1
|
Zeng H, Zeng Y, Xu H, Zhao W, Han S, Zhang J, Li D. Selective adsorption of arsenic by water treatment residuals cross-linked chitosan in co-existing oxyanions competition system. ENVIRONMENTAL RESEARCH 2024; 263:120192. [PMID: 39427941 DOI: 10.1016/j.envres.2024.120192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Selective adsorption of arsenic in co-existing oxyanions competition systems remains a significant challenge in water treatment due to the limitations of adsorbent materials that often overlook competitive adsorption, resulting in an overestimation of their actual purification potential for target contaminants. In this study, a novel hydrogel bead adsorbent, composed of water treatment residuals (WTRs) and chitosan (Chi), was developed to selectively remove arsenic, while minimizing the interference from phosphate, which is the strongest and most representative competitor in multi-oxyanion systems. The WTRs-Chi beads (WCB) adsorbents were optimized by adjusting the ratios of WTRs:Chi, with characterization results indicating that increased WTR doping improved the degree of crosslinking and the formation of bidentate complexes with enhanced electrostatic selectivity. Importantly, the co-existence of phosphate had minimal adverse effects on arsenic removal compared to other reported adsorbents. The maximum adsorption capacity for As (V) in the binary system was 34.12 mg/g, and the adsorption behavior was fitted well by the pseudo-second-order kinetic model and the extended Langmuir isotherm model. The experimental results, supported by X-ray photoelectron spectroscopy analysis (XPS), revealed that both As (V) and P (V) adsorption in the single system were driven by electrostatic attraction and ligand exchange. However, in the binary system, the inhibition of P (V) adsorption was attributed to competitive desorption caused by electrostatic repulsion, which hindered the formation of inner-sphere complexes. This study provides a practical approach for developing selective adsorbents to address arsenic contamination in complex water environments and promotes the recycling of municipal solid waste.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yuwei Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - He Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Weihua Zhao
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Su Han
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Sirajudheen P, Vigneshwaran S, Thomas N, Selvaraj M, Assiri MA, Park CM. Critical assessment of recent advancements in chitosan-functionalized iron and geopolymer-based adsorbents for the selective removal of arsenic from water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:946. [PMID: 39289191 DOI: 10.1007/s10661-024-13087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Inorganic arsenic (As), a known carcinogen and major contaminant in drinking water, affects over 140 million people globally, with levels exceeding the World Health Organization's (WHO) guidelines of 10 μg L-1. Developing innovative technologies for effluent handling and decontaminating polluted water is critical. This paper summarizes the fundamental characteristics of chitosan-embedded composites for As adsorption from water. The primary challenge in selectively removing As ions is the presence of phosphate, which is chemically similar to As(V). This study evaluates and summarizes innovative As adsorbents based on chitosan and its composite modifications, focusing on factors influencing their adsorption affinity. The kinetics, isotherms, column models, and thermodynamic aspects of the sorption processes were also explored. Finally, the adsorption process and implications of functionalized chitosan for wastewater treatment were analyzed. There have been minimal developments in water disinfection using metal-biopolymer composites for environmental purposes. This field of study offers numerous research opportunities to expand the use of biopolymer composites as detoxifying materials and to gain deeper insights into the foundations of biopolymer composite adsorbents, which merit further investigation to enhance adsorbent stability.
Collapse
Affiliation(s)
- P Sirajudheen
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala, 676306, India.
| | - S Vigneshwaran
- Environmental System Laboratory, Department of Civil Engineering, Kyung Hee University Global Campus, Seoul, 1732 Deogyong-daero, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 16705, Republic of Korea
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kuthuparamba, Nirmalagiri P.O, Kannur, Kerala, 670701, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Nwokonkwo O, Muhich C. Mechanistic Insights into the Selectivity for Arsenic over Phosphate Adsorption by Fe 3+-Cross-Linked Chitosan Using DFT. J Phys Chem B 2024; 128:1689-1699. [PMID: 38353120 PMCID: PMC10901294 DOI: 10.1021/acs.jpcb.3c06838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Fe3+-cross-linked chitosan exhibits the potential for selectively adsorbing arsenic (As) over competing species, such as phosphate, for water remediation. However, the effective binding mechanisms, bond nature, and controlling factor(s) of the selectivity are poorly understood. This study employs ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to neat chitosan and Fe3+-chitosan. Neat chitosan fails to selectively bind As oxyanions, as all three oxyanions bind similarly via weak hydrogen bonds with preferences of P(V) = As(V) > As(III). Conversely, Fe3+-chitosan selectively binds As(V) over As(III) and P(V) with binding energies of -1.9, -1, and -1.8 eV for As(V), As(III), and P(V), respectively. The preferences are due to varying Fe3+-oxyanion donor-acceptor characteristics, forming covalent bonds with distinct strengths (Fe-O bond ICOHP values: - 4.9 eV/bond for As(V), - 4.7 eV/bond for P(V), and -3.5 eV/bond for As(III)). Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) under typical environmental pH conditions. Furthermore, our calculations suggest that the binding selectivity of Fe3+-chitosan exhibits a pH dependence. These findings enhance our understanding of the Fe3+-oxyanion interaction crucial for preferential oxyanion binding using Fe3+-chitosan and provide a lens for further exploration into alternative transition-metal-chitosan combinations and coordination chemistries for applications in selective separations.
