1
|
Al-Balushi MA, Kyaw HH, Myint MTZ, Al-Abri M, Dobretsov S. Chemical Cleaning Techniques for Fouled RO Membranes: Enhancing Fouling Removal and Assessing Microbial Composition. MEMBRANES 2024; 14:204. [PMID: 39452816 PMCID: PMC11509379 DOI: 10.3390/membranes14100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Membrane fouling, a major challenge in desalination, is addressed in this study by investigating three different chemical cleaning protocols (A, B, and C) targeting fouled reverse osmosis (RO) membranes and microbial community composition. Cleaning protocols A and B involve different chemical treatments selected based on preliminary tests and literature review, while protocol C follows the manufacturer's standard recommendation. Membrane morphology, foulant composition, and microbial community variability in fouled, virgin, and cleaned membranes are studied. Effective biofilm removal is observed across all protocols using scanning electron microscopy (SEM), while spectroscopic techniques highlight interactions between foulants and membranes. Importantly, a critical gap in understanding how cleaning strategies influence microbial communities on membranes is addressed. Shifts in dominant bacterial phyla (Proteobacteria, Firmicutes, and Actinobacteria) after cleaning are identified through 16S rRNA amplicon sequencing. Cleaning A showed the best results in reducing microbial counts and restoring composition similar to virgin membranes. Additionally, chemical treatment increased dominance of resistant genera such as Staphylococcus, Bacillus, Citrobacter, and Burkholderia. This study emphasizes the necessity for tailored fouling cleaning strategies for RO membranes, with Cleaning A is a promising solution, paving the way for enhanced water purification technologies.
Collapse
Affiliation(s)
- Mohammed A. Al-Balushi
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, P.O. Box 34, Muscat 123, Oman
- Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agricultural, Fisheries Wealth & Water Resources, P.O. Box 3094, Muscat 111, Oman
| | - Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoudh, P.O. Box 33, Muscat 123, Oman; (H.H.K.); (M.A.-A.)
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Al Khoudh, P.O. Box 36, Muscat 123, Oman;
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoudh, P.O. Box 33, Muscat 123, Oman; (H.H.K.); (M.A.-A.)
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Al-Khoudh, P.O. Box 33, Muscat 123, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, P.O. Box 34, Muscat 123, Oman
- UNESCO Chair in Marine Biotechnology, Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud, P.O. Box 50, Muscat 123, Oman
| |
Collapse
|
2
|
Chen X, Zhang X, Yu H, Han M, Sun J, Liu G, Ji Y, Zhai C, Zhu L, Shao H, Liang Y, McMinn A, Wang M. Spatio-temporal variation of bacterial community structure in two intertidal sediment types of Jiaozhou Bay. ENVIRONMENTAL RESEARCH 2023; 237:116743. [PMID: 37500038 DOI: 10.1016/j.envres.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The intertidal sediment environment is dynamic and the biofilm bacterial community within it must constantly adapt, but an understanding of the differences in the biofilm bacterial community within sediments of different types is still relatively limited. The semi-enclosed Jiaozhou Bay has a temperate monsoon climate, with strong currents at the mouth of the bay. In this study, the structure of the bacterial community in Jiaozhou Bay sediment biofilms are described using high-throughput 16 S rRNA gene sequencing and the effects of temporal change and different sediment environment types are discussed. Alpha diversity was significantly higher in sandy samples than in muddy samples. Sandy sediments with increased heterogeneity promote bacterial aggregation. Beta diversity analysis showed significant differences between sediment types and between stations. Proteobacteria and Acidobacteria were significantly more abundant at ZQ, while Campilobacterota was significantly more abundant at LC. The relative abundances of Bacteroidetes, Campilobacterota, Firmicutes, and Chloroflexi were significantly higher in the muddy samples, while Actinobacteria and Proteobacteria were higher in the sandy samples. There were different phylum-level biomarkers between sediment types at different stations. There were also different patterns of functional enrichment in biogeochemical cycles between sediment types and stations with the former having more gene families that differed significantly, highlighting their greater role in determining bacterial function. Bacterial amplicon sequence variant variation between months was less than KEGG ortholog variation between months, presumably the temporal change had an impact on shaping the intertidal sediment bacterial community, although this was less clear at the gene family level. Random forest prediction yielded a combination of 43 family-level features that responded well to temporal change, reflecting the influence of temporal change on sediment biofilm bacteria.
Collapse
Affiliation(s)
- Xuechao Chen
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Meiaoxue Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Jianhua Sun
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Gang Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Yan Ji
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Chuan Zhai
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Liyan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia.
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China; Haide College, Ocean University of China, Qingdao, 266003, China; The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
3
|
Ran N, Sorek G, Stein N, Sharon-Gojman R, Herzberg M, Gillor O. Multispecies biofilms on reverse osmosis membrane dictate the function and characteristics of the bacterial communities rather than their structure. ENVIRONMENTAL RESEARCH 2023; 231:115999. [PMID: 37105294 DOI: 10.1016/j.envres.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
The main reason for the deterioration of membrane operation during water purification processes is biofouling, which has therefore been extensively studied. Biofouling was shown to reduce membrane performance reflected by permeate flux decline, reduced selectivity, membrane biodegradation, and consequently, an increase in energy consumption. Studies of biofouling focused on the identification of the assembled microbial communities, the excretion of extracellular polymeric substances (EPS), and their combined role in reduced membrane performance and lifetime. However, the link between the structure and function of biofouling communities has not been elucidated to date. Here, we provide a novel insight, suggesting that bacterial functions rather than composition control biofouling traits on reverse osmosis (RO) membranes. We studied the potential activity of RO biofilms at metatranscriptome resolution, accompanied by the morphology and function of the biofouling layer over time, including microscopy and EPS composition, adhesion, and viscoelastic properties. To that end, we cultivated natural multispecies biofilms in RO membranes under treated wastewater flow and extracted RNA to study their taxonomies and gene expression profiles. Concomitantly, the biofilm structure was visualized using both scanning electron microscopy and laser scanning confocal microscopy. We also used quartz crystal microbalance with dissipation to characterize the affinity of EPS to membrane-mimetic sensors and evaluated the viscoelasticity of the Ex-Situ EPS layer formed on the sensor. Our results showed that different active bacterial taxa across five taxonomic classes were assembled on the RO membrane, while the composition shifted between 48 and 96 h. However, regardless of the composition, the maturation of the biofilm resulted in the expression of similar gene families tightly associated with the temporal kinetics of the EPS composition, adhesion, and viscoelasticity. Our findings highlight the temporal selection of specific microbial functions rather than composition, featuring the adhesion kinetics and viscoelastic properties of the RO biofilm.
