1
|
Hu J, Cao X, Qu L, Khodseewong S, Zhang S, Sakamaki T, Li X. Study on the mechanism of mitigating membrane fouling in MFC-AnMBR coupling system treating sodium and magnesium ion-containing wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:6210-6223. [PMID: 38488119 DOI: 10.1080/09593330.2024.2329916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 12/05/2024]
Abstract
Anaerobic Membrane Bioreactors (AnMBR) offer numerous advantages in wastewater treatment, yet they are prone to membrane fouling after extended operation, impeding their long-term efficiency and stability. In this study, a coupled system was developed using modified conductive membranes as the filtration membrane for the AnMBR and as the anodic conductive membrane in the microbial electrochemical system, with a total volume of approximately 2.57 L. The research focused on understanding the membrane fouling characteristics of the AnMBR when treating wastewater containing sodium ion (Na+) and magnesium ion (Mg2+). When the system was treating wastewater containing Na+, organic pollutants such as proteins and polysaccharides were identified as the primary causes of membrane fouling. Three experimental groups generating different electric currents exhibited extended operational times compared to the open-circuit control group, with extensions of 30, 24, and 15 days, respectively. Conversely, when treating wastewater with Mg2+, organic-inorganic composite fouling, primarily driven by Mg2+ bridging, emerged as the key challenge, with the experimental groups showing operational extensions of 5, 8, and 23 days, respectively, in comparison to the control group. Analysis of proteins and polysaccharides indicated that electric current played a crucial role in reducing organic fouling in the sludge cake layer. When treating wastewater containing Na+, the effectiveness of membrane fouling control was directly proportional to the electric current, while when treating wastewater containing Mg2+, it was directly proportional to the voltage.
Collapse
Affiliation(s)
- Jijing Hu
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Xian Cao
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Liwei Qu
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | | | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Xianning Li
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Perujo N, Neuert L, Fink P, Weitere M. Saturation of intracellular phosphorus uptake and prevalence of extracellular phosphorus entrapment in fluvial biofilms after long-term P pulses: Implications for river self-purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175976. [PMID: 39241886 DOI: 10.1016/j.scitotenv.2024.175976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Microbial consortia in riverbed substrates and their extracellular matrix (biofilms) play a key role in phosphorus (P) entrapment. When P entrapment saturates, the benthic compartment changes from a P sink to a P source thus increasing eutrophication risk. P entrapment saturation is expected to differ between intracellular and extracellular P entrapment and between different magnitudes and durations of P inputs. We studied biofilm P-entrapment following short (48 h) and long (14 days) P loading events in stream bypass flumes supplied with a gradient of dissolved P concentrations. This allowed us to link local biofilm processes in sediments to potential effects on river self-purification, via quantifying the P removal efficiency in the flumes. We found that in short-term events, biofilms develop intracellular mechanisms to cope with P inputs, while long-term events and high P inputs suppress the intracellular uptake mechanisms and increase the prevalence of extracellular entrapment. Specifically, long-term events lowered the threshold for intracellular P entrapment saturation, and decreased the ratio between intracellular and extracellular entrapment resulting in lower removal efficiency for dissolved phosphorus. Our results highlight the risk that aquatic ecosystems may face as the ratio of intracellular to extracellular P entrapment decreases, which may reduce their ability to deal with P inputs, thereby increasing risks of eutrophication.
Collapse
Affiliation(s)
- Nuria Perujo
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany.
| | - Lola Neuert
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany
| | - Patrick Fink
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany; Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research - UFZ, Brϋckstrasse 3a, 39114 Magdeburg, Germany
| | - Markus Weitere
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany; Technical University of Dresden, 01069 Dresden, Germany
| |
Collapse
|
3
|
Shi X, Zhang J, Wang Q, Wang K, Han J, Hui Y, Jin X, Jin P. A new perspective of sediment layering scour and migration under the coupled effects of particle distribution and bio-viscosity-cavitation erosion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175929. [PMID: 39226960 DOI: 10.1016/j.scitotenv.2024.175929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
The scouring and migration of sediments in sewer systems are the key contributors to overflow pollution. Both physical and biological factors affect the erosion and migration of layered sediments. However, the functional characteristics of these factors and their quantification process still need to be further explored. In this study, the physical form and biological metabolism of the sediment are coupled, and the suspension mechanism under the dual action is proposed systematically and deeply. The influence coefficient of scour initiation was redefined as A^/prime, where the physical factors were particle size and mass, and the biological factors were bio-viscosity and internal cavitation. The bio-viscosity of layered sediment particles is provided by Extracellular Polymeric Substances (EPS). The slope value of |ΔD/-Δf| (ΔD: Dissipation; Δf: frequency) of surface EPS decreased from 0.489 to 0.315 when Quartz Crystal Microbalance with Dissipation (QCM-D) was used to analyse EPS viscosity, indicating that biological activities formed a dense biofilm on the sediment surface and enhanced the bond between particles. Meanwhile, by monitoring the accumulation density of sediments at different depths, it was found that the packing density of the bottom layer decreased from 1.50 to 1.45 g/cm3, which was mainly due to the internal cavitation caused by microorganism consuming organic matrix and releasing H2S and CH4. The delamination difference of EPS results in the uneven change of adhesion between different layers. This, combined with the internal erosion characteristics triggered by microbial stratified metabolism, collectively constitutes the biological effects on the sediment structure. Finally, the coupling mechanism of particle distribution and bio-viscous-cavitation erosion was formed, and the correctness of the formula was verified by repeated experiments, which proved the agreement between the theory and the practice and provided a scientific method for systematically analysing the erosion and migration law of sediment in the sewer system.
Collapse
Affiliation(s)
- Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Jin Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province 056038, China
| | - Qize Wang
- Future City Innovation Technology Co., Ltd., Shaanxi Construction Engineering Holding Group, Xi'an 710116, China; SCEGC-XJTU Joint Research Center for Future City Construction and Management Innovation, Xi'an Jiaotong University, Xi'an 710116, China
| | - Kai Wang
- Future City Innovation Technology Co., Ltd., Shaanxi Construction Engineering Holding Group, Xi'an 710116, China; SCEGC-XJTU Joint Research Center for Future City Construction and Management Innovation, Xi'an Jiaotong University, Xi'an 710116, China
| | - Jianshuang Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yilian Hui
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| |
Collapse
|
4
|
Sinahroy A, Kim SH, Chung CM. Predicting membrane fouling in membrane bioreactor systems using viscosity: Impacts of environmental conditions and antifouling agents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122868. [PMID: 39418706 DOI: 10.1016/j.jenvman.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
This study attempted to establish a viscosity-based prediction of membrane fouling. Various factors, including pH, temperature, MLSS concentration, and the addition of NaOCl and citric acid were identified, and their effect on sludge properties such as EPS concentration and wastewater viscosity were estimated. There was a very good correlation between these parameters with EPS concentration and viscosity. The increase in EPS concentration and viscosity significantly affected the membrane flux and filtration time for all the different experimental conditions. However, there were fluctuations in results obtained from experiments related to change in pH, including the addition of antifouling agents NaOCl and citric acid. Such variations accompanied by low correlation in these experiments indicated the influence of pH that may pose difficulty in a viscosity-based estimation of membrane fouling. However, if such large variations in operating conditions could be avoided and the reactor could be operated under optimal conditions, a much better correlation could be obtained between viscosity and membrane fouling. Data from continuously operated MBR systems support this observation, where even a linear equation defining relation between viscosity and transmembrane pressure (TMP) could be obtained. Overall, findings from this study provide a great insight into membrane fouling prediction using viscosity-based methods.
Collapse
Affiliation(s)
- Arindam Sinahroy
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Seung Hui Kim
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Chong Min Chung
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea.
| |
Collapse
|
5
|
AbuKhadra D, Dan Grossman A, Al-Ashhab A, Al-Sharabati I, Bernstein R, Herzberg M. The effect of temperature on fouling in anaerobic membrane bioreactor: SMP- and EPS-membrane interactions. WATER RESEARCH 2024; 260:121867. [PMID: 38878312 DOI: 10.1016/j.watres.2024.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Biofouling is the main challenge in the operation of anaerobic membrane bioreactors (AnMBRs). Biofouling strongly depends on temperature; therefore, we hypothesize that the interactions and viscoelastic properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) vary with temperature, consequently influencing membrane permeability. This study compares the performance of an AnMBR operated at a similar permeate flux at two temperatures. The transmembrane pressure (TMP) rose rapidly after 5 ± 2 days at 25 °C but only after 18 ± 2 days at 35 °C, although the reactor's biological performance was similar at both temperatures, in terms of the efficiency of dissolved organic carbon removal and biogas composition, which were obtained by changing the hydraulic retention time. Using confocal laser scanning microscopy (CLSM), a higher biofilm amount was detected at 25 °C than at 35 °C, while quartz crystal microbalance with dissipation (QCM-D) showed a more adhesive, but less viscous and elastic EPS layer. In situ optical coherence tomography (OCT) of an ultra-filtration membrane, fed with the mixed liquor suspended solids (MLSS) at the two temperatures, revealed that while a higher rate of TMP increase was obtained at 25 °C, the attachment of biomass from MLSS was markedly less. Increased EPS adhesion to the membrane can accelerate TMP increase during the operation of both the AnMBR and the OCT filtration cell. EPS's reduced viscoelasticity at 25 °C suggests reduced floc integrity and possible increased EPS penetration into the membrane pores. Analysis of the structures of the microbial communities constituting the AnMBR flocs and membrane biofilms reveals temperature's effects on microbial richness, diversity, and abundance, which likely influence the observed EPS properties and consequent AnMBR fouling.
