1
|
Ramezanzade V, Dinari M, Mehvari F. Investigation study of methyl violet photodegradation over alginate-carboxymethyl cellulose/titanium(IV) oxide/covalent organic frameworks bio-nanocomposite beads under ultraviolet irradiation. Int J Biol Macromol 2024; 277:134287. [PMID: 39095274 DOI: 10.1016/j.ijbiomac.2024.134287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Concerned about water treatment, it is of great importance to present new approaches for improving photocatalytic activity. Since photocatalysis is ubiquitous in almost all chemical manufacturing processes, the development of photocatalytic systems carries significance for our environment. In this regard, three different amounts of covalent organic frameworks decorated with titanium(IV) oxide nanoparticles (TiO2/COF hybrids) in Alginate-Carboxymethyl cellulose (Alg-CMC) blend matrix were prepared under ultrasound irradiation, which Citric acid and Calcium chloride acted as two green cross-linkages. Based on the physio-chemical analyses of these bio-nanocomposite (bio-NC) beads, the Alg-CMC blend polymer appeared to be the best candidate for a disparity of TiO2/COF hybrids. Not only did COF aid to increase the distribution of TiO2 nanoparticles, but it declined the bandgap energies. The resultant Alg-CMC/TiO2/COF (TiO2/COF = 15:6) bio-NC beads demonstrated efficient photodegradation activity towards Methyl violet (MV) under Ultraviolet light. The obtained results of scavenger studies indicated that superoxide radicals and electron agents played a major role in MV degradation. Further investigation confirmed that single oxygen addition and N-de-methylation could be two important pathways for the decomposition of MV by these bio-NC beads.
Collapse
Affiliation(s)
- Vahid Ramezanzade
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Fariba Mehvari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
2
|
Yang N, Song S, Yang X, Nawaz MAH, He D, Han W, Li Y, Yu C. Fabrication of photo-induced molecular superoxide radical generator for highly efficient therapy against bacterial wound infection. Colloids Surf B Biointerfaces 2024; 241:114018. [PMID: 38865868 DOI: 10.1016/j.colsurfb.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The pressing need for highly efficient antibacterial strategies arises from the prevalence of microbial biofilm infections and the emergence of rapidly evolving antibiotic-resistant strains of pathogenic bacteria. Photodynamic therapy represents a highly efficient and compelling antibacterial approach, offering promising prospects for effective control of the development of bacterial resistance. However, the effectiveness of many photosensitizers is limited due to the reduced generation of reactive oxygen species (ROS) in hypoxic microenvironment, which commonly occur in pathological conditions such as inflammatory and bacteria-infected wounds. Herein, we designed and prepared two phenothiazine-derived photosensitizers (NB-1 and NB-2), which can effectively generate superoxide anion radicals (O2●-) through the type I process. Both photosensitizers demonstrate significant efficacy in vitro for the eradication of broad-spectrum bacteria. Moreover, NB-2 possesses distinct advantages including strong membrane binding and strong generation of O2●-, rendering it an exceptionally efficient antibacterial agent against mature biofilms. In addition, laser activated NB-2 could be applied to treat MRSA-infected wound in vivo, which offers new opportunities for potential practical applications.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaofei Yang
- Harbin Center for Disease Control and Prevention, Harbin 150030, PR China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Di He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ying Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
3
|
Tian Y, Wu K, Lin S, Shi M, Liu Y, Su X, Islam R. Biodegradation and Decolorization of Crystal Violet Dye by Cocultivation with Fungi and Bacteria. ACS OMEGA 2024; 9:7668-7678. [PMID: 38405495 PMCID: PMC10882667 DOI: 10.1021/acsomega.3c06978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Microbial degradation of dyes is vital to understanding the fate of dyes in the environment. In this study, a fungal strain A-3 and a bacterial strain L-6, which were identified as Aspergillus fumigatus and Pseudomonas fluorescens, respectively, had been proven to efficiently degrade crystal violet (CV) dye. The decolorization of CV dye by fungal and bacterial cocultivation was investigated. The results showed that the decolorization rate of cocultures was better than monoculture (P. fluorescens in L-6 (PF), and that of A. fumigatus A-3 (AF)). Furthermore, enzymatic analysis further revealed that Lac, MnP, Lip, and NADH-DCIP reductases were involved in the biodegradation of CV dyes. UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS) were used to examine the degradation products. GC-MS analysis showed the presence of 4-(dimethylamino) benzophenone, 3-dimethylaminophenol, benzyl alcohol, and benzaldehyde, indicating that CV was degraded into simpler compounds. The phytotoxicity tests revealed that CV degradation products were less toxic than the parent compounds, indicating that the cocultures detoxified CV dyes. As a result, the cocultures are likely to have a wide range of applications in the bioremediation of CV dyes.