Collapse
Affiliation(s)
- Obinna Nwokonkwo
- Chemical Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
| | - Christopher Muhich
- Chemical Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
- Materials Science & Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
| |
Collapse
|
4
|
Farsad A, Marcos-Hernandez M, Sinha S, Westerhoff P. Sous Vide-Inspired Impregnation of Amorphous Titanium (Hydr)Oxide into Carbon Block Point-of-Use Filters for Arsenic Removal from Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20410-20420. [PMID: 37948748 PMCID: PMC10810566 DOI: 10.1021/acs.est.3c06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Carbon block filters, commonly employed as point-of-use (POU) water treatment components, effectively eliminate pathogens and adsorb undesirable tastes, odors, and organic contaminants, all while producing no water waste. However, they lack the capability to remove arsenic. Enabling the carbon block to remove arsenic could reduce its exposure risks in tap water. Inspired by Sous vide cooking techniques, we developed a low-energy, low-chemical method for impregnating commercially available carbon block with titanium (hydr)oxide (THO) in four integrated steps: (1) vacuum removal of air from the carbon block, (2) impregnation with precursors in a flexible pouch, (3) sealing to prevent oxygen intrusion, and (4) heating in a water bath at 80 °C for 20 h to eliminate exposure and reactions with air. This process achieved a uniform 13 wt % Ti loading in the carbon block. Our modified carbon block POU filter efficiently removed both arsenate and arsenite from tap water matrices containing 10 or 100 μg/L arsenic concentrations in batch experiments or continuous flow operations. Surprisingly, the THO-modified carbon block removed arsenite better than arsenate. This innovative method, using 70% fewer chemicals than traditional autoclave techniques, offers a cost-effective solution to reduce exposure to arsenic and lower its overall risk in tap water.
Collapse
Affiliation(s)
- Alireza Farsad
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Arizona State University, Tempe, AZ 85287, USA
| | - Mariana Marcos-Hernandez
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Shahnawaz Sinha
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Arizona State University, Tempe, AZ 85287, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Shahib II, Ifthikar J, Wang S, Elkhlifi Z, He L, Chen Z. Elimination of hazardous Se(IV) through adsorption-coupled reduction by iron nanoparticles embedded on mesopores of chitin obtained from waste shrimp shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119961-119973. [PMID: 37936029 DOI: 10.1007/s11356-023-30743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Selenium is an essential nutrient for biological function. However, there is a detrimental effect on the aquatic environment associated with higher concentrations of > 40 µg/L. The utilization of waste shrimp shells for the removal of high-concentrated selenium from wastewater is a commendable strategy in both the pollution control and waste management sectors. In the present study, a chitin-iron polymer complex hybrid material (Fe@SHC) was prepared from shrimp shell-derived hydrochar (SHC), and the synthesized composite was successfully employed to uptake selenium from wastewater. The highest removal performance of 79.18 mg/g was attained by Fe@SHC, whereas the capacity of SHC was 15.30 mg/g. It was found that the calcium content of Fe@SHC (1.98%) was lower than that of SHC (25.20%) and pHzpc of Fe@SHC was extended to 7.78 compared with that of SHC (2.00). The abundance of protonated hydroxyl (-OH2+) and amine (-NH3+) functional groups that developed through the iron co-precipitations resulted in the improved adsorption performance of Fe@SHC. XPS analysis demonstrated that the captured Se(IV) species were converted into less hazardous Se(0), which is accompanied by the electron transfer with both N-C = O (acetyl amine) and -NH2 (amine) functional groups. Adsorption kinetics disclosed that the adsorption process was governed by chemical sorption, and the Sips isotherm model provided the most accurate description of the isotherm equilibrium. This study proposed an inexpensive and environmentally friendly method for effective decontamination of Se from wastewater.