Collapse
Affiliation(s)
- Diaa AbuKhadra
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Amit Dan Grossman
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Ashraf Al-Ashhab
- The Dead Sea and Arava Science Center, Masada 86190, Israel; Ben-Gurion University of the Negev, Eilat campus, Israel
| | | | - Roy Bernstein
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
6
|
Liu D, Zhang Z, Zhang Z, Yang J, Chen W, Liu B, Lu J. The fate of pharmaceuticals and personal care products (PPCPs) in sewer sediments:Adsorption triggering resistance gene proliferation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134255. [PMID: 38669934 DOI: 10.1016/j.jhazmat.2024.134255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
In recent years, large quantities of pharmaceuticals and personal care products (PPCPs) have been discharged into sewers, while the mechanisms of PPCPs enrichment in sewer sediments have rarely been revealed. In this study, three PPCPs (tetracycline, sulfamethoxazole, and triclocarban) were added consecutively over a 90-day experimental period to reveal the mechanisms of PPCPs enrichment and the transmission of resistance genes in sewer sediments. The results showed that tetracycline (TC) and triclocarban (TCC) have higher adsorption concentration in sediments compared to sulfamethoxazole (SMX). The absolute abundance of Tets and suls genes increased in sediments under PPCPs pressure. The increase in secretion of extracellular polymeric substances (EPS) and the loosening of the structure exposed a large number of hydrophobic functional groups, which promoted the adsorption of PPCPs. The absolute abundance of antibiotic resistance genes (ARGs), EPS and the content of PPCPs in sediments exhibited significant correlations. The enrichment of PPCPs in sediments was attributed to the accumulation of EPS, which led to the proliferation of ARGs. These findings contributed to further understanding of the fate of PPCPs in sewer sediments and opened a new perspective for consideration of controlling the proliferation of resistance genes.
Collapse
Affiliation(s)
- Duoduo Liu
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Zigeng Zhang
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Zhiqiang Zhang
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Jing Yang
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Wentao Chen
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Bo Liu
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Jinsuo Lu
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, China; Key Laboratory of Environmental Engineering, Shaanxi, China.
| |
Collapse
|
7
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Ren W, Zhang S, Liu Y, Ju W, Liu G, Xie K. Study on efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic membrane bioreactors. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11032. [PMID: 38698675 DOI: 10.1002/wer.11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.
Collapse
Affiliation(s)
- Wenyi Ren
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Shoubin Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Yutian Liu
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Weipeng Ju
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| |
Collapse
|
9
|
Wang Y, Wang Q, Sabaghi S, Kaboli A, Soltani F, Kang K, Kongvarhodom C, Fatehi P. Dual lignin-derived polymeric system for peptone removal from simulated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123142. [PMID: 38142806 DOI: 10.1016/j.envpol.2023.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023]
Abstract
The long-term existence of peptone can breed a large number of bacteria and cause the eutrophication of municipal wastewater. Thus, removing peptone in the wastewater is a major challenge facing the current industry. This study used cationic and anionic lignin polymers, i.e., kraft lignin-[2-(methacryloyloxy)ethyl] trimethylammonium methyl sulfate (cationic lignin polymer, CLP) and kraft lignin-acrylic acid (anionic lignin polymer, ALP), as flocculants to eliminate peptone from model wastewater in the single and dual component systems. The affinity of peptone for ALP or CLP was assessed by quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, contact angle, and vertical scan analyzer. Results illustrated that the adsorption effect of CLP for peptone was significantly superior to that of ALP owing to the stronger vital interaction between cationic polymer and peptone molecules. Based on destabilization and sedimentation analyses, introducing CLP triggered the preliminary flocculation of peptone via bridging action, as indicated by a considerable increment in the destabilization index (from 1.1 to 10.6). Moreover, peptone adsorbed more on the CLP coated surface than on the ALP coated one (14.8 vs 5.4 mg/m2), while ALP facilitated its further adsorption in the dual polymer system. This is because CLP adsorbed a part of peptone molecules on its surface. Then, ALP entrapped the unattached peptone onto the CLP coated surface through electrostatic interaction. Compared with the single polymer system, mixing ALP and CLP subsequently into the peptone solution in the dual system generated larger size aggregates (mean diameter of 6.1 μm) and made the system destabilization (Turbiscan stability index up to 58.1), thereby yielding more flocculation and sedimentation. Finally, peptone was removed successfully from simulated wastewater with a turbidity removal efficiency of 92.5%. These findings confirmed that the dual-component system containing two lignin-derived polymers with opposite charges could be viable for treating peptone wastewater.
Collapse
Affiliation(s)
- Yingchao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China; Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Afrouz Kaboli
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Farshid Soltani
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Kang Kang
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Chutima Kongvarhodom
- Chemical Engineering Department, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
10
|
Stiefelmaier J, Strieth D, Schaefer S, Wrabl B, Kronenberger D, Bröckel U, Ulber R. A new easy method for determination of surface adhesion of phototrophic biofilms. Biotechnol Bioeng 2023; 120:3518-3528. [PMID: 37641171 DOI: 10.1002/bit.28536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Terrestrial cyanobacteria grow as phototrophic biofilms and offer a wide spectrum of interesting products. For cultivation of phototrophic biofilms different reactor concepts have been developed in the last years. One of the main influencing factors is the surface material and the adhesion strength of the chosen production strain. In this work a flow chamber was developed, in which, in combination with optical coherence tomography and computational fluid dynamics simulation, an easy analysis of adhesion forces between different biofilms and varied surface materials is possible. Hereby, differences between two cyanobacteria strains and two surface materials were shown. With longer cultivation time of biofilms adhesion increased in all experiments. Additionally, the content of extracellular polymeric substances was analyzed and its role in surface adhesion was evaluated. To test the comparability of obtained results from the flow chamber with other methods, analogous experiments were conducted with a rotational rheometer, which proved to be successful. Thus, with the presented flow chamber an easy to implement method for analysis of biofilm adhesion was developed, which can be used in future research for determination of suitable combinations of microorganisms with cultivation surfaces on lab scale in advance of larger processes.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Dorina Strieth
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Susanne Schaefer
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Björn Wrabl
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Daniel Kronenberger
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Ulrich Bröckel
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| |
Collapse
|
11
|
Yang C, Song G, Son J, Howard L, Yu XY. Revealing the Bacterial Quorum-Sensing Effect on the Biofilm Formation of Diatom Cylindrotheca sp. Using Multimodal Imaging. Microorganisms 2023; 11:1841. [PMID: 37513013 PMCID: PMC10383543 DOI: 10.3390/microorganisms11071841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Diatoms contribute to carbon fixation in the oceans by photosynthesis and always form biofouling organized by extracellular polymeric substances (EPS) in the marine environment. Bacteria-produced quorum-sensing signal molecules N-acyl homoserine lactones (AHLs) were found to play an important role in the development of Cylindrotheca sp. in previous studies, but the EPS composition change was unclear. This study used the technology of alcian blue staining and scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to directly observe the biofilm formation process. The results showed that AHLs promote the growth rates of diatoms and the EPS secretion of biofilm components. AHLs facilitated the diatom-biofilm formation by a forming process dependent on the length of carbon chains. AHLs increased the biofilm thickness and the fluorescence intensity and then altered the three-dimensional (3D) structures of the diatom-biofilm. In addition, the enhanced EPS content in the diatom-biofilm testified that AHLs aided biofilm formation. This study provides a collection of new experimental evidence of the interaction between bacteria and microalgae in fouling biofilms.
Collapse
Affiliation(s)
- Cuiyun Yang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Guojuan Song
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Logan Howard
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
12
|
Eskhan A, AlQasas N, Johnson D. Interaction Mechanisms and Predictions of the Biofouling of Polymer Films: A Combined Atomic Force Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6592-6612. [PMID: 37104647 PMCID: PMC10173465 DOI: 10.1021/acs.langmuir.3c00587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Biofouling of polymeric membranes is a severe problem in water desalination and treatment applications. A fundamental understanding of biofouling mechanisms is necessary to control biofouling and develop more efficient mitigation strategies. To shed light on the type of forces that govern the interactions between biofoulants and membranes, biofoulant-coated colloidal AFM probes were employed to investigate the biofouling mechanisms of two model biofoulants, BSA and HA, toward an array of polymer films commonly used in membrane synthesis, which included CA, PVC, PVDF, and PS. These experiments were combined with quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The Derjaguin, Landau, Verwey, and Overbeek (DLVO) and the extended-DLVO (XDLVO) theoretical models were applied to decouple the overall adhesion interactions between the biofoulants and the polymer films into their component interactions, i.e., electrostatic (El), Lifshitz-van der Waals (LW), and Lewis acid-base (AB) interactions. The XDLVO model was found to predict better the AFM colloidal probe adhesion data and the QCM-D adsorption behavior of BSA onto the polymer films than the DLVO model. The ranking of the polymer films' adhesion strengths and adsorption quantities was inversely proportional to their γ- values. Higher normalized adhesion forces were quantified for the BSA-coated colloidal probes with the polymer films than the HA-coated colloidal probes. Similarly, in QCM-D measurements, BSA was found to cause larger adsorption mass shifts, faster adsorption rates, and more condensed fouling layers than HA. A linear correlation (R2 = 0.96) was obtained between the adsorption standard free energy changes (ΔGads°) estimated for BSA from the equilibrium QCM-D adsorption experiments and the AFM normalized adhesion energies (WAFM/R) estimated for BSA from the AFM colloidal probe measurements. Eventually, an indirect approach was presented to calculate the surface energy components of biofoulants characterized by high porosities from Hansen dissolution tests to perform the DLVO/XDLVO analyses.