Collapse
Affiliation(s)
- Yongqiang Tian
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kangli Wu
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shenghong Lin
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Meiling Shi
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Liu
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xu Su
- Key
Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization
of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China
| | - Rehmat Islam
- Key
Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
4
|
Li Z, Lu Y, Chen T, He A, Huang Y, Li L, Pan W, Li J, Zhu N, Wang Y, Jiang G. Generation Mechanism of Perfluorohexanesulfonic Acid from Polyfluoroalkyl Sulfonamide Derivatives During Chloramination in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18462-18472. [PMID: 36633968 DOI: 10.1021/acs.est.2c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.
Collapse
Affiliation(s)
- Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yao Lu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Tianyu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Ying Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| |
Collapse
|
5
|
Sánchez-Silva JM, Aguilar-Aguilar A, Labrada-Delgado GJ, Villabona-Leal EG, Ojeda-Galván HJ, Sánchez-García JL, Collins-Martínez H, López-Ramón MV, Ocampo-Pérez R. Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO 2 for degradation of crystal violet by UV and visible radiation. ENVIRONMENTAL RESEARCH 2023; 231:116280. [PMID: 37257742 DOI: 10.1016/j.envres.2023.116280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
This work presents a one-step synthesis methodology for preparing a hydrochar (HC) doped with TiO2 (HC-TiO2) for its application on the degradation of crystal violet (CV) using UV and visible radiation. Byrsonima crassifolia stones were used as precursors along with TiO2 particles. The HC-TiO2 sample was synthesized at 210 °C for 9 h using autogenous pressure. The photocatalyst was characterized to evaluate the TiO2 dispersion, specific surface area, graphitization degree, and band-gap value. Finally, the degradation of CV was investigated by varying the operating conditions of the system, the reuse of the catalyst, and the degradation mechanism. The physicochemical characterization of the HC-TiO2 composite showed good dispersion of TiO2 in the carbonaceous particle. The presence of TiO2 on the hydrochar surface yields a bandgap value of 1.17 eV, enhancing photocatalyst activation with visible radiation. The degradation results evidenced a synergistic effect with both types of radiation due to the hybridized π electrons in the sp2-hybridized structures in the HC surface. The degradation percentages were on average 20% higher using UV radiation than visible radiation under the following conditions: [CV] = 20 mg/L, 1 g/L of photocatalyst load, and pH = 7.0. The reusability experiments demonstrated the feasibility of reusing the HC-TiO2 material up to 5 times with a similar photodegradation percentage. Finally, the results indicated that the HC-TiO2 composite could be considered an efficient material for the photocatalytic treatment of water contaminated with CV.