Collapse
Affiliation(s)
- Irshad Ibran Shahib
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zouhair Elkhlifi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Lingzhi He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
6
|
Strong OKL, France HE, Scotland K, Wright K, Vreugdenhil AJ. Selenite Adsorption and Reduction via Iron(II) Impregnated Activated Carbon Produced from the Phosphoric Acid Activation of Construction Waste Wood. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:485-497. [PMID: 37816969 DOI: 10.1007/s00244-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
Chemical activation of waste materials, to form activated carbon, (AC) is complicated by the large amounts of chemical activating agents required and wastewater produced. To address these problems, we have developed an optimized process for producing AC, by phosphoric acid activation of construction waste. Waste wood from construction sites was ground and treated with an optimized phosphoric acid digestion and activation that resulted in high surface areas (> 2000 m2/g) and a greater recovery of phosphoric acid. Subsequently the phosphoric acid activated carbon (PAC), was functionalized with iron salts and evaluated for its efficacy on the adsorption of selenite and selenate. Total phosphoric acid recovery was 96.7% for waste wood activated with 25% phosphoric acid at a 1:1 ratio, which is a substantially higher phosphoric acid recovery, than previous literature findings. Post activation impregnation of iron salts resulted in iron(II) species adsorbed to the PAC surface. The iron(II) chloride impregnated AC removed up to 11.41 ± 0.502 mg selenium per g Iron-PAC. Competitive ions such as sulfate and nitrate had little effect on selenium adsorption, however, phosphate concentration did negatively impact the selenium uptake at high phosphate levels. At 250 ppm, approximately 75% of adsorption capacity of both the selenate and the selenite solutions was lost, although selenium was still preferentially adsorbed. Peak adsorption occurred between a pH of 4 and 11, with a complete loss of adsorption at a pH of 13.
Collapse
Affiliation(s)
- Oliver K L Strong
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Hamant E France
- Environmental and Life Sciences, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Kevin Scotland
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Kelly Wright
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Andrew J Vreugdenhil
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
7
|
Liu H, Xie X, Cao H, Wang Y. Insights into the selectivity of metallic oxides for arsenic and phosphate from EXAFS and DFT calculations. CHEMOSPHERE 2023; 336:139276. [PMID: 37343632 DOI: 10.1016/j.chemosphere.2023.139276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/07/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Phosphate is the biggest competitor for arsenic removal. Nanoscale metal oxides (NMOs) are commonly used to treat arsenic-contaminated water, yet their selective adsorption mechanisms for arsenic and phosphate are poorly understood. We quantified the selectivity of iron oxide (Fe2O3), zinc oxide (ZnO), and titanium dioxide (TiO2) nanosheets for arsenic in systems containing arsenic and phosphate, and determined the interaction of phosphate and arsenate/arsenite on metal oxide surfaces through batch experiments, spectroscopic techniques, and DFT calculations. We found that Fe2O3, TiO2, and ZnO nanosheets exhibit selectivity for arsenate/arsenite in the presence of phosphate, with Fe2O3 the most selective, followed by TiO2 and ZnO. The bonding mechanism on these metallic oxide surfaces dominates the selectivity. The more stable inner-sphere complexes of arsenate on the surfaces of Fe2O3 (bidentate binuclear), TiO2 (bidentate binuclear), and ZnO nanosheets (tridentate trinuclear) contribute to their preference for arsenate over phosphate. This difference in arsenate selectivity can be reflected in the difference in adsorption energy, net electron transfer number, and M - O bond length of the most stable inner sphere complexes. Overall, our study elucidated the selective adsorption mechanisms of arsenate/arsenite on Fe2O3, TiO2, and ZnO surfaces and highlighted the need to consider the competition between arsenate and phosphate during their removal from contaminated water.
