1
|
Ragio RA, Santana AC, Subtil EL. Landfill Leachate and Coagulants Addition Effects on Membrane Bioreactor Mixed Liquor: Filterability, Fouling, and Pollutant Removal. MEMBRANES 2024; 14:212. [PMID: 39452824 PMCID: PMC11509387 DOI: 10.3390/membranes14100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024]
Abstract
Urban wastewater (UWW) and landfill leachate (LL) co-treatment using membrane bioreactors (MBRs) is a valuable method for managing LL in cities. Coagulants can enhance the filterability of mixed liquor (ML), but the assessment of fouling is still needed. This research aimed to investigate the effects of co-treating synthetic wastewater (SWW) and real LL on an MBR, as well as the impact of adding poly-aluminum chloride (PACl) and Tanfloc SG. Cell-ultrafiltration experiments were conducted with four different feeds: synthetic wastewater, co-treatment with LL (20% v/v), and co-treatment with the addition of 30 mg L-1 coagulants (either PACl or Tanfloc). Co-treatment aggravated flux loss and reduced the recovery rate; however, Tanfloc and PACl improved recovery after cleaning (by 11% and 9%, respectively). Co-treatment also increased cake and irrecoverable/irremovable inorganic resistances, though coagulants reduced the latter, despite a lower fit of the Hermia models during the first hour of filtration. Co-treatment reduced the removal efficiencies of almost all pollutants analyzed, with the most significant impacts observed on the organic fraction. Coagulants, particularly Tanfloc, enhanced overall performance by improving flux recovery and reducing irreversibility, thus benefiting membrane lifespan. In conclusion, Tanfloc addition yielded the best results in terms of filterability and pollutant removal.
Collapse
Affiliation(s)
| | | | - Eduardo Lucas Subtil
- Laboratory of Urban Wastewater Treatment and Water Reuse (LabTAUS), Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André 09280-560, SP, Brazil; (R.A.R.); (A.C.S.)
| |
Collapse
|
2
|
AbuKhadra D, Dan Grossman A, Al-Ashhab A, Al-Sharabati I, Bernstein R, Herzberg M. The effect of temperature on fouling in anaerobic membrane bioreactor: SMP- and EPS-membrane interactions. WATER RESEARCH 2024; 260:121867. [PMID: 38878312 DOI: 10.1016/j.watres.2024.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Biofouling is the main challenge in the operation of anaerobic membrane bioreactors (AnMBRs). Biofouling strongly depends on temperature; therefore, we hypothesize that the interactions and viscoelastic properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) vary with temperature, consequently influencing membrane permeability. This study compares the performance of an AnMBR operated at a similar permeate flux at two temperatures. The transmembrane pressure (TMP) rose rapidly after 5 ± 2 days at 25 °C but only after 18 ± 2 days at 35 °C, although the reactor's biological performance was similar at both temperatures, in terms of the efficiency of dissolved organic carbon removal and biogas composition, which were obtained by changing the hydraulic retention time. Using confocal laser scanning microscopy (CLSM), a higher biofilm amount was detected at 25 °C than at 35 °C, while quartz crystal microbalance with dissipation (QCM-D) showed a more adhesive, but less viscous and elastic EPS layer. In situ optical coherence tomography (OCT) of an ultra-filtration membrane, fed with the mixed liquor suspended solids (MLSS) at the two temperatures, revealed that while a higher rate of TMP increase was obtained at 25 °C, the attachment of biomass from MLSS was markedly less. Increased EPS adhesion to the membrane can accelerate TMP increase during the operation of both the AnMBR and the OCT filtration cell. EPS's reduced viscoelasticity at 25 °C suggests reduced floc integrity and possible increased EPS penetration into the membrane pores. Analysis of the structures of the microbial communities constituting the AnMBR flocs and membrane biofilms reveals temperature's effects on microbial richness, diversity, and abundance, which likely influence the observed EPS properties and consequent AnMBR fouling.
Collapse
Affiliation(s)
- Diaa AbuKhadra
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Amit Dan Grossman
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Ashraf Al-Ashhab
- The Dead Sea and Arava Science Center, Masada 86190, Israel; Ben-Gurion University of the Negev, Eilat campus, Israel
| | | | - Roy Bernstein
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
3
|
Ultrasonication-assisted Fouling Control during Ceramic Membrane Filtration of Primary Wastewater under Gravity-driven and Constant Flux Conditions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Ravichandran SR, Venkatachalam CD, Sengottian M, Sekar S, Subramaniam Ramasamy BS, Narayanan M, Gopalakrishnan AV, Kandasamy S, Raja R. A review on fabrication, characterization of membrane and the influence of various parameters on contaminant separation process. CHEMOSPHERE 2022; 306:135629. [PMID: 35810863 DOI: 10.1016/j.chemosphere.2022.135629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
In most developing countries, the availability of drinking water is a major problem. This creates the need for treatment of wastewater, reusability of water, etc. The membrane technology has its place in the market for treating such water. This review compares polymeric membrane fabrication techniques, characteristics, and factors responsible for effective membrane separation for different materials. Although extensive knowledge is available on membrane fabrication, fabricating a membrane is still more challenging, which is more prone to antifouling properties. The competency in different fabrication methods like phase inversion, interfacial polymerization, stretching, track etching and electrospinning are elucidated in the current study. Further, the challenges and adaptability of different application fabrication methods are studied. Important surface parameters like surface wettability, roughness, surface tension, pore size, surface charge, surface functional group and pure water flux are analyzed for different polymeric membranes. In addition, the properties responsible for fouling the membrane are also covered in detail. Flow direction and velocity are the main factors that characterize a membrane's antifouling nature. Antifouling separation can still be achieved by characterizing feed properties such as pH, temperature, diffusivity, ion concentration, and surface content. Understanding fouling properties is a key to progress in membrane technology to develop an effective membrane separation.
Collapse
Affiliation(s)
| | | | - Mothil Sengottian
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
| | - Sarath Sekar
- Department of Food Technology, Kongu Engineering College, Perundurai, Tamilnadu, India
| | | | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 105, Tamil Nadu, India
| | | | | | - Rathinam Raja
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet, Chennai, 600 044, India
| |
Collapse
|
5
|
Díez JL, Masip-Moret V, Santafé-Moros A, Gozálvez-Zafrilla JM. Comparison of Artificial Intelligence Control Strategies for a Peristaltically Pumped Low-Pressure Driven Membrane Process. MEMBRANES 2022; 12:membranes12090883. [PMID: 36135902 PMCID: PMC9504800 DOI: 10.3390/membranes12090883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 06/02/2023]
Abstract
Peristaltic pumping is used in membrane applications where high and sterile sealing is required. However, control is difficult due to the pulsating pump characteristics and the time-varying properties of the system. In this work, three artificial intelligence control strategies (artificial neural networks (ANN), fuzzy logic expert systems, and fuzzy-integrated local models) were used to regulate transmembrane pressure and crossflow velocity in a microfiltration system under high fouling conditions. A pilot plant was used to obtain the necessary data to identify the AI models and to test the controllers. Humic acid was employed as a foulant, and cleaning-in-place with NaOH was used to restore the membrane state. Several starting operating points were studied and setpoint changes were performed to study the plant dynamics under different control strategies. The results showed that the control approaches were able to control the membrane system, but significant differences in the dynamics were observed. The ANN control was able to achieve the specifications but showed poor dynamics. Expert control was fast but showed problems in different working areas. Local models required less data than ANN, achieving high accuracy and robustness. Therefore, the technique to be used will depend on the available information and the application dynamics requirements.
