1
|
Suh S, Moon J, Jung S, Pyo J. Improving fecal bacteria estimation using machine learning and explainable AI in four major rivers, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177459. [PMID: 39536862 DOI: 10.1016/j.scitotenv.2024.177459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
This study addresses the critical public health issue of fecal coliform contamination in the four major rivers in South Korea (Han, Nakdong, Geum, and Yeongsan rivers) by applying advanced machine learning (ML) algorithms combined with Explainable Artificial Intelligence to enhance both prediction accuracy and interpretability. Both traditional and machine learning models often face challenges in accurately estimating fecal coliform levels due to the complexity of environmental variables and data limitations. To address this limitation, we employed two tree-based models (i.e., random forest [RF] and extreme gradient boost [XGBoost]), and two neural network models (i.e., deep neural network and convolutional neural network [CNN]). we employed the use of Shapley Additive Explanations (SHAP) to facilitate a more comprehensive understanding of the influence exerted by each variable on the model's predictions. Based on a comprehensive dataset collected from the National Institute of Environmental Research covering 16 water quality parameters and meteorological data from 2014 to 2022, our study improved the accuracy of fecal coliform estimation using XGBoost and CNN models. The optimal result was obtained using XGBoost, which had a validation Nash-Sutcliffe efficiency of 0.597 in the Han River. In addition, this study provides insights into the significant factors influencing fecal coliform concentrations across different river environments using the SHAP model. The results indicated that the XGBoost model provided superior estimation accuracy and explanations for the contributions of variables. The SHAP results provided the precise contribution of each water quality variable that affected the fecal estimation results using the XGBoost model. The study facilitates an improved understanding of the relationship between water quality variables and fecal coliform contamination mechanisms in the four major rivers in South Korea.
Collapse
Affiliation(s)
- SungMin Suh
- Department of Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - JunGi Moon
- Department of Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangjin Jung
- Department of Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - JongCheol Pyo
- Department of Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Kim T, Lee D, Shin J, Kim Y, Cha Y. Learning hierarchical Bayesian networks to assess the interaction effects of controlling factors on spatiotemporal patterns of fecal pollution in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152520. [PMID: 34953848 DOI: 10.1016/j.scitotenv.2021.152520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The dynamics of fecal indicator bacteria, such as fecal coliforms (FC) in streams, are influenced by the interactions of a myriad of factors. To predict complex spatiotemporal patterns of FC in streams and assess the relative importance of numerous controlling factors, the adoption of a hierarchical Bayesian network (HBN) was proposed in this study. By introducing latent variables correlated to the observed variables into a Bayesian network, the HBN can represent causal relationships among a large set of variables with a multilevel hierarchy. The study area encompasses 215 sites across the watersheds of the four major rivers in South Korea. The monitoring data collected during the 2012-2019 period included 32 input variables pertaining to meteorology, geography, soil characteristics, land cover, urbanization index, livestock density, and point sources. As model endpoints, the exceedance probability of the FC standard concentration as well as two pollution characteristics (i.e., pollution degree and type), derived from FC load duration curves were used. The probability of exceeding an FC threshold value (200 CFU/100 mL) showed spatiotemporal variations, whereas pollution degree and type showed spatial variations that represent long-term severity and relative dominance of nonpoint and point source fecal pollution, respectively. The conceptual model was validated using structural equation modeling to develop the HBN. The results demonstrate that the HBN effectively simplified the model structure, while showing strong model performance (AUC = 0.81, accuracy = 0.74). The results of the sensitivity analysis indicate that land cover is the most important factor in predicting the probability of exceedance and pollution degree, whereas the urbanization index explains most of the variability in pollution type. Furthermore, the results of the scenario analysis suggest that the HBN provides an interpretable framework in which the interaction of controlling factors has causal relationships at different levels that can be identified and visualized.
Collapse
Affiliation(s)
- TaeHo Kim
- School of Environment Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - DoYeon Lee
- School of Environment Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jihoon Shin
- School of Environment Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - YoungWoo Kim
- School of Environment Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - YoonKyung Cha
- School of Environment Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
3
|
Li Y, Ma L, Li Y, Abdyzhapar Uulu S, Abuduwaili J. Exploration of the driving factors and distribution of fecal coliform in rivers under a traditional agro-pastoral economy in Kyrgyzstan, Central Asia. CHEMOSPHERE 2022; 286:131700. [PMID: 34333187 DOI: 10.1016/j.chemosphere.2021.131700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Fecal coliform (FC) in river water is one of the threats to human health. To explore the pollution status of FC in rivers of Kyrgyzstan, a mountainous country with traditional agro-pastoral economy, 184 water samples from the rivers of Kyrgyzstan in low and high river flow period were analyzed. Spatial autocorrelation and classical statistical methods were used to analyze the spatiotemporal distribution and driving factors of FC. The results showed that the surface water quality of Kyrgyz rivers was good, and the concentration range of FC was 0-23 MPN/100 mL. Temporally, the maximum FC concentration was 4 MPN/100 mL in low river flow period, while in the period of high river flow, the highest value reached to 23 MPN/100 mL. Spatially, the concentration of FC in high altitude areas was low, while that in the lowland areas was relatively high, which indicated that animal husbandry in high altitude areas contributed little to FC in rivers, and urban domestic sewage and agricultural activities in lowlands were the main pollution sources of FC in rivers. There was no correlation between FC and hardness, electrical conductivity (EC), pH and total organic carbon (TOC) in river water of Kyrgyzstan, and the distribution of FC in high river flow period was mainly driven by population and human modification of terrestrial systems. The results can provide a basis for the prevention and control of surface water FC pollution and related diseases in Kyrgyzstan.
Collapse
Affiliation(s)
- Yizhen Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yaoming Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Salamat Abdyzhapar Uulu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Institute of Geology, National Academy of Sciences of Kyrgyzstan, Bishkek, 720461, Kyrgyzstan
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Mushi D, Kebede G, Linke RB, Lakew A, Hayes DS, Graf W, Farnleitner AH. Microbial faecal pollution of river water in a watershed of tropical Ethiopian highlands is driven by diffuse pollution sources. JOURNAL OF WATER AND HEALTH 2021; 19:575-591. [PMID: 34371495 DOI: 10.2166/wh.2021.269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tropical communities in the developing world depend heavily on riverine systems for their socioeconomic development. However, these resources are poorly protected from diffuse pollution, and there is a lack of quantitative information regarding the microbial pollution characteristics of riverine water, despite frequently reported gastrointestinal diseases. The aim of our study was to apply faecal taxation (i.e., faecal pellet counting in representative test areas to estimate the potential availability of diffuse pollution sources) in combination with a detailed microbiological faecal pollution analysis in a riverine environment to elucidate the importance of diffuse pollution. To realize this approach, ambient faecal pellets, a multiparametric data set for standard faecal indicator bacteria (SFIB), including Escherichia coli, Clostridium perfringens spores and enterococci from catchment soil and river water, and a number of riverine water physicochemical variables were analysed during a one-year cycle. We demonstrated that the abundance of ambient faecal pellets, which were consistently counted at reference sites in the catchment, was associated with faecal pollution in the river water. Water SFIB, dissolved oxygen, nutrients, conductivity and total suspended solids were strongly linked with the abundance of ambient faecal pellets in the river catchment, as demonstrated by principal component analysis (PCA). Elevated concentrations of SFIB in the riverine water in the absence of rainfall also suggested the direct input of faecal bacteria into the riverine water by livestock (e.g., during watering) and humans (e.g., during bathing). Statistical analyses further revealed that the microbiological water quality of the investigated riverine water was not influenced by SFIB potentially occurring in the soil. This study demonstrates the importance of diffuse faecal pollution sources as major drivers of the microbiological quality of riverine water in the Ethiopian highlands. In addition, the new successfully applied integrated approach could be very useful for developing predictive models, which would aid in forecasting riverine microbiological quality in tropical developing countries.
