1
|
Kassar C, Graham C, Boyer TH. Removal of perfluoroalkyl acids and common drinking water contaminants by weak-base anion exchange resins: Impacts of solution pH and resin properties. WATER RESEARCH X 2022; 17:100159. [PMID: 36387934 PMCID: PMC9650071 DOI: 10.1016/j.wroa.2022.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
The underlying chemistry of weak-base (WB) anion exchange resins (AERs) for contaminant removal from water is not well documented in the literature. To address this, batch adsorption experiments were conducted at pH 4, 7, and 10 using two representative WB-AERs (polyacrylic IRA67 and polystyrene IRA96) and two representative strong-base (SB) AERs (polyacrylic IRA458 and polystyrene A520E), of differing polymer composition, for the removal of nitrate, sulfate, 3-phenylpropionic acid (3-PPA) as surrogate for natural organic matter, and six perfluoroalkyl acids (PFAAs). Under acidic (pH 4) and neutral (pH 7) conditions, the selectivity of AERs for each contaminant was predominantly influenced by polymer composition followed by the size of the resin functional group. This result reflected the WB-AERs being fully protonated and functioning identical to SB-AERs. Isotherm model parameters revealed WB-AER had higher capacity than SB-AER with analogous polymer composition and porosity regardless of resin selectivity for each contaminant. Under basic conditions (≥ pH 10), contaminant removal by WB-AERs declined due to deprotonation of the tertiary amine functional groups. Removal of PFAAs by the more hydrophobic polystyrene WB-AER (IRA96) remained approximately constant with changing pH, which was possibly due to electrostatic interactions with remaining protonated amine functional groups on the resin.
Collapse
|
2
|
Ersan MS, Dickenson ERV. Pretreatment strategies for ion exchange to control brominated disinfection byproducts in potable reuse. CHEMOSPHERE 2022; 296:134068. [PMID: 35202669 DOI: 10.1016/j.chemosphere.2022.134068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The application of ion exchange (IX) resins to remove disinfection byproduct (DBP) precursors in wastewater effluents is challenging due to relatively high concentrations of competing anions. This study examined various pretreatment strategies to target competing ions to improve IX removal of DBP precursors, bromide and dissolved organic matter (DOM), measured as trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP). IX batch experiments were performed with four commercial anion exchange (AIX) resins selective for bromide (BrP), DOM (A860), sulfate (MTA) and PFOA/PFOS (PFA), and one cation exchange (CIX) resin selective for iodide (CT). For single AIX treatments the bromide removal ranking was the following: PFA (58%) > MTA (51%) > BrP (43%) > A860 (16%), which corresponded with decreasing brominated THMFP removals and increasing bromine incorporation factors. For dual AIX combinations (PFA and BrP, MTA and BrP), either simultaneous or sequential treatments had the highest bromide (PFA + BrP [69%], MTA + BrP [67%], (PFA→BrP [77%], MTA→BrP [74%]) and Br-THMFP (THMFP [∼80%]) and Br-HAAFP (HAAFP [∼77%]) removals, and therefore the lowest fractions of brominated DBPs (Br-DBPs). Despite ozone (O3), biological active carbon (BAC), and granular activated carbon (GAC) pretreatments reducing the overall DOM concentration (33%), these pretreatment steps did not improve the bromide removals of the resins, although it did increase the Br-THMFP and Br-HAAFP removals by 2-38% and 13-20%, respectively. Nanofiltration (NF) pretreatment significantly removed sulfate (97%) resulting in an increased bromide removal of 19% by the AIX resins, which led to increased removal of Br-THMFP and Br-HAAFP by 93% and 96%, respectively. Among all the IX resins the CT resin had the highest bromide removal (83%) and lowest fraction of Br-DBPs. The results reveal pretreatment with existing technologies including AIX, O3/BAC/GAC, or NF can potentially enhance the removal of brominated DBP precursors by IX resins during potable reuse applications.
