1
|
Wang D, Chen X, Luo J, Shi P, Zhou Q, Li A, Pan Y. Comparison of chlorine and chlorine dioxide disinfection in drinking water: Evaluation of disinfection byproduct formation under equal disinfection efficiency. WATER RESEARCH 2024; 260:121932. [PMID: 38906077 DOI: 10.1016/j.watres.2024.121932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Disinfection efficiency and disinfection byproduct (DBP) formation are two important aspects deserving careful consideration when evaluating different disinfection protocols. However, most of the previous studies on the selection of disinfection methods by comparing DBP formation were carried out under the same initial/residual dose and contact time of different disinfectants, and such a practice may cause overdose or underdose of a certain disinfectant, leading to the inaccurate evaluation of disinfection. In this study, a comprehensive and quantitative comparison of chlorine (Cl2) and chlorine dioxide (ClO2) disinfection was conducted with regard to their DBP formation under equal disinfection efficiency. The microbial inactivation models as well as the Cl2 and ClO2 demand models were developed. On such basis, the integral CT (ICT) values were determined and used as a bridge to connect disinfection efficiency and DBP formation. For 3-log10 and 4-log10 reductions of Pseudomonas aeruginosa, ClO2 had 1.5 and 5.8 times higher inactivation ability than Cl2, respectively. In the premise of equal disinfection efficiency (i.e., the ICT ratios of Cl2 to ClO2 = 1.5 and 5.8), the levels of total organic chlorine, total organic bromine, and total organic halogen formed in the Cl2 disinfection were significantly higher than those formed in the ClO2 disinfection. Among the 35 target aliphatic DBPs, trihalomethanes (THMs) and haloacetic acids (HAAs) were the dominant species formed in both Cl2 and ClO2 disinfection. The total THM levels formed in Cl2 disinfection were 14.6 and 30.3 times higher than those in ClO2 disinfection, respectively. The total HAA levels formed in Cl2 disinfection were 3.5 and 5.4 times higher than those in ClO2 disinfection, respectively. Formation of the target 48 aromatic DBPs was much favored in Cl2 disinfection than that in ClO2 disinfection, and the formation levels was dominated by contact time. This study demonstrated that ClO2 had significant advantages over Cl2, especially at higher microorganism inactivation and lower DBP formation requirements.
Collapse
Affiliation(s)
- Dongxiao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xueyao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiayi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Luo Y, Qiu R, Zhang X, Li F. Biofouling behaviors of reverse osmosis membrane in the presence of trace plasticizer for circulating cooling water treatment: Characteristics and mechanisms. WATER RESEARCH 2024; 260:121937. [PMID: 38878313 DOI: 10.1016/j.watres.2024.121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Reverse osmosis (RO) system has been increasingly applied for circulating cooling water (CCW) reclamation. Plasticizers, which may be dissolved into CCW system in plastic manufacturing industry, cannot be completely removed by the pretreatment prior to RO system, possibly leading to severe membrane biofouling. Deciphering the characteristics and mechanisms of RO membrane biofouling in the presence of trace plasticizers are of paramount importance to the development of effective fouling control strategies. Herein, we demonstrate that exposure to a low concentration (1 - 10 μg/L) of three typical plasticizers (Dibutyl phthalate (DBP), Tributyl phosphate (TBP) and 2,2,4-Trimethylpentane-1,3-diol (TMPD)) detected in pretreated real CCW promoted Escherichia coli biofilm formation. DBP, TBP and TMPD showed the highest stimulation at 5 or 10 μg/L with biomass increasing by 55.7 ± 8.2 %, 35.9 ± 9.5 % and 32.2 ± 14.7 % respectively, relative to the unexposed control. Accordingly, the bacteria upon exposure to trace plasticizers showed enhanced adenosine triphosphate (ATP) activity, stimulated extracellular polymeric substances (EPS) excretion and suppressed intracellular reactive oxygen species (ROS) induction, causing by upregulation of related genes. Long-term study further showed that the RO membranes flowing by the pretreated real CCW in a polypropylene plant exhibited a severer biofouling behavior than exposed control, and DBP and TBP parts played a key role in stimulation effects on bacterial proliferation. Overall, we demonstrate that RO membrane exposure to trace plasticizers in pretreated CCW can upregulate molecular processes and physiologic responses that accelerate membrane biofouling, which provides important implications for biofouling control strategies in membrane-based CCW treatment systems.
Collapse
Affiliation(s)
- Yi Luo
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Riji Qiu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China.
| | - Fang Li
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Thi Nguyen H, Choi W, Jeong S, Bae H, Oh S, Cho K. Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134751. [PMID: 38820748 DOI: 10.1016/j.jhazmat.2024.134751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Chlorination on microplastic (MP) biofilms was comprehensively investigated with respect to disinfection efficiency, morphology, and core microbiome. The experiments were performed under various conditions: i) MP particles; polypropylene (PP) and polystyrene (PS), ii) MP biofilms; Escherichia coli for single-species and river water microorganisms for multiple-species, iii) different chlorine concentrations, and iv) different chlorine exposure periods. As a result, chlorination effectively inactivated the MP biofilm microorganisms. The disinfection efficiency increased with increasing the free chlorination concentration and exposure periods for both single- and multiple-species MP biofilms. The multiple-species MP biofilms were inactivated 1.3-6.0 times less than single-species MP biofilms. In addition, the PP-MP biofilms were more vulnerable to chlorination than the PS-MP biofilms. Morphology analysis verified that chlorination detached most MP biofilms, while a small part still remained. Interestingly, chlorination strongly changed the biofilm microbiome on MPs; the relative abundance of some microbes increased after the chlorination, suggesting they could be regarded as chlorine-resistant bacteria. Some potential pathogens were also remained on the MP particles after the chlorination. Notably, chlorination was effective in inactivating the MP biofilms. Further research should be performed to evaluate the impacts of residual MP biofilms on the environment.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seongpil Jeong
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Chalen-Moreano F, Saeteros-Hernández A, Abdo-Peralta P, Frey C, Peralta-Saa LO, Hernández-Allauca AD, Rosero-Erazo CR, Toulkeridis T. Exploring the Antimicrobial Efficacy of Low-Cost Commercial Disinfectants Utilized in the Agro-Food Industry Wash Tanks: Towards Enhanced Hygiene Practices. Foods 2024; 13:1915. [PMID: 38928858 PMCID: PMC11203120 DOI: 10.3390/foods13121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The increase in vegetable consumption has underlined the importance of minimizing the risks associated with microbiological contamination of fresh produce. The critical stage of the vegetable washing process has proven to be a key point for cross-contamination and the persistence of pathogens. In this context, the agri-food industry has widely adopted the use of disinfectants to reduce the bacterial load in the wash water. Therefore, we conducted laboratory-scale experiments in order to demonstrate the antimicrobial activity of disinfectants used in the wash tank of agro-food industries. Different wash water matrices of shredded lettuce, shredded cabbage, diced onion, and baby spinach were treated with sodium hypochlorite (NaClO), chlorine dioxide (ClO2), and per-oxyacetic acid (PAA) at recommended concentrations. To simulate the presence of pathogenic bacteria, a cocktail of E. coli O157:H7 was inoculated into the process water samples (PWW) to determine whether concentrations of disinfectants inhibit the pathogen or bring it to a viable non-culturable state (VBNC). Hereby, we used quantitative qPCR combined with different photo-reactive dyes such as ethidium monoazide (EMA) and propidium monoazide (PMA). The results indicated that concentrations superior to 20 ppm NaClO inhibit the pathogen E. coli O157:H7 artificially inoculated in the process water. Concentrations between 10-20 ppm ClO2 fail to induce the pathogen to the VBNC state. At concentrations of 80 ppm PAA, levels of culturable bacteria and VBNC of E. coli O157:H7 were detected in all PWWs regardless of the matrix. Subsequently, this indicates that the recommended concentrations of ClO2 and PAA for use in the fresh produce industry wash tank do not inhibit the levels of E. coli O157:H7 present in the wash water.