Collapse
Affiliation(s)
- José-Luis Díez
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 València, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Asunción Santafé-Moros
- Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, 46022 València, Spain
| | - José M. Gozálvez-Zafrilla
- Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
6
|
Hube S, Lee S, Chong TH, Brynjólfsson S, Wu B. Biocarriers facilitated gravity-driven membrane filtration of domestic wastewater in cold climate: Combined effect of temperature and periodic cleaning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155248. [PMID: 35427614 DOI: 10.1016/j.scitotenv.2022.155248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, two lava stone biocarrier facilitated gravity-driven membrane (GDM) reactors were operated at ~8 °C and ~22 °C in parallel for treating primary wastewater effluent. Although the biocarrier reactor at 8 °C displayed less efficient removals of biodegradable organics than that at 22 °C, both GDM systems (without cleaning) showed comparable fouling resistance distribution patterns, accompanying with similar cake filtration constants and pore constriction constants by modelling simulation. Compared to the GDM at 8 °C, more foulants were accumulated on the GDM at 22 °C, but they presented similar soluble organics/inorganics contents and specific cake resistances. This indicated the cake layers at 22 °C may contain greater-sized foulants due to proliferation of both prokaryotes and eukaryotes, leading to a relatively less-porous nature. In the presence of periodic cleaning (at 50 °C), the cleaning effectiveness followed a sequence as ultrasonication-enhanced physical cleaning > two-phase flow cleaning > chemical-enhanced physical cleaning > physical cleaning, regardless of GDM operation temperature. However, significantly higher cake resistances were observed in the GDM system at 22 °C than those at 8 °C, because shear force tended to remove loosely-attached foulant layers and may compress the residual dense cake layer. The presence of periodic cleaning led to dissimilar dominant prokaryotic and eukaryotic communities in the cake layers as those without cleaning and in the lava stone biocarriers. Nevertheless, operation temperature did not influence GDM permeate quality, which met EU discharge standards.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; Department of Environmental Engineering, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
7
|
Evaluation of the impact of SBR operating temperature and filtration temperature on fouling of membranes used for tertiary treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
9
|
Rong C, Wang T, Luo Z, Hu Y, Kong Z, Qin Y, Hanaoka T, Ito M, Kobayashi M, Li YY. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater. BIORESOURCE TECHNOLOGY 2022; 354:127167. [PMID: 35436540 DOI: 10.1016/j.biortech.2022.127167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
A 5,000-L anaerobic membrane bioreactor (AnMBR) fed with actual municipal wastewater was employed to study the impact of temperature drops on methanogenic performance and membrane fouling. With temperature dropped from 25 °C to 15 °C, the methane yield decreased from 0.244 to 0.205 NL-CH4/g-CODremoval and the dissolved methane increased from 29% to 43%, resulted in the methanogenic performance reduced by 25%. The membrane rejection offset the deteriorated anaerobic digestion at low temperatures and ensured the stable COD removal efficiency of 84.5%-90.0%. The synergistic effects of the increased microbial products and viscosity and the residual inorganic foulants aggravated the membrane fouling at lower temperatures. As the organic fouling was easily removed by NaClO, the inorganics related to the elements of S, Ca and Fe were the stubborn membrane foulants and required the enhanced acid membrane cleaning. These findings obtained under the quasi-practical condition are expected to promote the practical applications of mainstream AnMBR.
Collapse
Affiliation(s)
- Chao Rong
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu-You Li
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
10
|
Rong C, Wang T, Luo Z, Guo Y, Kong Z, Wu J, Qin Y, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Li YY. Seasonal temperatures impact on the mass flows in the innovative integrated process of anaerobic membrane bioreactor and one-stage partial nitritation-anammox for the treatment of municipal wastewater. BIORESOURCE TECHNOLOGY 2022; 349:126864. [PMID: 35183723 DOI: 10.1016/j.biortech.2022.126864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
A pilot-scale anaerobic membrane bioreactor (AnMBR) integrated with a one-stage partial nitritation-anammox (PN/A) reactor was operated for the treatment of municipal wastewater (MWW) at seasonal temperatures of 15-25 °C. The removal efficiencies of COD and total nitrogen (TN) were always > 90% and > 75% respectively. The methanogenesis and PN/A were identified as the primary removal pathways of COD and TN, respectively, and were suppressed at low temperatures. With the temperature dropped from 25 °C to 20 °C to 15 °C, the methane-accounted COD decreased from 63.1% to 59.6% to 48.4%, and the PN/A-accounted TN decreased from 58.1% to 51.7% to 45.3%. The AnMBR and PN/A mutually complement each other in this combined process, as the AnMBR removed 8.5%-16.1% of TN by sludge entrainment and the PN/A reactor removed 2.6%-3.4% of COD by denitrification and aerobic oxidation. These results highlighted the strong feasibility of applying the AnMBR-PN/A process to the treatment of MWW in temperate climate.
Collapse
Affiliation(s)
- Chao Rong
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiang Wu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu-You Li
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
11
|
Chen C, Sun M, Chang J, Liu Z, Zhu X, Xiao K, Song G, Wang H, Liu G, Huang X. Unravelling temperature-dependent fouling mechanism in a pilot-scale anaerobic membrane bioreactor via statistical modelling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Yang H, Li Z, Chen Y, Zhou Z. Role of microparticles in membrane fouling from acidogenesis to methanogenesis phases in an anaerobic baffled reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150663. [PMID: 34597561 DOI: 10.1016/j.scitotenv.2021.150663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Microparticles (0.45-10 μm) have been recognized as key foulants in anaerobic membrane bioreactors (AnMBRs). However, their characteristics and fouling behaviors are often understood in single-stage and completely mixed reactors, failing to elucidate the occurrence of microparticles in the multi-stage anaerobic bioprocess. Here, a lab-scale anaerobic baffled reactor with four compartments (C1-C4) was employed to explore the composition and fouling potential of microparticles in different compartments. Photometric analysis showed that the microparticles had an increasing percentage in the total organics of the top supernatant but a decreasing concentration from C1 to C4. Long-term filtration and dead-end filtration tests revealed that the top supernatant in C1 had much higher fouling potential than those in C2-C4. The supernatant microparticles significantly accumulated in the cake layers for each compartment (68-95% of the total organics), particularly the fraction of 1-5 μm, and the fouling rate was positively correlated with the biomass accumulation rate. Based on reactor performance and 16S rRNA gene sequences, a significant bio-phase separation occurred between C1 (acidogenesis) and C2-C4 (methanogenesis). And hydrolytic and fermentative bacteria in the family Veillonellaceae, Streptococcaceae, and Enterobacteriaceae were dominant in the supernatant microparticles, particularly in C1, which had a positive correlation with the fouling rate and biomass accumulation rate. These above results all revealed that the microparticles in the acidogenesis phase had higher fouling potential. In summary, our results suggest that the tactic of pre-hydrolysis and acidification with feedstocks and constructing AnMBRs by coupling with multi-phase anaerobic bioprocesses and membrane units could be beneficial to fouling control.
Collapse
Affiliation(s)
- Houlong Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zicong Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| |
Collapse
|
13
|
Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment: A Literature Review. MEMBRANES 2021; 11:membranes11120967. [PMID: 34940468 PMCID: PMC8703433 DOI: 10.3390/membranes11120967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Currently, there is growing scientific interest in the development of more economic, efficient and environmentally friendly municipal wastewater treatment technologies. Laboratory and pilot-scale surveys have revealed that the anaerobic membrane bioreactor (AnMBR) is a promising alternative for municipal wastewater treatment. Anaerobic membrane bioreactor technology combines the advantages of anaerobic processes and membrane technology. Membranes retain colloidal and suspended solids and provide complete solid–liquid separation. The slow-growing anaerobic microorganisms in the bioreactor degrade the soluble organic matter, producing biogas. The low amount of produced sludge and the production of biogas makes AnMBRs favorable over conventional biological treatment technologies. However, the AnMBR is not yet fully mature and challenging issues remain. This work focuses on fundamental aspects of AnMBRs in the treatment of municipal wastewater. The important parameters for AnMBR operation, such as pH, temperature, alkalinity, volatile fatty acids, organic loading rate, hydraulic retention time and solids retention time, are discussed. Moreover, through a comprehensive literature survey of recent applications from 2009 to 2021, the current state of AnMBR technology is assessed and its limitations are highlighted. Finally, the need for further laboratory, pilot- and full-scale research is addressed.