Collapse
Affiliation(s)
- Mahmut S Ersan
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-5306, USA.
| | - Eric R V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| |
Collapse
|
3
|
Liu Z, Haddad M, Sauvé S, Barbeau B. Alleviating the burden of ion exchange brine in water treatment: From operational strategies to brine management. WATER RESEARCH 2021; 205:117728. [PMID: 34619606 DOI: 10.1016/j.watres.2021.117728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange (IX) using synthetic resins is a cost-efficient technology to cope with a wide range of contaminants in water treatment. However, implementing IX processes is constrained by the regeneration of IX resins that generates a highly concentrated brine (i.e., IX brine), the disposal of which is costly and detrimental to ecosystems. In an effort to make the application of IX resins more sustainable in water treatment, substantial research has been conducted on the optimization of IX resins operation and the management of IX brine. The present review critically evaluates the literature surrounding IX operational strategies and IX brine management which can be used to limit the negative impacts arising from IX brine. To this end, we first analyzed the physicochemical characteristics of brines from the regeneration of IX resins. Then, we critically evaluated IX operational strategies that facilitate brine management, including resin selection, contactor selection, operational modes, and regeneration strategies. Furthermore, we analyzed IX brine management strategies, including brine reuse and brine disposal (without or with treatment). Finally, a novel workflow for the IX water treatment plant design that integrates IX operational strategies and IX brine management is proposed, thereby highlighting the areas that make IX technology more sustainable for water treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; NSERC-Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| | - Maryam Haddad
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, United States.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada.
| | - Benoit Barbeau
- NSERC-Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
4
|
Edgar M, Boyer TH. Removal of natural organic matter by ion exchange: Comparing regenerated and non-regenerated columns. WATER RESEARCH 2021; 189:116661. [PMID: 33254071 DOI: 10.1016/j.watres.2020.116661] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) in water has adverse impacts on the water treatment process and is effectively removed by ion exchange (IEX). Some researchers have proposed the term biological ion exchange (BIEX) for the process of continuous DOM removal by ion exchange without the need for chemical regeneration that results in brine waste. Surface water with moderate dissolved organic carbon (DOC) concentrations (4-6 mg/L) and high sulfate concentrations (80 - 120 mg/L) was fed to two regenerated and two non-regenerated columns for 12,500 bed volumes (9 months) with the goal of investigating the effects of chemical and possibly biological regeneration on long-term IEX operation. Chemically regenerated columns achieved between 60 and 80% DOC removal for the entirety of the experiment, while non-regenerated columns achieved steady DOC removal of ~50%. Inorganic ion analysis showed that biological activity had minimal impact on DOC removal, and the main mechanism of removal was secondary IEX between sulfate (SO42-) and fractions of DOC with high affinities for ion exchange. Fluorescence and specific UV absorbance at 254 nm (SUVA 254) data showed that fractions of DOC with higher SUVA 254 values (terrestrial-like fractions) were better removed by secondary IEX than those with lower SUVA 254 values (aquatic/microbial-like fractions). Scanning electron microscopy showed that biofilms on non-regenerated resins covered 5-15% of the resin surface and are composed of numerous species of bacteria with varying functions, with some protozoa present.
Collapse
Affiliation(s)
- Michael Edgar
- School of Sustainable Engineering and the Built Environment (SSEBE) Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA.
