea for environmental remediation in the future.
Collapse
Affiliation(s)
- He Bai
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
4
|
Zheng CW, Long M, Luo YH, Long X, Bi Y, Zhou D, Zhou C, Rittmann BE. Reductive destruction of multiple nitrated energetics over palladium nanoparticles in the H 2-based membrane catalyst-film reactor (MCfR). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127055. [PMID: 34523494 DOI: 10.1016/j.jhazmat.2021.127055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Nitrated energetics are widespread contaminants due to their improper disposal from ammunition facilities. Different classes of nitrated energetics commonly co-exist in ammunition wastewater, but co-removal of the classes has hardly been documented. In this study, we evaluated the catalytic destruction of three types of energetics using palladium (Pd0) nano-catalysts deposited on H2-transfer membranes in membrane catalyst-film reactors (MCfRs). This work documented nitro-reduction of 2,4,6-trinitrotoluene (TNT), as well as, for the first time, denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and pentaerythritol tetranitrate (PETN) over Pd0 at ambient temperature. The catalyst-specific activity was 20- to 90-fold higher than reported for other catalyst systems. Nitrite (NO2-) released from RDX and PETN also was catalytically reduced to dinitrogen gas (N2). Continuous treatment of a synthetic wastewater containing TNT, RDX, and PETN (5 mg/L each) for more than 20 hydraulic retention times yielded removals higher than 96% for all three energetics. Furthermore, the concentrations of NO2- and NH4+ were below the detection limit due to subsequent NO2- reduction with > 99% selectivity to N2. Thus, the MCfR provides a promising strategy for sustainable catalytic removal of co-existing energetics in ammunition wastewater.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
| | - Yuqiang Bi
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
6
|
Liu J, Liu A, Wang W, Li R, Zhang WX. Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes. CHEMOSPHERE 2019; 237:124470. [PMID: 31394456 DOI: 10.1016/j.chemosphere.2019.124470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Biodegradation of recalcitrant organic contaminants such as organic dyes is a fundamental challenge in wastewater treatment. We report herein the integration of nanoscale zero-valent iron (nZVI) with membrane bioreactors (nZVI-bio system) to achieve enhanced degradation of Congo red (CR) in wastewater. nZVI pretreatment converts the large and bio-recalcitrant CR molecules into smaller and more biodegradable organic compounds in continuous flow stirred tank reactors (CFSTR). A nZVI-bio system was experimented continuously for 52 d with a color removal efficiency of 99% and a reduction of chemical oxygen demand (COD) from 167 mg L-1 to less than 70 mg L-1. However, a conventional biotreatment system treating identical wastewater achieved color removal efficiency of just 30-70% and the COD reduction to 116 mg L-1. This suggests that integrated nZVI-bio system has potential for the treatment of recalcitrant organic dyes. On-line measurements of pH and redox potential in the CSFTR can be conveniently used to monitor and regulate treatment performance.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Airong Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruofan Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Terracciano A, Ge J, Koutsospyros A, Meng X, Smolinski B, Arienti P. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) reduction by granular zero-valent iron in continuous flow reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28489-28499. [PMID: 30088248 DOI: 10.1007/s11356-018-2871-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Wastewater streams containing hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are subject to regulatory discharge regulations that require processing through industrial waste treatment. Thus, the development of easy-to-apply technologies for the treatment of RDX-laden wastewater streams is imperative. In the present study, the reduction of RDX by granular zero valent iron (GZVI) in batch and column experiments was investigated. Preliminary batch tests conducted under both oxic and anoxic conditions showed that after 3.0 h of reaction with GZVI, RDX was mainly converted to formaldehyde (CH2O), nitrate (NO3-), and ammonium (NH4+). Column filtration tests showed that pretreatment of the GZVI media with acid wash and low influent pH (4.0 ± 0.1) achieved 99% removal of RDX up to 5000 bed volume. BOD tests carried out on the post-treatment streams showed increased biodegradability of the treated wastewater, leading to a lower environmental impact for the final waste.