Collapse
|
14
|
Tao C, Parker W, Bérubé P. Assessing the role of cold temperatures on irreversible membrane permeability of tertiary ultrafiltration treating municipal wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Chen C, Sun M, Liu Z, Zhang J, Xiao K, Zhang X, Song G, Chang J, Liu G, Wang H, Huang X. Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change. WATER RESEARCH 2021; 189:116552. [PMID: 33166921 DOI: 10.1016/j.watres.2020.116552] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
A novel granular activated carbon-synergized anaerobic membrane bioreactor (GAC-AnMBR), consisted of four expanded bed anaerobic bioreactors with GAC carriers and a membrane tank, was established in pilot scale (10 m3/d) to treat real municipal wastewater (MWW) at ambient temperature seasonally fluctuating from 35 to 5 °C. It showed sound organic removal over 86% with the permeate COD less than 50 mg/L even at extremely low temperatures below 10 °C. COD mass balance analysis revealed that membrane rejection (with a contribution rate of 10%-20%) guaranteed the stable organic removal, particularly at psychrophilic temperature. The methane yield was over 0.24 L CH4 (STP)/g COD removed at mesophilic temperature and 0.21 L CH4 (STP)/g COD removed at 5-15 °C. Pyrosequencing of microbial communities suggested that lower temperature reduced the abundance of the methane producing bacteria, but the methane production was enhanced by selectively enriched Methanosaeta, syntrophic Syntrophobacter and Smithella and exoelectrogenic Geobacter for direct interspecies electron transfer (DIET) on the additive GAC. Compared with previously reported pilot-scale AnMBRs, the GAC-AnMBR in this study showed better overall performance and higher stability in a wide temperature range of 5-35 °C. The synergistic effect of GAC on AnMBR guaranteed the robustness of GAC-AnMBR against temperature, which highlighted the applicational potential of GAC-AnMBR, especially in cold and temperate climate regions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mingzhuang Sun
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ziwei Liu
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiao Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xian Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guangqing Song
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiang Chang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Guoliang Liu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Hao Wang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xia Huang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Vinardell S, Astals S, Jaramillo M, Mata-Alvarez J, Dosta J. Anaerobic membrane bioreactor performance at different wastewater pre-concentration factors: An experimental and economic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141625. [PMID: 32871369 DOI: 10.1016/j.scitotenv.2020.141625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the performance of a lab-scale anaerobic membrane bioreactor (AnMBR) treating municipal sewage pre-concentrated by forward osmosis (FO). The organic loading rate (OLR) and sodium concentrations of the synthetic sewage stepwise increased from 0.3 to 2.0 g COD L-1 d-1 and from 0.28 to 2.30 g Na+ L-1 to simulate pre-concentration factors of 1, 2, 5 and 10. No major operational problems were observed during AnMBR operation, with COD removal efficiencies ranging between 90 and 96%. The methane yield progressively increased from 214 ± 79 to 322 ± 60 mL CH4 g-1 COD as the pre-concentration factor increased from 1 to 10. This was mainly attributed to the lower fraction of methane dissolved lost in the permeate at higher OLRs. Interestingly, at the highest pre-concentration factor (2.30 g Na+ L-1) the difference between the permeate and the digester soluble COD indicated that membrane biofilm also played a role in COD removal. Finally, a preliminary energy and economic analysis showed that, at a pre-concentration factor of 10, the AnMBR temperature could be increased 10 °C and achieve a positive net present value (NPV) of 4 M€ for a newly constructed AnMBR treating 10,000 m3 d-1 of pre-concentrated sewage with an AnMBR lifetime of 20 years.
Collapse
Affiliation(s)
- Sergi Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain.
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain
| | - Marta Jaramillo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, 08001 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
17
|
Ribera-Pi J, Campitelli A, Badia-Fabregat M, Jubany I, Martínez-Lladó X, McAdam E, Jefferson B, Soares A. Hydrolysis and Methanogenesis in UASB-AnMBR Treating Municipal Wastewater Under Psychrophilic Conditions: Importance of Reactor Configuration and Inoculum. Front Bioeng Biotechnol 2020; 8:567695. [PMID: 33224930 PMCID: PMC7667289 DOI: 10.3389/fbioe.2020.567695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Three upflow anaerobic sludge blanket (UASB) pilot scale reactors with different configurations and inocula: flocculent biomass (F-UASB), flocculent biomass and membrane solids separation (F-AnMBR) and granular biomass and membrane solids separation (G-AnMBR) were operated to compare start-up, solids hydrolysis and effluent quality. The parallel operation of UASBs with these different configurations at low temperatures (9.7 ± 2.4°C) and the low COD content (sCOD 54.1 ± 10.3 mg/L and pCOD 84.1 ± 48.5 mg/L), was novel and not previously reported. A quick start-up was observed for the three reactors and could be attributed to the previous acclimation of the seed sludge to the settled wastewater and to low temperatures. The results obtained for the first 45 days of operation showed that solids management was critical to reach a high effluent quality. Overall, the F-AnMBR showed higher rates of hydrolysis per solid removed (38%) among the three different UASB configurations tested. Flocculent biomass promoted slightly higher hydrolysis than granular biomass. The effluent quality obtained in the F-AnMBR was 38.0 ± 5.9 mg pCOD/L, 0.4 ± 0.9 mg sCOD/L, 9.9 ± 1.3 mg BOD5/L and <1 mg TSS/L. The microbial diversity of the biomass was also assessed. Bacteroidales and Clostridiales were the major bacterial fermenter orders detected and a relative high abundance of syntrophic bacteria was also detected. Additionally, an elevated abundance of sulfate reducing bacteria (SRB) was also identified and was attributed to the low COD/SO4 2- ratio of the wastewater (0.5). Also, the coexistence of acetoclastic and hydrogenotrophic methanogenesis was suggested. Overall this study demonstrates the suitability of UASB reactors coupled with membrane can achieve a high effluent quality when treating municipal wastewater under psychrophilic temperatures with F-AnMBR promoting slightly higher hydrolysis rates.
Collapse
Affiliation(s)
- Judit Ribera-Pi
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, Manresa, Spain
| | - Antonio Campitelli
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| | | | - Irene Jubany
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, Manresa, Spain
| | | | - Ewan McAdam
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| | - Bruce Jefferson
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| | - Ana Soares
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| |
Collapse
|
18
|
Performance Analysis for the Anaerobic Membrane Bioreactor Combined with the Forward Osmosis Membrane Bioreactor: Process Conditions Optimization, Wastewater Treatment and Sludge Characteristics. WATER 2020. [DOI: 10.3390/w12112958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The anaerobic membrane bioreactors (AnMBR) were operated at 35 °C (H-AnMBR) and 25 °C (L-AnMBR) for long-term wastewater treatment. Two aerobic forward osmosis membrane bioreactors (FOMBRs) were utilized to treat the effluents of H-AnMBR and L-AnMBR, respectively. During the 180 days of operation, it is worth noting that the combined system was feasible, and the pollutant removal efficiency was higher. Though the permeate chemical oxygen demand (COD) of H-AnMBR (18.94 mg/L) was obviously lower than that of L-AnMBR (51.09 mg/L), the permeate CODs of the FOMBRs were almost the same with the average concentrations of 7.57 and 7.58 mg/L for the H-FOMBR and L-FOMBR, respectively. It was interesting that for both the AnMBRs, the permeate total nitrogen (TN) concentration was higher than that in bulk phase. However, the TN concentrations in the effluent remained stable with the values of 20.12 and 15.22 mg/L in the H-FOMBR and L-FOMBR effluents, respectively. For the two systems, the characteristics of activated sludge flocs were different for H-AnMBR-FOMBR sludge and L-AnMBR-FOMBR sludge. The viscosity of L-AnMBR-activated sludge (2.09 Pa·s) was higher compared to that of H-AnMBR (1.31 Pa·s), while the viscosity of activated sludge in L-FOMBR (1.44 Pa·s) was a little lower than that in H-FOMBR (1.48 Pa·s). The capillary water absorption time of L-AnMBR-activated sludge (69.6 s) was higher compared to that of H-AnMBR (49.5 s), while the capillary water absorption time of activated sludge in L-FOMBR (14.6 s) was little lower than that in H-FOMBR (15.6 s). The particle size of H-AnMBR-activated sludge (119.62 nm) was larger than that of L-AnMBR-activated sludge (84.92 nm), but the particle size of H-FOMBR-activated sludge (143.81 nm) was significantly smaller than that of L-FOMBR-activated sludge (293.38 nm). The observations of flocs indicated that the flocs of activated sludge in H-AnMBR were relatively loose, while the flocs of L-AnMBR were relatively tight. The fine sludge floc was less present in the L-FOMBR than in the H-FOMBR. Therefore, in the process of sewage treatment, the influent of each unit in the AnMBR-FOMBR system should have suitable organic content to maintain the particle sizes of sludge flocs.