| | - Treavor H Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE) Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA
| |
Collapse
|
5
|
Kanan A, Soyluoglu M, Karanfil T. Removal of the precursors of regulated DBPs and TOX from surface waters and wastewater effluents using mixed anion exchange resins. CHEMOSPHERE 2021; 263:128094. [PMID: 33297090 DOI: 10.1016/j.chemosphere.2020.128094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Both organic and inorganic precursors play important roles in the formation and speciation of disinfection by-products (DBPs). This study aimed to investigate the efficacy of three different anion exchange resins for removing both organic and inorganic DBP precursors simultaneously in a single treatment system. Resins in the single (Purolite®-Br, MIEX®-Br, and MIEX®-Gold) and mixed (Purolite®-Br with MIEX®-Gold and MIEX®-Br with MIEX®-Gold) application modes were tested and compared for the removal of dissolved organic carbon (DOC), bromide (Br-), and iodide (I-) from a raw source water and a treated wastewater effluent. Uniform formation condition (UFC) tests were conducted to measure the concentrations of trihalomethanes (THM4), haloacetic acids (HAA9), haloacetonitriles (HAN6), and total organic halides (TOX): total organic chlorine (TOCl), total organic bromine (TOBr), and total organic iodine (TOI) before and after the anion exchange resin treatments. The anion exchange treatment substantially lowered the DOC, UV254 absorbing matter, dissolved nitrogen (DN), Br-, and I-. Consequently, the formation of THM4, HAA9, HAN6, and TOX in the examined chlorinated water samples were reduced significantly. The maximum reduction in THM4 and TOX (66-69% and 61%, respectively) from wastewater effluent was achieved by the mixed resin system, which also reduced the THM4 and TOX by 77% and 77%, respectively, from raw source water. Overall, mixed resin systems (a DOC-selective and a Br-selective resin) resulted in lower amounts of THM4 and HAA9 formation during subsequent chlorination with lower bromine incorporation as compared to single resin systems. Furthermore, they exhibited lower TOBr formation, while TOI formation was not detected.
Collapse
Affiliation(s)
- Amer Kanan
- Department of Environment and Earth Sciences, Faculty of Science and Technology, Al-Quds University, Palestine
| | - Meryem Soyluoglu
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA.
| |
Collapse
|
6
|
Soyluoglu M, Ersan MS, Ateia M, Karanfil T. Removal of bromide from natural waters: Bromide-selective vs. conventional ion exchange resins. CHEMOSPHERE 2020; 238:124583. [PMID: 31425865 DOI: 10.1016/j.chemosphere.2019.124583] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The presence of bromide (Br-) in water results in the formation of brominated disinfection byproducts (DBPs) after chlorination, which are much more cytotoxic and genotoxic than their chlorinated analogs. Given that conventional water treatment processes (e.g., coagulation, flocculation, and sedimentation) fail to remove Br- effectively, in this study, we systematically tested and compared the performance of different anion exchange resins, particularly two novel Br-selective resins, for the removal of Br-. The resins performance was evaluated under both typical and challenging background water conditions by varying the concentrations of anions and organic matter. The overall Br- removal results followed the trend of Purolite-Br ≥ MIEX-Br > IRA910 ≥ IRA900 > MIEX-Gold > MIEX-DOC. Further evaluation of Purolite-Br resin showed Br- removal efficiencies of 93.5 ± 4.5% for the initial Br- concentration of 0.25 mg/L in the presence of competing anions (i.e., Cl-, NO3-, NO2-, SO42-, PO43-, and a mixture of all five), alkalinity and organic matter. In addition, experiments under challenging background water conditions confirmed the selectivity of the resins (i.e. Purolite-Br and MIEX-Br) in removing Br-, with SO42- and Cl- exhibiting the greatest influence upon the resin performance followed by NOM concentration, regardless of the NOM characteristic. After Br- removal, both the subsequent formation of brominated DBPs (trihalomethanes, haloacetic acids, and haloacetonitriles), and the total organic halogens (TOX), decreased by ∼90% under the uniform formation conditions. Overall, Br-selective resins represent a promising alternative for the efficient control of Br-DBPs in water treatment plants.