Collapse
Affiliation(s)
- Noya Ran
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Gil Sorek
- Department of Life Science, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel
| | - Noa Stein
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
4
|
Jing X, Wu Y, Wang D, Qu C, Liu J, Gao C, Mohamed A, Huang Q, Cai P, Ashry NM. Ionic Strength-Dependent Attachment of Pseudomonas aeruginosa PAO1 on Graphene Oxide Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16707-16715. [PMID: 36378621 DOI: 10.1021/acs.est.1c08672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) is a widely used antimicrobial and antibiofouling material in surface modification. Although the antibacterial mechanisms of GO have been thoroughly elucidated, the dynamics of bacterial attachment on GO surfaces under environmentally relevant conditions remain largely unknown. In this study, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to examine the dynamic attachment processes of a model organism Pseudomonas aeruginosa PAO1 onto GO surface under different ionic strengths (1-600 mM NaCl). Our results show the highest bacterial attachment at moderate ionic strengths (200-400 mM). The quantitative model of QCM-D reveals that the enhanced bacterial attachment is attributed to the higher contact area between bacterial cells and GO surface. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM) analysis were employed to reveal the mechanisms of the bacteria-GO interactions under different ionic strengths. The strong electrostatic and steric repulsion at low ionic strengths (1-100 mM) was found to hinder the bacteria-GO interaction, while the limited polymer bridging caused by the collapse of biopolymer layers reduced cell attachment at a high ionic strength (600 mM). These findings advance our understanding of the ionic strength-dependent bacteria-GO interaction and provide implications to further improve the antibiofouling performance of GO-modified surfaces.
Collapse
Affiliation(s)
- Xinxin Jing
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Yichao Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Chenchen Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Jun Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Chunhui Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Noha Mohamed Ashry
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Agriculture Microbiology Department, Faculty of Agriculture, Benha University, Moshtohor, Qalubia13736, Egypt
| |
Collapse
|
5
|
Chen Q, Zhao K, Li G, Luo J, Li X, Zeng Y, Wang XM. Highly Permeable Polylactic Acid Membrane Grafted with Quaternary Ammonium Salt for Effective and Durable Water Disinfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43741-43748. [PMID: 36099237 DOI: 10.1021/acsami.2c11551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Given the increasing usage of drinking water purifiers, highly permeable membranes with strong antimicrobial functions are desperately desirable for effective and durable water disinfection. Hereby, we prepared such antimicrobial membranes by chemical grafting of quaternary ammonium salt (QAS) molecules, 3-(trimethoxysilyl)propyldimethyloctadecyl ammonium chloride (TPMMC), onto air plasma pretreated biodegradable polylactic acid (PLA) substrates. The high chemical grafting density promoted very strong and positive zeta potential charge of the resulted PLA-QAS membrane, contributing to effective and broad-spectrum antimicrobial efficiencies (>99.99%) against different microbes, including fungi and conventional and drug-resistant bacteria. The solid grafting of QAS molecules produced a durable antimicrobial performance of the PLA-QAS membrane. In addition, the pleated filter (0.45 m2) of PLA-QAS membrane showed outstanding bacteria rejection properties (>99.99%) and excellent washing durability (up to 20 m3 water) even at very high water filtration rates (up to 4 L/min). The disinfection mechanism was clarified that negatively charged bacteria could be rapidly adsorbed to positively charged PLA-QAS spinnings, followed by devastating cell membrane damage to bacterial debris, leaving a clean environment without significant biofilm and biofouling formation.
Collapse
Affiliation(s)
- Qingyan Chen
- Shenzhen Angel Drinking Water Industrial Group Corporation, Angel Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Kai Zhao
- Shenzhen Angel Drinking Water Industrial Group Corporation, Angel Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Guoping Li
- Shenzhen Angel Drinking Water Industrial Group Corporation, Angel Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Jiyue Luo
- Shenzhen Angel Drinking Water Industrial Group Corporation, Angel Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Xin Li
- Shenzhen Angel Drinking Water Industrial Group Corporation, Angel Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Yingjie Zeng
- Shenzhen Angel Drinking Water Industrial Group Corporation, Angel Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Yang Y, Qiu J, Wang X. Exploring the Dynamic of Bacterial Communities in Manila Clam ( Ruditapes philippinarum) During Refrigerated Storage. Front Microbiol 2022; 13:882629. [PMID: 35663902 PMCID: PMC9158497 DOI: 10.3389/fmicb.2022.882629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022] Open
Abstract
Microorganism contamination is one of the most important factors affecting the spoilage and food safety of Manila clams. This study aimed to gain insights into bacterial composition and the dynamic change of bacterial communities on retailed Manila clam during refrigerated storage within the edible period. High-throughput sequencing was conducted to monitor the bacterial population with the prolongation of storage time of Day 0, Day 1, and Day 3. Result demonstrated that phyla of Proteobacteria, Actinobacteriota, Acidobacteriota, and Chloroflexi composed the majority of bacterial communities during the whole observation process. Furthermore, the increase of Proteobacteria showed a positive correlation with the storage time, whereas Acidobacteriota and Chloroflexi continued to decline in storage. For genus annotation, none of genus obtained dominant population in storage. From Day 0 to Day 1, the genera of Streptomyces, Bradyrhizobium, and Mycobacterium significantly increased; meanwhile, 12 genera significantly decreased. Compared with samples at Day 0, a total of 15 genera significantly decreased with the reduced proportion ranging from 0.50 to 4.40% at Day 3. At the end of the storage, the genus Crossiella became the most redundant population. Both the richness and diversity decreased at the start of storage at Day 1, and then slightly increased at Day 3 was observed. Based on the result in this study, strategy targeting the increased bacteria could be tested to improve the consumption quality and safety of refrigerated clam.