Collapse
Affiliation(s)
- J M Sánchez-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - A Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | | | - E G Villabona-Leal
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78210, Mexico
| | - H J Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78210, Mexico
| | - J L Sánchez-García
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - H Collins-Martínez
- Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C, Chihuahua, 31136, Mexico
| | - M V López-Ramón
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, 23071, Spain
| | - R Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| |
Collapse
|
6
|
Huang-Fu ZC, Qian Y, Deng GH, Zhang T, Schmidt S, Brown J, Rao Y. Development of Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG) for Vibronic and Solvent Couplings of Molecules at Interfaces and Surfaces. ACS PHYSICAL CHEMISTRY AU 2023; 3:374-385. [PMID: 37520317 PMCID: PMC10375875 DOI: 10.1021/acsphyschemau.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023]
Abstract
Many photoinduced excited states' relaxation processes and chemical reactions occur at interfaces and surfaces, including charge transfer, energy transfer, proton transfer, proton-coupled electron transfer, configurational dynamics, conical intersections, etc. Of them, interactions of electronic and vibrational motions, namely, vibronic couplings, are the main determining factors for the relaxation processes or reaction pathways. However, time-resolved electronic-vibrational spectroscopy for interfaces and surfaces is lacking. Here we develop interface/surface-specific two-dimensional electronic-vibrational sum frequency generation spectroscopy (2D-EVSFG) for time-dependent vibronic coupling of excited states at interfaces and surfaces. We further demonstrate the fourth-order technique by investigating vibronic coupling, solvent correlation, and time evolution of the coupling for photoexcited interface-active molecules, crystal violet (CV), at the air/water interface as an example. The two vibronic absorption peaks for CV molecules at the interface from the 2D-EVSFG experiments were found to be more prominent than their counterparts in bulk from 2D-EV. Quantitative analysis of the vibronic peaks in 2D-EVSFG suggested that a non-Condon process participates in the photoexcitation of CV at the interface. We further reveal vibrational solvent coupling for the zeroth level on the electronic state with respect to that on the ground state, which is directly related to the magnitude of its change in solvent reorganization energy. The change in the solvent reorganization energy at the interface is much smaller than that in bulk methanol. Time-dependent center line slopes (CLSs) of 2D-EVSFG also showed that kinetic behaviors of CV at the air/water interface are significantly different from those in bulk methanol. Our ultrafast 2D-EVSFG experiments not only offer vibrational information on both excited states and the ground state as compared with the traditional doubly resonant sum frequency generation and electronic-vibrational coupling but also provide vibronic coupling, dynamical solvent effects, and time evolution of vibronic coupling at interfaces.
Collapse
|
7
|
Dhruv L, Kori DKK, Das AK. Sodium Alginate-CuS Nanostructures Synthesized at the Gel-Liquid Interface: An Efficient Photocatalyst for Redox Reaction and Water Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37377166 DOI: 10.1021/acs.langmuir.3c00980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The use of visible light to propel chemical reactions is an exciting area of study that is crucial in the current socioeconomic environment. However, various photocatalysts have been developed to harness visible light, which consume high energy during synthesis. Thus, synthesizing photocatalysts at gel-liquid interfaces in ambient conditions is of scientific importance. Herein, we report an environmentally benign sodium alginate gel being used as a biopolymer template to synthesize copper sulfide (CuS) nanostructures at the gel-liquid interface. The driving force for the synthesis of CuS nanostructures is varied by changing the pH of the reaction medium (i.e., pH 7.4, 10, and 13) to tailor the morphology of CuS nanostructures. The CuS nanoflakes obtained at pH 7.4 transform into nanocubes when the pH is raised to 10, and the nanostructures deform at the pH of 13. Fourier transform infrared spectroscopy (FTIR) confirms all the characteristic stretching of sodium alginate, whereas the CuS nanostructures are crystallized in a hexagonal crystal system, as revealed by the powder X-ray diffraction analysis. The high-resolution X-ray photoelectron spectroscopy (XPS) spectra show the +2 and -2 oxidation states of copper (Cu) and sulfur (S) ions, respectively. The CuS nanoflakes physisorbed a higher concentration of greenhouse CO2 gas. Owing to a lower band gap of CuS nanoflakes synthesized at a pH of 7.4, compared to other CuS nanostructures prepared at pH 10 and 13, CuS photocatalytically degrades 95% of crystal violet and 98% of methylene blue aqueous dye solutions in 60 and 90 min, respectively, under blue light illumination. Additionally, sodium alginate-copper sulfide (SA-CuS) nanostructures synthesized at a pH of 7.4 demonstrate excellent performance in photoredox reactions to convert ferricyanide to ferrocyanide. The current research opens the door to developing new photocatalytic pathways for a wide range of photochemical reactions involving nanoparticle-impregnated alginate composites prepared on gel interfaces.