Collapse
|
19
|
Hou L, Griswold N, Hu Z. Impact of decreasing hydraulic retention times on the specific affinity of methanogens and their community structures in an anaerobic membrane bioreactor process treating low strength wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140373. [PMID: 32758975 DOI: 10.1016/j.scitotenv.2020.140373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Maximum specific growth rate (μmax) and substrate saturation constant (Ks) are widely used in determining the growth of microorganisms. The ratio (μmax/Ks), also referred to as specific affinity, aA0, is a better parameter to assess the advantage in competition for substrates by bridging microbial growth and the kinetics of enzymatic substrate uptake, but is not well studied. This study investigated the effect of hydraulic retention time (HRT) on the aA0 of anaerobic sludge from an anaerobic membrane bioreactor (AnMBR), associated microbial communities and the overall wastewater treatment performance. The AnMBR was fed with acetate wastewater (~500 mg COD/L) and operated at fixed solids retention time (45 d) while HRT continued to decrease. There was no significant difference in Ks (ranging from 170 to 243 mg COD/L) at different HRTs. However, aA0 increased from (4.0 ± 0.2) × 10-4 to (4.9 ± 0.2) × 10-4 and to (6.5 ± 0.1) × 10-4 L/mg COD/d as HRT decreased from 24 h to 12 h and further to 6 h, respectively. This was accompanied by the increase in acetoclastic methanogens (mainly Methanosaeta) from 3.85 × 1010, 8.82 × 1010 to 1.05 × 1011 cells/L, respectively. The fraction of Methanosaeta in the anaerobic biomass increased from 33.67% to 61.08% as HRT decreased from 24 h to 6 h. Correspondingly, effluent quality was improved, as evidenced from the COD concentrations of 32 ± 6, 21 ± 4, and 13 ± 5 mg/L at the HRTs of 24 h, 12 h, and 6 h, respectively. The results confirm that microorganisms are able to adapt to growth conditions by adjusting their kinetic properties and suggest that short HRTs in the AnMBR favor the growth and accumulation of Methanosaeta with high specific affinity likely because they can compete for acetate at low concentrations by increasing substrate uptake rate and thus specific microbial growth rate.
Collapse
Affiliation(s)
- Liyuan Hou
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Nicholas Griswold
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
20
|
Zhuang H, Xie Q, Shan S, Fang C, Ping L, Zhang C, Wang Z. Performance, mechanism and stability of nitrogen-doped sewage sludge based activated carbon supported magnetite in anaerobic degradation of coal gasification wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140285. [PMID: 32783862 DOI: 10.1016/j.scitotenv.2020.140285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
In current study, the UASB reactor was enhanced by nitrogen-doped sewage sludge based activated carbon supported Fe3O4 (Fe3O4/N-SBAC) for coal gasification wastewater treatment. The results showed that COD removal efficiency was increased to 64.4% with Fe3O4/N-SBAC assistance and the corresponding methane production rate achieved up to 1093.6 mL/d. Fe3O4/N-SBAC promoted microbial growth and enzymatic activity, leading to high extracellular polymeric substances and coenzyme F420 concentrations. Fe3O4/N-SBAC also facilitated the sludge granulation process with high particle size, substantial interspecific signal molecules and low diffusible signal factor. Microbial community analysis revealed that Fe3O4/N-SBAC might support direct interspecies electron transfer process, in which the enriched Geobacter was likely to communicate with Methanothrix via electrical connection, improving anaerobic degradation of coal gasification wastewater. Total phenols shock and pH impact revealed that reactor stability was enhanced in the Fe3O4/N-SBAC-supplemented system.
Collapse
Affiliation(s)
- Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Qiaona Xie
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Changai Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhirong Wang
- Rural Ecological and Energy Station of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
21
|
Ji J, Kakade A, Yu Z, Khan A, Liu P, Li X. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110913. [PMID: 32721347 DOI: 10.1016/j.jenvman.2020.110913] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Emerging contaminants (ECs) are synthetic organic chemicals that released into the environment, which pose a serious threat to the ecosystem and human health. Due to the high costs of physicochemical methods and the possibility of secondary pollution, and conventional biological treatment techniques are not efficient to remove ECs. Thus, there is a need to develop novel technologies to treat ECs. Anaerobic digestion (AD) is reported to degrade most ECs. Anaerobic membrane bioreactor (AnMBR) is an upgraded AD technology that has high system stability and microbial community abundance. The biogas production and EC biodegradation efficiency in the AnMBR system are markedly higher than those in the traditional AD system. In recent years, AnMBR is widely used to remove environmental ECs. This review analyzes the feasibility and challenges of AnMBR in the treatment of ECs and provides useful insights for improving the performance and efficiency of AnMBR to treat ECs.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Apurva Kakade
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhengsheng Yu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Aman Khan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Pu Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, Gansu, PR China.
| |
Collapse
|
22
|
Wang KM, Soares A, Jefferson B, Wang HY, Zhang LJ, Jiang SF, McAdam EJ. Establishing the mechanisms underpinning solids breakthrough in UASB configured anaerobic membrane bioreactors to mitigate fouling. WATER RESEARCH 2020; 176:115754. [PMID: 32247993 DOI: 10.1016/j.watres.2020.115754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, the mechanisms for solids breakthrough in upflow anaerobic sludge blanket (UASB) configured anaerobic membrane bioreactors (AnMBRs) have been described to establish design parameters to limit membrane fouling. As the sludge blanket develops, two periods can be identified: (i) an initial progressive enhancement in solids separation provided through sludge blanket clarification, via depth filtration, which sustains downstream membrane permeability; and (ii) sludge blanket destabilisation, which imposed solids breakthrough resulting in a loss in membrane permeability. The onset of sludge blanket destabilisation was identified earlier in the flocculent AnMBR, which was ascribed to an increased gas production, caused by hydrolysis within the sludge blanket at extended solids residence time. Whilst hydrolysis also induced higher gas productivity within the granular AnMBR, solids breakthrough was not evidently observed during this period, and was instead only observed as the sludge blanket approached the UASB overflow. However, solids breakthrough was observed earlier for both reactors when treating wastewater with lower temperatures. This was explained through characterisation of the settling velocity of discrete particles from the sludge blanket of both MBRs; solids washout was evidenced to be induced by the increase in fluid viscosity with a reduction in temperature, which lowered terminal particle settling velocity. Nevertheless, particle settling velocity was comparable for particles from both sludge blankets. We therefore propose that the enhanced stability imparted by the granular AnMBR is due to the higher inertial force of the dense granular sludge. From this study, we suggest that similarly low levels of membrane fouling can be achieved within flocculent AnMBR by managing solids retention time to constrain sludge bed height and excess hydrolysis, together with adopting an upflow velocity based on particle buoyancy at the lowest expected operating temperature.