Collapse
Affiliation(s)
- Asma Eskhan
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi, UAE
| | - Neveen AlQasas
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi, UAE
| | - Daniel Johnson
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi, UAE
- Division
of Engineering, New York University Abu
Dhabi, 129188 Abu Dhabi, UAE
| |
Collapse
|
13
|
Ran N, Sorek G, Stein N, Sharon-Gojman R, Herzberg M, Gillor O. Multispecies biofilms on reverse osmosis membrane dictate the function and characteristics of the bacterial communities rather than their structure. ENVIRONMENTAL RESEARCH 2023; 231:115999. [PMID: 37105294 DOI: 10.1016/j.envres.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
The main reason for the deterioration of membrane operation during water purification processes is biofouling, which has therefore been extensively studied. Biofouling was shown to reduce membrane performance reflected by permeate flux decline, reduced selectivity, membrane biodegradation, and consequently, an increase in energy consumption. Studies of biofouling focused on the identification of the assembled microbial communities, the excretion of extracellular polymeric substances (EPS), and their combined role in reduced membrane performance and lifetime. However, the link between the structure and function of biofouling communities has not been elucidated to date. Here, we provide a novel insight, suggesting that bacterial functions rather than composition control biofouling traits on reverse osmosis (RO) membranes. We studied the potential activity of RO biofilms at metatranscriptome resolution, accompanied by the morphology and function of the biofouling layer over time, including microscopy and EPS composition, adhesion, and viscoelastic properties. To that end, we cultivated natural multispecies biofilms in RO membranes under treated wastewater flow and extracted RNA to study their taxonomies and gene expression profiles. Concomitantly, the biofilm structure was visualized using both scanning electron microscopy and laser scanning confocal microscopy. We also used quartz crystal microbalance with dissipation to characterize the affinity of EPS to membrane-mimetic sensors and evaluated the viscoelasticity of the Ex-Situ EPS layer formed on the sensor. Our results showed that different active bacterial taxa across five taxonomic classes were assembled on the RO membrane, while the composition shifted between 48 and 96 h. However, regardless of the composition, the maturation of the biofilm resulted in the expression of similar gene families tightly associated with the temporal kinetics of the EPS composition, adhesion, and viscoelasticity. Our findings highlight the temporal selection of specific microbial functions rather than composition, featuring the adhesion kinetics and viscoelastic properties of the RO biofilm.
Collapse
Affiliation(s)
- Noya Ran
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Gil Sorek
- Department of Life Science, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel
| | - Noa Stein
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
14
|
Huang R, Pan H, Zheng X, Fan C, Si W, Bao D, Gao S, Tian J. Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4558. [PMID: 36901568 PMCID: PMC10001914 DOI: 10.3390/ijerph20054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ceramic membrane has emerged as a promising material to address the membrane fouling issue in membrane bioreactors (MBR). In order to optimize the structural property of ceramic membrane, four corundum ceramic membranes with the mean pore size of 0.50, 0.63, 0.80, and 1.02 μm were prepared, which were designated as C5, C7, C13, and C20, respectively. Long-term MBR experiments showed that the C7 membrane with medium pore size experienced the lowest trans-membrane pressure development rate. Both the decrease and increase of membrane pore size would lead to more severe membrane fouling in the MBR. It was also interesting that with the increase of membrane pore size, the relative proportion of cake layer resistance in total fouling resistance was gradually increased. The content of dissolved organic foulants (i.e., protein, polysaccharide and DOC) on the surface of C7 was quantified as the lowest among the different ceramic membranes. Microbial community analysis also revealed the C7 had a lower relative abundance of membrane fouling associated bacteria in its cake layer. The results clearly demonstrated that ceramic membrane fouling in MBR could be effectively alleviated through optimizing the membrane pore size, which was a key structural factor for preparation of ceramic membrane.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Pan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Chao Fan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wenyan Si
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongguan Bao
- Shanghai Hanyuan Engineering & Technology Co., Ltd., Shanghai 201400, China
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Rocco MJ, Hafuka A, Tsuchiya T, Kimura K. Efficient Recovery of Organic Matter from Municipal Wastewater by a High-Rate Membrane Bioreactor Equipped with Flat-Sheet Ceramic Membranes. MEMBRANES 2023; 13:300. [PMID: 36984687 PMCID: PMC10056867 DOI: 10.3390/membranes13030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
High-rate processes have been investigated for the recovery of organic matter from municipal wastewater. High-rate membrane bioreactors (HR-MBRs) may simultaneously achieve the increased recovery of carbon and high effluent quality, although control of membrane fouling is extremely difficult. To address the severe fouling in HR-MBRs, the combination of granular scouring and frequent chemically enhanced backwashing was examined. The use of robust flat-sheet ceramic membranes enabled the application of those cleaning strategies. Experiments were carried out at an existing wastewater treatment plant. To operate as a high-rate system, the bioreactor solid residence time and hydraulic residence time were set at 0.5 days and 1.6 h, respectively. Although a relatively high flux of 20 L m-2 h-1 was applied, the proposed HR-MBR exhibited a very low fouling rate of 1.3 kPa/day. The system could recover >70% of the carbon from raw wastewater, whereas the concentration of chemical oxygen demand in the effluent was lowered to <20 mg/L. The performance of the proposed HR-MBR observed in this study was clearly superior to those reported in previous related studies.
Collapse
Affiliation(s)
- Michael Joseph Rocco
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Akira Hafuka
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Toru Tsuchiya
- MEIDENSHA CORPORATION, ThinkPark Tower, 2-1-1 Osaki, Shinagawa-ku, Tokyo 141-6029, Japan
| | - Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
16
|
Ran N, Sharon-Gojman R, Larsson S, Gillor O, Mauter MS, Herzberg M. Unraveling pH Effects on Ultrafiltration Membrane Fouling by Extracellular Polymeric Substances: Adsorption and Conformation Analyzed with Localized Surface Plasmon Resonance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14763-14773. [PMID: 36197031 DOI: 10.1021/acs.est.2c03085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracellular polymeric substances (EPSs) can conform and orient on the surface according to the applied aquatic conditions. While pH elevation usually removes EPSs from membranes, small changes in pH can change the adsorbed EPS conformation and orientation, resulting in a decrease in membrane permeability. Accordingly, EPS layers were tested with localized surface plasmon resonance (LSPR) sensing and quartz crystal microbalance with dissipation monitoring (QCM-D) using a hybrid sensor. A novel membrane-mimetic hybrid QCM-D-LSPR sensor was designed to indicate both "dry" mass and mechanical load ("wet" mass) of the adsorbed EPS. The effect of pH on the EPS layer's viscoelastic properties and hydrated thickness analyzed by QCM-D corroborates with the shift in EPS areal concentration, ΓS, and the associated EPS conformation, analyzed by LSPR. As pH elevates, the processes of (i) elevation in EPS layer's thickness (QCM-D) and (ii) decrease in the EPS areal density, ΓS (LSPR), provide a clear indication for changes in EPS conformation, which decrease the effective ultrafiltration (UF) membrane pore diameter. This decrease in the pore diameter together with the increase in surface hydrophobicity elevates UF membrane hydraulic resistance.
Collapse
Affiliation(s)
- Noya Ran
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
| | - Sara Larsson
- Insplorion AB, Arvid Wallgrens backe 20, 413 46 Göteborg, Sweden
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
| | - Meagan S Mauter
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Li Y, Wang H, Xu C, Sun SH, Xiao K, Huang X. Two strategies of stubborn biofouling strains surviving from NaClO membrane cleaning: EPS shielding and/or quorum sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156421. [PMID: 35660590 DOI: 10.1016/j.scitotenv.2022.156421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The declined performance of repeated chemically-enhanced-backwashing (CEB) seriously hampered the sustainable operation of membrane bioreactor (MBR) in long-term, and could be partially attributed to the strengthened anti-cleaning properties of residual stubborn microbes. Although plenty of research has been done towards either the model strains or the whole post-CEB microbial community, little was known about the resisting behavior of practical stubborn strains when confronting oxidative stresses induced by NaClO. Hence, this study isolated 21 strains from samples in a large-scale MBR plant with routine CEB treatment. To unravel how they survive and affect membrane fouling, their anti-oxidation ability, fouling potential and quorum sensing (QS) effect before and after NaClO stimuli were evaluated. The composition and molecular weight distribution of extracellular polymeric substance (EPS) were also investigated to understand their roles during the anti-CEB process. It was found that typical stubborn strains tended to secrete more EPS as protective shields, where polysaccharides (especially the ones >1 kDa) made major contribution. However, sometimes EPS could not well resist the stimuli, with consequent low survival rate and high intracellular ROS level. Under such circumstances, stubborn strains would rather choose to be sensitive with surged QS level and quick population regrowth to maintain vitality under the oxidative stresses. Both strategies aggravated biofouling and eventually enhanced the anti-cleaning properties of biofilm.