Collapse
Affiliation(s)
| | | | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Wang M, Li J, Ning S, Fu X, Wang X, Tan L. Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153452. [PMID: 35093373 DOI: 10.1016/j.scitotenv.2022.153452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Operation performance and membrane fouling of a novel static magnetic field membrane bioreactor (SMFMBR) for treatment of hypersaline azo dye wastewater was investigated. The results showed that SMFMBRs possessed higher efficiency of dye decolorization, COD removal and detoxification than the control MBR without SMF. The (3#) SMFMBR equipped with 305.0 mT (the highest intensity) SMF displayed the best treatment performance among all the four reactors (named as 0#-3#, equipped with SMFs of 0 mT, 95.0 mT, 206.3 mT and 305.0 mT, respectively). Potentially effective microbes belonging to Rhodanobacter, Saccharibacteria genera incertae sedis, Defluviimonas, Cellulomonas, Cutaneotrichosporon, Candida and Pichia were enriched in three SMFMBRs, in both of suspended sludge and bio-cakes. The relative abundance of Candida and Pichia in suspended sludge of 3# SMFMBR was the highest among all the four reactors, suggesting their successful colonization and potentially persistent effect of bioaugmentation. On the other hand, SMF of higher intensity effectively mitigated membrane fouling. Less production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), lower protein/polysaccharide (PN/PS) ratio in SMP and EPS, looser structure of bio-cakes on membrane surface, as well as lower relative abundance of potential fouling causing microbes (mainly bacteria) in microbial communities were determined in 3# SMFMBR than the other three groups.
Collapse
Affiliation(s)
- Meining Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Jiamin Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Shuxiang Ning
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaohan Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China.
| |
Collapse
|
8
|
Kallistova A, Nikolaev Y, Grachev V, Beletsky A, Gruzdev E, Kadnikov V, Dorofeev A, Berestovskaya J, Pelevina A, Zekker I, Ravin N, Pimenov N, Mardanov A. New Insight Into the Interspecies Shift of Anammox Bacteria Ca. "Brocadia" and Ca. "Jettenia" in Reactors Fed With Formate and Folate. Front Microbiol 2022; 12:802201. [PMID: 35185828 PMCID: PMC8851195 DOI: 10.3389/fmicb.2021.802201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of anaerobic ammonium-oxidizing (anammox) bacteria to environmental fluctuations is a frequent cause of reactor malfunctions. It was hypothesized that the addition of formate and folate would have a stimulating effect on anammox bacteria, which in turn would lead to the stability of the anammox process under conditions of a sharp increase in ammonium load, i.e., it helps overcome a stress factor. The effect of formate and folate was investigated using a setup consisting of three parallel sequencing batch reactors equipped with a carrier. Two runs of the reactors were performed. The composition of the microbial community was studied by the 16S rRNA gene profiling and metagenomic analysis. Among anammox bacteria, Ca. "Brocadia" spp. dominated during the first run. A stimulatory effect of folate on the daily nitrogen removal rate (dN) was identified. The addition of formate led to progress in dissimilatory nitrate reduction and stimulated the growth of Ca. "Jettenia" spp. The spatial separation of two anammox species was observed in the formate reactor: Ca. "Brocadia" occupied the carrier and Ca. "Jettenia"-the walls of the reactors. Biomass storage at low temperature without feeding led to an interspecies shift in anammox bacteria in favor of Ca. "Jettenia." During the second run, a domination of Ca. "Jettenia" spp. was recorded along with a stimulating effect of formate, and there was no effect of folate on dN. A comparative genome analysis revealed the patterns suggesting different strategies used by Ca. "Brocadia" and Ca. "Jettenia" spp. to cope with environmental changes.
Collapse
Affiliation(s)
- Anna Kallistova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yury Nikolaev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Grachev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Beletsky
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Gruzdev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Kadnikov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Dorofeev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Berestovskaya
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Pelevina
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nikolai Ravin
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mardanov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Chen GQ, Wu YH, Wang YH, Chen Z, Tong X, Bai Y, Luo LW, Xu C, Hu HY. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125283. [PMID: 33582467 DOI: 10.1016/j.jhazmat.2021.125283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Microbial extracellular polymeric substances (EPS) have a profound role in various wastewater treatment and reclamation processes, in which a variety of technologies are used for disinfection and microbial growth inhibition. These treatment processes can induce significant changes in the quantity and properties of EPS, and altered EPS could further adversely affect the wastewater treatment and reclamation system, including membrane filtration, disinfection, and water distribution. To clarify the effects of microbial inactivation approaches on EPS, these effects were classified into four categories: (1) chemical reactions, (2) cell lysis, (3) changing EPS-producing metabolic processes, and (4) altering microbial community. Across these different effects, treatments with free chlorine, methylisothiazolone, TiO2, and UV irradiation typically enhance EPS production. Among the residual microorganisms in EPS matrices after various microbial inactivation treatments, one of the most prominent is Mycobacterium. With respect to EPS properties, proteins and humic acids in EPS are usually more susceptible to treatment processes than polysaccharides. The affected EPS properties include changes in molecular weight, hydrophobicity, and adhesion ability. All of these changes can undermine wastewater treatment and reclamation processes. Therefore, effects on EPS quantity and properties should be considered during the application of microbial inactivation and growth inhibition techniques.
Collapse
Affiliation(s)
- Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xing Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Chuang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
10
|
Herzberg M, Berglin M, Eliahu S, Bodin L, Agrenius K, Zlotkin A, Svenson J. Efficient Prevention of Marine Biofilm Formation Employing a Surface-Grafted Repellent Marine Peptide. ACS APPLIED BIO MATERIALS 2021; 4:3360-3373. [PMID: 35014421 DOI: 10.1021/acsabm.0c01672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Creation of surfaces resistant to the formation of microbial biofilms via biomimicry has been heralded as a promising strategy to protect a range of different materials ranging from boat hulls to medical devices and surgical instruments. In our current study, we describe the successful transfer of a highly effective natural marine biofilm inhibitor to the 2D surface format. A series of cyclic peptides inspired by the natural equinatoxin II protein produced by Beadlet anemone (Actinia equine) have been evaluated for their ability to inhibit the formation of a mixed marine microbial consortium on polyamide reverse osmosis membranes. In solution, the peptides are shown to effectively inhibit settlement and biofilm formation in a nontoxic manner down to 1 nM concentrations. In addition, our study also illustrates how the peptides can be applied to disperse already established biofilms. Attachment of a hydrophobic palmitic acid tail generates a peptide suited for strong noncovalent surface interactions and allows the generation of stable noncovalent coatings. These adsorbed peptides remain attached to the surface at significant shear stress and also remain active, effectively preventing the biofilm formation over 24 h. Finally, the covalent attachment of the peptides to an acrylate surface was also evaluated and the prepared coatings display a remarkable ability to prevent surface colonization at surface loadings of 55 ng/cm2 over 48 h. The ability to retain the nontoxic antibiofilm activity, documented in solution, in the covalent 2D-format is unprecedented, and this natural peptide motif displays high potential in several material application areas.