Collapse
Affiliation(s)
- Francisco Chalen-Moreano
- Faculty of Public Health, Escuela Superior Politécnica de Chimborazo, Km 1 ½ Panamericana Sur, Riobamba 060155, Ecuador; (F.C.-M.); (A.S.-H.); (L.O.P.-S.)
| | - Angélica Saeteros-Hernández
- Faculty of Public Health, Escuela Superior Politécnica de Chimborazo, Km 1 ½ Panamericana Sur, Riobamba 060155, Ecuador; (F.C.-M.); (A.S.-H.); (L.O.P.-S.)
| | - Paula Abdo-Peralta
- Independent Researcher, Riobamba 060155, Ecuador; (P.A.-P.); (C.R.R.-E.)
| | - Catherine Frey
- Independent Researcher, Riobamba 060155, Ecuador; (P.A.-P.); (C.R.R.-E.)
| | - Lilia Ofir Peralta-Saa
- Faculty of Public Health, Escuela Superior Politécnica de Chimborazo, Km 1 ½ Panamericana Sur, Riobamba 060155, Ecuador; (F.C.-M.); (A.S.-H.); (L.O.P.-S.)
| | | | | | - Theofilos Toulkeridis
- School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Sun Z, Chen Z, Chung Lan Mow MC, Liao X, Wei X, Ma G, Wang X, Yu H. Chloramine Disinfection of Levofloxacin and Sulfaphenazole: Unraveling Novel Disinfection Byproducts and Elucidating Formation Mechanisms for an Enhanced Understanding of Water Treatment. Molecules 2024; 29:396. [PMID: 38257310 PMCID: PMC10820186 DOI: 10.3390/molecules29020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The unrestricted utilization of antibiotics poses a critical challenge to global public health and safety. Levofloxacin (LEV) and sulfaphenazole (SPN), widely employed broad-spectrum antimicrobials, are frequently detected at the terminal stage of water treatment, raising concerns regarding their potential conversion into detrimental disinfection byproducts (DBPs). However, current knowledge is deficient in identifying the potential DBPs and elucidating the precise transformation pathways and influencing factors during the chloramine disinfection process of these two antibiotics. This study conducts a comprehensive analysis of reaction pathways, encompassing piperazine ring opening/oxidation, Cl-substitution, OH-substitution, desulfurization, and S-N bond cleavage, during chloramine disinfection. Twelve new DBPs were identified in this study, exhibiting stability and persistence even after 24 h of disinfection. Additionally, an examination of DBP generation under varying disinfectant concentrations and pH values revealed peak levels at a molar ratio of 25 for LEV and SPN to chloramine, with LEV contributing 11.5% and SPN 23.8% to the relative abundance of DBPs. Remarkably, this research underscores a substantial increase in DBP formation within the molar ratio range of 1:1 to 1:10 compared to 1:10 to 1:25. Furthermore, a pronounced elevation in DBP generation was observed in the pH range of 7 to 8. These findings present critical insights into the impact of the disinfection process on these antibiotics, emphasizing the innovation and significance of this research in assessing associated health risks.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China; (Z.S.); (M.C.C.L.M.)
| | | | | | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China; (Z.S.); (M.C.C.L.M.)
| |
Collapse
|
6
|
Wang H, Ge Q, Shao X, Wei Y, Zhang X, Wang H, Xu F. Influences of flavonoids from Sedum aizoon L. on biofilm formation of Pseudomonas fragi. Appl Microbiol Biotechnol 2023; 107:3687-3697. [PMID: 37079063 DOI: 10.1007/s00253-023-12526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Pseudomonas fragi (P. fragi) is one of the main categories of bacteria responsible for the spoilage of chilled meat. In the processing and preservation of chilled meat, it is easy to form biofilms on the meat, leading to the development of slime on the meat, which becomes a major quality defect. Flavonoids, as one of the critical components of secondary plant metabolites, are receiving increasing attention for their antibacterial activity. Flavonoids in Sedum aizoon L. (FSAL), relying on its prominent antibacterial activity, are of research importance in food preservation and other applications. This article aims to investigate the effect of FSAL on the biofilm formation of P. fragi, to better apply FSAL to the processing and preservation of meat products. The disruption of cellular structure and aggregation properties by FSAL was demonstrated by the observation of the cellular state within the biofilm. The amount of biofilm formation was determined by crystal violet staining, and the content of polysaccharides and proteins in the extracellular wrapped material was determined. It was shown that the experimental concentrations of FSAL (1.0 MIC) was able to inhibit biofilm formation and reduce the main components in the extracellular secretion. The swimming motility assay and the downregulation of flagellin-related genes confirmed that FSAL reduced cell motility and adhesion. The downregulation of cell division genes and the lowering of bacterial metabolic activity suggested that FSAL could hinder bacterial growth and reproduction within P. fragi biofilms. KEY POINTS: • FSAL inhibited the activity of Pseudomonas fragi in the dominant meat strain • The absence of EPS components affected the formation of P. fragi biofilms • P. fragi has reduced adhesion capacity due to impaired flagellin function.
Collapse
Affiliation(s)
- Haoxia Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Qingqing Ge
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Xingfeng Shao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Yingying Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Xin Zhang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Hongfei Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Zhao HX, Zhang TY, Wang H, Hu CY, Tang YL, Xu B. Occurrence of fungal spores in drinking water: A review of pathogenicity, odor, chlorine resistance and control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158626. [PMID: 36087680 DOI: 10.1016/j.scitotenv.2022.158626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fungi in drinking water have been long neglected due to the lack of convenient analysis methods, widely accepted regulations and efficient control strategies. However, in the last few decades, fungi in drinking water have been widely recognized as opportunity pathogens that cause serious damage to the health of immune-compromised individuals. In drinking water treatment plants, fungal spores are more resistant to chlorine disinfection than bacteria and viruses, which can regrow in drinking water distribution systems and subsequently pose health threats to water consumers. In addition, fungi in drinking water may represent an ignored source of taste and odor (T&O). This review identified 74 genera of fungi isolated from drinking water and presented their detailed taxonomy, sources and biomass levels in drinking water systems. The typical pathways of exposure of water-borne fungi and the main effects on human health are clarified. The fungi producing T&O compounds and their products are summarized. Data on free chlorine or monochloramine inactivation of fungal spores and other pathogens are compared. At the first time, we suggested four chlorine-resistant mechanisms including aggregation to tolerate chlorine, strong cell walls, cellular responses to oxidative stress and antioxidation of melanin, which are instructive for the future fungi control attempts. Finally, the inactivation performance of fungal spores by various technologies are comprehensively analyzed. The purpose of this study is to provide an overview of fungi distribution and risks in drinking water, provide insight into the chlorine resistance mechanisms of fungal spores and propose approaches for the control of fungi in drinking water.
Collapse
Affiliation(s)
- Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
9
|
Harati M, Jonidi Jafari A, Farzadkia M, Rezaei Kalantary R. Enhanced photocatalytic activity of Fe 2O 3@ZnO decorated CQD for inactivation of Escherichia coli under visible light irradiation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:101-112. [PMID: 35669829 PMCID: PMC9163265 DOI: 10.1007/s40201-021-00758-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/30/2021] [Indexed: 06/15/2023]
Abstract
The present study, magnetically separable Fe2O3@ZnO/CQD nanocomposite was successfully prepared via hydrothermal process and characterized with SEM-EDX, XRD, FTIR, VSM and DRS analysis. The effect of operational parameters includes photocatalyst dosage, photocatalyst type, CQD content and Escherichia coli (E. coli) concentration were evaluated on the E. coli inactivation. The disinfecting ability of nanocomposite components was obtained as Fe2O3@ZnO/CQD> Fe2O3@ZnO> ZnO> Fe2O3> CQD which shows a synergetic effect among different components. The highest E. coli inactivation rate (Kmax=0.7606 min-1) was obtained at photocatalyst dosage of 0.2 g/L and 15% CQD content. The MIC and MBC values value for E. coli were determined 0.1172 mg/mL and 0.4948 respectively that the results tests proved the antibacterial functions of the Fe2O3@ZnO/CQD. Nanocomposite showed the high reusability after 4 consecutive cycles, Kmax decreased from 0.7606 min-1 to 0.6181 min-1. Quenching experiments showed •OH and h+ are the main reactive oxygen species involved in the E. coli inactivation.