Collapse
Affiliation(s)
- Yufang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing OriginWater Membrane Technology Co., Ltd., Product and Technology Center, Beijing 101407, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shih-Han Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Liu M, Meng P, Chen G, Guan Y, Liu G. Correlation of structural extracellular polymeric substances in the mesh biofilms with solids retention time and biofilm hydraulic resistance in dynamic membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155000. [PMID: 35381253 DOI: 10.1016/j.scitotenv.2022.155000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Dynamic membrane bioreactor (DMBR), which mainly relied on the in-situ formed biofilms on support materials with large aperture (e.g., nylon mesh) to separate fine particles in wastewater, has attracted a lot of attentions due to low cost. The filtration performance of DMBR is mainly determined by the structure and hydraulic resistance of biofilms formed on the mesh. Therefore, understanding the correlation of operation conditions with mesh biofilm compositions and permeability are critically important for optimizing DMBR operation. In present study, how structural extracellular polymeric substances, including alginate-like extracellular polysaccharide (ALE) and amyloid-like protein (AP), in mesh biofilms correlate to solids retention time (SRT) and biofilm structures was explored in DMBRs. At 5d-SRT, compact and gel-like mesh biofilms were formed with a high specific filtration resistance (SFR) of 459 × 109 m/g, while at 40d-SRT porous mesh biofilms were developed with a low SFR of 24 × 109 m/g. Consequently, the 5d-SRT MBR experienced more rapid rise in transmembrane pressure. Further studies found that the 5d-SRT mesh biofilms had a higher AP content, which was positively correlated to biofilm hydraulic resistance. On the contrary, the 40d-SRT mesh biofilms contained a higher content of ALE, suggesting that ALE was negatively correlated to biofilm hydraulic resistance. Therefore, AP instead of ALE likely played a more important role in the formation of compact and gel-like mesh biofilms.
Collapse
Affiliation(s)
- Mai Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Peipei Meng
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guichang Chen
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ying Guan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Zanna S, Mercier D, Gardin E, Allion-Maurer A, Marcus P. EPS for bacterial anti-adhesive properties investigated on a model metal surface. Colloids Surf B Biointerfaces 2022; 213:112413. [PMID: 35189477 DOI: 10.1016/j.colsurfb.2022.112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/13/2023]
Abstract
Understanding Extracellular Polymeric Substances (EPS) interaction on a well-defined chromium surface is of importance especially for biocorrosion processes. Adsorption of EPS extracted from Pseudoalteromonas NCIMB 2021 on Cr surfaces was investigated using in situ quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). We show that EPS adsorption is an irreversible process. The amount of adsorbed EPS increases with increasing EPS concentration in solution. For low EPS concentration, the surface is only partially covered by EPS, whereas a continuous organic film of around 15 nm is formed at the surface for high EPS concentrations. An in-depth structuration of this organic layer is evidenced with a strong enrichment of proteins in the inner part and of polysaccharides in the outer part. Adhesion of Pseudoalteromonas NCIMB 2021 has been tested on Cr surfaces covered or not by EPS extracted from Pseudoalteromonas NCIMB 2021. EPS conditioning with a 15 nm film inhibits bacterial adhesion on Cr, showing that this organic film has efficient anti-adhesive properties.
Collapse
Affiliation(s)
- Sandrine Zanna
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France.
| | - Dimitri Mercier
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France.
| | - Elise Gardin
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France; Aperam Isbergues, Research Center - Solutions Dept., BP 15, F-62330 Isbergues, France
| | - Audrey Allion-Maurer
- Aperam Isbergues, Research Center - Solutions Dept., BP 15, F-62330 Isbergues, France
| | - Philippe Marcus
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
20
|
Wang Q, Liu F, Xu Q. Insight into the effect of calcium on bio-clogging behavior via quartz crystal microbalance with dissipation monitoring. CHEMOSPHERE 2022; 292:133547. [PMID: 34998841 DOI: 10.1016/j.chemosphere.2022.133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Bio-clogging of leachate collection systems has attracted much attention because of its threat to landfill slope stability and landfill landslide events. Calcium in leachate plays a vital role in the formation of bio-clogging. However, the influence of calcium on bio-clogging remains unclear. This study examined the effects of calcium concentration on bio-clogging, including 0, 1.25, 5, 25, and 75 mM CaCl2 groups. A technique involving quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to evaluate the bacteria adhesion behaviors in real time. The results showed that the presence of Ca2+ accelerated the bacterial attachment and increased the viscoelasticity of deposited layers. The deposition mass for 75 mM CaCl2 was 1442 ± 260 ng/cm2, which is 1.5 times that for 1.25 mM CaCl2. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory could explain the bacterial adhesion behaviors in low calcium concentrations (<25 mM). In comparison, the effect of calcium bridge was shown in high calcium concentrations (>25 mM). The development of biofilms was a dynamic process, and the Ca2+ concentration was positively related to the amount of biofilm generated. In low CaCl2 concentration (less than 5 mM) groups, the degree of bio-clogging increased from the exponential growth phase to the decline phase; in contrast, in high CaCl2 concentration (above 25 mM) groups, the degree of bio-clogging increased and later declined. Therefore, the calcium concentration should be controlled at a low level in leachate to mitigate bio-clogging in LCSs.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Feng Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
21
|
Plikusiene I, Maciulis V, Ramanavicius A, Ramanaviciene A. Spectroscopic Ellipsometry and Quartz Crystal Microbalance with Dissipation for the Assessment of Polymer Layers and for the Application in Biosensing. Polymers (Basel) 2022; 14:polym14051056. [PMID: 35267879 PMCID: PMC8915094 DOI: 10.3390/polym14051056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023] Open
Abstract
Polymers represent materials that are applied in almost all areas of modern life, therefore, the characterization of polymer layers using different methods is of great importance. In this review, the main attention is dedicated to the non-invasive and label-free optical and acoustic methods, namely spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation (QCM-D). The specific advantages of these techniques applied for in situ monitoring of polymer layer formation and characterization, biomolecule immobilization, and registration of specific interactions were summarized and discussed. In addition, the exceptional benefits and future perspectives of combined spectroscopic ellipsometry and QCM-D (SE/QCM-D) in one measurement are overviewed. Recent advances in the discussed area allow us to conclude that especially significant breakthroughs are foreseen in the complementary application of both QCM-D and SE techniques for the investigation of polymer structure and assessment of the interaction between biomolecules such as antigens and antibodies, receptors and ligands, and complementary DNA strands.
Collapse
Affiliation(s)
- Ieva Plikusiene
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.M.); (A.R.)
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Correspondence: (I.P.); (A.R.)
| | - Vincentas Maciulis
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.M.); (A.R.)
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.M.); (A.R.)
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.M.); (A.R.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Correspondence: (I.P.); (A.R.)
| |
Collapse
|
22
|
|
23
|
Li Z, Li H, Zhao L, Liu X, Wan C. Understanding the role of cations and hydrogen bonds on the stability of aerobic granules from the perspective of the aggregation and adhesion behavior of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148659. [PMID: 34237538 DOI: 10.1016/j.scitotenv.2021.148659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Extracellular polymeric substances (EPS) were essential for the granulation and stability of aerobic granular sludge (AGS). In this study, the effects of electrostatic interactions, bridging effect of divalent cations, and hydrogen bonds on the EPS-EPS and EPS-surface interaction were verified by enhancing or reducing the specific interaction with the addition of cations or urea. The size and the surface properties of EPS aggregates were investigated, the adhesion behavior and viscoelasticity of EPS were analyzed by quartz crystal microbalance with dissipation monitoring. The changes of EPS in response to the various condition were analyzed by infrared spectroscopy and fluorescence spectrum. The electrostatic repulsion between EPS could be significantly reduced by Ca2+ addition. With the bridging effect, 10 μM of Ca2+ could reduce the negative charge of EPS more effectively than 200 μM of Na+. As Ca2+ could form the complex with the protein and Ca2+ was more inclined to bind with COO-, the Ca2+ took advantage of boosting the EPS-EPS and EPS-surface interaction than Mg2+ at the same ionic strength, which resulted in the denser structure of calcium-treated EPS. The destruction of hydrogen bonds by urea addition reduced the EPS-EPS and EPS-surface interaction, which confirmed the potential existence of hydrogen bonds in the interaction of EPS-EPS and EPS-surface. The removal of hydrogen bonds of EPS destroyed the protein's secondary structure and caused the unfolded state of the protein, which led to the looser structure of the EPS layer.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Huiqi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Lianfa Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
24
|
Dammak L, Fouilloux J, Bdiri M, Larchet C, Renard E, Baklouti L, Sarapulova V, Kozmai A, Pismenskaya N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. MEMBRANES 2021; 11:789. [PMID: 34677555 PMCID: PMC8539029 DOI: 10.3390/membranes11100789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) was first established for water desalination and is still highly recommended in this field for its high water recovery, long lifetime and acceptable electricity consumption. Today, thanks to technological progress in ED processes and the emergence of new ion-exchange membranes (IEMs), ED has been extended to many other applications in the food industry. This expansion of uses has also generated several problems such as IEMs' lifetime limitation due to different ageing phenomena (because of organic and/or mineral compounds). The current commercial IEMs show excellent performance in ED processes; however, organic foulants such as proteins, surfactants, polyphenols or other natural organic matters can adhere on their surface (especially when using anion-exchange membranes: AEMs) forming a colloid layer or can infiltrate the membrane matrix, which leads to the increase in electrical resistance, resulting in higher energy consumption, lower water recovery, loss of membrane permselectivity and current efficiency as well as lifetime limitation. If these aspects are not sufficiently controlled and mastered, the use and the efficiency of ED processes will be limited since, it will no longer be competitive or profitable compared to other separation methods. In this work we reviewed a significant amount of recent scientific publications, research and reviews studying the phenomena of IEM fouling during the ED process in food industry with a special focus on the last decade. We first classified the different types of fouling according to the most commonly used classifications. Then, the fouling effects, the characterization methods and techniques as well as the different fouling mechanisms and interactions as well as their influence on IEM matrix and fixed groups were presented, analyzed, discussed and illustrated.