Collapse
Affiliation(s)
- Moshe Herzberg
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Mattias Berglin
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden.,Chemistry and Molecular Biology, Gothenburg University, Gothenburg SE405 30, Sweden
| | - Sarai Eliahu
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Lovisa Bodin
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden
| | - Karin Agrenius
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden
| | - Amir Zlotkin
- DisperseBio Ltd, 27 Kehilat lvov Street, Tel-Aviv 6972513, Israel
| | - Johan Svenson
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden
| |
Collapse
|
11
|
Atkinson AJ, Armstrong MD, Eskew JT, Coronell O. 2-Aminoimidazole Reduces Fouling and Improves Membrane Performance. J Memb Sci 2021; 629. [PMID: 34366551 DOI: 10.1016/j.memsci.2021.119262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biofouling is difficult to control and hinders the performance of membranes in all applications but is of particular concern when natural waters are purified. Fouling, via multiple mechanisms (organic-only, biofouling-only, cell-deposition-only, and organic+biofouling), of a commercially available membrane (control) and a corresponding membrane coated with an anti-biofouling 2-aminoimidazole (2-AI membrane) was monitored and characterized during the purification of a natural water. Results show that the amount of bacterial cell deposition and organic fouling was not significantly different between control and 2-AI membranes; however, biofilm formation, concurrent or not with other fouling mechanisms, was significantly inhibited (95-98%, p<0.001) by the 2-AI membrane. The limited biofilm that formed on the 2-AI membrane was weaker (as indicated by the polysaccharide to protein ratio) and thus presumably easier to remove. The conductivity rejection by the 2-AI and control membranes was not significantly different throughout the 75-hour experiments, but the rejection of dissolved organic carbon by biofouled (biofouling-only, cell-deposition-only, and organic+biofouling) 2-AI membranes was statistically higher (10-12%, p=0.003-0.07). When biofouled, the water permeance of the 2-AI membranes decreased significantly less (p<0.05) over 75 hours than that of the control membranes, whether or not other additional types of fouling occurred concurrently. Despite the initially lower water permeances of 2-AI membranes (11% lower on average than controls), the 2-AI membranes outperformed the controls (10-11% higher average water permeance) after biofilm formation occurred. Overall, 2-AI membranes fouled less than controls without detriment to water productivity and solute rejection.
Collapse
Affiliation(s)
- Ariel J Atkinson
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mikayla D Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John T Eskew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Lin HT, Venault A, Chang Y. Reducing the pathogenicity of wastewater with killer vapor-induced phase separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Metagenomic Insight Towards Vanillin-Mediated Membrane Biofouling Prevention: In Silico Docking Validation. Curr Microbiol 2020; 77:2233-2247. [PMID: 32382950 DOI: 10.1007/s00284-020-02003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Biofouling leads to water quality deterioration and higher maintenance cost for cleaning of membranes. The present study has demonstrated the application of a biomolecule (vanillin) in scrubbing and destabilizing biofilms of drinking water reverse osmosis (RO) membrane module in lab scale reactor set-up. Reverse osmosis membrane reactor was connected with tap water supply and subjected with optimal concentration of vanillin. The pressure drop was delayed by 17-20 days as compared to control reactor. Real-time PCR analysis of metagenome indicated the reduced copy number of functional biofilm-associated genes (bdlA, lasI, pgaC) in treated membrane. SEM and metagenome analysis revealed that the sticky biofilm communities shifted to loosely bound emboli after vanillin treatment. Metagenome sequence analysis revealed the inhibitory activity against major biofouling biota like members of Proteobacteria, Acidobacteria, Acnitobacteria, Bacteroidetes, Candidatus, Nitrospira, and Firmicutes. Biofouled membrane metagenome sequence was also compared with real-life (brackish water, waste water, domestic drinking water) biofouled membrane communities. In silico docking of vanillin to receptor proteins and chemical configuration simulation along with other phenolic derivatives were performed, which suggested that the autoiducer signal capability of vanillin was effective against representative broad spectrum biofilm population. Vanillin exhibited the quorum-quenching mode of action by virtue of docking towards similar amino acid (Thr 131, Ilu 214) responsible of autoinducer signal anchoring in the transcriptional regulatory proteins.
Collapse
|
14
|
de Vries HJ, Stams AJM, Plugge CM. Biodiversity and ecology of microorganisms in high pressure membrane filtration systems. WATER RESEARCH 2020; 172:115511. [PMID: 31986400 DOI: 10.1016/j.watres.2020.115511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
High-pressure membrane filtration (reverse osmosis and nanofiltration) is used to purify different water sources, including wastewater, surface water, groundwater and seawater. A major concern in membrane filtration is the accumulation and growth of micro-organisms and their secreted polymeric substances, leading to reduced membrane performance and membrane biofouling. The fundamental understanding of membrane biofouling is limited despite years of research, as the means of microbial interactions and response to the conditions on the membrane surface are complicated. Here, we discuss studies that investigated the microbial diversity of fouled high-pressure membranes. High-throughput amplicon sequencing of the 16S rRNA gene have shown that Burkholderiales, Pseudomonadales, Rhizobiales, Sphingomonadales and Xanthomonadales frequently obtain a high relative abundance on fouled membranes. The bacterial communities present in the diverse feed water types and in pre-treatment compartments are different from the communities on the membrane, because high-pressure membrane filtration provides a selective environment for certain bacterial groups. The biofilms that form within the pre-treatment compartments do not commonly serve as an inoculum for the subsequent high-pressure membranes. Besides bacteria also fungi are detected in the water treatment compartments. In contrast to bacteria, the fungal community does not change much throughout membrane cleaning. The stable fungal diversity indicates that they are more significant in membrane biofouling than previously thought. By reviewing the biodiversity and ecology of microbes in the whole high pressure membrane filtration water chain, we have been able to identify potentials to improve biofouling control. These include modulation of hydrodynamic conditions, nutrient limitation and the combination of cleaning agents to target the entire membrane microbiome.