Collapse
Affiliation(s)
- Motahare Harati
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Du B, Wang S, Chen G, Wang G, Liu L. Nutrient starvation intensifies chlorine disinfection-stressed biofilm formation. CHEMOSPHERE 2022; 295:133827. [PMID: 35122818 DOI: 10.1016/j.chemosphere.2022.133827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/09/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Bacterial surface attachment and subsequent biofilm expansion represent an essential adaptation to environmental signals and stresses, which are of great concern for many natural and engineered ecosystems. Yet the underlying mechanisms and driving forces of biofilm formation in a chlorinated and nutrient-restricted system remain sketchy. In this study, we coupled an experimental investigation and modeling simulation to understand how chlorination and nutrient limitation conspire to form biofilm using Pseudomonas aeruginosa as a model bacterium. Experimental results showed that moderate chlorination at 1.0 mg/L led to biofilm development amplified to 2.6 times of those without chlorine, while additional nutrient limitation (of 1/50-diluted or 0.4 g/L LB broth culture) achieved 4.6 times increment as compared to those of undiluted scenarios (of 20 g/L LB broth culture) with absence of chlorination after 24 h exposure. Meanwhile, intermediate chlorination stimulated instant flagellar motility and subsequently extracellular polymeric substances (EPS) secretion, particularly under limited nutrient condition (of 1/50-diluted or 0.4 g/L LB broth culture) that retarded chlorine consumption and provoked bacterial nutrient-limitation response. From our simulations, chlorine and resource levels along with associated spatio-temporal variations collectively drove bacterial cell movement and EPS excretion. Our results demonstrated that restraining nutrient intensified chlorination-excited cell movement and EPS production that reinforced biological and cell-surface interactions, thereby encouraging bacterial surface attachment and subsequent biofilm development. The findings provide the insights into the linkage of disinfectant and nutrient-regulated bacterial functional responses with consequent micro-habitats and biofilm dynamics.
Collapse
Affiliation(s)
- Bang Du
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shudong Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Liu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
11
|
Development of a food grade sanitizer delivery system with chlorine loaded gelatin microgels for enhanced binding and inactivation of biofilms. Food Res Int 2022; 155:111026. [DOI: 10.1016/j.foodres.2022.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
|
12
|
Distribution of chlorine sanitizer in a flume tank: Numerical predictions and experimental validation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Yi J, Huang K, Nitin N. Modeling bioaffinity-based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part I: Model development and numerical simulation. Biotechnol Bioeng 2021; 119:236-246. [PMID: 34694002 DOI: 10.1002/bit.27971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Biofilms are potential reservoirs for pathogenic microbes leading to a significant challenge for food safety, ecosystems, and human health. Various micro-and nanoparticles have been experimentally evaluated to improve biofilm inactivation by targeted delivery of antimicrobials. However, the role of transport processes and reaction kinetics of these delivery systems are not well understood. In this study, a mechanistic modeling approach was developed to understand the targeted delivery of chlorine to an Escherichia coli biofilm using a novel bioaffinity-based yeast microparticle. Biofilm inactivation by this delivery system was numerically simulated as a combination of reaction kinetics and transport phenomena. Simulation results demonstrate that the targeted delivery system achieved 7 log reduction within 16.2 min, while the equivalent level of conventional free chlorine achieved only 3.6 log reduction for the same treatment time. These numerical results matched the experimental observations in our previous study. This study illustrates the potential of a mechanistic modeling approach to improve fundamental understanding and guide the design of targeted inactivation of biofilms using biobased particles.
Collapse
Affiliation(s)
- Jiyoon Yi
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA.,Department of Biological and Agricultural Engineering, University of California-Davis, Davis, California, USA
| |
Collapse
|
14
|
Abnavi MD, Kothapalli CR, Munther D, Srinivasan P. Chlorine inactivation of Escherichia coli O157:H7 in fresh produce wash process: Effectiveness and modeling. Int J Food Microbiol 2021; 356:109364. [PMID: 34418698 DOI: 10.1016/j.ijfoodmicro.2021.109364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Inactivation rate constant or inactivation coefficient (specific lethality) quantifies the rate at which a chemical sanitizer inactivates a microorganism. This study presents a modified disinfection kinetics model to evaluate the potential effect of organic content on the chlorine inactivation coefficient of Escherichia coli O157:H7 in fresh produce wash processes. Results show a significant decrease in the bactericidal efficacy of free chlorine (FC) in the presence of organic load compared to its absence. While the chlorine inactivation coefficient of Escherichia coli O157:H7 is 70.39 ± 3.19 L/mg/min in the absence of organic content, it drops by 73% for a chemical oxygen demand (COD) level of 600-800 mg/L. Results also indicate that the initial chlorine concentration and bacterial load have no effect on the chlorine inactivation coefficient. A second-order chemical reaction model for FC decay, which utilizes a proportion of COD as an indicator of organic content in fresh produce wash was employed, yielding an apparent reaction rate of (9.45 ± 0.22) × 10-4 /μM/min. This model was validated by predicting FC concentration in multi-run continuous wash cycles with periodic replenishment of chlorine.
Collapse
Affiliation(s)
- Mohammadreza Dehghan Abnavi
- Department of Chemical and Biomedical Engineering, 2121 Euclid Avenue, Cleveland State University, Cleveland, OH 44115, USA
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, 2121 Euclid Avenue, Cleveland State University, Cleveland, OH 44115, USA
| | - Daniel Munther
- Department of Mathematics, 2121 Euclid Avenue, Cleveland State University, Cleveland, OH 44115, USA
| | - Parthasarathy Srinivasan
- Department of Mathematics, 2121 Euclid Avenue, Cleveland State University, Cleveland, OH 44115, USA.
| |
Collapse
|
15
|
Yang X, Li D, Yu Z, Meng Y, Zheng X, Zhao S, Meng F. Biochemical characteristics and membrane fouling behaviors of soluble microbial products during the lifecycle of Escherichia coli. WATER RESEARCH 2021; 192:116835. [PMID: 33486289 DOI: 10.1016/j.watres.2021.116835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The complexity of production process and chemical compositions of soluble microbial products (SMPs) largely limits the understanding of membrane fouling in membrane bioreactors (MBRs). Herein, we used a model single-strain Escherichia coli to better understand the chemical natures of SMPs and their roles in membrane fouling. The effects of carbon source and growth phase on the chemical compositions of SMPs were identified at both the compound and molecular levels by using advanced techniques including excitation emission matrix and parallel factor analysis (EEM-PARAFAC), size exclusion chromatography coupled with organic carbon detection (LC-OCD), and untargeted ultra-performance liquid chromatography - Q-Exactive - mass spectrometry (UPLC-Q-Exactive-MS). Subsequently, the roles of SMPs in the propensity of membrane fouling during ultrafiltration (UF) were studied. The results showed that the chemical compositions and fouling potentials of SMPs were carbon source- and growth phase-dependent. In the exponential phase, SMPs mainly consisted of utilization-associated products (UAPs) and remaining substrates. As the microorganism progressed into the stationary and senescent phases, UAPs and biomass-associated products (BAPs) were the main components, respectively. The SMP contents generated in glucose medium were higher than those generated in acetate medium, and higher abundances of humic fluorescent components were observed in glucose-fed SMPs. Van Krevelen diagrams of the UPLC-MS results revealed that acetate-fed SMPs contained more carboxylic-rich alicyclic molecules, peptides-like, aromatic, and carbohydrates-like components than glucose-fed SMPs in the stationary and senescent phases. These components played a significant role in irreversible membrane fouling, as evidenced in UF experiments. Standard blocking and cake filtration were the main fouling mechanisms for the filtration of SMPs collected in the exponential and stationary/senescent phases, respectively. Our findings highlight linkages between SMP compositions and membrane fouling at both the compound and molecular levels and suggest that both the carbon source and growth phase strongly determine the production potential, chemical nature, and fouling behavior of SMPs.