Collapse
Affiliation(s)
- Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| |
Collapse
|
25
|
Martínez R, Ruiz MO, García A, Ramos C, Diez V. Effect of salinity and temperature on the extraction of extracellular polymeric substances from an anaerobic sludge and fouling in submerged hollow fibre membranes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Fan X, Zhu SS, Zhang XX, Ren HQ, Huang H. Revisiting the Microscopic Processes of Biofilm Formation on Organic Carriers: A Study under Variational Shear Stresses. ACS APPLIED BIO MATERIALS 2021; 4:5529-5541. [DOI: 10.1021/acsabm.1c00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shan-Shan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
27
|
Wang W, Xue H, Wang H, Ma J, Wu M, Wang Y. High adhesion ability of anammox granular microbes directly revealed by QCM-D technique. ENVIRONMENTAL RESEARCH 2021; 194:110646. [PMID: 33359458 DOI: 10.1016/j.envres.2020.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/22/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Anammox bacteria are widely found to grow in bioaggregates form, but the reason for their high aggregation ability remains elusive. In this study, four kinds of sludge, i.e., anammox granules, anaerobic granules, aerobic granules, and partial nitrification flocs, were studied and compared to investigate their differences in adherence properties. We directly explored the adherence properties of sludge samples before and after extracellular polymeric substances (EPS) extraction, using quartz-crystal microbalance technique with dissipation monitoring technique. Results showed that EPS indeed stimulated the adherence properties of all sludge samples. The most striking feature here is that anammox consortia had the highest adhesion rate and mass, and formed the most compact layer on the gold-coated sensor surfaces both before and after EPS extraction among the four sludge samples, indicating their inherent high adhesion ability. The composition and spectral characteristics of EPS samples were also investigated, and it reveals that the relatively high extracellular proteins/polysaccharides ratio of anammox granules (3.2 ± 0.4) rather than total EPS concentration had contributed to their high adhesion ability. The findings are helpful for understanding the adherence properties of anammox bacteria, and will serve as a guide for further researches to exploring the aggregation process of anammox bacteria.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Min Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
28
|
Miwa T, Takimoto Y, Hatamoto M, Kuratate D, Watari T, Yamaguchi T. Role of live cell colonization in the biofilm formation process in membrane bioreactors treating actual sewage under low organic loading rate conditions. Appl Microbiol Biotechnol 2021; 105:1721-1729. [PMID: 33481065 DOI: 10.1007/s00253-021-11119-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/16/2021] [Indexed: 11/28/2022]
Abstract
Biofilm development on the membrane surface is one of the main reasons for membrane fouling in membrane bioreactors (MBRs) and it is a big problem for their stable operation. Precise information on the microbial community composition of the biofilm is needed for a better understanding of biofilm development. However, there have been limited investigations of the relationship between the biofilm formation process and the microbial community of activated sludge and biofilm in MBRs treating real sewage. In this study, relationships between the microbial community structure of biofilm and activated sludge at each biofilm formation stage were investigated and biofilm growth was elucidated by nondestructive observations. Two anoxic/oxic MBRs were operated and membrane fouling was induced. Permeability rapidly decreased in both reactors and live cell microcolonies were formed on dead cell conditioning film on the membrane surface. Principal component analysis based on 16S rRNA gene sequences showed that the biofilm microbial community changed significantly from middle stage to mature biofilm when compared with that of activated sludge. The abundance of specific bacteria, such as unclassified Neisseriaceae, increased in middle-stage biofilm and the diversity indexes of middle-stage biofilm were lower than those of mature biofilm and activated sludge. These results suggested that the presence of specific bacteria with colonization ability played a crucial role in biofilm formation. Strategies are needed to target membrane fouling mitigation during early- and middle-stage biofilm formation to reduce MBR membrane fouling. KEY POINTS: • Microbial community of mature biofilm was approached to that of activated sludge. • In the middle-stage biofilm, live cells colonized on a dead-cell-conditioning-film. • Microbial diversity was lower in live cell colonizing stage than in activated sludge.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Yuya Takimoto
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan.
| | - Daiki Kuratate
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan.,Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| |
Collapse
|
29
|
Shi Y, Liu Y. Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties. CHEMOSPHERE 2021; 262:128033. [PMID: 33182133 DOI: 10.1016/j.chemosphere.2020.128033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Aerobic granular sludge (AGS) is a promising wastewater treatment innovation, but its instability hinders its broader applications. Understanding the granulation process is vital to address this issue. Extracellular polymeric substances (EPS) play an essential role in sludge granulation. However, one crucial aspect of EPS, the adhesive and viscoelastic properties, has been neglected in AGS studies. In this study, we set up two reactors fed with COD/N ratios of 100: 5 (R1) and 100: 10 (R2) for comparison, to investigate the adhesive and viscoelastic properties of sludge EPS during the sludge granulation. We found that R2 showed a more rapid sludge granulation with more stable granules formed, contained a higher abundance of amoA gene, and had a higher production of polysaccharides than R1. We also found a sharp decrease in polysaccharide production and β-sheets abundance accompanied by granule size decrease in R1 on Day 80, indicating their essential roles in sludge granulation and granule stability. QCM-D (quartz crystal microbalance with dissipation monitoring) results showed that EPS became less adhesive and inclined to form unstable layers on the mineral surfaces along with the sludge granulation process. In contrast, they showed the opposite behavior and became more adhesive on the PVDF sensors. Our results suggested that higher polysaccharides, a higher β-sheets band in proteins, and lower mineral surface-adhesive and viscoelastic properties benefited the aerobic sludge granulation process and the granule maintenance.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| |
Collapse
|
30
|
Wang W, Wang J, Wang H, Ma J, Wu M, Wang Y. Anammox Granule Enlargement by Heterogenous Granule Self-assembly. WATER RESEARCH 2020; 187:116454. [PMID: 33011570 DOI: 10.1016/j.watres.2020.116454] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Expansion in the size is an indispensable stage in the granular sludge life cycle, but little attention has been payed to the enlargement mechanism of granular sludge. Here, we propose a novel anammox granule enlargement mechanism by the self-assembly of heterogenous granules. Two different colors of anammox granules, dark-red granules (DR-Granules) and bright-red granules (BR-Granules) were found in an expanded granular sludge bed reactor. These two heterogenous granules were not isolated but were assembled into granules with a larger DR-Granule in the center and many smaller BR-Granules aggregated on the surface, increasing the overall granular size. Their physiochemical characteristics in terms of EPS, adherence, rheological properties, and microbial compositions, were identified and compared to elucidate the interaction between the different colors of granules. The BR-Granules created 92% more extracellular polymeric substances than the DR-Granules. This material blocked the passage of gas and substrate, leading to BR-Granules smaller size and a yield stress approximately 48% lower than that of the DR-Granules. Nevertheless, the BR-Granules had compact extracellular protein secondary structures and a high adherence rate to the surface of the DR-Granules, upon which they formed a compact adhered layer. These unique features enabled them to directionally adhere to DR-Granules in the core, that is, two heterogenous colors of granules self-assembled into large anammox granules. The enlargement mechanism was further supported by the abundance of K-strategy Ca. Kuenenia in the DR-Granules (inner layer) being higher than in the BR-Granules (outer layer; 2.9 ± 0.4% vs. 0.4 ± 0.1%; p = 0.0003) and by visualized confirmation that the larger BR-Granules wrapped around smaller DR-Granules inside. This demonstrates that heterogenous anammox granules actively self-assemble into large granules, which is an important step in the lifecycle of anammox granules.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Min Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China.
| |
Collapse
|
31
|
Yu X, Lin T, Xu H, Tao H, Chen W. Ultrafiltration of up-flow biological activated carbon effluent: Extracellular polymer biofouling mechanism and mitigation using pre-ozonation with H 2O 2 backwashing. WATER RESEARCH 2020; 186:116391. [PMID: 32947101 DOI: 10.1016/j.watres.2020.116391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Biofouling is a key problem in membrane filtration, and extracellular polymer substances (EPS) play a key role in biofouling. Biofouling contributes to membrane fouling during ultrafiltration of up-flow biological activated carbon filter (UBACF) effluent. EPS are released when pollutants get attached with membrane surface and when pollutants are in solution phase from cell lysis and by cell secretions. In our study of EPS + humic acid (HA) prepared as the effluent pollutants for ultrafiltration, we found that EPS increased the interfacial forces between the pollutants and the membrane, resulting in membrane fouling. In the early stages of filtration, the main contribution of EPS to membrane fouling was to bond with organic colloids, which led to an increase in the pollutant particle size and zeta potential. This increased the short-range Lewis acid-base (AB) forces from -4.89 nN to -12.59 nN and accelerated the formation of a cake layer. In the late stage of filtration, the EPS increased both the AB and London-van der Waals (LW) forces, thus accelerating membrane fouling. In order to mitigate biofouling, we developed a method of pretreating the effluent with 0.4 mg/L ozone prior to ultrafiltration and backwashing with 8 mg/L H2O2 to sterilize bacteria attached to the membrane surface. This method not only changed the characteristics of the EPS, but also inactivated bacteria by disinfection with H2O2, thereby reducing the amount of EPS. The proposed method provided a long-term stable operation guarantee for ultrafiltration of UBACF effluent.