Collapse
Affiliation(s)
- Amalia Terracciano
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Jie Ge
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | | | - Xiaoguang Meng
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | | | - Per Arienti
- US Army RDECOM-ARDEC, Picatinny, NJ, 07806-5000, USA
| |
Collapse
|
8
|
Peng YH, Chen YJ, Chang M, Shih YH. The effect of zerovalent iron on the microbial degradation of hexabromocyclododecane. CHEMOSPHERE 2018; 200:419-426. [PMID: 29501032 DOI: 10.1016/j.chemosphere.2018.02.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Hexabromocyclododecane (HBCD), a commonly used brominated flame retardant (BFR), has been listed as a persistent organic pollutant (POP). In order to remediate HBCD in the environment, the influence of microscale zerovalent iron (MZVI) on the HBCD degrading microcosm was evaluated. In the acclimated microcosm collected from river sediment, 49% of HBCD was initially removed through adsorption and then 30% of HBCD was biodegraded through non-debromination processes. In contrast to MZVI only, over 60% of HBCD was gradually degraded by MZVI through a debromination reaction. In the microcosm-MZVI combined system, the biodegradation ability of the microcosm was inhibited. The aqueous chemistry was changed by the addition of MZVI, which led to the alteration of microbial composition and biodegradation ability. These better understandings can facilitate an evaluation of the impact of MZVI on HBCD biodegradation when ZVI was used to remediate this BFR.
Collapse
Affiliation(s)
- Yu-Huei Peng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Ya-Jou Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Ming Chang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan.
| |
Collapse
|
9
|
Ansaf KVK, Ambika S, Nambi IM. Performance enhancement of zero valent iron based systems using depassivators: Optimization and kinetic mechanisms. WATER RESEARCH 2016; 102:436-444. [PMID: 27395028 DOI: 10.1016/j.watres.2016.06.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
The long-term ability of Zero-Valent Iron (ZVI) in contaminant removal relies on the effectiveness of iron to serve as electron donor, which makes it a versatile remediation material. However, the formation of oxide and hydroxide layers results in passive layer on ZVI surface during contaminant removal hinders its reactivity. The focus of this research was to evaluate the performance of corrosive agents such as acetic acid (HAc), aluminium sulphate (Alum) and potassium chloride (KCl) as depassivators to overcome passivation for sustainability and longevity. Batch experiments using seven combinations of the above chemicals were conducted to optimize the dosage of depassivators based on passive layer removal. The influence of depassivators in catalytic activity of ZVI in removing Cr(6+) was evaluated. The passive layer on ZVI particles was characterized using Scanning Electron Microscopy (SEM) and confirmed by Energy-Dispersive X-ray spectroscopy (EDAX) analysis. The major mechanisms in passive layer removal was found to be H(+) ion embrittlement followed by uniform depassivation when [HAc] was used and pitting corrosion when [Alum] and [KCl]were used. All the seven sets of chemicals enabled depassivation, but considering the criteria of maximum depassivation, catalytic activity and long term reactivity the depassivation treatments were effective in order as [HAc-Alum] > [HAc-Alum-KCl] >[HAc] > [Alum] > [HAc-KCl] > [KCl] > [Alum-KCl]. The kinetic rate of ZVI using [HAc-Alum] and [Alum] was relatively unchanged over the pH range of 4-10, made it suitable for ex-situ remediation. This insignificant influence of initial pH in catalytic activity of ZVI along with the improvement in longevity and sustainability makes it suitable for effective water treatment applications. The present work has successfully demonstrated that chemical depassivation can restore considerable reactivity of ZVI in the existing permeable reactive barriers.
Collapse
Affiliation(s)
- Karim Vayalunkal Karottu Ansaf
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Selvaraj Ambika
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Indumathi Manivannan Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
10
|
Ou C, Shen J, Zhang S, Mu Y, Han W, Sun X, Li J, Wang L. Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater. WATER RESEARCH 2016; 101:457-466. [PMID: 27295620 DOI: 10.1016/j.watres.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Packing of iron powder into anaerobic system is attractive for enhancing removal of recalcitrant pollutants from wastewater, but is limited by various inherent drawbacks of iron powder, such as easy precipitation and poor mass transfer. To address the above issues, iron shavings were packed into an upflow anaerobic sludge blanket (UASB) for enhancing 2,4-dinitroanisole (DNAN) reduction in this study, with system stability and microbial biodiversity emphasized. The results showed that both DNAN reduction and 2,4-diaminoanisole (DAAN) formation could be notably improved in the iron shavings coupled UASB system. Moreover, the ability to resist environmental stress was also strengthened through the addition of iron shavings in the UASB reactor. Compared with a loose and rough surface of the sludge in the control UASB reactor, the sludge in the coupled system presented a compact, rigid and granular appearance under iron shavings simulation. Furthermore, high throughput sequencing analysis indicated that the diversity of microbial community in the iron shavings coupled UASB system was significantly higher than that of the control UASB reactor. Additionally, species related to DNAN reduction and methane production were enriched in the coupled system. The observed long-term stable performance highlights the full-scale application potential of iron shavings coupled anaerobic sludge process for the treatment of nitroaromatic compounds containing wastewater.