Collapse
Affiliation(s)
- Xiaofang Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Danyi Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| |
Collapse
|
16
|
Study on the efficacy of sterilization in tap water by electrocatalytic technique. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Lu N, Sun S, Chu F, Wang M, Zhao Q, Shi J, Jia R. Identification and inactivation of Gordonia, a new chlorine-resistant bacterium isolated from a drinking water distribution system. JOURNAL OF WATER AND HEALTH 2020; 18:995-1008. [PMID: 33328370 DOI: 10.2166/wh.2020.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chlorine-resistant bacteria threaten drinking water safety in water distribution systems. In this study, a novel chlorine-resistant bacterium identified as Gordonia was isolated from the drinking water supply system of Jinan City for the first time. We examined the resistance and inactivation of the isolate by investigating cell survival, changes in cell morphology, and the permeability of cell membranes exposed to chlorine. After 240 min chlorine exposure, the chlorine residual was greater than 0.5 mg L-1 and the final inactivation was about 3 log reduction, which showed that the Gordonia strain had high chlorine tolerance. Flow-cytometric analysis indicated that, following sodium hypochlorite treatments with increasing membrane permeability, culturable cells enter a viable but nonculturable state and then die. We also investigated the inactivation kinetics of Gordonia following chlorine dioxide and ultraviolet radiation treatment. We found that these treatments can effectively inactivate Gordonia, which suggests that they may be used for the regulation of chlorine-resistant microorganisms.
Collapse
Affiliation(s)
- Nannan Lu
- Shandong Province Water Supply and Drainage Monitoring Center, No.5111, Aotizhong Road, Jinan, China E-mail:
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, No.5111, Aotizhong Road, Jinan, China E-mail:
| | - Fumin Chu
- Shandong Province Water Supply and Drainage Monitoring Center, No.5111, Aotizhong Road, Jinan, China E-mail:
| | - Mingquan Wang
- Shandong Province Water Supply and Drainage Monitoring Center, No.5111, Aotizhong Road, Jinan, China E-mail:
| | - Qinghua Zhao
- Shandong Province Water Supply and Drainage Monitoring Center, No.5111, Aotizhong Road, Jinan, China E-mail:
| | - Jinmiao Shi
- Shandong Province Water Supply and Drainage Monitoring Center, No.5111, Aotizhong Road, Jinan, China E-mail:
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, No.5111, Aotizhong Road, Jinan, China E-mail:
| |
Collapse
|
18
|
Jia S, Jia R, Zhang K, Sun S, Lu N, Wang M, Zhao Q. Disinfection characteristics of Pseudomonas peli, a chlorine-resistant bacterium isolated from a water supply network. ENVIRONMENTAL RESEARCH 2020; 185:109417. [PMID: 32247906 DOI: 10.1016/j.envres.2020.109417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Lack of microbial contamination is crucial for drinking water quality and safety. Chlorine-resistant bacteria in drinking water distribution systems pose a threat to drinking water quality. A bacterium was isolated from an urban water supply network in northern China and identified as Pseudomonas peli by 16S rDNA gene analysis. This P. peli strain had high chlorine tolerance. The CT value (the product of disinfectant concentration and contact time) to achieve 3 lg unit (i.e. 99.9%)-inactivation of this P. peli isolate was 51.26-90.36 mg min/L, inversely proportional to the free chlorine concentration. Chlorine dioxide could inactivate the bacterium faster and more efficiently than free chlorine, as shown by flow cytometry. Thiazole orange plus propidium iodide staining indicated that free chlorine and chlorine dioxide inactivated P. peli primarily by disrupting the integrity and permeability of the cell membrane. The P. peli was also sensitive to ultraviolet (UV) radiation; a UV dose of 40 mJ/cm2 achieved 4 lg unit (99.99%)-inactivation. The Hom model was more suitable for analyzing the disinfection kinetics of P. peli than the Chick and Chick-Watson models.
Collapse
Affiliation(s)
- Shuyu Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China; College of Environmental Science and Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China.
| | - Kefeng Zhang
- College of Environmental Science and Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| | - Nannan Lu
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| | - Mingquan Wang
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| | - Qinghua Zhao
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| |
Collapse
|
19
|
Cai W, Han J, Zhang X, Liu Y. Formation mechanisms of emerging organic contaminants during on-line membrane cleaning with NaOCl in MBR. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121966. [PMID: 31896006 DOI: 10.1016/j.jhazmat.2019.121966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
On-line chemical cleaning with sodium hypochlorite (NaOCl) is widely employed for sustaining MBR permeability, during which the inevitable contact between activated sludge and NaOCl had been shown to trigger substantial release of dissolved organic matter (DOM). Therefore, this work further explored the formation mechanisms of such DOM by looking into the respective reactions of intracellular organic matter (IOM) and cell debris in activated sludge with NaOCl. The results showed that DOM was primarily produced from the dissolution of cell wall, while IOM release was insignificant at the NaOCl concentration of 25 mg/L as Cl2. On the basis of experimental observations, a three-step mechanism was proposed for elucidating the DOM formation from activated sludge upon NaOCl exposure: (i) NaOCl first damaged cells by perforating cellular wall, producing a considerable amount of humic-like substances and low-molecular-weight halogenated byproducts; (ii) IOM was released but rapidly degraded and humified by NaOCl, accompanied with the formation of relatively high-molecular-weight halogenated byproducts; (iii) the residual NaOCl and combined chlorine continued to react with cell wall or likely diffused into cells leading to the deactivation of DNA/enzymes. Consequently, this study offers mechanistic insights into the origination of emerging contaminants during on-line membrane cleaning of practical MBR.
Collapse
Affiliation(s)
- Weiwei Cai
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
20
|
Xiao Y, Sawicka B, Liu Y, Zhou B, Hou P, Li Y. Visualizing the macroscale spatial distributions of biofilms in complex flow channels using industrial computed tomography. BIOFOULING 2020; 36:115-125. [PMID: 32090601 DOI: 10.1080/08927014.2020.1728260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The presence of biofilms in enclosed pipelines can lead to numerous deleterious issues. To date, it has been difficult to use optical imaging techniques to monitor the macroscale spatial distributions of biofilms. To address this concern, a combination of industrial computed tomography (ICT) and a contrast agent was explored to noninvasively visualize biofilms in three types of drip irrigation emitters. The results showed that ICT successfully observed and quantified the macroscale spatial distributions of biofilms. The complex hydrodynamic characteristics in the emitter channels affected the local distributions of biofilms. Biofilms were mainly attached to the lateral and medial faces and biomass decreased along the flow directions. Based on the distributions of biofilms, some emitter structural design defects were further diagnosed. Applying ICT in combination with the contrast agent could potentially provide a visual and effective way to reveal the formation mechanisms of biofilms and to optimize flow channel structures to avoid biofilm accumulations.
Collapse
Affiliation(s)
- Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Yaoze Liu
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| | - Peng Hou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
21
|
Shekhawat SS, Kulshreshtha NM, Gupta AB. Investigation of chlorine tolerance profile of dominant gram negative bacteria recovered from secondary treated wastewater in Jaipur, India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109827. [PMID: 31739205 DOI: 10.1016/j.jenvman.2019.109827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Management of bacterial survival post chlorine disinfection is vital for safe wastewater reuse for irrigation, as the presence of microorganisms in large numbers may lead to subsequent contamination of the surface and ground water reservoirs. Even after satisfying the current norms of coliform counts after disinfection (less than 1000 MPN per 100 mL), chlorine tolerant bacteria surviving in inadequately treated wastewater may pose a public health threat as many of these bacteria are able to re-grow upon storage. The current study is aimed to assess the magnitude of the problem posed by chlorine tolerant bacteria during chlorine disinfection and attempts to derive a strategy for safe disinfection. The chlorine tolerance was examined in the dominant gram negative bacteria (GNB) recovered from secondary treated sewage from a treatment plant located at Jaipur, India. Bacterial survival and re-growth (after 24 h) studies on test species (n = 11) with reference to E.coli ATCC 25922 reveal that, while the lethal doses of isolates ranged from 0.5 to 1.25 mgL-1,the chlorine doses for complete inhibition of re-growth were much higher (0.75-1.75 mgL-1).The isolates showing highest lethal dose and re-growth inhibition dose, identified as Citrobacter freundii, Klebsiella sp. and Stenotrophomonas maltophilia also exhibited very low log effective reduction (0.72-1.90) values and were selected as chlorine tolerant bacteria. Results of inactivation kinetics experiments on chlorine tolerant bacteria reveal a strong correlation (R2 > 0.89-0.99) between log reduction values and contact time. In re-growth kinetics experiments, maximum re-growth was observed after 6 h exposure following which, only marginal increase was registered up to 24 h. The study indicates that the existing approach of bacterial elimination post chlorine treatment may be grossly inadequate to assess the performance of the disinfection process adopted for drinking water treatment. It further brings out a novel approach to arrive at meaningful chlorine doses that take bacterial re-growth into account for achieving safe disinfection.