Collapse
Affiliation(s)
- Meryem Soyluoglu
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA
| | - Mahmut S Ersan
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA
| | - Mohamed Ateia
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA.
| |
Collapse
|
7
|
Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Brezinski K, Gorczyca B. An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications. CHEMOSPHERE 2019; 217:122-139. [PMID: 30414544 DOI: 10.1016/j.chemosphere.2018.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Natural organic matter (NOM) constitutes the terrestrial and aquatic sources of organic plant like material found in water bodies. As of recently, an ever-increasing amount of effort is being put towards developing better ways of unraveling the heterogeneous nature of NOM. This is important as NOM is responsible for a wide variety of both direct and indirect effects: ranging from aesthetic concerns related to taste and odor, to issues related to disinfection by-product formation and metal mobility. A better understanding of NOM can also provide a better appreciation for treatment design; lending a further understanding of potable water treatment impacts on specific fractions and constituents of NOM. The use of high performance size-exclusion chromatography has shown a growing promise in its various applications for NOM characterization, through the ability to partition ultraviolet absorbing moieties into ill-defined groups of humic acids, hydrolysates of humics, and low molecular weight acids. HPSEC also has the ability of simultaneously measuring absorbance in the UV-visible range (200-350 nm); further providing a spectroscopic fingerprint that is simply unavailable using surrogate measurements of NOM, such as total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254), excitation-emission matrices (EEM), and specific ultraviolet absorbance at 254 nm (SUVA254). This review mainly focuses on the use of HPSEC in the characterization of NOM in a potable water setting, with an additional focus on strong-base ion-exchangers specifically targeted for NOM constituents.
Collapse
Affiliation(s)
- Kenneth Brezinski
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Beata Gorczyca
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Ghoussoub YE, Fares HM, Delgado JD, Keller LR, Schlenoff JB. Antifouling Ion-Exchange Resins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41747-41756. [PMID: 30456944 DOI: 10.1021/acsami.8b12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large quantities of organic ion-exchange resins are used worldwide for water decontamination and polishing. Fouling by microorganisms and decomposition products of natural organic matter severely limits the lifetime of these resins. Much research has thus been invested in polymer-based antifouling coatings. In the present study, poly(4-styrenesulfonate) (PSS) and a co-polymer of PSS and a zwitterionic group were used to spontaneously coat commercial Dowex 1X8 anion-exchange resin. UV-visible spectroscopy provided a precise measure of the kinetics and amount of PSS sorbed onto or into resin beads. When challenged with Chlamydomonas reinhardtii algae, uncoated resin was rapidly fouled by algae. Coating the resin with either the homopolymer of PSS or the co-polymer with zwitterion eliminated fouling. Using narrow- and wide-molecular-weight distribution PSS, a cutoff molecular weight of about 240 repeat units was found, above which PSS was unable to diffuse into the resin. Thus, only one monolayer of added PSS was sufficient to confer a highly desirable antifouling property on this resin while consuming less than 0.1% of the exchanger capacity. Radioactive sulfate ions were used to probe the kinetics of (self)exchange, which were virtually unaffected by the PSS coating. This resin treatment is a fast, ultra-low-cost step for potentially enhancing the lifetime of ion exchangers.
Collapse
|
10
|
Winter J, Wray HE, Schulz M, Vortisch R, Barbeau B, Bérubé PR. The impact of loading approach and biological activity on NOM removal by ion exchange resins. WATER RESEARCH 2018; 134:301-310. [PMID: 29433080 DOI: 10.1016/j.watres.2018.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the impact of different loading approaches and microbial activity on the Natural Organic Matter (NOM) removal efficiency and capacity of ion exchange resins. Gaining further knowledge on the impact of loading approaches is of relevance because laboratory-scale multiple loading tests (MLTs) have been introduced as a simpler and faster alternative to column tests for predicting the performance of IEX, but only anecdotal evidence exists to support their ability to forecast contaminant removal and runtime until breakthrough of IEX systems. The overall trends observed for the removal and the time to breakthrough of organic material estimated using MLTs differed from those estimated using column tests. The results nonetheless suggest that MLTs could best be used as an effective tool to screen different ion exchange resins in terms of their ability to remove various contaminants of interest from different raw waters. The microbial activity was also observed to impact the removal and time to breakthrough. In the absence of regeneration, a microbial community rapidly established itself in ion exchange columns and contributed to the removal of organic material. Biological ion exchange (BIEX) removed more organic material and enabled operation beyond the point when the resin capacity would have otherwise been exhausted using conventional (i.e. in the absence of a microbial community) ion exchange. Furthermore, significantly greater removal of organic matter could be achieved with BIEX than biological activated carbon (BAC) (i.e. 56 ± 7% vs. 15 ± 5%, respectively) when operated at similar loading rates. The results suggest that for some raw waters, BIEX could replace BAC as the technology of choice for the removal of organic material.