Collapse
Affiliation(s)
- Changjin Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Changhuan Environmental Science Co. LTD, Changzhou 213022, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
Wu J, Shen C, Zhang H, Lu W, Zhang Y, Wang C. Effective removal of nemacide fosthiazate from an aqueous solution using zero-valent iron. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 161:11-20. [PMID: 26143081 DOI: 10.1016/j.jenvman.2015.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/14/2015] [Accepted: 06/20/2015] [Indexed: 06/04/2023]
Abstract
In this study, the removal of fosthiazate in an aqueous solution using zero valent iron (ZVI) and the related removal reaction mechanism were investigated. The results indicate that the dissipation of fosthiazate adheres to a pseudo-first order reaction law. The apparent rate constant of fosthiazate removal could be improved by increasing the ZVI dosage, control temperature and initial pH. The observed pseudo-first-order degradation rate constants (Kobs) of fosthiazate removal using ZVI were varied in the different electrolyte solutions, and were determined as follows: Kobs (MgSO4) < Kobs (KCl) < Kobs (Control) <Kobs (NaCl) < Kobs (CaCl2) < Kobs (NaNO3) < Kobs (Na2SO4). In addition, the effects of Fe(2+) and Fe(3+) ions on the fosthiazate removal were also investigated, and the fosthiazate removal efficiencies were measured as 1.3% and 5.7% with Fe(2+) and Fe(3+), respectively. The characterizations of ZVI before/after the reaction were employed to gain insight into the reaction mechanism. Finally, the main degradation products were investigated by means of an Agilent 1100 LC/MSD Ion Trap.
Collapse
Affiliation(s)
- Junxue Wu
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China.
| | - Hongyan Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Weilan Lu
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China.
| | - Yun Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Nakatsuji Y, Salehi Z, Kawase Y. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 152:183-191. [PMID: 25662484 DOI: 10.1016/j.jenvman.2015.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Batch experiments were conducted to examine mechanisms for removal of p-nitrophenol (PNP) from aqueous solution using zero-valent iron (ZVI). Removal of PNP using ZVI was mainly attributed to three mechanisms: degradation, precipitation and adsorption. A complete removal of 30 mg L(-1) PNP with ZVI dosage of 1000 mg L(-1) achieved within 30 min at pH 3. The PNP removal rate in the acidic solutions was significantly suppressed at higher pH. The modified Langmuir-Hinshelwood kinetic model could successfully describe the PNP removal process using ZVI at different pH conditions. Total organic carbon (TOC) removal efficiencies were found to be almost independent of pH. While the TOC removal at lower pH was profoundly affected by the reductive and/or oxidative degradation, the adsorption was favorable at higher pH. The effect of dissolved oxygen on PNP removal was investigated at pH 3 where a maximum contribution of oxidative degradation could be expected. The PNP removal in the anoxic system purged with nitrogen gas was quick as well as that in the system being open to the air. However, the TOC removal under the anoxic condition was negligible as compared with that in the oxic system. The profiles of the intermediates formed during the PNP degradation indicated that the reductive degradation was predominant in the initial phase of the removal and subsequently the oxidative degradation occurred.
Collapse
Affiliation(s)
- Yusuke Nakatsuji
- Research Center for Chemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe 2100, Saitama 350-8585, Japan
| | - Zeinab Salehi
- School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Yoshinori Kawase
- Research Center for Chemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe 2100, Saitama 350-8585, Japan.
| |
Collapse
|
13
|
Ou C, Zhang S, Liu J, Shen J, Han W, Sun X, Li J, Wang L. Enhanced reductive transformation of 2,4-dinitroanisole in a anaerobic system: the key role of zero valent iron. RSC Adv 2015. [DOI: 10.1039/c5ra11197h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accelerated reduction of typical multi-substituted nitroaromatic compounds (NACs),i.e., 2,4-dinitroanisole (DNAN), was achieved in an anaerobic system coupled with zero valent iron (ZVI), with the underlying role of ZVI in this process elucidated.