Collapse
|
22
|
Wang T, Chen H, Yu C, Xie X. Rapid determination of the electroporation threshold for bacteria inactivation using a lab-on-a-chip platform. ENVIRONMENT INTERNATIONAL 2019; 132:105040. [PMID: 31387020 DOI: 10.1016/j.envint.2019.105040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Electroporation based locally enhanced electric field treatment (LEEFT) is an emerging bacteria inactivation technology for drinking water disinfection. Nevertheless, the lethal electroporation threshold (LET) for bacteria has not been studied, partly due to the tedious work required by traditional experimental methods. Here, a lab-on-a-chip device composed of platinum electrodes deposited on a glass substrate is developed for rapid determination of the LET. When voltage pulses are applied, an electric field with a linear strength gradient is generated on a channel between the electrodes. Bacterial cells exposed to the electric field stronger than the LET are inactivated, while others remain intact. After a cell staining process to differentiate dead and live bacterial cells, the LETs are obtained by analyzing the fluorescence microscopy images. Staphylococcus epidermidis has been utilized as a model bacterium in this study. The LETs range from 10 kV/cm to 35 kV/cm under different pulsed electric field conditions, decreasing with the increase of pulse width, effective treatment time, and pulsed electric field frequency. The effects of medium properties on the LET were also investigated. This lab-on-a-chip device and the experimental approach can also be used to determine the LETs for other microorganisms found in drinking water.
Collapse
Affiliation(s)
- Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Hang Chen
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Cecilia Yu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
23
|
DNA-based surrogate indicator for sanitation verification and predict inactivation of Escherichia coli O157:H7 using vibrational spectroscopy (FTIR). Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Huang K, Dou F, Nitin N. Biobased Sanitizer Delivery System for Improved Sanitation of Bacterial and Fungal Biofilms. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17204-17214. [PMID: 30997985 DOI: 10.1021/acsami.9b02428] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biofilms can persist in food-processing environments because of their relatively higher tolerance and resistance to antimicrobials including sanitizers. In this study, a novel biobased sanitizer composition was developed to effectively target biofilms and deliver chlorine-based sanitizers to inactivate bacterial and fungal biofilms. The biobased composition was developed by encapsulating a chlorine-binding polymer in a biobased yeast cell wall particle (YCWP) microcarrier. This study demonstrates the high affinity of biobased compositions to bind target bacterial and fungal cells and inactivate 5 logs of model pathogenic bacteria and fungi in wash water without and with high organic load (chemical oxygen demand = 2000 mg/L) in 30 s and 5 min, respectively. For the sanitation of biofilms, this biobased sanitizer can inactivate 7 logs of pathogenic bacteria and 3 logs of fungi after 1 h treatment, whereas the 1 h treatment using conventional chlorine-based sanitizer can only achieve 2-3 log reduction for bacterial biofilms and 1-2 log reduction for fungal biofilms, respectively. The enhanced antimicrobial activity can be attributed to three factors: (a) localized high concentration of chlorine bound on the YCWPs; (b) high affinity of YCWPs to bind diverse microbes; and (c) improved stability in an organic-rich aqueous environment. In summary, these unique attributes of biobased carriers will significantly enhance the sanitation efficacy of biofilms, reduce the persistence and transmission of antimicrobial resistant microbes, limit the use of antimicrobial chemicals, and improve the cost-effectiveness of sanitizers.
Collapse
|
25
|
Léziart T, Dutheil de la Rochere PM, Cheswick R, Jarvis P, Nocker A. Effect of turbidity on water disinfection by chlorination with the emphasis on humic acids and chalk. ENVIRONMENTAL TECHNOLOGY 2019; 40:1734-1743. [PMID: 30777799 DOI: 10.1080/09593330.2019.1585480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Chlorine is globally the most widely used chemical for water disinfection. Whereas disinfection efficiency is well known to depend on water pH and temperature, the effect of turbidity is less well studied. Although turbidity is measured online in most drinking water works and most countries where regulations exist have set limits of <1 NTU for water leaving the works, the composition of turbidity is typically unknown. Given the heterogeneous nature of substances contributing to turbidity, the aim of this work was to study the effect of selected compounds on chlorination efficacy. The effect of humic acids and chalk on the inactivation of the indicator bacteria Escherichia coli and Enterococcus faecalis was assessed at neutral pH at different turbidity levels using both plate counting and flow cytometry in combination with membrane integrity staining. For humic acids, a turbidity of 1 NTU (corresponding to 2 mg L-1) was identified as a critical threshold, which when exceeded was found to have a negative impact on chlorine disinfection. Chalk, on the other hand, had no measurable impact up to 5 NTU. The observation applied to both bacterial species with identical conclusions from the two diagnostic methods. Results corroborate that different turbidity causing substances affect chlorination efficiency to very different extents with chlorine demand by organic material probably being the most important determinant. In the case of turbidities >1 NTU, turbidity measurement benefits from the consideration of the organic content as mere NTU values do not allow predicting an impact on chlorination efficiency.
Collapse
Affiliation(s)
- Tangui Léziart
- a Cranfield Water Science Institute , Cranfield University , Cranfield , UK
| | | | - Ryan Cheswick
- a Cranfield Water Science Institute , Cranfield University , Cranfield , UK
| | - Peter Jarvis
- a Cranfield Water Science Institute , Cranfield University , Cranfield , UK
| | - Andreas Nocker
- a Cranfield Water Science Institute , Cranfield University , Cranfield , UK
- b IWW Water Centre , Mülheim an der Ruhr , Germany
| |
Collapse
|
26
|
Song P, Zhou B, Feng G, Brooks JP, Zhou H, Zhao Z, Liu Y, Li Y. The influence of chlorination timing and concentration on microbial communities in labyrinth channels: implications for biofilm removal. BIOFOULING 2019; 35:401-415. [PMID: 31142151 DOI: 10.1080/08927014.2019.1600191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Chlorination is an effective method to control biofilm formation in enclosed pipelines. To date, very little is known about how to control biofilms at the mesoscale in complex pipelines through chlorination. In this study, the dynamic of microbial communities was examined under different residual chlorine concentrations on the biofilms attached to labyrinth channels for drip irrigation using reclaimed water. The results indicated that the microbial phospholipid fatty acids, extracellular polymeric substances, microbial dynamics, and the ace and Shannon microbial diversity indices showed a gradual decrease after chlorination. However, chlorination increased microbial activity by 0.5-19.2%. The increase in the relative abundances of chloride-resistant bacteria (Acinetobacter and Thermomonas) could lead to a potential risk of chlorine resistance. Thus, keeping a low chlorine concentration (0.83 mg l-1 for 3 h) is effective for controlling biofilm formation in the labyrinth channels.
Collapse
Affiliation(s)
- Peng Song
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - Bo Zhou
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
- c College of Agricultural and Life Sciences , University of Wisconsin-Madison , Madison , WI , USA
| | - Gary Feng
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - John P Brooks
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - Hongxu Zhou
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
| | - Zhirui Zhao
- d Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , Beijing , PR China
| | - Yaoze Liu
- e Department of Environmental and Sustainable Engineering , University at Albany , Albany , NY , USA
| | - Yunkai Li
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
| |
Collapse
|
27
|
Huang K, Wrenn S, Tikekar R, Nitin N. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Formation of trihalomethanes as disinfection byproducts in herbal spa pools. Sci Rep 2018; 8:5709. [PMID: 29632404 PMCID: PMC5890291 DOI: 10.1038/s41598-018-23975-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/23/2018] [Indexed: 11/25/2022] Open
Abstract
Herbal spa treatments are favorite recreational activities throughout the world. The water in spas is often disinfected to control pathogenic microorganisms and guarantee hygiene. However, chlorinated water may cause the formation of disinfection byproducts (DBPs). Although there have been many studies on DBP formation in swimming pools, the role of organic matter derived from herbal medicines applied in herbal spa water has been largely neglected. Accordingly, the present study investigated the effect of herbal medicines on the formation of trihalomethanes (THMs) in simulated herbal spa water. Water samples were collected from a spa pool, and then, disinfection and herbal addition experiments were performed in a laboratory. The results showed that the organic molecules introduced by the herbal medicines are significant precursors to the formation of THMs in spa pool water. Since at least 50% of THMs were produced within the first six hours of the reaction time, the presence of herbal medicines in spa water could present a parallel route for THM exposure. Therefore, despite the undeniable benefits of herbal spas, the effect of applied herbs on DBP formation in chlorinated water should be considered to improve the water quality and health benefits of spa facilities.