Collapse
Affiliation(s)
- Joerg Winter
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| | - Heather E Wray
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Martin Schulz
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Roman Vortisch
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montréal, QC H3T 1J4, Canada
| | - Pierre R Bérubé
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Levchuk I, Rueda Márquez JJ, Sillanpää M. Removal of natural organic matter (NOM) from water by ion exchange - A review. CHEMOSPHERE 2018; 192:90-104. [PMID: 29100126 DOI: 10.1016/j.chemosphere.2017.10.101] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Natural organic matter (NOM) is present in underground and surface waters. The main constituents of NOM are humic substances, with a major fraction of refractory anionic macromolecules of various molecular weights. The NOM concentration in drinking water is typically 2-10 ppm. Both aromatic and aliphatic components with carboxylic and phenolic functional groups can be found in NOM, leading to negatively charged humic substances at the pH of natural water. The presence of NOM in drinking water causes difficulties in conventional water treatment processes such as coagulation. Problems also arise when applying alternative treatment techniques for NOM removal. For example, the most significant challenge in nanofiltration (NF) is membrane fouling. The ion exchange process for NOM removal is an efficient technology that is recommended for the beginning of the treatment process. This approach allows for a significant decrease in the concentration of NOM and prevents the formation of disinfection byproducts (DBPs) such as trihalomethanes (THMs). This article provides a state-of-the-art review of NOM removal from water by ion exchange.
Collapse
Affiliation(s)
- Irina Levchuk
- Laboratory of Green Chemistry, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, Cadiz University, Poligono Rio San Pedro s/n, Puerto Real, 11510 Cadiz, Spain.
| | - Juan José Rueda Márquez
- Laboratory of Green Chemistry, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, Cadiz University, Poligono Rio San Pedro s/n, Puerto Real, 11510 Cadiz, Spain
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
12
|
Dixit F, Barbeau B, Mohseni M. Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration. CHEMOSPHERE 2018; 192:113-121. [PMID: 29100119 DOI: 10.1016/j.chemosphere.2017.10.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the efficiency of a strongly basic macroporous anion exchange resin for the co-removal of Microcystin-LR (MCLR) and natural organic matter (NOM) in waters affected by toxic algal blooms. Environmental factors influencing the uptake behavior included MCLR and resin concentrations, NOM and anionic species, specifically nitrate, sulphate and bicarbonate. A860 resin exhibited an excellent adsorption capacity of 3800 μg/g; more than 60% of the MCLR removal was achieved within 10 min with a resin dosage of 200 mg/L (∼1 mL/L). Further, kinetic studies revealed that the overall removal of MCLR is influenced by both external diffusion and intra-particle diffusion. Increasing NOM concentration resulted in a significant reduction of MCLR uptake, especially at lower resin dosages, where a competitive uptake between the charged NOM fractions and MCLR was observed due to limited active sites. In addition, MCLR uptake was significantly reduced in the presence of sulphate and nitrate in the water matrix. Moreover, performance of the resin proved to be stable from one regeneration cycle to another. Approximately 80% of MCLR and 50% of dissolved organic carbon (DOC) were recovered in the regenerated brine. Evidences of resin saturation and site reduction were also observed after 2000 bed volumes (BV) of operation. For all the investigated water matrices, a resin dosage of 1000 mg/L (∼4.5 mL/L) was sufficient to lower MCLR concentration from 100 μg/L to below the World Health Organization guideline of 1 μg/L, while simultaneously providing more than 80% NOM removal.