Collapse
Affiliation(s)
- Changjin Ou
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Shuai Zhang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jianguo Liu
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jinyou Shen
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Weiqing Han
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Xiuyun Sun
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jiansheng Li
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Lianjun Wang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| |
Collapse
|
14
|
Dehghani M, Shahsavani E, Farzadkia M, Samaei MR. Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:87. [PMID: 24955242 PMCID: PMC4045957 DOI: 10.1186/2052-336x-12-87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 05/17/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND In recent years, pollution of soil and groundwater caused by fuel leakage from old underground storage tanks, oil extraction process, refineries, fuel distribution terminals, improper disposal and also spills during transferring has been reported. Diesel fuel has created many problems for water resources. The main objectives of this research were focused on assessing the feasibility of using photo-Fenton like method using nano zero-valent iron (nZVI/UV/H2O2) in removing total petroleum hydrocarbons (TPH) and determining the optimal conditions using Taguchi method. RESULTS The influence of different parameters including the initial concentration of TPH (0.1-1 mg/L), H2O2 concentration (5-20 mmole/L), nZVI concentration (10-100 mg/L), pH (3-9), and reaction time (15-120 min) on TPH reduction rate in diesel fuel were investigated. The variance analysis suggests that the optimal conditions for TPH reduction rate from diesel fuel in the aqueous phase are as follows: the initial TPH concentration equals to 0.7 mg/L, nZVI concentration 20 mg/L, H2O2 concentration equals to 5 mmol/L, pH 3, and the reaction time of 60 min and degree of significance for the study parameters are 7.643, 9.33, 13.318, 15.185 and 6.588%, respectively. The predicted removal rate in the optimal conditions was 95.8% and confirmed by data obtained in this study which was between 95-100%. CONCLUSION In conclusion, photo-Fenton like process using nZVI process may enhance the rate of diesel degradation in polluted water and could be used as a pretreatment step for the biological removal of TPH from diesel fuel in the aqueous phase.
Collapse
Affiliation(s)
- Mansooreh Dehghani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Shahsavani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Farzadkia
- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Dehghani M, Nasseri S, Ahmadi M, Samaei MR, Anushiravani A. Removal of penicillin G from aqueous phase by Fe+3-TiO2/UV-A process. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:56. [PMID: 24598354 PMCID: PMC3973869 DOI: 10.1186/2052-336x-12-56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/26/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Anomalous use of antibiotics and their entrance into the environment have increased concerns around the world. These compounds enter the environment through an incomplete metabolism and a considerable amount of them cannot be removed using conventional wastewater treatment. Therefore, the main objectives of this research are evaluation of the feasibility of using ultraviolet radiation (UV-A) and fortified nanoparticles of titanium dioxide (TiO2) doped with Fe+3 to remove penicillin G (PENG) from aqueous phase and determining the optimum conditions for maximum removal efficiency. RESULTS The results showed that the maximum removal rate of penicillin G occurred in acidic pH (pH = 3) in the presence of 90 mg/L Fe+3-TiO2 catalyst. In addition, an increase in pH caused a decrease in penicillin G removal rate. As the initial concentration of penicillin G increased, the removal rate of antibiotic decreased. Moreover, due to the effect of UV on catalyst activation in Fe+3-TiO2/UV-A process, a significant increase was observed in the rate of antibiotic removal. All of the variables in the process had a statistically significant effect (p < 0.001). CONCLUSION The findings demonstrated that the antibiotic removal rate increased by decreasing pH and increasing the amount of catalyst and contact time. In conclusion, Fe+3-TiO2/UV-A process is an appropriate method for reducing penicillin G in polluted water resources.
Collapse
Affiliation(s)
- Mansooreh Dehghani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, and Center for Water Quality Research, Institute for Environmental Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Anushiravani
- Department of Internal Medicine, Shiraz University of Medical Sciences, Student Research Center, Shiraz, Iran
| |
Collapse
|
16
|
Ahn SC, Hubbard B, Cha DK, Kim BJ. Simultaneous removal of perchlorate and energetic compounds in munitions wastewater by zero-valent iron and perchlorate-respiring bacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:575-583. [PMID: 24410688 DOI: 10.1080/10934529.2014.859455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria.