Collapse
Affiliation(s)
- K M Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - A Soares
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - B Jefferson
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - H Y Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - L J Zhang
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310023, China
| | - S F Jiang
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310023, China
| | - E J McAdam
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
23
|
Ma X, Zhao B, Zhang X, Xie F, Cui Y, Li H, Yue X. Effect of periodic temperature shock on nitrogen removal performance and microbial community structure in plug-flow microaerobic sludge blanket. CHEMOSPHERE 2020; 241:124934. [PMID: 31604192 DOI: 10.1016/j.chemosphere.2019.124934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/05/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
The positive effects nitrogen removal capability in a plug-flow microaerobic sludge blanket at low temperature are confirmed by inducing periodic high temperature shocks. This method enables enhancement of metabolic activity and an optimized bacterial community structure of microbes under the conditions of low C/N ratio and temperature. The control reactor was operated at a constant temperature of 20 °C, and the plug-flow microaerobic sludge blanket was subjected to a high temperature shock treatment with three cycles for 94 d. Starting with the initial temperature of 20 °C, after three cycles at temperature (30 °C) shock, the removal efficiencies of ammonium and total nitrogen at the terminal period increased to 68.0% and 54.7% from 51.1% to 35.6%, respectively. The activity and relative abundance of ammonia oxidizing bacteria, nitrite oxidizing bacteria, and anammox bacteria, dominated by Candidatus Brocadia at low temperature, were accordingly enhanced after periodic temperature shocks.
Collapse
Affiliation(s)
- Xiao Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Hui Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
24
|
Wang S, Ma C, Pang C, Hu Z, Wang W. Membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol- and quinoline-containing wastewater: granular activated carbon vs polyaluminum chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34167-34176. [PMID: 30484054 DOI: 10.1007/s11356-018-3802-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Although anaerobic membrane bioreactor (AnMBR) has been proposed for the treatment of phenolic wastewater, the membrane fouling is still a major obstacle. The effects of dosing of granular activated carbon (GAC) and polyaluminum chloride (PACl) on the treatment performance and membrane fouling of anaerobic ceramic membrane bioreactor were investigated for treating phenol- and quinoline-containing wastewater. The results suggested that the one-off dosing of GAC resulted in a decrease of protein/carbohydrate ratio, which might account for the aggravation of membrane fouling alongside with the decreased flocs size. Nevertheless, the substrate uptake rates (SUR) of phenol and quinoline, and the specific methanogenic activity of sludge at the GAC dosing stage of experimental reactor (R1) were 8.79 ± 0.63 mg phenol g-1 MLVSS d-1, 7.01 ± 0.09 mg quinoline g-1 MLVSS d-1 and 0.27 ± 0.01 g CODCH4 g-1 MLVSS d-1, which were 1.69, 3.59 and 1.93 times higher than that of the control reactor (R2). The dosing of PACl reduced the membrane fouling rate by changing the floc structure of sludge, as well as the component of SMP and EPS. However, the substrate uptake rate of quinoline was declined. This work provides a comprehensive evaluation on the effect of GAC and PACl dosing on membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol-and quinoline-containing wastewater.
Collapse
Affiliation(s)
- Shun Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Chao Pang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, China.
| |
Collapse
|
25
|
Influence of pH, multivalent counter ions, and membrane fouling on phosphate retention during ceramic nanofiltration. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Peña M, do Nascimento T, Gouveia J, Escudero J, Gómez A, Letona A, Arrieta J, Fdz-Polanco F. Anaerobic submerged membrane bioreactor (AnSMBR) treating municipal wastewater at ambient temperature: Operation and potential use for agricultural irrigation. BIORESOURCE TECHNOLOGY 2019; 282:285-293. [PMID: 30875596 DOI: 10.1016/j.biortech.2019.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
A 496 L pilot scale anaerobic submerged membrane bioreactor (AnSMBR) for the treatment of municipal wastewater was evaluated during a year of stable operation at ambient (28-10 °C) temperature, and inoculated with mesophilic inoculum. The temperature was the main parameter affecting the process performance. The chemical oxygen demand (COD) of the effluent was around 150 mg O2/L in the summer period, operating with a volumetric loading rate (VLR) of 5 kg COD/m3 d and hydraulic retention time (HRT) of 8-10 h, with a specific methane production between 0.09 and 0.14 Nm3/kg CODremoved. However, during the winter season, an important increase of effluent COD was observed, and therefore the VLR was decreased to values around 1 kg COD/m3 d in order to recover the quality of the effluent. Biogas production was negligible in this period. The effluent complies with the parameters stipulated by Spanish law regarding the use of treated wastewater for agricultural irrigation.
Collapse
Affiliation(s)
- Mar Peña
- Department of Chemical Engineering and Environmental Technology, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - Thiago do Nascimento
- Department of Chemical Engineering and Environmental Technology, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Joao Gouveia
- Department of Chemical Engineering and Environmental Technology, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Julián Escudero
- CADAGUA S.A., Crtra RM 714, km 3.5, 30520 Jumilla, Murcia, Spain
| | - Alicia Gómez
- I+D+i, CADAGUA S.A., Gran Vía 45, 8ª Planta, 48011 Bilbao, Spain
| | - Alberto Letona
- I+D+i, CADAGUA S.A., Gran Vía 45, 8ª Planta, 48011 Bilbao, Spain
| | - Javier Arrieta
- I+D+i, CADAGUA S.A., Gran Vía 45, 8ª Planta, 48011 Bilbao, Spain
| | - Fernando Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
27
|
Cho K, Seo KW, Shin SG, Lee S, Park C. Process stability and comparative rDNA/rRNA community analyses in an anaerobic membrane bioreactor with silicon carbide ceramic membrane applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:155-164. [PMID: 30798226 DOI: 10.1016/j.scitotenv.2019.02.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the feasibility of using a silicon carbide (SiC) anaerobic ceramic membrane bioreactor (AnCMBR) to co-manage domestic wastewater (DWW) and food waste recycling wastewater (FRW). A pilot-scale SiC-AnCMBR was put into operation for 140 days under two different organic loading rates (OLRs): 5 kg COD m-3 d-1 (OLR 5) and 3 kg COD m-3 d-1 (OLR 3). The organic removal efficiency was 93.5 ± 3.7% over the operational period. Methane production increased significantly after sludge re-seeding at OLR 3. rDNA and rRNA microbial results showed that the active archaeal community was affected by sludge re-seeding, whereas the active bacterial community was not, indicating that a shift in the active archaeal community was responsible for the increased methane production. Our results thus suggest that SiC-AnCMBRs are a promising option for co-managing DWW and FRW.
Collapse
Affiliation(s)
- Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kyu Won Seo
- Small & Medium Enterprises Support Center, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongsangnam-do 52725, South Korea
| | - Seockheon Lee
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
28
|
Jadoun J, Mreny R, Saad O, Azaizeh H. Fate of bacterial indicators and Salmonella in biofilm developed on ultrafiltration membranes treating secondary effluents of domestic wastewater. Sci Rep 2018; 8:18066. [PMID: 30584258 PMCID: PMC6305378 DOI: 10.1038/s41598-018-36406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/19/2018] [Indexed: 12/03/2022] Open
Abstract
The fate of representative indicator and pathogenic bacteria on ultrafiltration (UF)-membrane surfaces treating secondary wastewater effluent, as well as their reaction to common biofouling-removal techniques was investigated. Field-condition experiments showed that the number of heterotrophic bacteria, fecal coliforms, E. coli and Salmonella on membrane surface increased rapidly and continuously until the end of the experiment, reaching 9, 6.5, 6, and 2.4 logs, respectively. Similar results were obtained under controlled laboratory conditions. However, the increase in the bacterial numbers was dependent on the supply of fresh wastewater. Quantitative real-time PCR verified the behavior of attached E. coli cells, although the numbers were 1–2 logs higher compared to the standard culture-based method. The number of attached bacteria was positively correlated to increases in DNA and protein content and negatively correlated to the membrane flux. In-situ membrane cleaning using sodium hypochlorite significantly reduced the number of attached bacteria. However, the effect was temporary and affected bacterial cell cultivability rather than viability. Taken together, these findings suggest that, under the studied conditions, indicator and pathogenic bacteria can initiate rapid biofilm development, persist on UF membrane surfaces, and survive membrane cleaning with sodium hypochlorite.