Collapse
Affiliation(s)
- Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, Quebec, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
13
|
Hu Y, Boyer TH. Integrated bicarbonate-form ion exchange treatment and regeneration for DOC removal: Model development and pilot plant study. WATER RESEARCH 2017; 115:40-49. [PMID: 28259813 DOI: 10.1016/j.watres.2017.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration.
Collapse
Affiliation(s)
- Yue Hu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA.
| | - Treavor H Boyer
- School of Sustainable Engineering and The Built Environment (SSEBE), Arizona State University, P.O. Box 873005, Tempe, AZ, 85287-3005, USA.
| |
Collapse
|
14
|
Hu Y, Foster J, Boyer TH. Selectivity of bicarbonate-form anion exchange for drinking water contaminants: Influence of resin properties. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.02.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Bazri MM, Mohseni M. Impact of natural organic matter properties on the kinetics of suspended ion exchange process. WATER RESEARCH 2016; 91:147-55. [PMID: 26774263 DOI: 10.1016/j.watres.2015.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 05/27/2023]
Abstract
Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods.
Collapse
Affiliation(s)
- Mohammad Mahdi Bazri
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
16
|
Bazri MM, Martijn B, Kroesbergen J, Mohseni M. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors. CHEMOSPHERE 2016; 144:1988-1995. [PMID: 26547880 DOI: 10.1016/j.chemosphere.2015.10.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
The formation potential of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) after ion exchange treatment (IEX) of three different water types in multiple consecutive loading cycles was investigated. Liquid chromatography with organic carbon detector (LC-OCD) was employed to gauge the impact of IEX on different natural organic matter (NOM) fractions and data obtained were used to correlate these changes to DBPs Formation Potential (FP) under chlorination. Humic (-like) substances fractions of NOM were mainly targeted by ion exchange resins (40-67% removal), whereas hydrophilic, non-ionic fractions such as neutrals and building blocks were poorly removed during the treatment (12-33% removal). Application of ion exchange resins removed 13-20% of total carbonaceous DBPs FP and 3-50% of total nitrogenous DBPs FP. Effect of the inorganic nitrogen (i.e., Nitrate) presence on N-DBPs FP was insignificant while the presence of dissolved organic nitrogen (DON) was found to be a key parameter affecting the formation of N-DBPs. DON especially the portion affiliated with humic substances fraction, was reduced effectively (∼77%) as a result of IEX treatment.
Collapse
Affiliation(s)
- Mohammad Mahdi Bazri
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | | | | | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
17
|
Metcalfe D, Rockey C, Jefferson B, Judd S, Jarvis P. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process. WATER RESEARCH 2015; 87:20-28. [PMID: 26378728 DOI: 10.1016/j.watres.2015.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment.
Collapse
Affiliation(s)
- David Metcalfe
- Science and Water Quality Department, South West Water, Exeter, EX27HY, England, UK
| | - Chris Rockey
- Science and Water Quality Department, South West Water, Exeter, EX27HY, England, UK
| | - Bruce Jefferson
- Cranfield Water Science Institute, Cranfield University, Bedford, MK43 0AL, UK
| | - Simon Judd
- Cranfield Water Science Institute, Cranfield University, Bedford, MK43 0AL, UK; Department of Chemical Engineering, Qatar University, Qatar
| | - Peter Jarvis
- Cranfield Water Science Institute, Cranfield University, Bedford, MK43 0AL, UK.