Collapse
Affiliation(s)
- Douglas Mushi
- Department of Biosciences, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania E-mail: ; Douglas Mushi and Geda Kebede contributed equally to this article
| | - Geda Kebede
- Department of Biological Sciences, Ambo University, P.O. Box 95, Ambo, Ethiopia; Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), BOKU, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria; Douglas Mushi and Geda Kebede contributed equally to this article
| | - Rita B Linke
- Research Group of Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1A/166, 1060 Vienna, Austria
| | - Aschalew Lakew
- National Fishery and Aquatic Life Research Centre, Ethiopian Institute of Agricultural Research (EIAR), P.O. Box 64, Sebeta, Ethiopia
| | - Daniel S Hayes
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), BOKU, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria; Centro de Estudos Florestais (CEF), University of Lisbon, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Wolfram Graf
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), BOKU, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Andreas H Farnleitner
- Research Group of Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1A/166, 1060 Vienna, Austria; Research Division Water Quality and Health, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| |
Collapse
|
5
|
Guo D, Thomas J, Lazaro AB, Matwewe F, Johnson F. Modelling the influence of short-term climate variability on drinking water quality in tropical developing countries: A case study in Tanzania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142932. [PMID: 33268262 DOI: 10.1016/j.scitotenv.2020.142932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Climate change is expected to increase the prevalence of water-borne diseases especially in developing countries. Climate-resilient drinking water supplies are critical to protect communities from faecal contamination and thus against increasing disease risks. However, no quantitative assessment exists for the impacts of short-term climate variability on faecal contamination at different drinking water sources in developing countries, while existing understanding remains largely conceptual. This critical gap limits the ability to predict drinking water quality under climate change or to recommend climate-resilient water sources for vulnerable communities. This study aims to provide such quantitative understanding by investigating the relationships between faecal contamination and short-term climate variability across different types of water sources. We collected a novel dataset with over 20 months' monitoring of weather, Escherichia coli (E. coli) and total coliforms, at 233 different water sources in three climatically different regions in Tanzania. We then took a rigorous statistical analysis with Bayesian hierarchical models, to relate both contamination occurrence and amount to climate variability. The model results explained the temporal variability in drinking water faecal contamination using climate predictors, and also revealed the climate sensitivity of faecal contamination for individual water sources. We found that: a) short-term climate variability and baseline contamination levels can explain about half the observed variability in faecal contamination (R2 ≥ 0.44); b) increased contamination was most consistently related to recent heavy rainfall and high temperature across different water sources; c) unimproved water sources such as the unprotected dug wells have substantially higher climate sensitivity. Based on these results, we can expect substantial increases in drinking water contamination risks across tropical Sub-Saharan Africa and South-East Asian developing countries under a warmer climate, which highlight the urgent need of protecting vulnerable communities from the severe climate impacts.
Collapse
Affiliation(s)
- Danlu Guo
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia.
| | - Jacqueline Thomas
- Ifakara Health Institute, Ifakara, Morogoro, Tanzania; School of Civil Engineering, The University of Sydney, Darlington, Australia.
| | | | | | - Fiona Johnson
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia.
| |
Collapse
|
6
|
Li Y, Boswell E, Thompson A. Correlations between land use and stream nitrate-nitrite concentrations in the Yahara River Watershed in south-central Wisconsin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111535. [PMID: 33142149 DOI: 10.1016/j.jenvman.2020.111535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/25/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
To better inform land management decisions, we explored relationships between land use data and stream nitrate-nitrite (NO3NO2) concentration data in the Yahara River Watershed (YRW) in south-central Wisconsin, USA. Three metrics were used to evaluate the extent of different land uses in the watershed: (1) the area percentage of each land use in both the watershed and in a range of riparian zone widths, (2) the area factor, which refers to the ratio of the area of woodland, recreational, open and vacant subdivided land, or wetlands in the riparian zone (6.1-213.4 m widths) to agricultural areas in the rest of watershed, which indicates the buffering capacity of the riparian zone, and (3) the inverse-distance-weighted (IDW) area percentage with proximity to sub-watershed outlet and to stream, which characterizes spatial arrangement in the watershed by assigning a higher weight to patches closer to the outlet or stream and a lower weight to those farther away. We found significant, positive correlations between the extent of agricultural areas and stream NO3NO2 concentrations. NO3NO2 concentrations were highly correlated to area factor metrics for all riparian zone widths such that as area factor decreased, NO3NO2 concentrations increased. There was also a marked increase in NO3NO2 concentrations at a threshold of approximately 60% agricultural area with IDW proximity to stream. Wetland area percentage in the entire watershed and IDW wetland area percentage with proximity to stream were negatively correlated to stream NO3NO2 concentrations. Compared to the simple area percentage metric, area factor and IDW wetland area percentage with proximity to stream were better indicators of stream NO3NO2 concentrations. Results from this study indicate that, in addition to land use area percentage, spatial distributions of land uses should be considered when managing watersheds. This study also demonstrates the value of citizen-based sampling data and reveals opportunities to improve the utility of such data.
Collapse
Affiliation(s)
- Yu Li
- Biological Systems Engineering Department, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA
| | - Edward Boswell
- Biological Systems Engineering Department, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA; Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI, 53706, USA
| | - Anita Thompson
- Biological Systems Engineering Department, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Hygienic Condition of Different Water Sources in the Kharaa River Basin, Mongolia in the Light of a Rapid Warming Trend. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mongolia is a water-scarce land-locked country, and available water resources are utilized for multiple purposes including irrigation, food preparation, drinking water for livestock and people. Limited data availability on water hygiene means that the related risks to public health are only partially understood. This is particularly problematic due to the widespread use of unimproved water sources such as surface water and water from simple shallow wells. Based on two field surveys in the Kharaa River Basin in spring 2017 and 2018, we assessed the presence and quantity of total coliforms (TC), fecal coliforms (FC), and E. coli bacteria in surface waters and wells and investigated potential linkages between temperature and hygiene. In the Kharaa River and its tributaries, TC concentrations averaged at a most probable number of (MPN) of 754 ± 761 per 100 mL and FC concentrations at an MPN of 31 ± 33. Only small and non-significant correlations between coliform concentrations and temperature were identified. Coliforms concentrations in wells were lower (average MPN for TC: 550 ± 1286, and for FC 58 ± 253). There was considerable variation between wells, with moderate but significant correlations between temperature and bacterial counts. Low water temperatures in April and May (just above freezing to less than 6.5 °C in wells and 7.5 °C to 14.5 °C in the river system) and the positive correlations between temperature and coliform concentrations particularly for well samples indicate that further warming is likely to increase the risks of microbiological water pollution. In the future, this should be complemented by modeling at a watershed scale. This should include the consideration of a trend towards stronger rainfall events, changes in livestock density, and urban sewage treatment and discharge, which are other likely drivers of changes in water hygiene.