Collapse
Affiliation(s)
- Jeries Jadoun
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel.
| | - Raghda Mreny
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Ons Saad
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Hassan Azaizeh
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel.,Department of Environmental Science, Tel Hai College, Upper Galilee, 12208, Israel
| |
Collapse
|
29
|
Chen Z, Xu J, Hu D, Cui Y, Wu P, Ge H, Jia F, Xiao T, Li X, Su H, Wang H, Zhang Y. Performance and kinetic model of degradation on treating pharmaceutical solvent wastewater at psychrophilic condition by a pilot-scale anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 269:319-328. [PMID: 30195224 DOI: 10.1016/j.biortech.2018.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
A pilot-scale anaerobic membrane bioreactor (AnMBR) was operated for 435 days in this study, aiming to treat pharmaceutical solvent wastewater containing m-Cresol (MC), isopropanol (IPA) and N,N-Dimethylformamide (DMF) pollutants at different temperatures of 35 ± 3 °C, 25 ± 3 °C, 15 ± 3 °C and 25 ± 3 °C, respectively. The reactor reached average total removal efficiencies of about 96%, 97.2% and 98% of MC, IPA and DMF at psychrophilic condition (15 ± 3 °C). Higher physical removal rate was obtained at 15 ± 3 °C due to the important contribution of membrane filtration. At this stage, the biogas production, methane content and specific methanogenic activity and extracellular polymeric substances of suspended sludge were observed with the lowest level. Moreover, the kinetic models for solvent degradation were established at different temperatures, results showed the smaller maximum specific substrate degradation rate of MC and IPA, besides, the lowest degradation rate of three solvents were obtained at 15 ± 3 °C.
Collapse
Affiliation(s)
- Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China
| | - Jiao Xu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Dongxue Hu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Pan Wu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Hui Ge
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Fuquan Jia
- School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China
| | - Tingting Xiao
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Xue Li
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haiyan Su
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haixu Wang
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, China
| |
Collapse
|
30
|
Zhu H, Han Y, Ma W, Han H, Ma W, Xu C. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene. BIORESOURCE TECHNOLOGY 2018; 262:302-309. [PMID: 29738959 DOI: 10.1016/j.biortech.2018.04.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
The up-flow anaerobic sludge blanket (UASB) system with graphene assisted was developed for coal gasification wastewater (CGW) treatment. Short-term results showed that optimal graphene addition (0.5 g/L) resulted in a more significant enhancement of methane production and chemical oxygen demand (COD) removal compared with that of the optimal activated carbon addition (10.0 g/L). Long-term results demonstrated that COD removal efficiency and methane production rate with graphene assisted achieved 64.7% and 180.5 mL/d, respectively. In addition, graphene could promote microbes accumulation and enzymes activity, resulting in higher extracellular polymeric substances (EPS) and coenzyme F420 concentrations. X-ray Diffraction (XRD) analysis indicated that chemical of graphene changed insignificantly during the experiment. Meanwhile, with graphene assisted, cells were attached together to form microbial aggregates to facilitate sludge granulation process. Furthermore, the enriched Geobacter and Pseudomonas might perform direct interspecies electron transfer (DIET) with Methanosaeta via biological electrical connection, enhancing the anaerobic degradation of CGW.
Collapse
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiwei Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
Improving the energy efficiency of a pilot-scale UASB-digester for low temperature domestic wastewater treatment. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements. ENERGIES 2018. [DOI: 10.3390/en11071675] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Li L, Xu G, Yu H, Xing J. Dynamic membrane for micro-particle removal in wastewater treatment: Performance and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:332-340. [PMID: 29426156 DOI: 10.1016/j.scitotenv.2018.01.239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 05/06/2023]
Abstract
Dynamic membranes (DMs) have been of great interest in recent years because they can reduce energy consumption and costs during wastewater treatment. Dynamic membranes are a promising technology for the removal of low-density, non-degradable micro-particles, such as plastics, which are an increasingly prevalent wastewater contaminant. These micro-particles are not easily removed via conventional sedimentation and result in increased operation and maintenance costs in downstream unit processes. In this study, DMs were formed on a 90 μm supporting mesh through filtration of a synthetic wastewater. The impact of influent flux (solid flux) and influent particle concentration on DM performance was investigated. The effluent turbidity was reduced to <1 NTU after 20 mins of filtration, verifying the effective removal of micro-particles by the DM. Transmembrane pressure (TMP) and total filtration resistance increased linearly with filtration time, and were highly correlated (R2 > 0.998). TMP ranged from 80 to 180 mm of water head, and total filtration resistance ranged from 2.89 × 10-9 m-1 to 6.52 × 10-9 m-1 during DM filtration. In general, an increase in influent flux and influent particle concentration corresponds with increasing TMP and filtration resistance, as well as a rapid reduction in effluent turbidity due to swift formation of a DM on the supporting mesh.
Collapse
Affiliation(s)
- Lucheng Li
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Huarong Yu
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Xing
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
34
|
Wang K, Cingolani D, Eusebi A, Soares A, Jefferson B, McAdam E. Identification of gas sparging regimes for granular anaerobic membrane bioreactor to enable energy neutral municipal wastewater treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Cho K, Jeong Y, Seo KW, Lee S, Smith AL, Shin SG, Cho SK, Park C. Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment. BIORESOURCE TECHNOLOGY 2018; 256:137-144. [PMID: 29433048 DOI: 10.1016/j.biortech.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
An anaerobic ceramic membrane bioreactor (AnCMBR) has been attracted as an alternative technology to co-manage various organic substrates. This AnCMBR study investigated process performance and microbial community structure at decreasing temperatures to evaluate the potential of AnCMBR treatment for co-managing domestic wastewater (DWW) and food waste-recycling wastewater (FRW). As a result, the water flux (≥6.9 LMH) and organic removal efficiency (≥98.0%) were maintained above 25 °C. The trend of methane production in the AnCMBR was similar except for at 15 °C. At 15 °C, the archaeal community structure did not shifted, whereas the bacterial community structure was changed. Various major archaeal species were identified as the mesophilic methanogens which unable to grow at 15 °C. Our results suggest that the AnCMBR can be applied to co-manage DWW and FRW above 20 °C. Future improvements including psychrophilic methanogen inoculation and process optimization would make co-manage DWW and FRW at lower temperature climates.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yeongmi Jeong
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kyu Won Seo
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Seockheon Lee
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongsangnam-do 52725, South Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do 10326, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
36
|
Li H, Han K, Li Z, Zhang J, Li H, Huang Y, Shen L, Li Q, Wang Y. Performance, granule conductivity and microbial community analysis of upflow anaerobic sludge blanket (UASB) reactors from mesophilic to thermophilic operation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Dynamics of Archaeal and Bacterial Communities in Response to Variations of Hydraulic Retention Time in an Integrated Anaerobic Fluidized-Bed Membrane Bioreactor Treating Benzothiazole Wastewater. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:9210534. [PMID: 29853797 PMCID: PMC5949192 DOI: 10.1155/2018/9210534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/05/2018] [Indexed: 11/28/2022]
Abstract
An integrated anaerobic fluidized-bed membrane bioreactor (IAFMBR) was investigated to treat synthetic high-strength benzothiazole wastewater (50 mg/L) at a hydraulic retention time (HRT) of 24, 18, and 12 h. The chemical oxygen demand (COD) removal efficiency (from 93.6% to 90.9%), the methane percentage (from 70.9% to 69.27%), and the methane yield (from 0.309 m3 CH4/kg·CODremoved to 0.316 m3 CH4/kg·CODremoved) were not affected by decreasing HRTs. However, it had an adverse effect on membrane fouling (decreasing service period from 5.3 d to 3.2 d) and benzothiazole removal efficiency (reducing it from 97.5% to 82.3%). Three sludge samples that were collected on day 185, day 240, and day 297 were analyzed using an Illumina® MiSeq platform. It is striking that the dominant genus of archaea was always Methanosaeta despite of HRTs. The proportions of Methanosaeta were 80.6% (HRT 24), 91.9% (HRT 18), and 91.2% (HRT 12). The dominant bacterial genera were Clostridium in proportions of 23.9% (HRT 24), 16.4% (HRT 18), and 15.3% (HRT 12), respectively.