Collapse
Affiliation(s)
- Likhi Dhruv
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Deepak K K Kori
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
8
|
Kim YE, Byun MY, Lee KY, Lee MS. Hydrothermal synthesis of mesoporous TiO2 using β-diketonate stabilizing agents for photocatalytic degradation of methyl violet 2B under visible light. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Jeong SB, Lee DU, Lee BJ, Heo KJ, Kim DW, Hwang GB, MacRobert AJ, Shin JH, Ko HS, Park SK, Oh YS, Kim SJ, Lee DY, Lee SB, Park I, Kim SB, Han B, Jung JH, Choi DY. Photobiocidal-triboelectric nanolayer coating of photosensitizer/silica-alumina for reusable and visible-light-driven antibacterial/antiviral air filters. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 440:135830. [PMID: 35313452 PMCID: PMC8926436 DOI: 10.1016/j.cej.2022.135830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Sang Bin Jeong
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dong Uk Lee
- Department of Industrial Chemistry, Pukyong National University, Busan 48513, Republic of Korea
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Byeong Jin Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
- School of Mechanical Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Ki Joon Heo
- Material Chemistry Research Centre, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Dong Won Kim
- Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gi Byoung Hwang
- Material Chemistry Research Centre, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Alexander J MacRobert
- UCL Division of Surgery and Interventional Science, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Jae Hak Shin
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Sik Ko
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Se Kye Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong Suk Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - See Jo Kim
- School of Mechanical Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Bok Lee
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Inyong Park
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Sang Bok Kim
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Bangwoo Han
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Jae Hee Jung
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| |
Collapse
|
10
|
Mallakpour S, Ramezanzade V. Tragacanth gum mediated green fabrication of mesoporous titania nanomaterials: Application in photocatalytic degradation of crystal violet. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112680. [PMID: 33965704 DOI: 10.1016/j.jenvman.2021.112680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Water remediation is a crucial subject in present century. Hence, several processes have been used for this aim, which the photodegradation method with high activity, cost-effectiveness, and durability has been remarkable. In this project, the various novel mesoporous Titania nanomaterials (MTN) were green synthesized using Tragacanth gum as coupling agent. The effect of calcination times on the crystalline structure of the resulted MTNs was examined. MTNs displayed the dramatically specific surface area with negative surface charge and nano-sheet structure, and they applied for photodegradation of crystal violet under ultraviolet irradiation due to proper band gaps energy. The obtained MTN in 8 h calcination time (MTN-8) showed the best photoreduction activity. Also, the superoxide radicals, electrons, and hole pairs represented the main degradation agents as the reduction rate of crystal violet. Next, the transformation pathways were proposed, which could be transformation singlet oxygen addition, hydroxyl addition, and N-demethylation reactions.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Vahid Ramezanzade
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| |
Collapse
|
11
|
Bi12SiO20/g-C3N4 heterojunctions: Synthesis, characterization, photocatalytic activity for organic pollutant degradation, and mechanism. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Yu K, Wei R, Yang S, Guo H, Hua H, Sun C, Luo X. Dark formation of reactive oxygen species by bifunctional copper doped sodium bismuthate: Direct oxidation vs catalytic oxidation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124297. [PMID: 33268206 DOI: 10.1016/j.jhazmat.2020.124297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Sustained generation of reactive oxygen species for aquatic decontamination is desired, but the strategies aiming at this goal usually involve tremendous input of chemicals or energy, which for practical purpose have hindered their implementation. Here we propose a very simple approach for degrading organic pollutants based on copper doped sodium bismuthate (CSB), in which reactive oxygen species can be continuously generated requiring no irradiation or other chemicals. The material was easily prepared by coprecipitation of NaBiO3·nH2O and Cu(NO3)2. Two stages of cyclic degradation of organic pollutant in sequence by the same CSB powder, alone with series of characterization measurements and control experiments were designed. CSB mediated reaction proceeds via two distinct mechanisms viz. direct oxidation and catalytic oxidation, each involving different primary reactive species and resulting in different product profiles. Direct oxidation occurs accompanied by the structural transformation of CSB involving singlet oxygen, originated from lattice oxygen, as the responsible species, while catalytic oxidation employs dissolved oxygen to primarily yield superoxide radical owing to the presence of oxygen vacancy. Our findings provide novel insights into the direct and catalytic oxidative activity of CSB, and suggest a based-on approach for simple, efficient and sustained generation of reactive species for water treatment.