Collapse
|
8
|
Fecal Indicator Bacteria Transport from Watersheds with Differing Wastewater Technologies and Septic System Densities. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Wastewater contains elevated concentrations of fecal indicator bacteria (FIB). The type of wastewater treatment technology and septic system density may influence the FIB concentration and exports at the watershed scale. The goal of this study was to gain a better understanding of FIB concentrations and exports from watersheds served by conventional septic (CS) systems, sand filter (SF) septic systems, and a municipal sewer (SEW) system. Seven watersheds (3 CS, 3 SF, and 1 SEW) were monitored to quantify FIB concentration and export monthly from April 2015 to March 2016. The type of wastewater treatment did not yield significant differences in FIB concentration or exports when pooling watersheds using similar wastewater treatment. Watersheds with the highest septic densities (approximately 0.4 systems ha−1) contained greater FIB concentrations and exports than watersheds with the lowest (approximately 0.1–0.2 systems ha−1), but only FIB concentrations significantly differed. These findings suggest that when the septic system density exceeds 0.4 systems ha−1, water quality degradation from septic leachate may be observable at the watershed scale, especially in watersheds dominated by residential development. More research is recommended to determine if this density threshold is similar for other water pollutants and/or in watersheds with differing hydrogeological, land use, and wastewater characteristics.
Collapse
|
9
|
Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes. SUSTAINABILITY 2020. [DOI: 10.3390/su12125207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Contamination of surface waters with microbial pollutants from fecal sources is a significant human health issue. Identification of relative fecal inputs from the mosaic of potential sources common in rural watersheds is essential to effectively develop and deploy mitigation strategies. We conducted a cross-sectional longitudinal survey of fecal indicator bacteria (FIB) concentrations associated with extensive livestock grazing, recreation, and rural residences in three rural, mountainous watersheds in California, USA during critical summer flow conditions. Overall, we found that 86% to 87% of 77 stream sample sites across the study area were below contemporary Escherichia coli-based microbial water quality standards. FIB concentrations were lowest at recreation sites, followed closely by extensive livestock grazing sites. Elevated concentrations and exceedance of water quality standards were highest at sites associated with rural residences, and at intermittently flowing stream sites. Compared to national and state recommended E. coli-based water quality standards, antiquated rural regional policies based on fecal coliform concentrations overestimated potential fecal contamination by as much as four orders of magnitude in this landscape, hindering the identification of the most likely fecal sources and thus the efficient targeting of mitigation practices to address them.
Collapse
|
10
|
McKee BA, Molina M, Cyterski M, Couch A. Microbial source tracking (MST) in Chattahoochee River National Recreation Area: Seasonal and precipitation trends in MST marker concentrations, and associations with E. coli levels, pathogenic marker presence, and land use. WATER RESEARCH 2020; 171:115435. [PMID: 31927096 PMCID: PMC8188702 DOI: 10.1016/j.watres.2019.115435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 05/14/2023]
Abstract
Escherichia coli levels in recreational waters are often used to predict when fecal-associated pathogen levels are a human health risk. The reach of the Chattahoochee River that flows through the Chattahoochee River National Recreation Area (CRNRA), located in the Atlanta-metropolitan area, is a popular recreation area that frequently exceeds the U.S. Environmental Protection Agency beach action value (BAV) for E. coli. A BacteriALERT program has been implemented to provide real-time E. coli estimates in the reach and notify the public of potentially harmful levels of fecal-associated pathogens as indicated by surrogate models based on real-time turbidity measurements from continuous water quality monitoring stations. However, E. coli does not provide information about the sources of fecal contamination and its accuracy as a human health indicator is questionable when sources of contamination are non-human. The objectives of our study were to investigate, within the Park and surrounding watersheds, seasonal and precipitation-related patterns in microbial source tracking marker concentrations of possible sources (human, dog, and ruminant), assess correlations between source contamination levels and culturable E. coli levels, determine which sources best explained model-based E. coli estimates above the BAV and detection of esp2 (a marker for the esp gene associated with pathogenic strains of Enterococcus faecium and Enterococcus faecalis), and investigate associations between source contamination levels and land use features. Three BacteriALERT sites on the Chattahoochee River were sampled six times per season in the winter and summer from December 2015 through September 2017, and 11 additional stream sites (synoptic sites) from the CRNRA watershed were sampled once per season. Samples were screened with microbial source tracking (MST) quantitative PCR (qPCR) markers for humans (HF183 Taqman), dogs (DogBact), and ruminants (Rum2Bac), the esp2 qPCR marker, and culturable E. coli. At the BacteriALERT sites, HF183 Taqman concentrations were higher under wet conditions DogBact concentrations were greater in the winter and under wet conditions, and Rum2Bac concentrations were comparatively low throughout the study with no difference across seasons or precipitation conditions. Concentrations of HF183 Taqman, DogBact, and Rum2Bac were positively correlated with culturable E. coli concentrations; however, DogBact had the largest R2 value among the three markers, and the forward stepwise regression indicated it was the best predictor of culturable E. coli concentrations at the BacteriALERT sites. Recursive partitioning indicated that BAV exceedances of model-based E. coli estimates were best explained by DogBact concentrations ≥3 gene copies per mL (CN/mL). Detections of esp2 at BacteriALERT sites were best explained by DogBact concentrations ≥11 CN/mL, while detections of esp2 at synoptic sites were best explained by HF183 Taqman ≥29 CN/mL. At the synoptic sites, HF183 Taqman levels were associated with wastewater treatment plant density. However, this relationship was driven primarily by a single site, suggesting possible conveyance issues in that catchment. esp2 detections at synoptic sites were positively associated with development within a 2-km radius and negatively associated with development within the catchment, suggesting multiple sources of esp2 in the watershed. DogBact and Rum2Bac were not associated with the land use features included in our analyses. Implications for Park management include: 1) fecal contamination levels were highest during wet conditions and in the off season when fewer visitors are expected to be participating in water-based recreation, 2) dogs are likely contributors to fecal contamination in the CRNRA and may be sources of pathogenic bacteria indicating further investigation of the origins of this contamination may be warranted as would be research to understand the human health risks from exposure to dog fecal contamination, and 3) high levels of the human marker at one site in the CRNRA watershed suggests more extensive monitoring in that catchment may locate the origin of human fecal contamination detected during this study.