Collapse
Affiliation(s)
- Hendrik J de Vries
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands.
| |
Collapse
|
15
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, Santana F, Gonzalez-Lopez J, Mack L, Gonzalez-Martinez A. Polar Arctic Circle biomass enhances performance and stability of aerobic granular sludge systems operated under different temperatures. BIORESOURCE TECHNOLOGY 2020; 300:122650. [PMID: 31911317 DOI: 10.1016/j.biortech.2019.122650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Three bioreactors were inoculated with Polar Arctic Circle-activated sludge, started-up and operated for 150 days at 8, 15 and 26 °C. Removal performances and granular conformation were similar at steady-state, but higher stability from start-up was found when operating at 8 °C. Important changes in the eukaryotic and prokaryotic populations caused by operational temperature were observed, being fungi dominant at 8 °C and 15 °C, while that ciliated organisms were found at 26 °C. The qPCR results showed higher copies of bacteria, and nitrifiers and denitrifying bacteria at cold temperature. The emission of nitrous oxide was linked directly with temperature and the involved microorganisms. This study represents a proof of concept in performance, greenhouse gas emission, granular formation and the role of the Polar Arctic Circle microbial population in AGS technology under different temperatures with the aim to understand the effect of seasonal o daily changes for implementation of AGS at full-scale.
Collapse
Affiliation(s)
- Bárbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain.
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Francisco Santana
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Leoni Mack
- Department of Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | | |
Collapse
|
16
|
Atkinson AJ, Wang J, Grzebyk K, Zhang Z, Jung D, Zeng D, Pollard A, Gold A, Coronell O. Scalable fabrication of anti-biofouling membranes through 2-aminoimidazole incorporation during polyamide casting. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Chen H, Wang M, Yang C, Wan X, Ding HH, Shi Y, Zhao C. Bacterial spoilage profiles in the gills of Pacific oysters (Crassostrea gigas) and Eastern oysters (C. virginica) during refrigerated storage. Food Microbiol 2019; 82:209-217. [PMID: 31027776 DOI: 10.1016/j.fm.2019.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
Microorganisms harbored in oyster gills are potentially related to the spoilage and safety of oyster during storage. In this study, the microbial activities and pH changes of the gills of the two species, Crassostrea gigas and C. virginica, harvested from three different sites were determined and sensory evaluation was conducted during refrigerated storage. The bacteria in gills with an initial aerobic plate count (APC) of 3.1-4.5 log CFU/g rose remarkably to 7.8-8.8 log CFU/g after 8-days of storage. The APC of Enterobacteriaceae increased from 2.5 to 3.6 log CFU/g to 4.5-4.8 log CFU/g, and that of lactic acid bacteria (LAB) fluctuated in the range of 1.4-3.0 log CFU/g during the whole storage period. The results of sensory analysis indicated that the oysters had 8-days of shelf-life and that the gill presented the fastest deterioration rate. The pH of all samples showed a decrease in the early stages followed by an increased after 4-days of storage. The dynamic changes in microbial profiles were depicted to characterize gill spoilage by Illumina Miseq sequencing to characterize gill spoilage. The results revealed that oysters harvested at different sites showed common bacterial profiles containing Arcobacter, Spirochaeta, Pseudoalteromonas, Marinomonas, Fusobacterium, Psychrobacter, Psychromonas, and Oceanisphaera when spoiled, especially, among which Psychrobacter and Psychromonas (psychrotrophic genus) were represented as the most important gill spoiled bacteria during refrigerated storage, and Arcobacter with pathogenic potential was the dominated bacteria in all spoiled oysters. The consumption quality and safety of refrigerated oysters could be greatly improved by targeted control of bacteria in oyster gills according to the results the present study provided.
Collapse
Affiliation(s)
- Huibin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; University of Guelph, ON, N1G 2W1, Canada; Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, 361005, China.
| | | | - Chengfeng Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Xuzhi Wan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | | | - Yizhuo Shi
- University of Guelph, ON, N1G 2W1, Canada.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Nagaraj V, Skillman L, Li D, Ho G. Review - Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:586-599. [PMID: 29975885 DOI: 10.1016/j.jenvman.2018.05.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 05/26/2023]
Abstract
Biofouling in seawater reverse osmosis (SWRO) membranes is a critical issue faced by the desalination industry worldwide. The major cause of biofouling is the irreversible attachment of recalcitrant biofilms formed by bacteria and their extracellular polymeric substances (EPS) on membrane surfaces. Transparent exopolymer particles (TEP) and protobiofilms are recently identified as important precursors of membrane fouling. Despite considerable amount of research on SWRO biofouling, the control of biofouling still remains a challenge. While adoption of better pretreatment methods may help in preventing membrane biofouling in new desalination setups, it is also crucial to effectively disperse old, recalcitrant biofilms and prolong membrane life in operational plants. Most current practices employ the use of broad spectrum biocides and chemicals that target bacterial cells to disperse mature biofilms, which are evidently inefficient. EPS, being known as the strongest structural framework of biofilms, it is essential to breakdown and disintegrate the EPS components for effective biofilm removal. To achieve this, it is necessary to understand the chemical composition and key elements that constitute the EPS of major biofouling bacterial groups in multi-species, mature biofilms. However, significant gaps in understanding the complexity of EPS are evident by the failure to achieve effective prevention and mitigation of fouling in most cases. Some of the reasons may be difficulty in sampling membranes from fully operational full-scale plants, poor understanding of microbial communities and their ecological shifts under dynamic operational conditions within the desalination process, selection of inappropriate model species for laboratory-scale biofouling studies, and the laborious process of extraction and purification of EPS. This article reviews the novel findings on key aspects of SWRO membrane fouling and control measures with particular emphasis on the key sugars in EPS. As a novel strategy to alleviate biofouling, future control methods may be aimed towards specifically disintegrating and breaking down these key sugars rather than using broad spectrum chemicals such as biocides that are currently used in the industry.
Collapse
Affiliation(s)
- Veena Nagaraj
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Lucy Skillman
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Dan Li
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Goen Ho
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
19
|
Qin H, Ji B, Zhang S, Kong Z. Study on the bacterial and archaeal community structure and diversity of activated sludge from three wastewater treatment plants. MARINE POLLUTION BULLETIN 2018; 135:801-807. [PMID: 30301100 DOI: 10.1016/j.marpolbul.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, the bacterial and archaeal communities along with their functions of activated sludge from three wastewater treatment plants were investigated by Illumina MiSeq Platform. The treatment processes were modified A/A/O, DE oxidation ditch and pre-anaerobic carrousel oxidation ditch, respectively. The taxonomic analyses showed that Proteobacteria was the predominant bacterial phylum, and Nitrosospira was the dominant nitrification genus. Candidatus Accumulibacter was abundant in DE oxidation ditch process, and the main archaea communities were methanosaeta-like species which had the capability to anaerobic ammonia oxidation. The results illustrated that anaerobic ammonium oxidation played an important role in the nitrogen metabolism and there might be other unknown phosphate-accumulating organisms (PAOs) performing phosphorus removal in activated sludge. The predicted function analyses indicated that both bacteria and archaea were involved in nitrification, denitrification, ammonification and phosphorus removal processes, and their relative abundance varied metabolic modules differed from each other.