Collapse
Affiliation(s)
- Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Rui Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Helin Hua
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
13
|
Yang F, Sheng B, Wang Z, Xue Y, Liu J, Ma T, Bush R, Kušić H, Zhou Y. Performance of UV/acetylacetone process for saline dye wastewater treatment: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124774. [PMID: 33310333 DOI: 10.1016/j.jhazmat.2020.124774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Futility of traditional advanced oxidation processes (AOPs) in saline wastewater treatment has stimulated the quest for novel "halotolerant" chemical oxidation technology. Acetylacetone (AA) has proven to be a potent photo-activator in the degradation of dyes, but the applicability of UV/AA for saline wastewater treatment needs to be verified. In this study, degradation of crystal violet (CV) was investigated in the UV/AA system in the presence of various concentrations of exogenic Cl- or Br-. The results reveal that degradation, mineralization and even accumulation of adsorbable organic halides (AOX) were not significantly affected by the addition of Cl- or Br-. Rates of CV degradation were enhanced by elevating either AA dosage or solution acidity. An apparent kinetic rate equation was developed as r = -d[CV]/dt = k[CV]a[AA]b = (7.34 × 10-4 mM1-(a+b) min-1) × [CV]a=0.16 [AA]b=0.97. In terms of results of radical quenching experiments, direct electron/energy transfer is considered as the major reaction mechanism, while either singlet oxygen or triplet state (3(AA)*) might be involved. Based on identification of degradation byproducts, a possible degradation pathway of CV in the UV/AA system is proposed.
Collapse
Affiliation(s)
- Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bo Sheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Ying Xue
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tianyi Ma
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Richard Bush
- Sustainable Development Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Yanbo Zhou
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Wang M, Xiang X, Zuo Y, Peng J, Lu K, Dempsey C, Liu P, Gao S. Singlet oxygen production abilities of oxidated aromatic compounds in natural water. CHEMOSPHERE 2020; 258:127308. [PMID: 32535450 DOI: 10.1016/j.chemosphere.2020.127308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Singlet oxygen (1O2) is well known to be formed through energy transfer from excited state organic matters to O2, playing an important role in the transformations of contaminants. However, the contribution of small oxidated aromatic compounds (OACs) to the production of 1O2 in surface water is unclear. In this study, 28 OACs were selected to investigate the correlations between their photochemical production abilities of 1O2 and molecular structures. Our results showed that the steady-state concentrations and quantum yields of 1O2 (Φ1O2) generated by OACs were in the range of 7.0 × 10-14-1.4 × 10-12 M and 2.2 × 10-4-4.7 × 10-2, respectively, indicating that the photochemical production abilities of 1O2 by OACs varied greatly with types and positions of functional groups on the molecule. More importantly, the observed photochemical production of 1O2 was most notable in cases of molecules containing -OCH3 group and benzoquinone. A good quantitative structure-property relationship model was established between 1O2 producing ability, energy of the lowest unoccupied molecular orbitals (ELUMO) and the most positive net charge of hydrogen atoms (qH+) of OACs. In addition, the role of 1O2 produced by 2, 6-dimethoxy-1, 4-benzoquinone, the OAC with the highest Φ1O2, in the photodegradation of organic contaminants was validated by the enhanced degradation of atorvastatin under simulated sunlight, suggesting that OACs ubiquitously existed in surface water may greatly affect the fate and ecological risks of organic contaminants.