Collapse
Affiliation(s)
- By Anna McKee
- U.S. Geological Survey, South Atlantic Water Science Center, 1770 Corporate Drive Suite 500, Norcross, GA, 30093, USA.
| | - Marirosa Molina
- U.S. Environmental Protection Agency, Office of Research and Development, 960 College Station Road, Athens, GA, 30605, USA
| | - Mike Cyterski
- U.S. Environmental Protection Agency, Office of Research and Development, 960 College Station Road, Athens, GA, 30605, USA
| | - Ann Couch
- National Park Service, Chattahoochee River National Recreation Area, 1978 Island Ford Parkway, Sandy Springs, GA, 30350, USA
| |
Collapse
|
11
|
Influences of Land-Use Dynamics and Surface Water Systems Interactions on Water-Related Infectious Diseases—A Systematic Review. WATER 2020. [DOI: 10.3390/w12030631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human interactions with surface water systems, through land-use dynamics, can influence the transmission of infectious water-related diseases. As a result, the aim of our study was to explore and examine the state of scientific evidence on the influences of these interactions on water-related infectious disease outcomes from a global perspective. A systematic review was conducted, using 54 peer-reviewed research articles published between 1995 and August 2019. The study revealed that there has been an increase in the number of publications since 2009; however, few of these publications (n = 6) made explicit linkages to the topic. It was found that urban and agricultural land-use changes had relatively high adverse impacts on water quality, due to high concentrations of fecal matter, heavy metals, and nutrients in surface water systems. Water systems were found as the common “vehicle” for infectious disease transmission, which in turn had linkages to sanitation and hygiene conditions. The study found explicit linkages between human–surface water interaction patterns and the transmission of water-based disease. However, weak and complex linkages were found between land-use change and the transmission of water-borne disease, due to multiple pathways and the dynamics of the other determinants of the disease. Therefore, further research studies, using interdisciplinary and transdisciplinary approaches to investigate and enhance a deeper understanding of these complexities and linkages among land use, surface water quality, and water-related infectious diseases, is crucial in developing integrated measures for sustainable water quality monitoring and diseases prevention.
Collapse
|
12
|
Salim Dantas M, Cordova de Oliveira J, Cristiane Pinto C, Corrêa Oliveira S. Impact of fecal contamination on surface water quality in the São Francisco River hydrographic basin in Minas Gerais, Brazil. JOURNAL OF WATER AND HEALTH 2020; 18:48-59. [PMID: 32129186 DOI: 10.2166/wh.2019.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proper water quality monitoring is a valuable tool for water resource management, helping to identify polluting sources and risks related to the use of water resources. One of the main types of contamination found in Brazilian water bodies is fecal contamination, which originates mainly from point source pollution through wastewater disposal. Thus, this study analyzed water quality monitoring data from the responsible environmental body (Minas Gerais Institute of Water Management, IGAM), related to the fecal contamination indicator (FCI), for the years 2000-2018. This was done for the Minas Gerais portion of the São Francisco River basin (SFRB-MG), one of the most important basins in the country. The 10 sub-basins in the area were compared using statistical tools. The work found significant differences between the sub-basins in terms of FCI concentration, highlighting the most impacted ones (SF2, SF3, and SF5) as also being the most densely populated. It is necessary to invest in sanitation measures in order to ensure that water resources are preserved, as well as to reduce the public health risks of downstream municipalities that are supplied with previously contaminated water.
Collapse
Affiliation(s)
- Marina Salim Dantas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, CEP 31270-901, MG, Brazil E-mail:
| | - Josiani Cordova de Oliveira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, CEP 31270-901, MG, Brazil E-mail:
| | - Carolina Cristiane Pinto
- Department of Chemical Engineering, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, CEP 31270-901, MG, Brazil
| | - Sílvia Corrêa Oliveira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, CEP 31270-901, MG, Brazil E-mail:
| |
Collapse
|
13
|
Luna GM, Manini E, Turk V, Tinta T, D'Errico G, Baldrighi E, Baljak V, Buda D, Cabrini M, Campanelli A, Cenov A, Del Negro P, Drakulović D, Fabbro C, Glad M, Grilec D, Grilli F, Jokanović S, Jozić S, Kauzlarić V, Kraus R, Marini M, Mikuš J, Milandri S, Pećarević M, Perini L, Quero GM, Šolić M, Lušić DV, Zoffoli S. Status of faecal pollution in ports: A basin-wide investigation in the Adriatic Sea. MARINE POLLUTION BULLETIN 2019; 147:219-228. [PMID: 29636186 DOI: 10.1016/j.marpolbul.2018.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Ports are subject to a variety of anthropogenic impacts, and there is mounting evidence of faecal contamination through several routes. Yet, little is known about pollution in ports by faecal indicator bacteria (FIB). FIB spatio-temporal dynamics were assessed in 12 ports of the Adriatic Sea, a semi-enclosed basin under strong anthropogenic pressure, and their relationships with environmental variables were explored to gain insight into pollution sources. FIB were abundant in ports, often more so than in adjacent areas; their abundance patterns were related to salinity, oxygen, and nutrient levels. In addition, a molecular method, quantitative (q)PCR, was used to quantify FIB. qPCR enabled faster FIB determination and water quality monitoring that culture-based methods. These data provide robust baseline evidence of faecal contamination in ports and can be used to improve the management of routine port activities (dredging and ballast water exchange), having potential to spread pathogens in the sea.
Collapse
Affiliation(s)
- Gian Marco Luna
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy.
| | - Elena Manini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Valentina Turk
- National Institute of Biology, Marine Biology Station, Fornače 41, Piran, Slovenia
| | - Tinkara Tinta
- National Institute of Biology, Marine Biology Station, Fornače 41, Piran, Slovenia
| | - Giuseppe D'Errico
- Department for Life and Environmental Science (DISVA), Polytechnic University of Marche, Ancona, Italy
| | - Elisa Baldrighi
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Vanja Baljak
- University of Rijeka, Faculty of Medicine, Department of Environmental Health, Braće Branchetta 20, Rijeka, Croatia
| | - Donatella Buda
- Fondazione Centro Ricerche Marine, National Reference Laboratory (NRL) on Marine Biotoxin, Viale A. Vespucci 2, Cesenatico, FC, Italy
| | - Marina Cabrini
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, Italy
| | - Alessandra Campanelli
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Arijana Cenov
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Department of Environmental Health, Krešimirova 52a, Rijeka, Croatia
| | - Paola Del Negro
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, Italy
| | | | - Cinzia Fabbro
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, Italy
| | - Marin Glad
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Department of Environmental Health, Krešimirova 52a, Rijeka, Croatia
| | - Dolores Grilec
- Institute of Public Health of Dubrovnik-Neretva County, Croatia
| | - Federica Grilli
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | | | - Slaven Jozić
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Vesna Kauzlarić
- Institute of Public Health of Istrian County, Department of Environmental Health, Pula, Croatia
| | - Romina Kraus
- Ruđer Bošković Institute, Center for Marine Research, Giordano Paliaga 5, Rovinj, Croatia
| | - Mauro Marini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Josip Mikuš
- University of Dubrovnik, Department of Aquaculture, Ćira Carića 4, Dubrovnik, Croatia
| | - Stefania Milandri
- Fondazione Centro Ricerche Marine, National Reference Laboratory (NRL) on Marine Biotoxin, Viale A. Vespucci 2, Cesenatico, FC, Italy
| | - Marijana Pećarević
- University of Dubrovnik, Department of Aquaculture, Ćira Carića 4, Dubrovnik, Croatia
| | | | | | - Mladen Šolić
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Darija Vukić Lušić
- University of Rijeka, Faculty of Medicine, Department of Environmental Health, Braće Branchetta 20, Rijeka, Croatia; Teaching Institute of Public Health of Primorje-Gorski Kotar County, Department of Environmental Health, Krešimirova 52a, Rijeka, Croatia
| | - Silvia Zoffoli
- Fondazione Centro Ricerche Marine, National Reference Laboratory (NRL) on Marine Biotoxin, Viale A. Vespucci 2, Cesenatico, FC, Italy