Collapse
Affiliation(s)
- Hui Qin
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zehua Kong
- Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
20
|
Belgini DR, Siqueira VM, Oliveira DM, Fonseca SG, Piccin-Santos V, Dias RS, Quartaroli L, Souza RS, Torres APR, Sousa MP, Silva CM, Silva CC, De Paula SO, Oliveira VM. Integrated diversity analysis of the microbial community in a reverse osmosis system from a Brazilian oil refinery. Syst Appl Microbiol 2018; 41:473-486. [DOI: 10.1016/j.syapm.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
21
|
Atkinson AJ, Wang J, Zhang Z, Gold A, Jung D, Zeng D, Pollard A, Coronell O. Grafting of bioactive 2-aminoimidazole into active layer makes commercial RO/NF membranes anti-biofouling. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
|
23
|
Luo J, Lv P, Zhang J, Fane AG, McDougald D, Rice SA. Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs). PLoS One 2017; 12:e0179855. [PMID: 28686622 PMCID: PMC5501448 DOI: 10.1371/journal.pone.0179855] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/05/2017] [Indexed: 01/26/2023] Open
Abstract
Biofilm formation is one of the main factors associated with membrane biofouling in membrane bioreactors (MBRs). As such, it is important to identify the responsible organisms to develop targeted strategies to control biofouling. This study investigated the composition and changes in the microbial communities fouling MBR membranes over time and correlated those changes with an increase in transmembrane pressure (TMP). Based on qPCR data, bacteria were the dominant taxa of the biofilm (92.9–98.4%) relative to fungi (1.5–6.9%) and archaea (0.03–0.07%). NMDS analysis indicated that during the initial stages of operation, the biofilm communities were indistinguishable from those found in the sludge. However, the biofilm community significantly diverged from the sludge over time and ultimately showed a unique biofilm profile. This suggested that there was strong selection for a group of organisms that were biofilm specialists. This pattern of succession and selection was correlated with the rapid increase in TMP, where bacteria including Rhodospirillales, Sphingomonadales and Rhizobiales dominated the biofilm at this time. While most of the identified fungal OTUs matched Candida sp., the majority of fungal communities were unclassified by 18S rRNA gene sequencing. Collectively, the data suggests that bacteria, primarily, along with fungi may play an important role in the rapid TMP increase and loss of system performance.
Collapse
Affiliation(s)
- Jinxue Luo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Pengyi Lv
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Jinsong Zhang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Anthony G. Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Diane McDougald
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The ithree Institute, The University of Technology Sydney, Sydney New South Wales, Sydney, Australia
| | - Scott A. Rice
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The ithree Institute, The University of Technology Sydney, Sydney New South Wales, Sydney, Australia
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
24
|
Nagaraj V, Skillman L, Ho G, Li D, Gofton A. Characterisation and comparison of bacterial communities on reverse osmosis membranes of a full-scale desalination plant by bacterial 16S rRNA gene metabarcoding. NPJ Biofilms Microbiomes 2017. [PMID: 28649414 PMCID: PMC5476683 DOI: 10.1038/s41522-017-0021-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbiomes of full-scale seawater reverse osmosis membranes are complex and subject to variation within and between membrane units. The pre-existing bacterial communities of unused membranes before operation have been largely ignored in biofouling studies. This study is novel as unused membranes were used as a critical benchmark for comparison. Fouled seawater reverse osmosis membrane biofilm communities from an array of autopsied membrane samples, following a 7-year operational life-span in a full-scale desalination plant in Western Australia, were characterised by 16S rRNA gene metabarcoding using the bacterial primers 515F and 806R. Communities were then compared based on fouling severity and sampling location. Microbiomes of proteobacterial predominance were detected on control unused membranes. However, fouled membrane communities differed significantly from those on unused membranes, reflecting that operational conditions select specific bacteria on the membrane surface. On fouled membranes, Proteobacteria were also predominant but families differed from those on unused membranes, followed by Bacteriodetes and Firmicutes. Betaproteobacteria correlated with stable, mature and thick biofilms such as those in severely fouled membranes or samples from the feed end of the membrane unit, while Alpha and Gammaproteobacteria were predominantly found in biofilms on fouled but visually clean, and moderately fouled samples or those from reject ends of membrane units. Gammaproteobacteria predominated the thin, compact biofilms at the mid-feed end of membrane units. The study also supported the importance of Caulobacterales and glycosphingolipid-producing bacteria, namely Sphingomonadales, Rhizobiales and Sphingobacteriia, in primary attachment and biofilm recalcitrance. Nitrate-and-nitrite-reducing bacteria such as Rhizobiales, Burkholderiales and some Pseudomonadales were also prevalent across all fouled membranes and appeared to be critical for ecological balance and biofilm maturation. The diverse microbial populations on seawater desalination plant membranes have been characterised after full operational lifecycles. The membranes were used for seven years to purify water by reverse osmosis. Biofouling can seriously impair the efficiency of the membranes but the problem has not previously been well characterised, especially after a full life-span of membrane operation. Veena Nagaraj and colleagues at Murdoch University in Australia investigated biofilms and used genetic analysis to identify the bacteria growing on 14 used membranes, and compared the results with pre-existing contamination on unused membranes. The research revealed that operational conditions favour the growth of specific bacterial populations, predominantly Proteobacteria, but also Bacteriodetes and Firmicutes. The results should assist research to devise new methods to prevent and alleviate the biofouling of desalination plant membranes and maximise the efficiency of their operation.
Collapse
Affiliation(s)
- Veena Nagaraj
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Lucy Skillman
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Goen Ho
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Dan Li
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Alexander Gofton
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150 Australia
| |
Collapse
|
25
|
Al Ashhab A, Sweity A, Bayramoglu B, Herzberg M, Gillor O. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances. BIOFOULING 2017; 33:397-409. [PMID: 28468513 DOI: 10.1080/08927014.2017.1318382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.