Collapse
Affiliation(s)
- Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xueying Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA, 02747-2300, USA
| | - Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Caroline Dempsey
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA, 02747-2300, USA
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Xie G, Wang H, Zhou Y, Du Y, Liang C, Long L, Lai K, Li W, Tan X, Jin Q, Qiu G, Zhou D, Huo H, Hu X, Xu X. Simultaneous remediation of methylene blue and Cr(VI) by mesoporous BiVO4 photocatalyst under visible-light illumination. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Huo Z, Wang S, Shao H, Wang H, Xu G. Radiolytic degradation of anticancer drug capecitabine in aqueous solution: kinetics, reaction mechanism, and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20807-20816. [PMID: 32248418 DOI: 10.1007/s11356-020-08500-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of anticancer drugs in the environment has attracted wide attention due to its potential environmental risks. The aim of this study was to investigate degradation characteristics and mechanism of anticancer drug capecitabine (CPC) by electron beam (EB) irradiation. The results showed that EB was an efficient water treatment process for CPC. The degradation followed pseudo-first-order kinetics with dose constants ranged from 1.27 to 3.94 kGy-1. Removal efficiencies in natural water filtered or unfiltered were lower than pure water due to the effect of water matrix components. The degradation was restrained by the presence of NO2-, NO3- and CO32-, and fulvic acid due to competition of reactive radical •OH. It demonstrated that oxidizing radical played important role in irradiation process. The appropriate addition of H2O2 and K2S2O8 providing with oxidizing agents •OH and •SO4- was favorable to improve degradation efficiency of CPC. The possible transformation pathways of CPC including cleavage of the ribofuranose sugar and defluorination were proposed based on intermediate products and were consistent with the theoretical calculation of charge and electron density distribution. Toxicity of CPC and intermediate products were estimated by ECOSAR program. It was found that CPC was transformed to low toxicity products with EB.
Collapse
Affiliation(s)
- Zhuhao Huo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
17
|
Sun G, Zhang Y, Gao Y, Han X, Yang M. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: Performance, mechanism, and full-scale application. WATER RESEARCH 2020; 173:115517. [PMID: 32028246 DOI: 10.1016/j.watres.2020.115517] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Efficient removal of the non-biodegradable organics from the biological effluent of industrial wastewater is becoming more and more important with the increasing demand for stringent discharge regulation. In this study, a synchronized oxidation-adsorption (SOA) technology was proposed for the removal of hardly biodegradable COD (hard COD) from the biological effluent of coking wastewater, and its performance was verified in a full-scale coking industrial park wastewater treatment plant (Q = 5,000 m3/d). The SOA was performed by coupling oxidation by hydroxyl radical (molar ratio of Fe2+ to H2O2 of 1:1 and pH = 5.0 ± 0.2) and adsorption by in-situ-formed nano hydrolyzed Fe3+ particles (nano-FeOOH). The nano hydrolyzed Fe3+ particles formed during the SOA exhibited a much higher specific surface area (22.83 m2/g) than the particles (10.87 m2/g) formed during the polyferric sulfate coagulation (PFSC). In comparison to PFSC, SOA performed better in terms of average COD removal (39% vs 18%) from the biological effluent. Wastewater fractionation result showed that SOA performed better in the removal of the hydrophobic acid matters, which was supported by the experiment using fulvic acid as the model organics. Mechanism studies using both biological effluent and fulvic acid solution showed that more carboxylic substances were adsorbed by the in-situ-formed nano-hydrolyzed Fe3+ particles formed by SOA than by PFSC, which was likely due to the generation of carboxylic substances by hydroxyl radical oxidation. In the full-scale, the COD was reduced from 118.5-198.0 mg/L in the PFSC-pretreated effluent to 61.5-104.0 mg/L through SOA treatment. The SOA treatment characterized with a mild pH condition (pH 5) and low molar ratio of Fe2+ to H2O2 (1:1) is particularly suitable for the polishing purpose to remove limited amount of organic pollutants from wastewater before discharge.