Collapse
Affiliation(s)
- Se Chang Ahn
- a Department of Civil and Environmental Engineering , University of Delaware , Newark , Delaware , USA
| | | | | | | |
Collapse
|
17
|
Peng YH, Chen MK, Shih YH. Adsorption and sequential degradation of polybrominated diphenyl ethers with zerovalent iron. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:844-850. [PMID: 23856315 DOI: 10.1016/j.jhazmat.2013.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/05/2013] [Accepted: 05/30/2013] [Indexed: 06/02/2023]
Abstract
The widely used flame retardants, polybrominated diphenyl ethers (PBDEs), have been regulated owing to their persistence and toxicity. However, the high and increasing accumulation amount of PBDEs in the environment raises a big concern for public safety. In this study, the removal processes of decabromodiphenyl ether (BDE-209) and monobromodiphenyl ether (BDE-3) with microscale zerovalent iron (MZVI) were investigated to get better understandings for the removal mechanism based upon adsorption and degradation. The removal kinetics of both compounds was analyzed and revealed two-step kinetics: a fast removal step at the beginning of the reaction and a follow-up slow removal step. By-products generated during the entire process followed a stepwise sequence. The content of brominated compounds on the surface of MZVI was measured. About 10-20% of BDE-209 and 15-30% of BDE-3 were adsorbed on MZVI. The adsorption of BDE-209 and BDE-3 on MZVI was confirmed through the Fourier transform infrared spectroscopy. Surface adsorption of PBDEs on MZVI dominates the removal mechanism in the beginning and further debromination with MZVI was found. Finally, about 70% of BDE-209 and 60% of BDE-3 was degraded by MZVI within about one month. Our findings provide evidences for understanding the removal mechanism of PBDEs with MZVI and its great longevity on the PBDE degradation, which can facilitate the remediation design.
Collapse
Affiliation(s)
- Yu-Huei Peng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | | | | |
Collapse
|
18
|
Zhu SN, Liu GH, Ye Z, Zhao Q, Xu Y. Reduction of dinitrotoluene sulfonates in TNT red water using nanoscale zerovalent iron particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2372-2380. [PMID: 22270756 DOI: 10.1007/s11356-012-0749-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
PURPOSE This research was designed to investigate the feasibility of converting the dinitrotoluene sulfonates (DNTS) in TNT red water into the corresponding aromatic amino compounds using nanoscale zerovalent iron (NZVI). METHODS NZVI particles were simultaneously synthesized and stabilized by sodium borohydride reduction in a nondeoxygenated system. The morphology, elemental content, specific surface area, and crystal properties of the NZVI were characterized before and after the reaction by environmental scanning electron microscope; energy dispersive X-ray; Brunauer, Emmett, and Teller; and X-ray diffraction, respectively. The reduction process was conducted at pH = 6.3 at ambient temperature. The efficiency of the NZVI-mediated DNTS reduction process was monitored by HPLC, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. RESULTS The properties of the NZVI particles prepared were found to be similar to those obtained through oxygen-free preparation and inert stabilization processes. Both 2,4-DNT-3-sulfonate (2,220 mg L(-1)) and 2,4-DNT-5-sulfonate (3,270 mg L(-1)) in TNT red water underwent a pseudo-first-order transformation when mixed with NZVI at room temperature and near-neutral pH. Their observed rate constants were 0.11 and 0.30 min(-1), respectively. Within 1 h of processing, more than 99% of DNTS was converted by NZVI-mediated reduction into the corresponding diaminotoluene sulfonates. CONCLUSIONS NZVI can be simultaneously prepared and stabilized in a nondeoxygenated system. NZVI reduction is a highly efficient method for the conversion of DNTS into the corresponding diaminotoluene sulfonates under near-neutral pH conditions. Therefore, NZVI reduction may be useful in the treatment of TNT red water and subsequent recovery of diaminotoluene from explosive wastewater.