Collapse
|
38
|
He Z, Xia D, Huang Y, Tan X, He C, Hu L, He H, Zeng J, Xu W, Shu D. 3D MnO 2 hollow microspheres ozone-catalysis coupled with flat-plate membrane filtration for continuous removal of organic pollutants: Efficient heterogeneous catalytic system and membrane fouling control. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1198-1208. [PMID: 29162299 DOI: 10.1016/j.jhazmat.2017.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
A heterogeneous catalytic ozonation/membrane filtration (HCOMF) system was fabricated by integrating a flat-plate polyvinylidene fluoride (PVDF) membrane module along with a slurry catalytic ozonation reactor. The performance and catalytic activity of HCOMF was evaluated for degradation of model wastewater containing bisphenol A (BPA) and humid acid (HA) under different permeation flux in long-term continuous experiments. The membrane fouling was investigated by trans-membranous pressure (TMP), membrane filtration resistance, scanning electronic microscopy (SEM), and fluorescence spectra. The results showed that HCOMF system exhibited an excellent and stable catalytic activity in long-term continuous experiments owning to integration of 3D MnO2 hollow microsphere ozone-catalysis with flat-plate membrane filtration. The TMP of HCOMF system didn't increase significantly, and the membrane resistance Rp and Rc declined from 4% and 16% to 1% and 4%, respectively, thus, the membrane fouling of HCOMF system was mitigated compared to MF system. The mitigation of membrane fouling in HCOMF system was attributed to the increase of hydrophilicity of membrane surface and change of HA fractions.
Collapse
Affiliation(s)
- Zhuoyan He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yajing Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiuqin Tan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huanjunwa He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiawei Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenjun Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Liu Y, Huang L, Dong G, Liu G, Wu X, Wang C, Liu X, Wang L. Enhanced granulation and methane recovery at low load by downflow sludge circulation in anaerobic treatment of domestic wastewater. BIORESOURCE TECHNOLOGY 2018; 249:851-857. [PMID: 29136941 DOI: 10.1016/j.biortech.2017.10.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
The effects of downflow sludge circulation on granulation and methane recovery at low load were investigated for domestic wastewater treatment in a modified anaerobic reactor. Compared with conventional upflow anaerobic reactors, enhanced granulation with shortened start-up time was achieved and stable granules were successfully cultivated only after 58 days operations. The introduction of downflow sludge circulation resulted in reverse wastewater-sludge flow and uniform sludge distribution in the reaction zone, which contributed to enhanced wastewater-sludge mass transfer and satisfactory performance with a high soluble chemical oxygen demand (SCOD) removal efficiency of 94.8% at hydraulic retention time (HRT) 6 h. Besides, enhanced liquid-to-gas mass transfer caused a lower dissolved CH4 saturation index of 1.11 and a higher CH4 recovery efficiency of 79.48% at HRT 6 h. High throughput sequencing revealed a distinct shift of microbial community during start-up period from Proteobacteria to Bacteroidetes and Chloroflexi in the existence of downflow sludge circulation.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Lihui Huang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Guihua Dong
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Gaofeng Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xueyuan Wu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Chuang Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xiaowei Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Lisha Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
40
|
Berkessa YW, Yan B, Li T, Tan M, She Z, Jegatheesan V, Jiang H, Zhang Y. Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration. BIORESOURCE TECHNOLOGY 2018; 250:281-289. [PMID: 29174906 DOI: 10.1016/j.biortech.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Performance of two novel designed anaerobic membrane bioreactor (AnMBRs) for wastewater treatment at long hydraulic retention time (HRT, 47 days) and high sludge concentration (22 g·L-1) was investigated. Results showed steady chemical oxygen demand (COD) removal (>98%) and mean biogas generation of 0.29 LCH4·g-1COD. Average permeates flux of 58.70 L·m-2·h-1 and 54.00 L·m-2·h-1 were achieved for reactors A and B, respectively. On top of reactor configuration, long HRT caused biofilm reduction by heterotrophic bacteria Chloroflexi resulting in high membrane flux. Mean total membrane resistances (2.23 × 109 m-1) and fouling rates (4.00 × 108 m-1·day-1) of both reactors were low suggesting better membrane fouling control ability of both AnMBRs. Effluent quality analysis showed the effluent soluble microbial products (SMP) were dominated by proteins compared to carbohydrates, and specific ultraviolet absorbance (SUVA) analysis revealed effluent from both reactors had low aromaticity with SUVA < 1 (L·mg-1·m-1) except for the first ten days.
Collapse
Affiliation(s)
- Yifru Waktole Berkessa
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Binghua Yan
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
| | - Tengfei Li
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Ming Tan
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, PR China
| | | | - Heqing Jiang
- Lab of Membrane Separation and Catalysis Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
| | - Yang Zhang
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
41
|
Liu J, Tian C, Jia X, Xiong J, Dong S, Wang L, Bo L. The brewery wastewater treatment and membrane fouling mitigation strategies in anaerobic baffled anaerobic/aerobic membrane bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Nascimento TA, Mejía FR, Fdz-Polanco F, Peña Miranda M. Improvement of municipal wastewater pretreatment by direct membrane filtration. ENVIRONMENTAL TECHNOLOGY 2017; 38:2562-2572. [PMID: 27931165 DOI: 10.1080/09593330.2016.1271017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/07/2016] [Indexed: 05/26/2023]
Abstract
The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m2 h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.
Collapse
Affiliation(s)
- Thiago A Nascimento
- a Department of Chemical Engineering and Environmental Technology , University of Valladolid , Valladolid , Spain
| | - Fanny R Mejía
- a Department of Chemical Engineering and Environmental Technology , University of Valladolid , Valladolid , Spain
| | - Fernando Fdz-Polanco
- a Department of Chemical Engineering and Environmental Technology , University of Valladolid , Valladolid , Spain
| | - Mar Peña Miranda
- a Department of Chemical Engineering and Environmental Technology , University of Valladolid , Valladolid , Spain
| |
Collapse
|
43
|
Düppenbecker B, Engelhart M, Cornel P. Fouling mitigation in Anaerobic Membrane Bioreactor using fluidized glass beads: Evaluation fitness for purpose of ceramic membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Ersahin ME, Tao Y, Ozgun H, Gimenez JB, Spanjers H, van Lier JB. Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Yang J, Ji X, Lu L, Ma H, Chen Y, Guo J, Fang F. Performance of an anaerobic membrane bioreactor in which granular sludge and dynamic filtration are integrated. BIOFOULING 2017; 33:36-44. [PMID: 27911097 DOI: 10.1080/08927014.2016.1262845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
To alleviate the fouling of a filter, simple substrates, dynamic filtration, and granular sludge were applied in an anaerobic membrane bioreactor (AnMBR). The results showed that under a transmembrane pressure < 20 kPa, the filter flux ranged between 15 and 20 l (m-2 h)-1 for a period of 30 days. The flux was higher than the typical flux of AnMBRs with conventional membranes and most current dynamic filters. In addition, the low cost of the filter avoided the need for a higher flux. Moreover, a stable granular sludge bed, which consumed all volatile fatty acids, was maintained. A compact fouling/filtration layer formed on the filter, which contributed to low effluent chemical oxygen demand concentrations and turbidity. In addition, substrate scarcity in the filtration zone resulted in the evolution of diverse bacteria on the filter.