Collapse
Affiliation(s)
- Xiaofei Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
32
|
Jafari M, D'haese A, Zlopasa J, Cornelissen E, Vrouwenvelder J, Verbeken K, Verliefde A, van Loosdrecht M, Picioreanu C. A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes: Role of extracellular polymeric substances (EPS). J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Zhang X, Guo Y, Wang T, Wu Z, Wang Z. Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. WATER RESEARCH 2020; 176:115749. [PMID: 32247996 DOI: 10.1016/j.watres.2020.115749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 05/09/2023]
Abstract
Biofouling remains to be one of major obstacles in membrane bioreactors (MBRs), calling for the development of antibiofouling membranes. Silver nanoparticles (AgNPs), being a kind of broad spectrum bactericidal agent, have been widely used for modifying membrane; however, uncontrollable release of AgNPs and thus a short lifetime of modified membranes are thorny issues for the AgNPs-modified membranes. In this study, silica nanopollens were used as AgNPs nanocarriers for membrane modification (ASNP-M), which could improve silver delivery efficacy, avoid agglomeration and control Ag+ release towards bacteria. At a silver loading of 107.7 ± 10.9 μg Ag/cm2, ASNP-M effectively inhibited growth of Escherichia coli and Staphylococcus aureus, with an Ag+ release rate of 0.5 μg/(cm2 d). Long-term MBR tests showed that ASNP-M exhibited a significantly reduced transmembrane pressure increase rate of 0.88 ± 0.34 kPa/d which was much lower than that of two control membranes, i.e., pristine membrane (M0) (2.32 ± 0.86 kPa/d) and Ag@silica nanospheres (without spikes) modified membrane (ASNS-M) (2.25 ± 1.28 kPa/d). No significant adverse influences on the pollutant removal were also observed in the reactor. Foulants analysis revealed that biofilm of ASNP-M was thinner and comprised of mainly dead cells, and only organic matter with strong adhesion properties was allowed to attach onto the membrane surface. Bacterial community analysis suggested that the incorporation of Ag@silica nanopollens inhibited colonization of bacteria which are capable of causing membrane biofouling (e.g., Proteobacteria and Actinobacteria). These findings highlight the potential of the antibiofouling membrane to be used in MBRs for wastewater treatment and reclamation.
Collapse
Affiliation(s)
- Xingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yu Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
34
|
Alizad Oghyanous F, Etemadi H, Yegani R. Foaming control and determination of biokinetic coefficients in membrane bioreactor system under various organic loading rate and sludge retention time. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Electrochemical quartz crystal microbalance with dissipation investigation of fibronectin adsorption dynamics driven by electrical stimulation onto a conducting and partially biodegradable copolymer. Biointerphases 2020; 15:021003. [PMID: 32197572 DOI: 10.1116/1.5144983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Functional surface coatings are a key option for biomedical applications, from polymeric supports for tissue engineering to smart matrices for controlled drug delivery. Therefore, the synthesis of new materials for biological applications and developments is promising. Hence, biocompatible and stimuli-responsive polymers are interesting materials, especially when they present conductive properties. PEDOT-co-PDLLA graft copolymer exhibits physicochemical and mechanical characteristics required for biomedical purposes, associated with electroactive, biocompatible, and partially biodegradable properties. Herein, the study of fibronectin (FN) adsorption onto PEDOT-co-PDLLA carried out by an electrochemical quartz crystal microbalance with dissipation is reported. The amount of FN adsorbed onto PEDOT-co-PDLLA was higher than that adsorbed onto the Au surface, with a significant increase when electrical stimulation was applied (either at +0.5 or -0.125 V). Additionally, FN binds to the copolymer interface in an unfolded conformation, which can promote better NIH-3T3 fibroblast cell adhesion and later cell development.
Collapse
|
36
|
Xu B, Albert Ng TC, Huang S, Shi X, Ng HY. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. WATER RESEARCH 2020; 114:151-180. [PMID: 31706123 DOI: 10.1016/j.watres.2017.02.006] [Citation(s) in RCA: 503] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is being recognized as an appealing strategy for wastewater treatment, however, severity of membrane fouling inhibits its widespread implementations. This study engineered novel facultative quorum quenching consortiums (FQQs) coping with membrane fouling in AnMBRs with preliminary analysis for their quorum quenching (QQ) performances. Herein, Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in a lab-scale AnMBR initially revealed that N-Hexanoyl-dl-homoserine lactone (C6-HSL), N-Octanoyl-dl-homoserine lactone (C8-HSL) and N-Decanoyl-dl-homoserine lactone (C10-HSL) were the dominant AHLs in AnMBRs in this study. Three FQQs, namely, FQQ-C6, FQQ-C8 and FQQ-C10, were harvested after anaerobic screening of aerobic QQ consortiums (AeQQs) which were isolated by enrichment culture, aiming to degrade C6-HSL, C8-HSL and C10-HSL, respectively. Growth of FQQ-C6 and FQQ-C10 using AHLs as carbon source under anaerobic condition was significantly faster than those using acetate, congruously suggesting that their QQ performance will not be compromised in AnMBRs. All FQQs degraded a wide range of AHLs pinpointing their extensive QQ ability. FQQ-C6, FQQ-C8 and FQQ-C10 remarkably alleviated extracellular polymeric substances (EPS) production in a lab-scale AnMBR by 72.46%, 35.89% and 65.88%, respectively, and FQQ-C6 retarded membrane fouling of the AnMBR by 2 times. Bioinformatics analysis indicated that there was a major shift in dominant species from AeQQs to FQQs where Comamonas sp., Klebsiella sp., Stenotrophomonas sp. and Ochrobactrum sp. survived after anaerobic screening and were the majority in FQQs. High growth rate utilizing AHLs under anaerobic condition and enormous EPS retardation efficiency in FQQ-C6 and FQQ-C10 could be attributed to Comamonas sp.. These findings demonstrated that FQQs could be leveraged for QQ under anaerobic systems. We believe that this was the first work proposing a bacterial pool of facultative QQ candidates holding biotechnological promises for membrane fouling control in AnMBRs.