| |
Collapse
|
14
|
Jeon DJ, Ligaray M, Kim M, Kim G, Lee G, Pachepsky YA, Cha DH, Cho KH. Evaluating the influence of climate change on the fate and transport of fecal coliform bacteria using the modified SWAT model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:753-762. [PMID: 30583170 DOI: 10.1016/j.scitotenv.2018.12.213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Fecal coliform bacteria (FCB) contamination of natural waters is a serious public health issue. Therefore, understanding and anticipating the fate and transport of FCB are important for reducing the risk of contracting diseases. The objective of this study was to analyze the impacts of climate change on the fate and transport of FCB. We modified both the soil and the in-stream bacteria modules in the soil and water assessment tool (SWAT) model and verified the prediction accuracy of seasonal variability of FCB loads using observations. Forty bias-correcting GCM-RCM projections were applied in the modified SWAT model to examine various future climate conditions at the end of this century (2076-2100). Lastly, we also compared the variability of FCB loads under current and future weather conditions using multi-model ensemble simulations (MMES). The modified SWAT model yielded a satisfactory performance with regard to the seasonal variability of FCB amounts in the soil and FCB loading to water bodies. The modified SWAT model presented substantial proliferation of FCB in the soil (30.1%-147.5%) due to an increase in temperature (25.1%). Also, increase in precipitation (53.3%) led to an increase in FCB loads (96.0%-115.5%) from the soil to water body. In the in-stream environment, resuspension from the stream bed was the dominant process affecting the amount of FCB in stream. Therefore, the final FCB loads increased by 71.2% because of the growing peak channel velocity and volume of water used due to an increase in precipitation. Based on the results of MMES, we concluded that the level of FCB would increase simultaneously in the soil as well as in stream by the end of this century. This study will aid in understanding the future variability of FCB loads as well as in preparing an effective management plan for FCB levels in natural waters.
Collapse
Affiliation(s)
- Dong Jin Jeon
- USDA-ARS, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD, 20705, USA
| | - Mayzonee Ligaray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Minjeong Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Gayoung Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Gil Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yakov A Pachepsky
- USDA-ARS, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD, 20705, USA
| | - Dong-Hyun Cha
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
15
|
Observed Trends of Climate and River Discharge in Mongolia’s Selenga Sub-Basin of the Lake Baikal Basin. WATER 2018. [DOI: 10.3390/w10101436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mongolia’s Selenga sub-basin of the Lake Baikal basin is spatially extensive, with pronounced environmental gradients driven primarily by precipitation and air temperature on broad scales. Therefore, it is an ideal region to examine the dynamics of the climate and the hydrological system. This study investigated the annual precipitation, air temperature, and river discharge variability at five selected stations of the sub-basin by using Mann-Kendall (MK), Innovative trend analysis method (ITAM), and Sen’s slope estimator test. The result showed that the trend of annual precipitation was slightly increasing in Ulaanbaatar (Z = 0.71), Erdenet (Z = 0.13), and Tsetserleg (Z = 0.26) stations. Whereas Murun (Z = 2.45) and Sukhbaatar (Z = 1.06) stations showed a significant increasing trend. And also, the trend of annual air temperature in Ulaanbaatar (Z = 5.88), Erdenet (Z = 3.87), Tsetserleg (Z = 4.38), Murun (Z = 4.77), and Sukhbaatar (Z = 2.85) was sharply increased. The average air temperature has significantly increased by 1.4 °C in the past 38 years. This is very high in the semi-arid zone of central Asia. The river discharge showed a significantly decreasing trend during the study period years. It has been apparent since 1995. The findings of this paper could help researchers to understand the annual variability of precipitation, air temperature, and river discharge over the study region and, therefore, become a foundation for further studies.
Collapse
|
16
|
Byappanahalli MN, Nevers MB, Shively DA, Spoljaric A, Otto C. Real-Time Water Quality Monitoring at a Great Lakes National Park. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1086-1093. [PMID: 30272770 DOI: 10.2134/jeq2017.11.0462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall ( = 0.686, < 0.0001, = 98) and at individual locations as well, except at the Platte River outlet location: Esch Road Beach ( = 0.441, = 0.031, = 24), Otter Creek ( = 0.592, = 0.002, = 24), and Platte Point Bay ( = 0.571, = 0.004, = 24). Similarly, MF and qPCR results were significantly, positively correlated ( = 0.469, < 0.0001, = 95), overall but not at individual locations. Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.
Collapse
|
17
|
Innovative Trend Analysis of Annual and Seasonal Rainfall Variability in Amhara Regional State, Ethiopia. ATMOSPHERE 2018. [DOI: 10.3390/atmos9090326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the annual and seasonal rainfall variability at five selected stations of Amhara Regional State, by using the innovative trend analysis method (ITAM), Mann-Kendall (MK) and Sen’s slope estimator test. The result showed that the trend of annual rainfall was increasing in Gondar (Z = 1.69), Motta (Z = 0.93), and Bahir Dar (Z = 0.07) stations. However, the trends in Dangla (Z = −0.37) and Adet (Z = −0.32) stations showed a decreasing trend. As far as monthly and seasonal variability of rainfall are concerned, all the stations exhibited sensitivity of change. The trend of rainfall in May, June, July, August, and September was increasing. However, the trend on the rest of other months showed a decreasing trend. The increase in rainfall during Kiremt season, along with the decrease in number of rainy days, leads to an increase of extreme rainfall events over the region during 1980–2016. The consistency in rainfall trends over the study region confirms the robustness of the change in trends. Innovative trend analysis method is very crucial method for detecting the trends in rainfall time series data due to its potential to present the results in graphical format as well. The findings of this paper could help researchers to understand the annual and seasonal variability of rainfall over the study region and become a foundation for further studies.
Collapse
|
18
|
Meghdadi A, Javar N. Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:207-222. [PMID: 29289831 DOI: 10.1016/j.envpol.2017.12.078] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Spatial and seasonal variations in nitrate contamination are a globally concern. While numerous studies have used δ15N-NO3 and δ18O-NO3 to elucidate the dominant sources of nitrate in groundwater, this approach has significant limitations due to the overlap of nitrate isotopic ranges and the occurrence of nitrate isotopic fractionation. This study quantitatively assessed the spatial and seasonal variations in the proportional contributions of nitrate sources from different land uses in the Tarom watershed in North-West Iran. To achieve this aim, orthogonal projection of the hydrochemical and isotopic dataset of the principal component analysis (PCA) as well as correlation coefficient matrix (Corr-PCA) were evaluated to reduce the dimensionality of the inter-correlated dataset. Next, a nitrate isotopic biplot accompanied with a Bayesian isotope mixing model (SIAR) were applied to specify the spatial and seasonal trends in the proportional contribution of three dominant sources of nitrate (fertilizers, animal manure and residential waste) in the watershed. Finally, in order to provide a sensitive framework for nitrate source appointment and overcome the associated limitations of dual nitrate isotope application, the integration of boron isotope (δ11B) and strontium isotopic ratio (87Sr/86Sr) was introduced. The results revealed that the mean contribution of residential sewage increased (17%-27.5%), while the mean contribution of fertilizers decreased (28.3%-19%), from late spring to early autumn. Also, fertilizer was the highest contributor (42.1% ± 3.2) during late spring, especially in regions with more than 75% agricultural land. Meanwhile, the mean contribution of sewage was highest in early autumn (32.1% ± 2.8) in the areas with more than 20% residential land. These results were confirmed by coupled application of δ11B and 87Sr/86Sr. This study provides a useful insight for environmental managers to verify groundwater pollution contributors and to better apply remedial solutions.