Collapse
|
29
|
Silva C, Alessio D, Knob D, d’Ovidio L, Thaler Neto A. Influência da sanificação da água e das práticas de ordenha na qualidade do leite. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Objetivou-se avaliar a influência da cloração da água utilizada em salas de ordenha, assim como do manejo e da infraestrutura da ordenha, sobre a qualidade microbiológica da água e do leite. Foi instalado um equipamento para cloração de água, por duas semanas, na caixa de água de 20 propriedades leiteiras. Foram coletadas amostras de água e leite ao primeiro dia (sem cloro: controle), no sétimo e 14° dias (com cloro) e no 21º dia após a desinstalação dos cloradores (sem cloro: controle). Foram realizadas análises microbiológicas da água e do leite (contagem de células somáticas do leite, bactérias psicotróficas, mesófilas e coliformes totais), análises físico-químicas da água (pH, dureza e matéria orgânica), e aplicou-se um questionário estruturado aos produtores visando conhecer as técnicas de manejo de ordenha adotadas na propriedade. O uso de cloração na água melhorou (P<0,0001) a qualidade microbiológica da água, porém não afetou a qualidade microbiológica do leite (P>0,05). Práticas adequadas de manejo e higiene de ordenha e adequada estrutura para a ordenha estão relacionadas a baixas contagens de microrganismos no leite. Conclui-se que a cloração melhora a qualidade microbiológica da água, sem afetar a qualidade microbiológica do leite, a qual é melhorada pela adoção de boas práticas de ordenha e adequada infraestrutura.
Collapse
Affiliation(s)
- C.G. Silva
- Universidade do Estado de Santa Catarina, Brazil
| | | | - D.A. Knob
- Universidade do Estado de Santa Catarina, Brazil
| | - L. d’Ovidio
- Universidade do Estado de Santa Catarina, Brazil
| | | |
Collapse
|
30
|
Individual based modeling and analysis of pathogen levels in poultry chilling process. Math Biosci 2017; 294:172-180. [PMID: 29080777 DOI: 10.1016/j.mbs.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 11/22/2022]
Abstract
Pathogen control during poultry processing critically depends on more enhanced insight into contamination dynamics. In this study we build an individual based model (IBM) of the chilling process. Quantifying the relationships between typical Canadian processing specifications, water chemistry dynamics and pathogen levels both in the chiller water and on individual carcasses, the IBM is shown to provide a useful tool for risk management as it can inform risk assessment models. We apply the IBM to Campylobacter spp. contamination on broiler carcasses, illustrating how free chlorine (FC) sanitization, organic load in the water, and pre-chill carcass pathogen levels affect pathogen levels of post-chill broilers. In particular, given a uniform distribution of Campylobacter levels on incoming poultry we quantify the efficacy of FC control in not only reducing pathogen levels on average, but also the variation of pathogen levels on poultry exiting the chill tank. Furthermore, we demonstrate that the absence/presence of FC input dramatically influences when, during a continuous chilling operation, cross-contamination will be more likely.
Collapse
|
31
|
Wang GY, Ma F, Wang HH, Xu XL, Zhou GH. Characterization of Extracellular Polymeric Substances Produced byPseudomonas fragiUnder Air and Modified Atmosphere Packaging. J Food Sci 2017; 82:2151-2157. [DOI: 10.1111/1750-3841.13832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Guang-Yu Wang
- Key Laboratory of Meat Processing and Quality Control; Nanjing Agricultural Univ.; Nanjing Jiangsu China
| | - Fang Ma
- College of Veterinary Medicine; Nanjing Agriculture Univ.; Nanjing, Jiangsu 210095 P. R. China
| | - Hu-Hu Wang
- Key Laboratory of Meat Processing and Quality Control; Nanjing Agricultural Univ.; Nanjing Jiangsu China
| | - Xing-Lian Xu
- Key Laboratory of Meat Processing and Quality Control; Nanjing Agricultural Univ.; Nanjing Jiangsu China
| | - Guang-hong Zhou
- Collaborative Innovation Center of Food Safety and Nutrition, College of Food Science and Technology; Nanjing Agricultural Univ.; Nanjing Jiangsu China
| |
Collapse
|
32
|
Ma X, Bibby K. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water. WATER RESEARCH 2017; 120:265-271. [PMID: 28501787 DOI: 10.1016/j.watres.2017.04.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Fungi are near-ubiquitous in potable water distribution systems, but the disinfection kinetics of commonly identified fungi are poorly studied. In the present study, laboratory scale experiments were conducted to evaluate the inactivation kinetics of Aspergillus fumigatus, Aspergillus versicolor, and Penicillium purpurogenum by free chlorine and monochloramine. The observed inactivation data were then fit to a delayed Chick-Watson model. Based on the model parameter estimation, the Ct values (integrated product of disinfectant concentration C and contact time t over defined time intervals) for 99.9% inactivation of the tested fungal strains ranged from 48.99 mg min/L to 194.7 mg min/L for free chlorine and from 90.33 mg min/L to 531.3 mg min/L for monochloramine. Fungal isolates from a drinking water system (Aspergillus versicolor and Penicillium purpurogenum) were more disinfection resistant than Aspergillus fumigatus type and clinical isolates. The required 99.9% inactivation Ct values for the tested fungal strains are higher than E. coli, a commonly monitored indicator bacteria, and within a similar range for bacteria commonly identified within water distribution systems, such as Mycobacterium spp. and Legionella spp.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| |
Collapse
|
33
|
Chlorine Tolerance and Inactivation of Escherichia coli recovered from Wastewater Treatment Plants in the Eastern Cape, South Africa. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Owoseni M, Okoh A. Assessment of chlorine tolerance profile of Citrobacter species recovered from wastewater treatment plants in Eastern Cape, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:201. [PMID: 28364327 DOI: 10.1007/s10661-017-5900-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
This present study assessed the chlorine tolerance of some Citrobacter species recovered from secondary effluents from the clarifiers of two wastewater treatment plants in the Eastern Cape, South Africa. The bacterial survival, chlorine lethal dose and inactivation kinetics at lethal doses were examined. Inactivation of the test bacteria (n = 20) at the recommended dose of 0.5 mg/l for 30 min exposure showed a progressive reduction in bacterial population from 4 to 5 log reduction and residuals ranged between 0.12 and 0.46 mg/l. The bactericidal activity of chlorine increased at higher dosages with a substantial reduction in viability of the bacteria and complete inactivation of the bacterial population at a lethal dose of 0.75 and 1.0 mg/l in 30 min. For the inactivation kinetics, bactericidal activity of chlorine increased with time showing a 3.67-5.4 log reduction in 10 min, 4.0-5.6 log reduction in 20 min and above 6.3 log reductions to complete sterilization of bacterial population over 30 min for all the entire test Citrobacter isolates used in this study. Furthermore, there was a strong correlation (R 2 > 0.84) between bacteria inactivation and increase in contact time. This study appears to have provided support for laboratory evidence of bacterial tolerance to chlorine disinfection at current recommended dose (0.5 mg/l for 30 min), and chlorine concentration between 0.75 and 1.0 mg/l was found to have a better disinfecting capacity to check tolerance of Citrobacter species.