Collapse
Affiliation(s)
- Shi-Ni Zhu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | | | | | | | | |
Collapse
|
19
|
Shih YH, Chou HL, Peng YH, Chang CY. Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether. BIORESOURCE TECHNOLOGY 2012; 108:14-20. [PMID: 22265595 DOI: 10.1016/j.biortech.2011.12.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 05/31/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants. Owing to their toxicity and increasing accumulation in the environment, the fate of PBDEs in nature is of serious concern. The combined effects of microscale zerovalent iron (MZVI) and anaerobic sludge in decabromodiphenyl ether (BDE-209) degradation were investigated. The co-incubation resulted in 63% and 29% enhancement of removal ability when compared to the single component conditions. By-products generated during the entire process followed a stepwise sequence with non-uniform accumulation rates. Microbes hindered the accessibility of MZVI to BDE-209 and reduced the removal ability in the initial stage (<12 h). According to the analysis of the microbial community change, co-incubation with MZVI leads to the enrichment of heterotrophic microbial populations bearing nitrate- or iron-reducing activities. The interaction between MZVI and microbes contributed to the synergistic effect. Our findings provide evidence for this synergistic effect and offer an alternative for developing better remediation strategies.
Collapse
Affiliation(s)
- Yang-hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan ROC.
| | | | | | | |
Collapse
|
20
|
Shi R, Xu H, Zhang Y. Enhanced treatment of wastewater from the vitamin C biosynthesis industry using a UASB reactor supplemented with zero-valent iron. ENVIRONMENTAL TECHNOLOGY 2011; 33:1859-1865. [PMID: 22439574 DOI: 10.1080/09593330.2011.566583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effects of zero-valent iron (Fe0) on the performance of a mesophilic upflow anaerobic sludge blanket (UASB) reactor treating high-strength wastewater from the vitamin C biosynthesis industry (VCW) was investigated during a 200-day period. The results showed that the chemical oxygen demand (COD) removal efficiency, CH4 content in biogas, specific methanogenic activity of sludge, and phosphate removal efficiency were significantly improved up to 81.8-96.1%, 76.5-79.6%, 1.71-2.87 g CH4-COD g(-1) VSS d(-1) and 68.5-85.2%, respectively, at elevated organic loading rates (OLRs) in the Fe0-amended reactor (RFe). In contrast, the corresponding values of 65.3-83.4%, 69.1-70.8%, 1.12-1.95 g CH4-COD g(-1) VSS d(-1) and 1.4-1.6%, respectively, were recorded in the control (R0). Elevated ferrous concentration of nearly 400 mg L(-1) in sludge was detected in RFe, whereas in the effluent of both reactors it was low (< 1.0 mg L(-1)). Batch tests further showed that Fe0 significantly enhanced the biodegradability of the VCW as shown by an increase in BOD/COD ratio from 0.41 to 0.65, and could serve as the electron donor for methanogenesis by anaerobic sludge, which were responsible for the differences between RFe and R0. The results suggest this integrated Fe0-microbial system is promising in facilitating the anaerobic digestion of VCW in UASB reactors.
Collapse
Affiliation(s)
- Rongjiu Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72, Wenhua Road, Shenyang 110016, P.R. China.
| | | | | |
Collapse
|
21
|
Ahn SC, Cha DK, Kim BJ, Oh SY. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:909-914. [PMID: 21700387 DOI: 10.1016/j.jhazmat.2011.05.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Abstract
US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO(4)(-)) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21 wastewater was rapidly decreased to an undetectable level in 2 days. This result demonstrated that iron treatment not only removed energetic compounds but also eliminated the toxic constituents that inhibited the subsequent microbial process.
Collapse
Affiliation(s)
- Se Chang Ahn
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
22
|
Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). PURE APPL CHEM 2011. [DOI: 10.1351/pac-rep-10-01-05] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An explosion occurs when a large amount of energy is suddenly released. This energy may come from an over-pressurized steam boiler, from the products of a chemical reaction involving explosive materials, or from a nuclear reaction that is uncontrolled. In order for an explosion to occur, there must be a local accumulation of energy at the site of the explosion, which is suddenly released. This release of energy can be dissipated as blast waves, propulsion of debris, or by the emission of thermal and ionizing radiation. Modern explosives or energetic materials are nitrogen-containing organic compounds with the potential for self-oxidation to small gaseous molecules (N2, H2O, and CO2). Explosives are classified as primary or secondary based on their susceptibility of initiation. Primary explosives are highly susceptible to initiation and are often used to ignite secondary explosives, such as TNT (2,4,6-trinitrotoluene), RDX (1,3,5-trinitroperhydro-1,3,5-triazine), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), and tetryl (N-methyl-N-2,4,6-tetranitro-aniline).