Collapse
Affiliation(s)
- Guangxi Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100085, China; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yingxin Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Wuhai Institute of Industrial Wastewater Treatment Technology, Wuhai, 016000, China
| | - Xiaogang Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
18
|
Xu P, Du H, Peng X, Tang Y, Zhou Y, Chen X, Fei J, Meng Y, Yuan L. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134970. [PMID: 31740057 DOI: 10.1016/j.scitotenv.2019.134970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 05/22/2023]
Abstract
Remediation of polycyclic aromatic hydrocarbons (PAHs) in oily sludge has become the focus of attention. UV spectrophotometer analysis showed that four types of PAHs were found in sample, which including phenanthrene, anthracene, benzo(a)anthracene and benzo(b)fluoranthene. In order to degrade PAH effectively, the laccase reverse micelles system was proposed. The system protects laccase from being affected by organic phase. Reverse micelles were prepared by using isooctane to simulate oil. The optimum water content W0 was 10 by measuring the electrical conductivity of the system. Under this condition, the effects of pH, temperature and ionic strength on the degradation rate of PAHs were investigated. Also, compared with that of non-immobilized laccase, the ratio between the secondary structures of laccase under different conditions was studied. The results showed that the highest laccase activity was obtained at pH 4.2 and 30 °C with 60 mmol/L KCl. Meanwhile, the structure of α-helix accounts for the largest proportion, and the ratio of α-helix in the laccase secondary structure in the laccase-reverse micelle system was higher than that of the non-immobilized one under this condition. Finally, predicting the reactive site of the degradation of polycyclic aromatic hydrocarbons was simulated by ORCA (Version 4.2.0). The application in oily sludge was further conducted. This study provides an effective method and basis for the degradation of PAHs in oily sludge.
Collapse
Affiliation(s)
- Pengfei Xu
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hao Du
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xin Peng
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yu Tang
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Xiangyan Chen
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jia Fei
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yong Meng
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lu Yuan
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
19
|
Zhang T, He G, Dong F, Zhang Q, Huang Y. Chlorination of enoxacin (ENO) in the drinking water distribution system: Degradation, byproducts, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:31-39. [PMID: 31029898 DOI: 10.1016/j.scitotenv.2019.04.275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Chlorine is widely used as a drinking water disinfectant to ensure water security. However, the transformation mechanisms of its degradation of emerging pollutants within the water distribution system (WDS) is insufficiently understood. Thus, the kinetics, degradation byproducts, and toxicity of the chlorination of enoxacin (ENO, a type of emerging pollutant) were explored in a pilot-scale WDS for the first time. It was found that the chlorination rate of ENO was higher in deionized water (DW) than in the pilot-scale WDS, and the degradation followed second-order kinetics in DW. The degradation efficiency was found to be sensitive to pH, and was highest at a pH of 7.4. The chlorination rate of ENO increased with increasing temperature in both DW and WDS. For different pipe materials, the relative performance of ENO chlorination efficiency followed the order of steel pipe > ductile iron pipe > polyethylene (PE) pipe. Seven intermediates were identified during ENO chlorination, and the primary oxidation reaction involved the cleavage of the piperazine group. Finally, it was found that the potential for chlorine toxicity in treated drinking water in the presence of ENO is higher than it is without this pollutant.
Collapse
Affiliation(s)
- Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Guilin He
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China.
| | - Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qingzhou Zhang
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Yuan Huang
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
20
|
Liu J, Li C, Qu R, Feng J, Wang L. Formation of perfluorocarboxylic acids from photodegradation of tetrahydroperfluorocarboxylic acids in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:598-606. [PMID: 30476840 DOI: 10.1016/j.scitotenv.2018.11.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/23/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Tetrahydroperfluorocarboxylic acids (2H,2H,3H,3H-PFCAs) have aroused the interest of scholars worldwide due to their potential to generate perfluorinated compounds. In this work, we systematically examined the photodegradation kinetics and mechanisms of typical 2H,2H,3H,3H-PFCAs (CnF2n+1C2H4COOH, n = 6, 7, 8) in aqueous solution by a 500 W Hg lamp. The photodecomposition of 2H,2H,3H,3H-PFCAs all followed pseudo-first-order kinetics, and the photolysis rate coefficients increased with the increasing carbon chain length. Under the same reaction condition, 2H,2H,3H,3H-PFCAs degraded much faster than the corresponding PFCAs. The photodecomposition rate coefficient of C8F17CH2CH2COOH was accelerated by low pH and Fe3+ addition, but decreased by the existence of humic acid, carbonate and bicarbonate. Compared with ultrapure water, a decreased removal of 2H,2H,3H,3H-PFCAs was observed in four types of natural waters, i.e., tap water, Jiuxiang river water, primary effluent and secondary effluent. According to mass analysis, C8F17CH2CH2COOH was mainly decomposed into 8:2 fluorotelomer acid (C8F17CH2COOH), shorter-chain perfluorocarboxylic acids (PFCAs), perfluoro-1-enes (CnF2n) and perfluoroketenes (CnF2n+1CF = C = O). Thus, α-oxidation, decarboxylation and elimination reaction were proposed as reaction pathways. ECOSAR predictions showed that photolysis generally decreased the aquatic toxicity of C8F17CH2CH2COOH.