Collapse
Affiliation(s)
- Mojisola Owoseni
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
35
|
Han X, Wang Z, Chen M, Zhang X, Tang CY, Wu Z. Acute Responses of Microorganisms from Membrane Bioreactors in the Presence of NaOCl: Protective Mechanisms of Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3233-3241. [PMID: 28263585 DOI: 10.1021/acs.est.6b05475] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extracellular polymeric substances (EPS) are key foulants in membrane bioreactors (MBRs). However, their positive functions of protecting microorganisms from environmental stresses, e.g., during in situ hypochlorite chemical cleaning of membranes, have not been adequately elucidated. In this work, we investigated the response of microorganisms in an MBR to various dosages of NaOCl, with a particular emphasis on the mechanistic roles of EPS. Results showed that functional groups in EPS such as the hydroxyl and amino groups were attacked by NaOCl, causing the oxidation of polysaccharides, denaturation of amino acids, damage to protein secondary structure, and transformation of tryptophan protein-like substances to condensed aromatic ring substances. The presence of EPS alleviated the negative impacts on catalase and superoxide dismutase, which in turn reduced the concentration of reactive oxygen species (ROS) in microbial cells. The direct extracellular reaction and the mitigated intracellular oxidative responses facilitated the maintenance of microbial metabolism, as indicated by the quantity of adenosine triphosphate and the activity of dehydrogenase. The reaction with NaOCl also led to the changes of cell integrity and adhesion properties of EPS, which promoted the release of organic matter into bulk solution. Our results systematically demonstrate the protective roles of EPS and the underlying mechanisms in resisting the environmental stress caused by NaOCl, which provides important implications for in situ chemical cleaning in MBRs.
Collapse
Affiliation(s)
- Xiaomeng Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd. , Shanghai 200082, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong , Pokfulam, Hong Kong China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
36
|
Li Y, Yang M, Zhang X, Jiang J, Liu J, Yau CF, Graham NJD, Li X. Two-step chlorination: A new approach to disinfection of a primary sewage effluent. WATER RESEARCH 2017; 108:339-347. [PMID: 27839829 DOI: 10.1016/j.watres.2016.11.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 05/15/2023]
Abstract
Sewage disinfection aims at inactivating pathogenic microorganisms and preventing the transmission of waterborne diseases. Chlorination is extensively applied for disinfecting sewage effluents. The objective of achieving a disinfection goal and reducing disinfectant consumption and operational costs remains a challenge in sewage treatment. In this study, we have demonstrated that, for the same chlorine dosage, a two-step addition of chlorine (two-step chlorination) was significantly more efficient in disinfecting a primary sewage effluent than a one-step addition of chlorine (one-step chlorination), and shown how the two-step chlorination was optimized with respect to time interval and dosage ratio. Two-step chlorination of the sewage effluent attained its highest disinfection efficiency at a time interval of 19 s and a dosage ratio of 5:1. Compared to one-step chlorination, two-step chlorination enhanced the disinfection efficiency by up to 0.81- or even 1.02-log for two different chlorine doses and contact times. An empirical relationship involving disinfection efficiency, time interval and dosage ratio was obtained by best fitting. Mechanisms (including a higher overall Ct value, an intensive synergistic effect, and a shorter recovery time) were proposed for the higher disinfection efficiency of two-step chlorination in the sewage effluent disinfection. Annual chlorine consumption costs in one-step and two-step chlorination of the primary sewage effluent were estimated. Compared to one-step chlorination, two-step chlorination reduced the cost by up to 16.7%.
Collapse
Affiliation(s)
- Yu Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mengting Yang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Hong Kong, China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiaqi Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cie Fu Yau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Garvey M, Panaitescu E, Menon L, Byrne C, Dervin S, Hinder SJ, Pillai SC. Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens. J Catal 2016. [DOI: 10.1016/j.jcat.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wang M, Helbling DE. A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics. WATER RESEARCH 2016; 102:241-251. [PMID: 27348196 DOI: 10.1016/j.watres.2016.06.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
There is growing concern over the formation of new types of disinfection byproducts (DBPs) from pharmaceuticals and other emerging contaminants during drinking water production. Free chlorine is a widely used disinfectant that reacts non-selectively with organic molecules to form a variety of byproducts. In this research, we aimed to investigate the DBPs formed from three structurally similar sulfonamide antibiotics (sulfamethoxazole, sulfathiazole, and sulfadimethoxine) to determine how chemical structure influences the types of chlorination reactions observed. We conducted free chlorination experiments and developed a non-target approach to extract masses from the experimental dataset that represent the masses of candidate DBPs. Structures were assigned to the candidate DBPs based on analytical data and knowledge of chlorine chemistry. Confidence levels were assigned to each proposed structure according to conventions in the field. In total, 11, 12, and 15 DBP structures were proposed for sulfamethoxazole, sulfathiazole, and sulfadimethoxine, respectively. The structures of the products suggest a variety of reaction types including chlorine substitution, SC cleavage, SN hydrolysis, desulfonation, oxidation/hydroxylation, and conjugation reactions. Some reaction types were common to all of the sulfonamide antibiotics, but unique reaction types were also observed for each sulfonamide antibiotic suggesting that selective prediction of DBP structures of other sulfonamide antibiotics based on chemical structure is unlikely to be possible based on these data alone. This research offers an approach to comprehensively identify DBPs of organic molecules and fills in much needed data on the formation of specific DBPs from three environmentally relevant sulfonamide antibiotics.
Collapse
Affiliation(s)
- Mian Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
39
|
Cai W, Liu Y. Enhanced membrane biofouling potential by on-line chemical cleaning in membrane bioreactor. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wang S, Ao J, Lv F, Zhang Q, Jiao T. The enhanced antibacterial performance by the unique Artemia egg shell-supported nano-Ag composites. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Munther D, Sun X, Xiao Y, Tang S, Shimozako H, Wu J, Smith BA, Fazil A. Modeling cross-contamination during poultry processing: Dynamics in the chiller tank. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Chlorine stress mediates microbial surface attachment in drinking water systems. Appl Microbiol Biotechnol 2014; 99:2861-9. [DOI: 10.1007/s00253-014-6166-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
43
|
Tartanson MA, Soussan L, Rivallin M, Chis C, Penaranda D, Lapergue R, Calmels P, Faur C. A new silver based composite material for SPA water disinfection. WATER RESEARCH 2014; 63:135-146. [PMID: 25000196 DOI: 10.1016/j.watres.2014.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 06/03/2023]
Abstract
A new composite material based on alumina (Al2O3) modified by two surface nanocoatings - titanium dioxide (TiO2) and silver (Ag) - was studied for spa water disinfection. Regarding the most common microorganisms in bathing waters, two non-pathogenic bacteria Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram positive) were selected as surrogates for bacterial contamination. The bactericidal properties of the Al2O3-TiO2-Ag material were demonstrated under various operating conditions encountered in spa water (temperature: 22-37 °C, presence of salt: CaCO3 or CaCl2, high oxygen content, etc.). Total removal of 10(8) CFU mL(-1) of bacteria was obtained in less than 10 min with 16 g L(-1) of material. Best results were observed for both conditions: a temperature of 37 °C and under aerobic condition; this latest favouring Reactive Oxygen Species (ROS) generation. The CaCO3 salt had no impact on the bactericidal activity of the composite material and CaCl2 considerably stabilized the silver desorption from the material surface thanks to the formation of AgCl precipitate. Preliminary tests of the Al2O3-TiO2-Ag bactericidal behaviour in a continuous water flow confirmed that 2 g L(-1) of material eliminated more than 90% of a 2.0 × 10(8) CFU mL(-1) bacterial mixture after one water treatment recycle and reached the disinfection standard recommended by EPA (coliform removal = 6 log) within 22 h.