Collapse
|
23
|
Luo S, Yang SG, Sun C, Wang XD. Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions. WATER RESEARCH 2011; 45:1519-1528. [PMID: 21190709 DOI: 10.1016/j.watres.2010.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 10/22/2010] [Accepted: 10/31/2010] [Indexed: 05/30/2023]
Abstract
A "two-stage reduction/subsequent oxidation" (T-SRO) process consists of Fe-Ag reduction and Fenton-like oxidation under ultrasound (US) radiation. Due to the refractory oxidation of brominated flame retardant, T-SRO was employed to remove Tetrabromobisphenol A (TBBPA) by the combination of first debromination and succeeding oxidation. It indicated that the T-SRO process resulted in a complete decrease in TBBPA concentration and a 99.2% decrease in BPA concentration. The T-SRO process for the removal of TBBPA is much effective than Fenton-like oxidation of TBBPA alone. The result showed that US radiation improved the Fenton-like oxidation rate of BPA solutions. The addition of dissolved iron into the Fenton-like oxidation system could accelerate the first 2 min reaction, but had little effect on the following process. The main intermediate products resulting from TBBPA reduction and BPA oxidation were identified by GC-MS and LC-MS/MS. On the basis of this analysis, reactions with •OH radical were identified as the major chemical pathways during BPA oxidation.
Collapse
Affiliation(s)
- Si Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | | | | | | |
Collapse
|
24
|
Naja G, Apiratikul R, Pavasant P, Volesky B, Hawari J. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2405-2412. [PMID: 19345459 DOI: 10.1016/j.envpol.2009.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 05/27/2023]
Abstract
Rapid chemical degradation of toxic RDX explosive in soil can be accomplished using zerovalent nanoiron suspension stabilized in dilute carboxymethyl cellulose solution (CMC-ZVINs). The effect of operating conditions (redox-potential, Fe/RDX molar ratio) was studied on batchwise removal of RDX in contaminated soil. While anaerobic conditions resulted in 98% RDX removal in 3 h, only slightly over 60% RDX removal could be attained under aerobic conditions. The molar ratio did not have any influence on the intermediate and final RDX degradation products (methylenedinitramine, nitroso derivative, N(2), N(2)O, NO(2)(-)), however, their distribution changed. Dynamic studies were conducted using a flow-through short column packed with RDX-contaminated soil and fed with CMC-ZVINs. The column was operated at two interstitial velocities (2.2 and 1.6 cm min(-1)), resulting in the 76.6% and 95% removal of the initial RDX soil contamination load (60 mg kg(-1)), respectively. While the column operating conditions could be further optimized, 95% of the RDX initially present in the contaminated soil packed in the column was degraded when flushed with a CMC-ZVINs suspension in this work.
Collapse
Affiliation(s)
- Ghinwa Naja
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
25
|
Lai P, Zhao HZ, Zeng M, Ni JR. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process. JOURNAL OF HAZARDOUS MATERIALS 2009; 162:1423-1429. [PMID: 18639983 DOI: 10.1016/j.jhazmat.2008.06.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 05/26/2023]
Abstract
Experiments were conducted to investigate the behavior of the integrated system with biofilm reactors and zero-valent iron (ZVI) process for coking wastewater treatment. Particular attention was paid to the performance of the integrated system for removal of organic and inorganic nitrogen compounds. Maximal removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH(3)-N) and total inorganic nitrogen (TIN) were up to 96.1, 99.2 and 92.3%, respectively. Moreover, it was found that some phenolic compounds were effectively removed. The refractory organic compounds were primarily removed in ZVI process of the integrated system. These compounds, with molecular weights either ranged 10,000-30,000 Da or 0-2000 Da, were mainly the humic acid (HA) and hydrophilic (HyI) compounds. Oxidation-reduction and coagulation were the main removal mechanisms in ZVI process, which could enhance the biodegradability of the system effluent. Furthermore, the integrated system showed a rapid recovery performance against the sudden loading shock and remained high efficiencies for pollutants removal. Overall, the integrated system was proved feasible for coking wastewater treatment in practical applications.
Collapse
Affiliation(s)
- Peng Lai
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | | | | | | |
Collapse
|