Collapse
Affiliation(s)
- Ashraf Al Ashhab
- a Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Midreshet Ben Gurion , Israel
| | - Amer Sweity
- a Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Midreshet Ben Gurion , Israel
| | - Bihter Bayramoglu
- a Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Midreshet Ben Gurion , Israel
| | - Moshe Herzberg
- a Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Midreshet Ben Gurion , Israel
| | - Osnat Gillor
- a Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Midreshet Ben Gurion , Israel
| |
Collapse
|
26
|
Luo W, Phan HV, Xie M, Hai FI, Price WE, Elimelech M, Nghiem LD. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. WATER RESEARCH 2017; 109:122-134. [PMID: 27883917 DOI: 10.1016/j.watres.2016.11.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation.
Collapse
Affiliation(s)
- Wenhai Luo
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hop V Phan
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
27
|
Pal S, Qureshi A, Purohit HJ. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.08.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA. Insights in Waste Management Bioprocesses Using Genomic Tools. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:121-170. [PMID: 27926430 DOI: 10.1016/bs.aambs.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial capacities drive waste stabilization and resource recovery in environmental friendly processes. Depending on the composition of waste, a stress-mediated selection process ensures a scenario that generates a specific enrichment of microbial community. These communities dynamically change over a period of time while keeping the performance through the required utilization capacities. Depending on the environmental conditions, these communities select the appropriate partners so as to maintain the desired functional capacities. However, the complexities of these organizations are difficult to study. Individual member ratios and sharing of genetic intelligence collectively decide the enrichment and survival of these communities. The next-generation sequencing options with the depth of structure and function analysis have emerged as a tool that could provide the finer details of the underlying bioprocesses associated and shared in environmental niches. These tools can help in identification of the key biochemical events and monitoring of expression of associated phenotypes that will support the operation and maintenance of waste management systems. In this chapter, we link genomic tools with process optimization and/or management, which could be applied for decision making and/or upscaling. This review describes both, the aerobic and anaerobic, options of waste utilization process with the microbial community functioning as flocs, granules, or biofilms. There are a number of challenges involved in harnessing the microbial community intelligence with associated functional plasticity for efficient extension of microbial capacities for resource recycling and waste management. Mismanaged wastes could lead to undesired genotypes such as antibiotic/multidrug-resistant microbes.
Collapse
Affiliation(s)
- H J Purohit
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Kapley
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Khardenavis
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Qureshi
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - N A Dafale
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| |
Collapse
|
30
|
Quirós J, Gonzalo S, Jalvo B, Boltes K, Perdigón-Melón JA, Rosal R. Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:912-920. [PMID: 26524992 DOI: 10.1016/j.scitotenv.2015.10.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Electrospun cellulose acetate composites containing silver and copper nanoparticles supported in sepiolite and mesoporous silica were prepared and tested as fungistatic membranes against the fungus Aspergillus niger. The nanoparticles were in the 3-50nm range for sepiolite supported materials and limited by the size of mesopores (5-8nm) in the case of mesoporous silica. Sepiolite and silica were well dispersed within the fibers, with larger aggregates in the micrometer range, and allowed a controlled release of metals to create a fungistatic environment. The effect was assessed using digital image analysis to evaluate fungal growth rate and fluorescence readings using a viability stain. The results showed that silver and copper nanomaterials significantly impaired the growth of fungi when the spores were incubated either in direct contact with particles or included in cellulose acetate composite membranes. The fungistatic effect took place on germinating spores before hyphae growth conidiophore formation. After 24h the cultures were separated from fungistatic materials and showed growth impairment only due to the prior exposure. Growth reduction was important for all the particles and membranes with respect to non-exposed controls. The effect of copper and silver loaded materials was not significantly different from each other with average reductions around 70% for bare particles and 50% for membranes. Copper on sepiolite was particularly efficient with a decrease of metabolic activity of up to 80% with respect to controls. Copper materials induced rapid maturation and conidiation with fungi splitting in sets of subcolonies. Metal-loaded nanomaterials acted as reservoirs for the controlled release of metals. The amount of silver or copper released daily by composite membranes represented roughly 1% of their total load of metals. Supported nanomaterials encapsulated in nanofibers allow formulating active membranes with high antifungal performance at the same time minimizing the risk of nanoparticle release into the environment.
Collapse
Affiliation(s)
- Jennifer Quirós
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Soledad Gonzalo
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Blanca Jalvo
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Karina Boltes
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid 28871, Spain; Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, Alcalá de Henares, Madrid E-28805, Spain
| | | | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid 28871, Spain; Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, Alcalá de Henares, Madrid E-28805, Spain.
| |
Collapse
|
31
|
Wood TL, Guha R, Tang L, Geitner M, Kumar M, Wood TK. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. Proc Natl Acad Sci U S A 2016; 113:E2802-11. [PMID: 27140616 PMCID: PMC4878488 DOI: 10.1073/pnas.1521731113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Membrane systems are used increasingly for water treatment, recycling water from wastewater, during food processing, and energy production. They thus are a key technology to ensure water, energy, and food sustainability. However, biofouling, the build-up of microbes and their polymeric matrix, clogs these systems and reduces their efficiency. Realizing that a microbial film is inevitable, we engineered a beneficial biofilm that prevents membrane biofouling, limiting its own thickness by sensing the number of its cells that are present via a quorum-sensing circuit. The beneficial biofilm also prevents biofilm formation by deleterious bacteria by secreting nitric oxide, a general biofilm dispersal agent, as demonstrated by both short-term dead-end filtration and long-term cross-flow filtration tests. In addition, the beneficial biofilm was engineered to produce an epoxide hydrolase so that it efficiently removes the environmental pollutant epichlorohydrin. Thus, we have created a living biofouling-resistant membrane system that simultaneously reduces biofouling and provides a platform for biodegradation of persistent organic pollutants.
Collapse
Affiliation(s)
- Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Rajarshi Guha
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Li Tang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Michael Geitner
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Manish Kumar
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802;
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
32
|
Belila A, El-Chakhtoura J, Otaibi N, Muyzer G, Gonzalez-Gil G, Saikaly PE, van Loosdrecht MCM, Vrouwenvelder JS. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production. WATER RESEARCH 2016; 94:62-72. [PMID: 26925544 DOI: 10.1016/j.watres.2016.02.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during water sample filtration or from DNA extraction protocols. Control measurements for sample contamination are important for clean water studies.