Collapse
Affiliation(s)
- M A Tartanson
- Institut Europeen des Membranes - IEM, (UMR 5635 CNRS-ENSCM-UM2) - Equipe Genie des Procedes Membranaires, Universite Montpellier II cc047, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France; CARDPool SAS, Research and Development Site, 37 Avenue Vincent d'Indy, 30100 Alès, France
| | - L Soussan
- Institut Europeen des Membranes - IEM, (UMR 5635 CNRS-ENSCM-UM2) - Equipe Genie des Procedes Membranaires, Universite Montpellier II cc047, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France.
| | - M Rivallin
- Institut Europeen des Membranes - IEM, (UMR 5635 CNRS-ENSCM-UM2) - Equipe Genie des Procedes Membranaires, Universite Montpellier II cc047, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - C Chis
- CARDPool SAS, Research and Development Site, 37 Avenue Vincent d'Indy, 30100 Alès, France
| | - D Penaranda
- CARDPool SAS, Research and Development Site, 37 Avenue Vincent d'Indy, 30100 Alès, France
| | - R Lapergue
- CARDPool SAS, Research and Development Site, 37 Avenue Vincent d'Indy, 30100 Alès, France
| | - P Calmels
- CARDPool SAS, Research and Development Site, 37 Avenue Vincent d'Indy, 30100 Alès, France
| | - C Faur
- Institut Europeen des Membranes - IEM, (UMR 5635 CNRS-ENSCM-UM2) - Equipe Genie des Procedes Membranaires, Universite Montpellier II cc047, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
44
|
Benner J, Helbling DE, Kohler HPE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D, Walravens E, Boon N. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? WATER RESEARCH 2013; 47:5955-76. [PMID: 24053940 DOI: 10.1016/j.watres.2013.07.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 07/11/2013] [Indexed: 05/19/2023]
Abstract
In western societies, clean and safe drinking water is often taken for granted, but there are threats to drinking water resources that should not be underestimated. Contamination of drinking water sources by anthropogenic chemicals is one threat that is particularly widespread in industrialized nations. Recently, a significant amount of attention has been given to the occurrence of micropollutants in the urban water cycle. Micropollutants are bioactive and/or persistent chemicals originating from diverse sources that are frequently detected in water resources in the pg/L to μg/L range. The aim of this review is to critically evaluate the viability of biological treatment processes as a means to remove micropollutants from drinking water resources. We first place the micropollutant problem in context by providing a comprehensive summary of the reported occurrence of micropollutants in raw water used directly for drinking water production and in finished drinking water. We then present a critical discussion on conventional and advanced drinking water treatment processes and their contribution to micropollutant removal. Finally, we propose biological treatment and bioaugmentation as a potential targeted, cost-effective, and sustainable alternative to existing processes while critically examining the technical limitations and scientific challenges that need to be addressed prior to implementation. This review will serve as a valuable source of data and literature for water utilities, water researchers, policy makers, and environmental consultants. Meanwhile this review will open the door to meaningful discussion on the feasibility and application of biological treatment and bioaugmentation in drinking water treatment processes to protect the public from exposure to micropollutants.
Collapse
Affiliation(s)
- Jessica Benner
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Silva FJAD, Lima MGS, Mendonça LAR, Gomes MJTL. Septic tank combined with anaerobic filter and conventional UASB: results from full scale plants. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1590/s0104-66322013000100015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Raphael BH, Lautenschlager M, Kahler A, Pai S, Parks BA, Kalb SR, Maslanka SE, Shah S, Magnuson M, Hill VR. Ultrafiltration improves ELISA and Endopep MS analysis of botulinum neurotoxin type A in drinking water. J Microbiol Methods 2012; 90:267-72. [PMID: 22677607 PMCID: PMC11302440 DOI: 10.1016/j.mimet.2012.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 11/30/2022]
Abstract
The objective of this study was to adapt and evaluate two in vitro botulinum neurotoxin (BoNT) detection methods, including the Botulinum Toxin ELISA and the Endopep MS (a mass spectrometric-based endopeptidase method), for use with drinking water samples. The method detection limits (MDL) of the ELISA and Endopep MS were 260 pg/mL and 21 pg/mL of BoNT/A complex toxin, respectively. Since toxin could be present in water samples at highly dilute concentrations, large volume (100-L) samples of municipal tap water from five US municipalities having distinct water compositions were dechlorinated, spiked with 5 μg BoNT/A, and subjected to tangential-flow ultrafiltration (UF) using hollow fiber dialyzers. The recovery efficiency of BoNT/A using UF and quantified by ELISA ranged from 11% to 36% while efficiencies quantified by MS ranged from 26% to 55%. BoNT/A was shown to be stable in dechlorinated municipal tap water stored at 4°C for up to four weeks. In addition, toxin present in UF-concentrated water samples was also shown to be stable at 4°C for up to four weeks, allowing holding of samples prior to analysis. Finally, UF was used to concentrate a level of toxin (7 pg/mL) which is below the MDL for direct analysis by both ELISA and Endopep MS. Following UF, toxin was detectable in these samples using both in vitro analysis methods. These data demonstrate that UF-concentration of toxin from large volume water samples followed by use of existing analytical methods for detection of BoNT/A can be used in support of a monitoring program for contaminants in drinking water.
Collapse
Affiliation(s)
- Brian H Raphael
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xue Z, Hessler CM, Panmanee W, Hassett DJ, Seo Y. Pseudomonas aeruginosainactivation mechanism is affected by capsular extracellular polymeric substances reactivity with chlorine and monochloramine. FEMS Microbiol Ecol 2012; 83:101-11. [DOI: 10.1111/j.1574-6941.2012.01453.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Zheng Xue
- Department of Civil Engineering; University of Toledo; Toledo; OH; USA
| | - Christopher M. Hessler
- Department of Chemical and Environmental Engineering; University of Toledo; Toledo; OH; USA
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology; University of Cincinnati; Cincinnati; OH; USA
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology; University of Cincinnati; Cincinnati; OH; USA
| | | |
Collapse
|
48
|
Kang MK, Moon SK, Kim KM, Kim KN. Antibacterial effect and cytocompatibility of nano-structured TiO2 film containing Cl. Dent Mater J 2011; 30:790-8. [PMID: 22123002 DOI: 10.4012/dmj.2011-021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the antibacterial effect and cytocompatibility of a nano-structured TiO2 film that contained Cl and had been coated onto commercially pure titanium. First, we prepared nano-structured TiO2 by anodization with hydrofluoric acid. Then, to confer an antibacterial effect, we performed a second anodization with NaCl solutions of different concentrations (0.5 M, 1 M, 2 M). The morphology, composition, and wettability of the surface were investigated by SEM, EDS, and a video contact angle measuring system. The antibacterial effect was evaluated by film adhesion method. And cytotoxicity was determined by the viability of MG-63 cells in a MTT assay. The SEM and EDS results showed that the TiO2 nano-structure containing Cl had successfully formed after the second anodization. The contact angle analysis showed that the anodized titanium had a hydrophilic character. The results of this in vitro investigation demonstrated that the TiO2 nano-structure film anodized in 1 M NaCl had an antibacterial effect and good cell compatibility.
Collapse
Affiliation(s)
- Min-Kyung Kang
- BK21, Department and Research Institute of Dental Biomaterials and Bioengineering, and Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University
| | | | | | | |
Collapse
|
49
|
Evaluation of select sensors for real-time monitoring of Escherichia coli in water distribution systems. Appl Environ Microbiol 2011; 77:2813-6. [PMID: 21357435 DOI: 10.1128/aem.02618-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study evaluated real-time sensing of Escherichia coli as a microbial contaminant in water distribution systems. Most sensors responded to increased E. coli concentrations, showing that select sensors can detect microbial water quality changes and be utilized as part of a contaminant warning system.
Collapse
|
50
|
Helbling DE, Vanbriesen JM. Continuous monitoring of residual chlorine concentrations in response to controlled microbial intrusions in a laboratory-scale distribution system. WATER RESEARCH 2008; 42:3162-72. [PMID: 18433828 DOI: 10.1016/j.watres.2008.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 05/15/2023]
Abstract
The objective of this work was to evaluate the efficacy of deploying free chlorine sensors as surrogate monitors for bacterial contamination events in drinking water distribution systems. An on-line sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in residual free chlorine concentrations induced by injected loads of Escherichia coli suspended in a chlorine demand free buffer. The magnitude of the residual response was proportional to the injected cell concentration, the background free chlorine concentration in the LDS, and the contact time between the chlorine residual and the injected suspension, consistent with previous results in batch reactors. The magnitude of the residual response was predicted when kinetic models developed from reaction kinetics between free chlorine and E. coli determined in batch systems were evaluated at contact times determined from LDS hydraulics. This result highlights the suitability of using batch kinetics when modeling contaminant-induced chlorine decay in the distribution system. Modeling the propagation of chlorine demand signals generated by specific pathogens could aid in the assessment of distribution system vulnerability.
Collapse
Affiliation(s)
- Damian E Helbling
- Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|