Collapse
Affiliation(s)
- Aminreza Meghdadi
- School of Earth Environmental and Biological Science, Queensland University of Technology, 4000, Brisbane, QLD, Australia.
| | - Narmin Javar
- Biological and Environmental Research Centre, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| |
Collapse
|
19
|
|
20
|
Scott EE, Leh MDK, Haggard BE. Spatiotemporal variation of bacterial water quality and the relationship with pasture land cover. JOURNAL OF WATER AND HEALTH 2017; 15:839-848. [PMID: 29215349 DOI: 10.2166/wh.2017.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pathogens are a major cause of water quality impairment and public health concern world-wide. In the United States, each state is tasked with developing water quality standards (WQS) to protect the designated use(s) of waterbodies. Several streams in the Illinois River Watershed in northwest Arkansas are currently listed as impaired due to elevated levels of pathogens. Our objective was to evaluate Escherichia coli (E. coli) numbers at 29 stream sites, compare these numbers to the applicable WQS, and investigate the relationship between E. coli numbers and land cover variables. E. coli numbers in samples collected at most sites were within allowable limits, although there were several instances of violations of the WQS. Violations were variable from year to year at some sites, and elevated levels of E. coli were spatially localized during baseflow. Violations also were positively related to pasture land cover in the drainage area, and particularly within the riparian buffer area. This relationship was non-linear, or threshold based, where there was a significant increase in the mean E. coli exceedances when riparian pasture land cover was greater than approximately 50%. These results can be used to identify specific stream reaches where E. coli numbers might be elevated and the implementation of best management practices can be geographically targeted.
Collapse
Affiliation(s)
- Erin E Scott
- Arkansas Water Resources Center, University of Arkansas, 790 W. Dickson Street, Engineering Hall 203, Fayetteville, AR 72701, USA E-mail:
| | - Mansoor D K Leh
- International Water Management Institute - Southeast Asia Regional Office, P.O. Box 4199, Vientiane, Lao PDR
| | - Brian E Haggard
- Arkansas Water Resources Center, University of Arkansas, 790 W. Dickson Street, Engineering Hall 203, Fayetteville, AR 72701, USA E-mail:
| |
Collapse
|
21
|
Tong Y, Bu X, Chen C, Yang X, Lu Y, Liang H, Liu M, Lin H, Zhang H, Lin Y, Zhou F, Zhao S, Wu T, Mao G, Zhang W, Wang X. Impacts of sanitation improvement on reduction of nitrogen discharges entering the environment from human excreta in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:439-448. [PMID: 28359997 DOI: 10.1016/j.scitotenv.2017.03.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Identifying the sanitation efficacy in reducing contaminations entering the environment is an important step for water pollution controls and developing management strategies to further improve sanitation conditions. With continuous efforts in sanitation improvement during the past decade, reductions in discharges of aquatic nutrients are expected in China. In this study, we estimated the aquatic nitrogen discharges from human excreta in 31 provinces in China during 2006-2014. The results indicated that the nitrogen discharges entering the environment from human excreta are largely determined by both local population and sanitation conditions. In 2014, the nitrogen discharges from human excreta in the rural areas (2118(1219-3140) Gg per year) (median and 95% confidence interval) are higher than those in the urban areas (1485(626-2495) Gg per year). The significant relationship (R2=0.38, n=29) between the total nitrogen concentrations in lakes and corresponding local nitrogen discharges indicated that, the lakes might be potentially affected by the contaminant inputs from human excreta. The further calculations under two policy scenarios showed that through sanitation improvement, further reduction of nitrogen discharges from human excreta in the developed regions might be limited. The sanitation improvement in the less-developed regions, such as Tibet, Qinghai, and Ningxia, should be considered a priority due to the larger reduction potentials.
Collapse
Affiliation(s)
- Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoge Bu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cen Chen
- Tianjin Environmental Sanitation Engineering Design Institute, Tianjin 300201, China
| | - Xi Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiren Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huijiao Liang
- College of Urban and Environment Science, Tianjin Normal University, Tianjin 300387, China
| | - Maodian Liu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huiming Lin
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haoran Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yan Lin
- Norwegian Institute for Water Research, Oslo 0349, Norway
| | - Feng Zhou
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shen Zhao
- Tianjin Architecture Design Institute, Tianjin 300074, China
| | - Tianyu Wu
- Hydrochina Huadong Engineering Design Institute, Hangzhou 311122, China
| | - Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Park Y, Pachepsky Y, Hong EM, Shelton D, Coppock C. Release from Streambed to Water Column during Baseflow Periods: A Modeling Study. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:219-226. [PMID: 28177403 DOI: 10.2134/jeq2016.03.0114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Streambed sediments can harbor large populations that are released into the water column during high-flow events. Few studies have been conducted on the rates of transfer from streambed sediment to water column in low-flow conditions in natural streams. The aim of this work was to apply the watershed-scale model SWAT (Soil and Water Assessment Tool) to a natural stream to evaluate the need to account for the release from streambed sediments during baseflow periods and to compare the results of simulating such a release by assuming predominantly passive transport, driven by groundwater influx, against simulations assuming predominantly active transport of random or chemotaxis-driven bacteria movement. concentrations in water during baseflow periods were substantially underestimated when release from the streambed was attributed only to streambed sediment resuspension. When considered in addition to the release due to sediment resuspension at high flows, the active and passive release assumptions provided 42 and 4% improvement, respectively, in the RMSE of logarithms of concentrations. Estimated fluxes to water column during the baseflow periods from June to November ranged from 3.3 × 10 colony-forming units (CFU) m d in the game land area to 1.4 × 10 CFU m d in the mixed pasture and cropland. Results demonstrate that release of from streambed sediments during baseflow periods is substantial and that water column concentrations are dependent on not only land management practices but also on in-stream processes.
Collapse
|
23
|
Liu YH, Zhang SH, Ji GX, Wu SM, Guo RX, Cheng J, Yan ZY, Chen JQ. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:90-97. [PMID: 27721125 DOI: 10.1016/j.ecoenv.2016.09.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The occurrence and distribution of eight selected endocrine-disrupting chemicals were investigated in samples of surface water and suspended particulate matter (SPM) in Nanjing section of Yangtze River over a year (the flow period, the wet period and the dry period). All target compounds were detected at least once in surface water with 4-tert-butylphenol (4-TBP), nonyphenol (NP) and bisphenol A (BPA) as the dominant compounds, with concentrations in the range of 225-1121ng/L, 1.4-858ng/L and 1.7-563ng/L, respectively. Except for December, all selected compounds for the other sampling times were not found in all sampling points. NP (mean concentration 69.8µg/g) and BPA (mean concentration 51.8µg/g) were also the dominant estrogens in SPM. In addition, the highest total compounds concentrations were found in December in both phases, which could be due to the low flow conditions and temperature during this season. Meanwhile, a significant positive correlation was found between the total compounds concentrations in the water phase and those in SPM phase. Risk assessment based on the calculated risk quotients (RQ) showed that low and moderate risk for the aquatic environment from presence of the target compounds at all sampling points with exception of 4-TBP and NP which might pose a high risk to aquatic organisms.