Collapse
Affiliation(s)
- Hongxing Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Hailong Cao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|
8
|
Khojastehnezhad A, Moeinpour F, Jafari M, Shehab MK, Samih ElDouhaibi A, El-Kaderi HM, Siaj M. Postsynthetic Modification of Core-Shell Magnetic Covalent Organic Frameworks for the Selective Removal of Mercury. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276585 DOI: 10.1021/acsami.3c02914] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core-shell magnetic covalent organic framework (COF) materials were prepared, followed by shell material functionalization with different organic ligands, including thiosemicarbazide, through a postsynthetic modification approach. The structures of the prepared samples were characterized with various techniques, including powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), photoinduced force microscopy (PiFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and solid 13C NMR. PXRD and BET studies revealed that the crystalline and porous nature of the functionalized COFs was well maintained after three steps of postsynthetic modification. On the other hand, solid 13C NMR, TGA, and PiFM analyses confirmed the successful functionalization of COF materials with good covalent linkage connectivity. The use of the resulting functionalized magnetic COF for selective and ultrafast adsorption of Hg(II) has been investigated. The observations displayed rapid kinetics with adsorption dynamics conforming to the quasi-second-order kinetic model and the Langmuir adsorption model. Furthermore, this prepared crystalline magnetic material demonstrated a high Langmuir Hg(II) uptake capacity, reaching equilibrium in only 5 min. Thermodynamic calculations proved that the adsorption process is endothermic and spontaneous.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 7915893144, Iran
| | - Maziar Jafari
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Mohammad K Shehab
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ahmad Samih ElDouhaibi
- Department of Chemistry, Lebanese University, College of Science III, Campus Mont Michel, Tripoli 1352, Lebanon
| | - Hani M El-Kaderi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| |
Collapse
|
9
|
Zhao Z, Li S, Zhang Y, Guo P, Zhao X, Li Y. Repurposing of steel rolling sludge: Solvent-free preparation of α-Fe 2O 3 nanoparticles and its application for As(III/V)-containing wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118286. [PMID: 37269724 DOI: 10.1016/j.jenvman.2023.118286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Steel rolling sludge (SRS) is the by-product of metallurgical industry with abundant iron content, which needs to be utilized for producing high value-added products. Herein, cost-effective and highly adsorbent α-Fe2O3 nanoparticles were prepared from SRS via a novel solvent-free method and applied to treat As(III/V)-containing wastewater. The structure of the prepared nanoparticles was observed to be spherical with a small crystal size (12.58 nm) and high specific surface area (145.03 m2/g). The nucleation mechanism of α-Fe2O3 nanoparticles and the effect of crystal water were investigated. More importantly, compared with the traditional methods of preparation cost and yield, this study was found to have excellent economic benefits. The adsorption results indicated that the adsorbent could effectively remove arsenic over a wide pH range, and the optimal performance of nano adsorbent for As(III) and As(V) removal was observed at pH 4.0-9.0 and 2.0-4.0, respectively. The adsorption process was consistent with pseudo-second-order kinetic and Langmuir isothermal model. The maximum adsorption capacity (qm) of adsorbent for As(III) and As(V) was 75.67 mg/g and 56.07 mg/g, respectively. Furthermore, α-Fe2O3 nanoparticles exhibited great stability, and qm remained at 64.43 mg/g and 42.39 mg/g after five cycles. Particularly, the As(III) was removed by forming inner-sphere complexes with the adsorbent, and it partially oxidized to As(V) during this process. In contrast, the As(V) was removed by electrostatic adsorption and reaction with -OH on the adsorbent surface. Overall, resource utilization of SRS and the treatment of As(III)/(V)-containing wastewater in this study are in line with the current developments in the environmental and waste-to-value research.
Collapse
Affiliation(s)
- Zekun Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yabin Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Penghui Guo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongkui Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
10
|
Wang Y, Zhang Y, Liu X, Sun S, Qin S, Huang J, Chen B. Fabrication of phosphoric-crosslinked chitosan@g-C 3N 4 gel beads for uranium(VI) separation from aqueous solution. Int J Biol Macromol 2023:124998. [PMID: 37236563 DOI: 10.1016/j.ijbiomac.2023.124998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this work, a novel g-C3N4 filled, phosphoric-crosslinked chitosan gel bead (P-CS@CN) was successfully prepared to adsorb U(VI) from water. The separation performance of chitosan was improved by introducing more functional groups. At pH 5 and 298 K, the adsorption efficiency and adsorption capacity could reach 98.0 % and 416.7 mg g-1, respectively. After adsorption, the morphological structure of P-CS@CN did not change and adsorption efficiency remained above 90 % after 5 cycles. P-CS@CN exhibited an excellent applicability in water environment based on dynamic adsorption experiments. Thermodynamic analyses demonstrated the value of ΔG, manifesting the spontaneity of U(VI) adsorption process on P-CS@CN. The positive values of ΔH and ΔS showed that the U(VI) removal behavior of P-CS@CN was an endothermic reaction, indicating that the increase of temperature was great benefit to the removal. The adsorption mechanism of P-CS@CN gel bead could be summarized as the complexation reaction with the surface functional groups. This study not only developed an efficient adsorbent for the treatment of radioactive pollutants, but also provided a simple and feasible strategy for the modification of chitosan-based adsorption materials.