| |
Collapse
|
18
|
Sun J, Li X, Quan Y, Yin Y, Zheng S. Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins. CHEMOSPHERE 2015; 136:181-189. [PMID: 25996990 DOI: 10.1016/j.chemosphere.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/13/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
This study evaluated the long-term dissolved organic matter (DOM), phosphorus and nitrogen removal performance of a commercially available conventional anion exchange resin (AER) from actual secondary effluent (SE) in a sewage treatment plant based on a pilot-scale operation (2.2 m(3) d(-1), 185 cycles, 37,000 bed volume, 1.5 years). Particular emphasis was given to the potential effect of DOM fouling on the ion exchange properties and performance during the long-term operation. Despite the large range of COD (15.6-33.5 mg L(-1)), BOD5 (3.0-5.6 mg L(-1)), DOC (6.5-24.2 mg L(-1)), and UV254 (UV absorption at 254 nm) (0.108-0.229 cm(-1)) levels in the SE, the removal efficiencies of the AER for the aforementioned parameters were 43±12%, 46±15%, 45±9%, and 72±4%, respectively. Based on three-dimensional fluorescence excitation-emission matrix data, i.e., the fluorescence intensities of four regions (peaks A-D), all organic components of the SE were effectively removed (peak A 74%, peak B 48%, peak C 55%, and peak D 45%) following the adsorption. The AER effluent still has considerable polycyclic aromatic hydrocarbons' ecological hazard on freshwater fishes when they were significantly removed from SE. The obvious DOM fouling on the AER, identified by color change, had no significant influence on the long-term removal of the representative inorganic anions (averaging 95±4% phosphate, 100±0% SO4(2-), and 62±17% NO3(-)) and AER properties (including total exchange capacity, moisture content, and true density). The conventional AER can produce high quality reclaimed water from SE at a low operational cost.
Collapse
Affiliation(s)
- Jian Sun
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Xiaofeng Li
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Ying Quan
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Yunjun Yin
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Rokicki CA, Boyer TH. Effect of divalent metal cations on contaminant removal by bicarbonate-form anion exchange resin. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1056358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Ged EC, Chadik PA, Boyer TH. Predictive capability of chlorination disinfection byproducts models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 149:253-262. [PMID: 25463588 DOI: 10.1016/j.jenvman.2014.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/14/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
There are over 100 models that have been developed for predicting trihalomethanes (THMs), haloacetic acids (HAAs), bromate, and unregulated disinfection byproducts (DBPs). Until now no publication has evaluated the variability of previous THM and HAA models using a common data set. In this article, the standard error (SE), Marquardt's percent standard deviation (MPSD), and linear coefficient of determination (R(2)) were used to analyze the variability of 87 models from 23 different publications. The most robust models were capable of predicting THM4 with an SE of 48 μg L(-1) and HAA6 with an SE of 15 μg L(-1), both achieving R(2) > 0.90. The majority of models were formulated for THM4. There is a lack of published models evaluating total HAAs, individual THM and HAA species, bromate, and unregulated DBPs.
Collapse
Affiliation(s)
- Evan C Ged
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA
| | - Paul A Chadik
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA
| | - Treavor H Boyer
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA.
| |
Collapse
|
21
|
Watson K, Farré MJ, Knight N. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal. WATER RESEARCH 2015; 68:454-466. [PMID: 25462752 DOI: 10.1016/j.watres.2014.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases.
Collapse
Affiliation(s)
- Kalinda Watson
- Griffith University, Smart Water Research Centre, School of Environment, Southport, QLD 4222, Australia
| | | | | |
Collapse
|
22
|
Shuang C, Wang J, Li H, Li A, Zhou Q. Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: Behavior and mechanism. J Colloid Interface Sci 2015; 437:163-169. [DOI: 10.1016/j.jcis.2014.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/13/2014] [Accepted: 09/07/2014] [Indexed: 11/30/2022]
|
23
|
Li H, Li A, Shuang C, Zhou Q, Li W. Fouling of anion exchange resin by fluorescence analysis in advanced treatment of municipal wastewaters. WATER RESEARCH 2014; 66:233-241. [PMID: 25218660 DOI: 10.1016/j.watres.2014.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
The application of anion exchange resins (AERs) has been limited by the critical problem of resin fouling, which increases the volume of the desorption concentrate and decreases treatment efficiency. To date, resin fouling has not been well studied and is poorly understood compared to membrane fouling. To reflect the resin fouling level, a resin fouling index (RFI) was established in this work according to the decrease of DOC removal after regeneration of the resin for the advanced treatment of municipal wastewater. Comparing the linear fitting results between the RFI and the fluorescence intensity indicated that the resin fouling was related to the protein-like substances with fluorescence peak T in the region of excitation wavelength <250 nm and emission wavelength <380 nm. Using their fluorescent characteristics as a label, the protein-like substances causing the fouling were further identified as hydrophilic components with molecular weights greater than 6500 Da.