Collapse
Affiliation(s)
- Yan-Hua Liu
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Sheng-Hu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Gui-Xiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Sheng-Min Wu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Rui-Xin Guo
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Cheng
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310013, China
| | - Zheng-Yu Yan
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China.
| | - Jian-Qiu Chen
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
24
|
Glińska-Lewczuk K, Gołaś I, Koc J, Gotkowska-Płachta A, Harnisz M, Rochwerger A. The impact of urban areas on the water quality gradient along a lowland river. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:624. [PMID: 27757827 PMCID: PMC5069316 DOI: 10.1007/s10661-016-5638-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/10/2016] [Indexed: 05/23/2023]
Abstract
The effects of five towns on river water pollution were examined along the Łyna River (southern watershed of the Baltic Sea, northern Poland). The relationships among the spatially derived indicators of urbanization, environmental variables, and physico-chemical and microbiological data (heterotrophic plate count at 22 and 37 °C, and fecal coli) obtained from longitudinal river profiling have been examined with the use of multivariate analyses such as principal component analysis with factor analysis (PCA/FA) and hierarchical cluster analysis (HCA). We recognized the river channel as an environmental path that links serial urban areas into an "urban river continuum." An overall increasing trend in nutrients and indicator bacteria from suburban headwaters to urbanized sections of the river was detected despite a significant decrease in those between the towns. We concluded that the role of a multicity is equally as important as a single urban area in predicting the impacts of man-made pollutants on river water quality.
Collapse
Affiliation(s)
- Katarzyna Glińska-Lewczuk
- Department of Water Resources, Climatology, and Environmental Management, University of Warmia and Mazury in Olsztyn, Plac Lodzki 2, 10-759, Olsztyn, Poland
| | - Iwona Gołaś
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-759, Olsztyn, Poland.
| | - Józef Koc
- Department of Water Resources, Climatology, and Environmental Management, University of Warmia and Mazury in Olsztyn, Plac Lodzki 2, 10-759, Olsztyn, Poland
| | - Anna Gotkowska-Płachta
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-759, Olsztyn, Poland
| | - Monika Harnisz
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-759, Olsztyn, Poland
| | - Andrzej Rochwerger
- Department of Water Resources, Climatology, and Environmental Management, University of Warmia and Mazury in Olsztyn, Plac Lodzki 2, 10-759, Olsztyn, Poland
| |
Collapse
|
25
|
Cha Y, Park MH, Lee SH, Kim JH, Cho KH. Modeling spatiotemporal bacterial variability with meteorological and watershed land-use characteristics. WATER RESEARCH 2016; 100:306-315. [PMID: 27208919 DOI: 10.1016/j.watres.2016.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Bacteria are a primary contaminant in natural surface water. The instream concentration of fecal coliform, a potential indicator of pathogens, is influenced by meteorological conditions and land-use characteristics. However, the relationships between these conditions and fecal coliforms are not fully understood. Furthermore, the sources of large variability in fecal coliform counts, e.g., temporal or spatial sources, remain unexplained, especially at large scales. This study proposes the use of Bayesian overdispersed Poisson models, whereby the combined effects of temperature, rainfall, and land-use characteristics on fecal coliform concentration are quantified with predictive uncertainty, and the sources of variability in fecal coliform concentration are assessed. The models were developed using 8-year weekly observations of fecal coliforms obtained from the Wachusett Reservoir watershed in Massachusetts, USA. The results highlight the importance of interactions among meteorological and land-use characteristics in controlling the instream fecal coliform concentration; the increase in fecal coliform concentration with temperature increase was more drastic when rainfall occurred. Also, the responses of fecal coliforms to temperature increases were more pronounced in forest-dominated than in urban-dominated areas. In contrast, the fecal coliform concentration increased more rapidly with rainfall increases in urban-dominated than in forest-dominated areas. The models also demonstrate that among the sources of variability, the monthly component made the most significant contribution to the variability in fecal coliform concentrations. Our results suggest that seasonally dependent processes, including surface runoff, are critical factors that regulate fecal coliform concentration in streams.
Collapse
Affiliation(s)
- YoonKyung Cha
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, 130-743, Republic of Korea
| | - Mi-Hyun Park
- Department of Civil and Environmental Engineering, University of Massachusetts, 130 Natural Resources Road, Amherst, MA, 01003, USA
| | - Sang-Hyup Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Joon Ha Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea.
| |
Collapse
|
26
|
Tong Y, Yao R, He W, Zhou F, Chen C, Liu X, Lu Y, Zhang W, Wang X, Lin Y, Zhou M. Impacts of sanitation upgrading to the decrease of fecal coliforms entering into the environment in China. ENVIRONMENTAL RESEARCH 2016; 149:57-65. [PMID: 27179203 DOI: 10.1016/j.envres.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
Identifying the sanitation efficacy of reducing fecal contaminations in the environment is important for evaluating health risks of the public and developing future management strategies to improve sanitation conditions. In this study, we estimated the fecal coliforms (FC) entering into the environment in 31 provinces in China under three sanitation scenarios. Our calculation results indicated that, the current FC release is disparate among regions, and the human releases in the rural regions were dominant, accounting for over 90% of the total human releases. Compared with the human release, the FC release from the livestock was of similar magnitude, but has a quite different spatial distribution. In China Women's Development Program, the Chinese government set the target to make over 85% of the population in the rural access to the toilets in 2020. If the target set by the Chinese government is achieved, a decrease of 34% (12-54%) in the FC releases would be anticipated. In the future, the improvement in sanitation and accesses to the safe drinking water in the less developed regions, such as Tibet, Qinghai, and Ningxia, should be considered as a priority.