Collapse
Affiliation(s)
- Boyan Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Shujuan Huang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
37
|
Wang W, Yan Y, Zhao Y, Shi Q, Wang Y. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia. WATER RESEARCH 2020; 169:115223. [PMID: 31706127 DOI: 10.1016/j.watres.2019.115223] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Anammox bacteria tend to self-aggregate, and biofilm-based anammox processes are widely used as sustainable alternative methods for nitrogen removal from wastewater. However, the mechanism for the initial adhesion of anammox bacteria remains unclear. In this work, extracellular polymeric substances (EPS) were extracted separately from anammox granules and then characterized by multi-methods. The adhesion properties of anammox consortia to biotic and abiotic surfaces were examined separately before and after the extraction of three stratified EPS, using aggregation assays and a quartz crystal microbalance technique with dissipation monitoring, respectively. The extraction of each of the three stratified EPS gradually increased the initial aggregation of anammox consortia from 77.6 ± 3.0% to 85.2 ± 2.6%. Fourier transform infrared spectrometry confirmed that the aggregation of anammox consortia depended largely on the interactions between functional groups on the cell surfaces. All three stratified EPS had positive effects on the initial adhesion rate and mass of anammox consortia to abiotic surfaces. More importantly, the structure of the adhered layer was more compact before the extraction of each of the three stratified EPS. We therefore hypothesized that the initial adhesion among anammox consortia was due to the ability of the anammox bacteria to express adhesion molecules on the bacterial surfaces and that the three stratified EPS were excreted to adhere inert particulates and form a compact biofilm structure. This study clarifies the role of stratified EPS on the initial formation of anammox biofilms and provides a theoretical basis for accelerating the formation of anammox biofilms.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuhao Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Qin Shi
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
38
|
Eraghi Kazzaz A, Fatehi P. Interaction of synthetic and lignin-based sulfonated polymers with hydrophilic, hydrophobic, and charged self-assembled monolayers. RSC Adv 2020; 10:36778-36793. [PMID: 35517948 PMCID: PMC9057052 DOI: 10.1039/d0ra07554j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
There is a need to understand the role of polymer structure on its interaction with surfaces to produce effective functional surfaces. In this work, we produced two anionic polymers of lignin-3-sulfopropyl methacrylate (L-S) and poly(vinyl alcohol-co-vinyl acetate)-3-sulfopropyl methacrylate (PVA-S) with similar charge densities and molecular weights. On the gold-coated surface, we deposited self-assembled monolayers (SAM) bearing different terminal moieties namely, hydroxyl, carboxyl, methyl, and amine groups of alkanethiols. This study highlighted the difference between the interaction of L-S and PVA-S and functionalized self-assembled surfaces. The information was generated using advanced tools, such as an X-ray photoelectron spectroscopy (XPS), and a quartz crystal microbalance with dissipation (QCM-D), which facilitated the correlation development between polymer properties and deposition performance on the functionalized surfaces. The higher deposition of PVA-S than L-S onto OH and COOH surfaces was observed due to its greater hydrogen bonding development and higher solubility. The solubility and structure of PVA-S were also beneficial for its higher adsorption than L-S onto CH3 and NH2 surfaces. However, the variation in pH, temperature, and salt significantly affected the adsorption of the macromolecules. The interaction mechanism of synthetic and lignin based sulfonated materials with well-designed functional surfaces was investigated systematically.![]()
Collapse
Affiliation(s)
- Armin Eraghi Kazzaz
- Biorefining Research Institute
- Green Processes Research Centre
- Chemical Engineering Department
- Lakehead University
- Thunder Bay
| | - Pedram Fatehi
- Biorefining Research Institute
- Green Processes Research Centre
- Chemical Engineering Department
- Lakehead University
- Thunder Bay
| |
Collapse
|
39
|
Ye Q, He B, Zhang Y, Zhang J, Liu S, Zhou F. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39171-39178. [PMID: 31559815 DOI: 10.1021/acsami.9b11946] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work, high-thickness zwitterionic polymer brushes based on imidazolium salts were successfully grafted via a novel subsurface-initiated ring-opening metathesis polymerization (subsurface-initiated ROMP) from polydimethylsiloxane (PDMS), and their antifouling performance was evaluated in detail. First, an initiator-embedded PDMS was prepared via copolymerization of PDMS prepolymer and ROMP initiator, and then zwitterionic polymer brushes were grafted via subsurface-initiated ROMP from surface to subsurface of the PDMS due to the implanted ROMP initiator. Results from a series of characterization methods such as infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscopy proved the zwitterionic polymer brushes' successful grafting. The grafting thickness of zwitterionic polymer brushes via subsurface-initiated ROMP can reach the micron scale, and the as-prepared zwitterionic polymer based surfaces showed good lubricating properties compared to traditional surface-initiated ROMP, which hints that polymer brushes can be grafted not only on the surface but also on the subsurface of PDMS. The protein adhesion test and biofouling assay of zwitterionic polymer brushes were tested in the laboratory, and the results indicated that the zwitterionic polymer-functionalized PDMS can effectively resist the adhesion of bovine serum albumin and algae (Porphyridium and Dunaliella) and has good anti-bacterial activity against both Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen , Shenzhen 518057 , P. R. China
| | - Baoluo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Yun Zhang
- The Fourth Hospital of Xi'an , Xi'an Jiaotong University , No. 21, Jiefang Road , Xi'an 710004 , P. R. China
| | - Jin Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , No. 18, Tianshui Middle Road , Lanzhou 730000 , P. R. China
| |
Collapse
|
40
|
Meng D, Wu J, Chen K, Li H, Jin W, Shu S, Zhang J. Effects of extracellular polymeric substances and microbial community on the anti-scouribility of sewer sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:494-504. [PMID: 31212158 DOI: 10.1016/j.scitotenv.2019.05.387] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Sewer sediment is the main source of overflow pollution, and the anti-scouribility of sewer sediment directly determines the amount of the discharged contaminants. In this study, sewer sediments of different depths were collected from combined and storm sewers in Shanghai, China. The anti-scouribility, represented by the shear stress of each layer of sewer sediment, was detected in situ. The microbial community and extracellular polymeric substances (EPS), including carbohydrates and proteins present in the sewer sediments were characterized. The results indicated that the distribution of the anti-scouribility of sewer sediment is regulated. There were positive correlations between the content of EPS, proteins, and carbohydrates, and the anti-scouribility of sediments (Pearson Corr. = 0.604, sig. = 0.219; Pearson Corr. = 0.623, sig. = 0.234; Pearson Corr. = 0.727, sig. = 0.359, respectively). Furthermore, the microbial community had a positive influence on anti-scouribility. In particular, the gram-positive bacterial phyla of Bacteroidetes and Firmicutes may be important and influential for the improvement of anti-scouribility of sediment owing to their production of cellulose.
Collapse
Affiliation(s)
- Daizong Meng
- College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Wu
- College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Keli Chen
- Urban & Rural Construction Design Institute CO, LTD, 310020 Hangzhou, China
| | - Huaizheng Li
- College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wei Jin
- College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuzhen Shu
- College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 200092 Shanghai, China
| | - Jin Zhang
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China
| |
Collapse
|
41
|
Yang X, Xu T, Cao P, Qiao K, Wang L, Zhao T, Zhu J. The viscosity behaviors of bacterial suspensions or extracellular polymeric substances and their effects on aerobic granular sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30087-30097. [PMID: 31414394 DOI: 10.1007/s11356-019-06012-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Although the viscosity behavior of bacteria and extracellular polymeric substances (EPS) in flocculent activated sludge (FAS) and aerobic granular sludge (AGS) has been investigated, no studies have explored the role of viscosity in microbial attachment in pure culture. This study investigated the viscosity behavior of bacteria and EPS. The results showed that bacteria and their EPS exhibited non-Newtonian fluid and shear-thinning behavior. The viscosity of bacteria and EPS was 1.55-3.80 cP and 1.10-2.40 cP, respectively, while the attachment of bacteria (optical density at 600 nm) was 0.1426-3.1015. Bacteria with high attachment secreted EPS with a higher viscosity (2.40 cP), whereas those with weak attachment expressed EPS with a lower viscosity (1.10 cP). Viscosity and microbial attachment or extracellular polysaccharide (PS) content were significantly positively correlated. PS content was the source of bacterial viscosity, and β-polysaccharide played a more important role in viscosity and microbial attachment than α-polysaccharide. Thus, viscosity plays a critical role in microbial attachment, and high viscosity and PS content result in high microbial attachment, which is beneficial to the granulation process of AGS.
Collapse
Affiliation(s)
- Xilan Yang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Tianguang Xu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Pei Cao
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kai Qiao
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Lei Wang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Tingting Zhao
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
42
|
Effects of packing carriers and ultrasonication on membrane fouling and sludge properties of anaerobic side-stream reactor coupled membrane reactors for sludge reduction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Turken T, Kose-Mutlu B, Okatan S, Durmaz G, Guclu MC, Guclu S, Ovez S, Koyuncu I. Long-term MBR performance of polymeric membrane modified with Bismuth-BAL chelate (BisBAL). ENVIRONMENTAL TECHNOLOGY 2019; 40:2011-2017. [PMID: 29409397 DOI: 10.1080/09593330.2018.1435735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/27/2018] [Indexed: 06/07/2023]
Abstract
An ultrafiltration membrane prepared by polyethersulfone (PES) was modified with Bismuth-BAL chelate (BisBAL) and was used in submerged membrane bioreactor system. Moreover, a control membrane reactor was also tasked to evaluate the effect of BisBAL on the membrane performance. The flux profile, transmembrane pressure, the effect of chemical treatment, cake layer formation, anti-fouling properties against extracellular polymeric substances (EPS) and soluble microbial products (SMP) were studied. The UF modified membrane demonstrated a sustained permeability, low cleaning frequency, and longer filtration time. In terms of anti-EPS and SMP accumulation, the modified membrane showed a lower membrane resistance. It can be illustrated from scanning electron microscopy and confocal laser scanning microscope images that the modified membrane had presented better properties than bare PES membrane, as it was looser and thinner. Thus, the UF membrane proved to be more efficient in terms of permeability and lifetime.
Collapse
Affiliation(s)
- Turker Turken
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| | - Borte Kose-Mutlu
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| | - Selin Okatan
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| | - Gamze Durmaz
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| | - Mehmet C Guclu
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| | - Serkan Guclu
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| | - Suleyman Ovez
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| | - Ismail Koyuncu
- a National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University , Maslak, Istanbul , Turkey
- b Civil Engineering Faculty, Environmental Engineering Department Maslak , Istanbul Technical University , Istanbul , Turkey
| |
Collapse
|
44
|
Prasertkulsak S, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Removals of pharmaceutical compounds at different sludge particle size fractions in membrane bioreactors operated under different solid retention times. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:124-132. [PMID: 30669036 DOI: 10.1016/j.jhazmat.2019.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 05/14/2023]
Abstract
Removals of 10 pharmaceutical compounds by microbial sludge in membrane bioreactors (MBR) operated under infinite and limited solid retention time (SRT) were investigated. High removal (>80%) of DCF, TMP, NPX, IBP, and TCS were achieved but CBZ removals were low (<20%). The residual pharmaceutical compounds leftover from the biodegradation in different sludge particle size fractions was quantified through physical separation and filtration in series. The results revealed that hydrophobic compounds were mainly adsorbed onto the coarse particles (>0.45μm) where majority of adsorption site was available. Meanwhile, hydrophilic and moderate hydrophobic compounds were less associated with particles and they were retained in fine particles and gel-like substances (1 kDa-0.45μm). Most of the studied pharmaceutical compounds associated with fine particles and gel-like substances was subsequently rejected by membrane filtration in the MBRs. The operation of the MBR at high mixed liquor suspended solids concentration under long sludge age conditions could enhance the removals of pharmaceutical compounds through increased adsorption site on the sludge particles.