Collapse
Affiliation(s)
- Jiaoqin Liu
- School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Chenguang Li
- School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruijuan Qu
- School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| | - Jianfang Feng
- School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Lianhong Wang
- School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| |
Collapse
|
21
|
Klidi N, Clematis D, Carpanese MP, Gadri A, Ammar S, Panizza M. Electrochemical oxidation of crystal violet using a BDD anode with a solid polymer electrolyte. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.03.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Wang M, Li J, Shi H, Miao D, Yang Y, Qian L, Gao S. Photolysis of atorvastatin in aquatic environment: Influencing factors, products, and pathways. CHEMOSPHERE 2018; 212:467-475. [PMID: 30153618 DOI: 10.1016/j.chemosphere.2018.08.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Atorvastatin (ATV), a second generation cholesterol-lowering drug, is detected frequently in natural water because of its extensive use and incomplete removal from wastewater. In this study, the photochemical behavior of ATV under simulated solar irradiation was systematically investigated in order to assess the potential of photolysis as its transformation pathway in aquatic environment. The quantum yield of ATV direct photolysis was determined to be 0.0041. Among various water components investigated, including pH, Suwannee River Fulvic Acid (SRFA), Fe3+, HCO3-, SO42- and NO3-, the major factors contributing to the indirect photolysis of ATV were SRFA and NO3-, and the co-existence of SRFA and NO3- showed no interaction in synthetic water containing the above water components. The results were further verified in natural water samples. Singlet oxygen (1O2) played dominant role in the indirect photolysis of ATV, and the contributions of 1O2 and ·OH to the photolysis of ATV in the solution with optimum combination of water components were calculated to be 67.14% and 0.66%, respectively. Nine phototransformation intermediates were identified by liquid chromatography - time-of-flight - mass spectrometry (LC-TOF-MS), and the degradation pathways were speculated as hydroxyl addition, pyrrole-ring open and debenzamide reactions. In addition, the evolution of products in the degradation process showed that the ring-opened product P416 and hydroxylation product P575 still remained at a certain level after two days of photodegradation, which may accumulate and cause additional ecological risks. This study provides significant information for understanding the risk and fate of ATV in aquatic environment.
Collapse
Affiliation(s)
- Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huanhuan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Dong Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Yun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Li Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
23
|
Chen J, Qu R, Pan X, Wang Z. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. WATER RESEARCH 2016; 103:215-223. [PMID: 27459151 DOI: 10.1016/j.watres.2016.07.041] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
24
|
Direct sample analysis-mass spectrometry vs separation mass spectrometry techniques for the analysis of writing inks. Forensic Chem 2016. [DOI: 10.1016/j.forc.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Yang CT, Lee WW, Lin HP, Dai YM, Chi HT, Chen CC. A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: synthesis, characterization, photocatalytic activity, and mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra02299e] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A new type of heterojunction photocatalyst, Bi2SiO5/g-C3N4, was prepared using a controlled hydrothermal method.
Collapse
Affiliation(s)
| | - Wenlian William Lee
- Department of Occupational Safety and Health
- Chung-Shan Medical University
- Taiwan
| | - Ho-Pan Lin
- National Taichung University of Education
- Taiwan
| | | | | | | |
Collapse
|