Collapse
Affiliation(s)
- Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China; Chinese Academy for Environmental Planning, Beijing 100012, China.
| | - Ruihua Yao
- Chinese Academy for Environmental Planning, Beijing 100012, China.
| | - Wei He
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Feng Zhou
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Institute of Integrated Watershed Management, Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface, Beijing 100871, China
| | - Cen Chen
- Tianjin Environmental Sanitation Engineering Design Institute, Tianjin 300000, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Yiren Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Wei Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yan Lin
- Norwegian Institute for Water Research, Oslo 0349, Norway
| | - Min Zhou
- College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Chandran A, Mazumder A. Investigation on the temporal variation and source tracking of faecal bacteria in a forest dominated watershed (Comox Lake), British Columbia, Canada. J Appl Microbiol 2015; 119:1718-28. [PMID: 26456882 DOI: 10.1111/jam.12969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
AIMS The aims of this study were to investigate the temporal variation in Escherichia coli density and its sources at the drinking water intake of Comox Lake for a period of 3 years (2011-2013). METHODS AND RESULTS Density of E. coli was assessed by standard membrane filtration method. Source tracking of E. coli were done by using BOX-A1R-based rep-PCR DNA fingerprinting method. Over the years, the mean E. coli density ranged from nondetectable to 9·8 CFU 100 ml(-1) . The density of E. coli in each of the years did not show any significant difference (P > 0·05); however, a comparatively higher density was observed during the fall. Wildlife was (64·28%, 153/238) identified as the major contributing source of E. coli, followed by human (18·06%, 43/238) and unknown sources (17·64%, 42/238). Although the sources were varied by year and season, over all, the predominant contributing sources were black bear, human, unknown, elk, horse and gull. CONCLUSIONS The findings of this investigation identified the multiple animal sources contributing faecal bacteria into the drinking water intake of Comox Lake and their varying temporal occurrence. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study can reliably inform the authorities about the most vulnerable period (season) of faecal bacterial loading and their potential sources in the lake for improving risk assessment and pollution mitigation.
Collapse
Affiliation(s)
- A Chandran
- Department of Biology, Water and Aquatic Sciences Research Program, University of Victoria, Victoria, BC, Canada
| | - A Mazumder
- Department of Biology, Water and Aquatic Sciences Research Program, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
28
|
Amraotkar AR, Hargis CW, Cambon AC, Rai SN, Keith MCL, Ghafghazi S, Bolli R, DeFilippis AP. Comparison of coliform contamination in non-municipal waters consumed by the Mennonite versus the non-Mennonite rural populations. Environ Health Prev Med 2015; 20:338-46. [PMID: 26068785 DOI: 10.1007/s12199-015-0472-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Mennonites reside in clusters, do not use modern sewage systems and consume water from non-municipal sources. The purpose of this study is to assess risk of Escherichia coli exposure via consumption of non-municipal waters in Mennonite versus non-Mennonite rural households. METHODS Results were reviewed for non-municipal water samples collected by the local health department from Mennonite and non-Mennonite lifestyle households from 1998 through 2012. Water contamination was examined with the help of two study variables: water quality (potable, polluted) and gastrointestinal (GI) health risk (none, low, high). These variables were analyzed for association with lifestyle (Mennonite, non-Mennonite) and season (fall, winter, spring, summer) of sample collection. Data were split into two periods to adjust for the ceiling effect of laboratory instrument. RESULTS From the entire cohort, 82 % samples were polluted and 46 % samples contained E. coli, which is consistent with high GI health risk. In recent years (2009 through 2012), the presence of total coliforms was higher in non-Mennonites (39 %, P = 0.018) and presence of E. coli was higher in Mennonites (P = 0.012). Most polluted samples were collected during summer (45 %, P = 0.019) and had high GI health risk (51 %, P = 0.008) as compared to other seasons. CONCLUSIONS Majority of non-municipal waters in this region are polluted, consuming those poses a high GI health risk and contamination is prevalent in all households consuming these waters. An association of E. coli exposure with the Mennonite lifestyle was limited to recent years. Seasons with high heat index and increased surface runoffs were the riskiest to consume non-municipal waters.
Collapse
Affiliation(s)
- Alok Ravindra Amraotkar
- Department of Medicine, University of Louisville, 550 S. Jackson St, ACB 3rd Floor, Louisville, KY, 40292, USA,
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Micropollutants Identification Affecting the Nearby Environment from Highway Runoff: The Case Study of Cyprus Highway. J CHEM-NY 2015. [DOI: 10.1155/2015/301371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Road/highway surfaces accumulate significant quantities of pollutants including nutrients, heavy metals, and polycyclic hydrocarbon aromatic (PHAs). Traffic characteristics (vehicle speed, traffic load, etc.), climate, long dry wet periods, and rainfall event intensity and duration are regarded as important factors in generating pollutants in high way runoff (HRO). Regarding rainfall control, most of the road is served by drainage ditches which collect the runoff and direct it to the nearest natural water courses. This paper focuses on the estimation of pollutant that is coming from two several highways (to the airport and to the biggest industrial area) in Cyprus. Overall, more than 100 different samples were collected and analysed over a period of two years. Several parameters were determined like PHA, COD, electronic conductivity (EC), total suspended solid (TSS), total dissolved solid (TDS), pH, fats and oils (FOG), T. Coliforms, NO3, NO2, NH4, SO4, Cl, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, P, Pb, and Zn. The results indicated that the first flush consists of major pollution due to the fact that all parameters are in high levels. As the rainfall continues the pollution decreases but the influence to the nearby areas of the runoff is high.
Collapse
|
30
|
Delpla I, Rodriguez MJ. Effects of future climate and land use scenarios on riverine source water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:1014-1024. [PMID: 25016469 DOI: 10.1016/j.scitotenv.2014.06.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Surface water quality is particularly sensitive to land use practices and climatic events that affect its catchment. The relative influence of a set of watershed characteristics (climate, land use, morphology and pedology) and climatic variables on two key water quality parameters (turbidity and fecal coliforms (FC)) was examined in 24 eastern Canadian catchments at various spatial scales (1 km, 5 km, 10 km and the entire catchment). A regression analysis revealed that the entire catchment was a better predictor of water quality. Based on this information, linear mixed effect models for predicting turbidity and FC levels were developed. A set of land use and climate scenarios was considered and applied within the water quality models. Four land use scenarios (no change, same rate of variation, optimistic and pessimistic) and three climate change scenarios (B1, A1B and A2) were tested and variations for the near future (2025) were assessed and compared to the reference period (2000). Climate change impacts on water quality remained low annually for this time horizon (turbidity: +1.5%, FC: +1.6%, A2 scenario). On the other hand, the influence of land use changes appeared to predominate. Significant benefits for both parameters could be expected following the optimistic scenario (turbidity: -16.4%, FC: -6.3%; p < 0.05). However, pessimistic land use scenario led to significant increases on an annual basis (turbidity: +11.6%, FC: +15.2%; p < 0.05). Additional simulations conducted for the late 21st century (2090) revealed that climate change impacts could become equivalent to those modeled for land use for this horizon.
Collapse
Affiliation(s)
- Ianis Delpla
- Chaire de recherche en eau potable, École Supérieure d'aménagement du territoire et de Développement Régional, Université Laval, 1624 Pavillon F.A. Savard, Ste-Foy, QC G1K 7P4, Canada.
| | - Manuel J Rodriguez
- Chaire de recherche en eau potable, École Supérieure d'aménagement du territoire et de Développement Régional, Université Laval, 1624 Pavillon F.A. Savard, Ste-Foy, QC G1K 7P4, Canada
| |
Collapse
|
31
|
Huang J, Huang Y, Zhang Z. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China. PLoS One 2014; 9:e91528. [PMID: 24618771 PMCID: PMC3950248 DOI: 10.1371/journal.pone.0091528] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/12/2014] [Indexed: 11/18/2022] Open
Abstract
Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4+-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3–N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities.
Collapse
Affiliation(s)
- Jinliang Huang
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, People’s Republic of China
- * E-mail:
| | - Yaling Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, People’s Republic of China
| | - Zhenyu Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|