Collapse
Affiliation(s)
- Jixiang Yang
- a Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing , China
| | - Xin Ji
- a Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing , China
- b School of Urban Construction and Environmental Engineering , Chongqing University , Chongqing , China
| | - Lunhui Lu
- a Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing , China
| | - Hua Ma
- b School of Urban Construction and Environmental Engineering , Chongqing University , Chongqing , China
| | - Youpeng Chen
- a Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing , China
| | - Jinsong Guo
- a Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing , China
| | - Fang Fang
- b School of Urban Construction and Environmental Engineering , Chongqing University , Chongqing , China
| |
Collapse
|
46
|
Seib M, Berg K, Zitomer D. Low energy anaerobic membrane bioreactor for municipal wastewater treatment. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Liu J, Jia X, Gao B, Bo L, Wang L. Membrane fouling behavior in anaerobic baffled membrane bioreactor under static operating condition. BIORESOURCE TECHNOLOGY 2016; 214:582-588. [PMID: 27179954 DOI: 10.1016/j.biortech.2016.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
A novel AnMBR combined with ABR as the anaerobic baffled membrane bioreactor (ABMBR) was developed for membrane fouling mitigation without any turbulence intensifying strategy to reduce the energy consumption further. The filtration time of this system lasted 14-25days under stable condition only with back-flushing every 48h. The polysaccharide accounted for 6.85±3.1% amount of total filter cake and the protein accounted for 4.12±2.1%, which took 79.12% and 11.12% of total area in laser scanning confocal microscope (CLSM) image. After filtration, 83.72±10.97% of turbidity, 59.28±16.46% of polysaccharide, 16.51% of tryptophan and 37.61% of humic-like substrates were rejected, respectively. The total membrane resistance at the end of each cycle was (4.47±0.99)×10(13)m(-1). And the resistance from filter cake was (4.15±1.00)×10(13)m(-1), which accounted for of 92.6±3.4% of total membrane resistance.
Collapse
Affiliation(s)
- Jiadong Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China.
| | - Xiaolan Jia
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Bo Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Longli Bo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| |
Collapse
|
48
|
Zhou Z, Wang Y, Jiang Y, Diao Y, Strappe P, Prenzler P, Ayton J, Blanchard C. Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure. Lipids Health Dis 2016; 15:86. [PMID: 27121709 PMCID: PMC4848804 DOI: 10.1186/s12944-016-0252-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/19/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Deep frying in oil is a popular cooking method around the world. However, the safety of deep-fried edible oil, which is ingested with fried food, is a concern, because the oil is exposed continuously to be re-used at a high temperature, leading to a number of well-known chemical reactions. Thus, this study investigates the changes in energy metabolism, colon histology and gut microbiota in rats following deep-fried oil consumption and explores the mechanisms involved in above alterations. METHODS Deep-fried oil was prepared following a published method. Adult male Wistar rats were randomly divided into three groups (n = 8/group). Group 1: basal diet without extra oil consumption (control group); Group 2: basal diet supplemented with non-heated canola oil (NEO group); Group 3: basal diet supplemented with deep-fried canola oil (DFEO group). One point five milliliters (1.5 mL) of non-heated or heated oil were fed by oral gavage using a feeding needle once daily for 6 consecutive weeks. Effect of DFEO on rats body weight, KEGG pathway regarding lipids metabolism, gut histology and gut microbiota were analyzed using techniques of RNA sequencing, HiSeq Illumina sequencing platform, etc. RESULTS Among the three groups, DFEO diet resulted in a lowest rat body weight. Metabolic pathway analysis showed 13 significantly enriched KEGG pathways in Control versus NEO group, and the majority of these were linked to carbohydrate, lipid and amino acid metabolisms. Comparison of NEO group versus DFEO group, highlighted significantly enriched functional pathways were mainly associated with chronic diseases. Among them, only one metabolism pathway (i.e. glycerolipid metabolism pathway) was found to be significantly enriched, indicating that inhibition of this metabolism pathway (glycerolipid metabolism) may be a response to the reduction in energy metabolism in the rats of DFEO group. Related gene analysis indicated that the down-regulation of Lpin1 seems to be highly associated with the inhibition of glycerolipid metabolism pathway. Histological analysis of gastrointestinal tract demonstrated several changes induced by DFEO on intestinal mucosa with associated destruction of endocrine tissue and the evidence of inflammation. Microbiota data showed that rats in DFEO group had the lowest proportion of Prevotella and the highest proportion of Bacteroides among the three groups. In particular, rats in DFEO group were characterized with higher presence of Allobaculum (Firmicutes), but not in control and NEO groups. CONCLUSION This study investigated the negative effect of DFEO on health, in which DFEO could impair glycerolipid metabolism, destroy gut histological structure and unbalance microbiota profile. More importantly, this is the first attempt to reveal the mechanism involved in these changes, which may provide the guideline for designing health diet.
Collapse
Affiliation(s)
- Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China. .,ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW 2650, Australia. .,School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yuyang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yumei Jiang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yongjia Diao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Padraig Strappe
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Paul Prenzler
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Jamie Ayton
- NSW Department of Primary Industries, Agriculture Institute, Wagga Wagga, NSW 2650, Australia
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
49
|
Wang H, Tao Y, Gao D, Liu G, Chen C, Ren N, van Lier JB, de Kreuk M. Microbial population dynamics in response to increasing loadings of pre-hydrolyzed pig manure in an expanded granular sludge bed. WATER RESEARCH 2015; 87:29-37. [PMID: 26378729 DOI: 10.1016/j.watres.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/26/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
In recent years, pig manure (PM) has been regarded as a valuable substrate for energy and resource recovery via bioprocesses such as anaerobic digestion (AD), however, the efficiency of digesting raw PM is limited by the presence of refractory compounds. In this study, we applied a series of pretreatment on raw PM, consisting of subsequent thermochemical pretreatment, enzymatic hydrolysis, tyndallization and filtration. The liquid PM hydrolysates were fed to an expanded granular sludge bed (EGSB) for the production of biogas. The general performance and population dynamics of the EGSB reactor were assessed during an extended operational period of 339 days. An efficient and stable digestion process was achieved under high organic loading rates (OLRs) up to 21 kg-COD/(m(3)·d), agreeing with a sludge loading rate of 0.75 kg-COD/(kg-VSS·d), 1600 mg-NH4(+)-N/L and 17 mg/L of free ammonia nitrogen. The tyndallization decreased the total amount of active cells from 1 × 10(8) to 1 × 10(2) CFU/ml. Hence, bio-augmentation with pigs' intestinal microbiota was absent and the community dynamics were mainly credited to the composition of the substrate (i.e. PM hydrolysates) and the environmental conditions inside the reactor. The results showed the influence of both the seed community and the imposed loading rates on the evolutionary trajectory of the EGSB microbial community. Four bacterial genera (Clostridium, Cytophaga, Bacillus and Bacteroides) and two methanogenic genera (Methanosaeta and Methanobacterium) dominated the communities. An obvious shift from aceticlastic Methanosaeta to hydrogenotrophic Methanobacterium appeared when the OLR was increased to over 10 kg-COD/(m(3)·d).
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China; Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China; Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands; Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Gang Liu
- Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| | - Chunhong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China.
| | - Jules B van Lier
- Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| | - Merle de Kreuk
- Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| |
Collapse
|