Collapse
Affiliation(s)
- Sirilak Prasertkulsak
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Kazuo Yamamoto
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
45
|
QCM-D characterization of time-dependence of bacterial adhesion. ACTA ACUST UNITED AC 2019; 5:100024. [PMID: 32743140 PMCID: PMC7389184 DOI: 10.1016/j.tcsw.2019.100024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
Quartz crystal microbalance with dissipation monitoring (QCM-D) is becoming an increasingly popular technique that can be employed as part of experimental and modeling investigations of bacterial adhesion. The usefulness of QCM-D derives from this technique's ability to probe binding and interactions under dynamic conditions, in real time. Bacterial adhesion is an important first step in the formation of biofilms, the control of which is relevant to industries that include shipping, water purification, packaging, and biomedical devices. However, many questions remain unanswered in the bacterial adhesion process, despite extensive research in this area. With QCM-D, multiple variables affecting bacterial adhesion can be studied, including the roles of substrate composition, chemical modification, solution ionic strength, environmental temperature, shear conditions, and time. Recent studies demonstrate the utility of QCM-D in developing new bacterial adhesion models and studying different stages of biofilm formation. We provide a review of how QCM-D has been used to study bacterial adhesion at stages ranging from the first step of bacterial adhesion to mature biofilms, and how QCM-D studies are being used to promote the development of solutions to biofilm formation.
Collapse
|
46
|
Ding A, Lin D, Zhao Y, Ngo HH, Guo W, Bai L, Luo X, Li G, Ren N, Liang H. Effect of metabolic uncoupler, 2,4‑dinitrophenol (DNP) on sludge properties and fouling potential in ultrafiltration membrane process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1882-1888. [PMID: 30286354 DOI: 10.1016/j.scitotenv.2018.09.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Energy uncoupling technology was applied to the membrane process to control the problem of bio-fouling. Different dosages of uncoupler (2,4‑dinitrophenol, DNP) were added to the activated sludge, and a short-term ultrafiltration test was systematically investigated for analyzing membrane fouling potential and underlying mechanisms. Ultrafiltration membrane was used and made of polyether-sulfone with a molecular weight cut off (MWCO) of 150 kDa. Results indicated that low DNP concentration (15-30 mg/g VSS) aggravated membrane fouling because more soluble microbial products were released and then rejected by the membrane, which significantly increased cake layer resistance compared with the control. Conversely, a high dosage of DNP (45 mg/g VSS) retarded membrane fouling owing to the high inhibition of extracellular polymeric substances (proteins and polysaccharides) of the sludge, which effectively prevented the formation of cake layer on the membrane surface. Furthermore, analyses of fouling model revealed that a high dosage of DNP delayed the fouling model from pore blocking transition to cake filtration, whereas this transition process was accelerated in the low dosage scenario.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yingxue Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
47
|
Ziemba C, Khavkin M, Priftis D, Acar H, Mao J, Benami M, Gottlieb M, Tirrell M, Kaufman Y, Herzberg M. Antifouling Properties of a Self-Assembling Glutamic Acid-Lysine Zwitterionic Polymer Surface Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1699-1713. [PMID: 29641904 DOI: 10.1021/acs.langmuir.8b00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is a need for the development of antifouling materials to resist adsorption of biomacromolecules. Here we describe the preparation of a novel zwitterionic block copolymer with the potential to prevent or delay the formation of microbial biofilms. The block copolymer comprised a zwitterionic (hydrophilic) section of alternating glutamic acid (negatively charged) and lysine (positively charged) units and a hydrophobic polystyrene section. Cryo-TEM and dynamic-light-scattering (DLS) results showed that, on average, the block copolymer self-assembled into 7-nm-diameter micelles in aqueous solutions (0 to 100 mM NaCl, pH 6). Quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and contact angle measurements demonstrated that the block copolymer self-assembled into a brush-like monolayer on polystyrene surfaces. The brush-like monolayer produced from a 100 mg/L block copolymer solution exhibited an average distance, d, of approximately 4-8 nm between each block copolymer molecule (center to center). Once the brush-like monolayer self-assembled, it reduced EPS adsorption onto the polystyrene surface by ∼70% (mass), reduced the rate of bacterial attachment by >80%, and inhibited the development of thick biofilms. QCM-D results revealed that the EPS molecules penetrate between the chains of the brush and adsorb onto the polystyrene surface. Additionally, AFM analyses showed that the brush-like monolayer prevents the adhesion of large (> d) hydrophilic colloids onto the surface via hydration repulsion; however, molecules or colloids small enough to fit between the brush polymers (< d) were able to be adsorbed onto the surface via van der Waals interactions. Overall, we found that the penetration of extracellular organelles, as well as biopolymers through the brush, is critical for the failure of the antifouling coating, and likely could be prevented through tuning of the brush density. Stability and biofilm development testing on multiple surfaces (polypropylene, glass, and stainless steel) support practical applications of this novel block copolymer.
Collapse
Affiliation(s)
- Christopher Ziemba
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, The Albert Katz International School of Desert Studies , Ben Gurion University of the Negev , Sede Boqer Campus, Midreshet Ben-Gurion , 84990 , Israel
| | - Maria Khavkin
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, The Albert Katz International School of Desert Studies , Ben Gurion University of the Negev , Sede Boqer Campus, Midreshet Ben-Gurion , 84990 , Israel
| | - Dimitris Priftis
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Handan Acar
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Jun Mao
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Maya Benami
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, The Albert Katz International School of Desert Studies , Ben Gurion University of the Negev , Sede Boqer Campus, Midreshet Ben-Gurion , 84990 , Israel
| | - Moshe Gottlieb
- Department of Chemical Engineering , Ben Gurion University of the Negev , Beer-Sheva 84105 Israel
| | - Matthew Tirrell
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Yair Kaufman
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, The Albert Katz International School of Desert Studies , Ben Gurion University of the Negev , Sede Boqer Campus, Midreshet Ben-Gurion , 84990 , Israel
| | - Moshe Herzberg
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, The Albert Katz International School of Desert Studies , Ben Gurion University of the Negev , Sede Boqer Campus, Midreshet Ben-Gurion , 84990 , Israel
| |
Collapse
|
48
|
Hamedi H, Ehteshami M, Mirbagheri SA, Rasouli SA, Zendehboudi S. Current Status and Future Prospects of Membrane Bioreactors (MBRs) and Fouling Phenomena: A Systematic Review. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23345] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hamideh Hamedi
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Majid Ehteshami
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
| | | | - Seyed Abbas Rasouli
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| |
Collapse
|
49
|
Wang X, Huang D, Cheng B, Wang L. New insight into the adsorption behaviour of effluent organic matter on organic-inorganic ultrafiltration membranes: a combined QCM-D and AFM study. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180586. [PMID: 30225052 PMCID: PMC6124109 DOI: 10.1098/rsos.180586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Adsorption of organic matter on membranes plays a major role in determining the fouling behaviour of membranes. This study investigated effluent organic matter (EfOM) adsorption behaviour onto poly(vinylidene fluoride) (PVDF) membrane blended with SiO2 nanoparticles using quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). The QCM-D results suggested that low adsorption of EfOM and an EfOM layer with a non-rigid and open structure was formed on SiO2-terminated membrane surfaces. Conformational assessment showed that EfOM undergoes adsorption via two steps: (i) in the initial stage, a rapid adsorption of EfOM accumulated onto the membrane; (ii) the change in dissipation was still occurring when the adsorption frequency reached balance, and the layer tended towards a more rearranged or organized secondary structure upon adsorption onto the more hydrophilic surface. For the AFM force test, when a self-made EfOM-coated probe approached the membrane, a 'jump-in' was observed for the hydrophobic membrane after repulsion at a small distance, while only repulsive forces were observed for PVDF/SiO2 membranes. This study demonstrated that the PVDF/SiO2 membrane changed the entire filtration process, forming a 'soft' open conformation in the foulant layer.
Collapse
Affiliation(s)
- Xudong Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| | - Danxi Huang
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| | - Botao Cheng
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| |
Collapse
|
50
|
Huang H, Lin Y, Peng P, Geng J, Xu K, Zhang Y, Ding L, Ren H. Calcium ion- and rhamnolipid-mediated deposition of soluble matters on biocarriers. WATER RESEARCH 2018; 133:37-46. [PMID: 29407713 DOI: 10.1016/j.watres.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Start-up of biofilm process initiated by the deposition of soluble matters on biocarriers is a very important yet time-consuming procedure. However, rapid start-up methods especially in the enhancement of soluble matters deposition have been rarely addressed. In this study, a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to investigate the influences of calcium ion and rhamnolipid (RL) on the deposition of soluble matters from real and synthetic industrial wastewaters with different configurations of organics (bovine serum albumin and sodium alginate) and ionic strength on the model biocarriers polystyrene and polyamide. Results showed that deposition was effectively promoted by the addition of Ca2+ and along with the increase in Ca2+ content. However, RL enhanced the deposition effectively only in hyperhaline wastewater through breaking hydration repulsion and decreased the deposition in low-salinity wastewater, and its influence to the deposited layer property exhibited characteristics of negative feedback. The combined use of Ca2+ and RL had a better enhancement effect than that of separate use and the mechanism involved can not be soundly explained only by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The strategy of mediating the deposition of soluble matters on different biocarriers by adding Ca2+ and RL has important implications for regulating biofilm formation to accelerate the start-up process in attached-growth bioreactors.
Collapse
Affiliation(s)
- Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Pengcheng Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|