Collapse
Affiliation(s)
- A Belila
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - J El-Chakhtoura
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - N Otaibi
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - G Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - G Gonzalez-Gil
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - P E Saikaly
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - M C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands.
| |
Collapse
|
33
|
Luo J, Zhang J, Tan X, McDougald D, Zhuang G, Fane AG, Kjelleberg S, Cohen Y, Rice SA. Characterization of the archaeal community fouling a membrane bioreactor. J Environ Sci (China) 2015; 29:115-123. [PMID: 25766019 DOI: 10.1016/j.jes.2014.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/14/2014] [Accepted: 07/19/2014] [Indexed: 06/04/2023]
Abstract
Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment of biofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.
Collapse
Affiliation(s)
- Jinxue Luo
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore.
| | - Jinsong Zhang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Xiaohui Tan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Diane McDougald
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Staffan Kjelleberg
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Yehuda Cohen
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Scott A Rice
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
34
|
Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Appl Environ Microbiol 2015; 81:2515-24. [PMID: 25636842 DOI: 10.1128/aem.03404-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Biofouling remains a key challenge for membrane-based water treatment systems. This study investigated the dispersal potential of the nitric oxide (NO) donor compound, PROLI NONOate, on single- and mixed-species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis (RO) membranes. The potential of PROLI NONOate to control RO membrane biofouling was also examined. Confocal microscopy revealed that PROLI NONOate exposure induced biofilm dispersal in all but two of the bacteria tested and successfully dispersed mixed-species biofilms. The addition of 40 μM PROLI NONOate at 24-h intervals to a laboratory-scale RO system led to a 92% reduction in the rate of biofouling (pressure rise over a given period) by a bacterial community cultured from an industrial RO membrane. Confocal microscopy and extracellular polymeric substances (EPS) extraction revealed that PROLI NONOate treatment led to a 48% reduction in polysaccharides, a 66% reduction in proteins, and a 29% reduction in microbial cells compared to the untreated control. A reduction in biofilm surface coverage (59% compared to 98%, treated compared to control) and average thickness (20 μm compared to 26 μm, treated compared to control) was also observed. The addition of PROLI NONOate led to a 22% increase in the time required for the RO module to reach its maximum transmembrane pressure (TMP), further indicating that NO treatment delayed fouling. Pyrosequencing analysis revealed that the NO treatment did not significantly alter the microbial community composition of the membrane biofilm. These results present strong evidence for the application of PROLI NONOate for prevention of RO biofouling.
Collapse
|
35
|
Al Ashhab A, Gillor O, Herzberg M. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition. WATER RESEARCH 2014; 67:86-95. [PMID: 25262553 DOI: 10.1016/j.watres.2014.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes.
Collapse
Affiliation(s)
- Ashraf Al Ashhab
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel.
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
36
|
Bucs SS, Valladares Linares R, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. WATER RESEARCH 2014; 67:227-242. [PMID: 25282091 DOI: 10.1016/j.watres.2014.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/18/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed but are unavoidable.
Collapse
Affiliation(s)
- Sz S Bucs
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - R Valladares Linares
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - M C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J C Kruithof
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - J S Vrouwenvelder
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands.
| |
Collapse
|
37
|
Gutman J, Herzberg M, Walker SL. Biofouling of reverse osmosis membranes: positively contributing factors of Sphingomonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13941-13950. [PMID: 25354089 DOI: 10.1021/es503680s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, we investigate the possible contribution of Sphingomonas spp. glycosphingolipids (GSL) and its extracellular polymeric substances (EPS) to the initial colonization and development of biofilm bodies on reverse osmosis (RO) membranes. A combination of an RO cross-flow membrane lab unit, a quartz crystal microbalance with dissipation (QCM-D), and a rear stagnation point flow (RSPF) system with either model bacteria (Sphingomonas wittichii, Escherichia coli, and Pseudomonas aeruginosa) or vesicles made of the bacterial GSL or LPS was used. Results showed noticeable differences in the adhesion LPS versus GSL vesicles in the QCM-D, with the latter exhibiting 50% higher adhesion to polyamide coated crystals (mimicking an RO membrane surface). A similar trend was observed for EPS extracted from S. wittichii, when compared to the adhesion tendency of EPS extracted from P. aeruginosa. By applying the whole-cell approach in the RO lab unit, the cumulative impact of S. wittichii cells composing GSL and probably their EPS reduced the permeate flux during bacterial accumulation on the membrane surface. Experiments were conducted with the same amount of Sphingomonas spp. or Escherichia coli cells resulting in a two times greater flux decline in the presence of S. wittichii. The distinct effects of Sphingomonas spp. on RO membrane biofouling are likely a combination of GSL presence (known for enhancing adhesion when compared to non-GSL containing bacteria) and the EPS contributing to the overall strength of the biofilm matrix.
Collapse
Affiliation(s)
- Jenia Gutman
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev , Sede Boqer Campus 84990, Israel
| | | | | |
Collapse
|
38
|
Zodrow KR, Bar-Zeev E, Giannetto MJ, Elimelech M. Biofouling and microbial communities in membrane distillation and reverse osmosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13155-13164. [PMID: 25295386 DOI: 10.1021/es503051t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Membrane distillation (MD) is an emerging desalination technology that uses low-grade heat to drive water vapor across a microporous hydrophobic membrane. Currently, little is known about the biofilms that grow on MD membranes. In this study, we use estuarine water collected from Long Island Sound in a bench-scale direct contact MD system to investigate the initial stages of biofilm formation. For comparison, we studied biofilm formation in a bench-scale reverse osmosis (RO) system using the same feedwater. These two membrane desalination systems expose the natural microbial community to vastly different environmental conditions: high temperatures with no hydraulic pressure in MD and low temperature with hydraulic pressure in RO. Over the course of 4 days, we observed a steady decline in bacteria concentration (nearly 2 orders of magnitude) in the MD feed reservoir. Even with this drop in planktonic bacteria, significant biofilm formation was observed. Biofilm morphologies on MD and RO membranes were markedly different. MD membrane biofilms were heterogeneous and contained several colonies, while RO membrane biofilms, although thicker, were a homogeneous mat. Phylogenetic analysis using next-generation sequencing of 16S rDNA showed significant shifts in the microbial communities. Bacteria representing the orders Burkholderiales, Rhodobacterales, and Flavobacteriales were most abundant in the MD biofilms. On the basis of the results, we propose two different regimes for microbial community shifts and biofilm development in RO and MD systems.
Collapse
Affiliation(s)
- Katherine R Zodrow
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States
| | | | | | | |
Collapse
|
39
|
Ying W, Siebdrath N, Uhl W, Gitis V, Herzberg M. New insights on early stages of RO membranes fouling during tertiary wastewater desalination. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|