Collapse
Affiliation(s)
- Haibo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, PR China.
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, PR China.
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, PR China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, PR China
| |
Collapse
|
24
|
Phetrak A, Lohwacharin J, Sakai H, Murakami M, Oguma K, Takizawa S. Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products. J Environ Sci (China) 2014; 26:1294-1300. [PMID: 25079839 DOI: 10.1016/s1001-0742(13)60602-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anion exchange resins (AERs) with different properties were evaluated for their ability to remove dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic magnetic ion exchange resin (MIEX®) showed faster dissolved organic carbon (DOC) removal than other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and resin size, influenced not only DOM removal but also bromide removal efficiency. MIEX® showed significant chlorinated DBP removal because it had the highest DOC removal within 30 min, whereas polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane species. The results suggested that, depending on source water DOM and bromide concentration, selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in drinking water.
Collapse
Affiliation(s)
- Athit Phetrak
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Jenyuk Lohwacharin
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroshi Sakai
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Michio Murakami
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Kumiko Oguma
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
25
|
Removal of dissolved organic carbon from surface water by anion exchange and adsorption: Bench-scale testing to simulate a two-stage countercurrent process. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2013.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Shuang C, Wang M, Zhou Q, Zhou W, Li A. Enhanced adsorption and antifouling performance of anion-exchange resin by the effect of incorporated Fe3O4 for removing humic acid. WATER RESEARCH 2013; 47:6406-6414. [PMID: 24011841 DOI: 10.1016/j.watres.2013.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/03/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
The application of anion-exchange resins (AERs) is limited by fouling, which increases the fresh resin dosage, regeneration frequency, and amount of regeneration effluent. In this study, five AERs with different Fe3O4 amounts was prepared by increasing the amount of Fe3O4 added to 100 g of monomer mixture for suspension polymerization from 0 g to 40 g. Results showed considerably improved pore volume and hydrophilicity of the resin with increased Fe3O4 content, leading to significantly enhanced adsorption and desorption of humic acid. A method of developing novel resins with enhanced adsorption and antifouling abilities by incorporating Fe3O4 was then proposed. The adsorbent structure resulting from the incorporated inorganic particles was found to be important in determining the adsorption behavior of a hybrid adsorbent.
Collapse
Affiliation(s)
- Chendong Shuang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | | | | | | | | |
Collapse
|
27
|
Palomino PA, Boyer TH. Magnetic Ion Exchange (MIEX) Treatment of Surface Water, Groundwater, and Landfill Leachate Wastewater: Effect on Organic Matter Fluorescence. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.805227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Indarawis K, Boyer TH. Alkaline earth metal cation exchange: effect of mobile counterion and dissolved organic matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4591-4598. [PMID: 22424449 DOI: 10.1021/es204289c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The goal of this research was to provide an improved understanding of the interactions between alkaline earth metals and DOM under conditions that are encountered during drinking water treatment with particular focus on cation exchange. Both magnetically enhanced and nonmagnetic cation exchange resins were converted to Na, Mg, Ca, Sr, and Ba mobile counterion forms as a novel approach to investigate the exchange behavior between the cations and the interactions between the cations and DOM. The results show that cation exchange is a robust process for removal of Ca(2+) and Mg(2+) considering competition with cations on the resin surface and presence of DOM. DOM was actively involved during the cation exchange process through complexation, adsorption, and coprecipitation reactions. In addition to advancing the understanding of ion exchange processes for water treatment, the results of this work are applicable to membrane pretreatment to minimize fouling, treatment of membrane concentrate, and precipitative softening.
Collapse
Affiliation(s)
- Katrina Indarawis
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, Florida 32611-6450, United States
| | | |
Collapse
|