Collapse
Affiliation(s)
- Yan Wang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaolin Liu
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Sen Sun
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Shiyi Qin
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Jiaqi Huang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Bowei Chen
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| |
Collapse
|
11
|
Lv Q, Zhou T, Wang T, Wang S, Ge Y, Song Y, Ren X, Hu S. Immobilizing arsenic in soil via amine metal complex: a case study using iron-ethylenediamine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51942-51954. [PMID: 36820968 DOI: 10.1007/s11356-023-25986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Fe-based nanomaterials have been extensively investigated for their application in mitigating arsenic (As) pollution in groundwater, sediment, and soils. Here, an iron-ethylenediamine (Fe-EDA) complex was synthesized and characterized using Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy before its use as an amendment to ameliorate As-polluted soils. Column leaching tests at three Fe-EDA application rates (1%, 3%, and 5%) were conducted, and their results were compared with those acquired after using nano zerovalent iron (nZVI) and Fe3O4, to assess their efficiency to amend As-contaminated paddy soils. After leaching, stabilization efficiency and soil chemical characteristics were determined. Additionally, As fractions were measured using inductively coupled plasma-mass spectroscopy by employing a sequential extraction procedure to evaluate the performance of the treatments and understand the underlying their mechanisms. Compared with the control treatment, the Fe-EDA treatment reduced As release by more than 35.33% in the 2nd leaching cycle, whereas nZVI and Fe3O4 decreased the As release by 11.84% and 24.60%, respectively. Moreover, the optimal addition of the Fe-EDA chelate was 5%, which stabilized more than 50% As in the soil from the 7th to 11th leaching cycles. After sequential extraction, the Fe-Mn oxide binding fraction, which was originally 12.65%, increased to 21.5%, 18.23%, and 21.71% after the application of nZVI, Fe3O4, and Fe-EDA amendments, respectively. Furthermore, our treatments promoted the binding of the As fraction with crystalline Fe (III) (oxyhydr)oxide (F3); however, other fractions did not increase considerably, suggesting that the Fe-EDA complex could effectively stabilize As through electrostatic attraction between the arsenate anion and EDA, as well as As-O-Fe bond formation via a coordinating reaction. Overall, Fe-EDA was found to be a potent amendment for mitigating As-polluted soil.
Collapse
Affiliation(s)
- Qilin Lv
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Tairan Zhou
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Tianhao Wang
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shuhan Wang
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanning Ge
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuling Song
- Hekou District Agricultural and Rural Bureau, Dongying City, Shandong Province, 257200, China
| | - Xueqin Ren
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Shuwen Hu
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
12
|
Khan QU, Begum N, Rehman ZU, Khan AU, Tahir K, Tag El Din ESM, Alothman AA, Habila MA, Liu D, Bocchetta P, Javed MS. Development of Efficient and Recyclable ZnO-CuO/g-C 3N 4 Nanocomposite for Enhanced Adsorption of Arsenic from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3984. [PMID: 36432270 PMCID: PMC9698871 DOI: 10.3390/nano12223984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (III) is a toxic contaminant in water bodies, especially in drinking water reservoirs, and it is a great challenge to remove it from wastewater. For the successful extraction of arsenic (III), a nanocomposite material (ZnO-CuO/g-C3N4) has been synthesized by using the solution method. The large surface area and plenty of hydroxyl groups on the nanocomposite surface offer an ideal platform for the adsorption of arsenic (III) from water. Specifically, the reduction process involves a transformation from arsenic (III) to arsenic (V), which is favorable for the attachment to the -OH group. The modified surface and purity of the nanocomposite were characterized by SEM, EDX, XRD, FT-IR, HRTEM, and BET models. Furthermore, the impact of various aspects (temperatures, pH of the medium, the concentration of adsorbing materials) on adsorption capacity has been studied. The prepared sample displays the maximum adsorption capacity of arsenic (III) to be 98% at pH ~ 3 of the medium. Notably, the adsorption mechanism of arsenic species on the surface of ZnO-CuO/g-C3N4 nanocomposite at different pH values was explained by surface complexation and structural variations. Moreover, the recycling experiment and reusability of the adsorbent indicate that a synthesized nanocomposite has much better adsorption efficiency than other adsorbents. It is concluded that the ZnO-CuO/g-C3N4 nanocomposite can be a potential candidate for the enhanced removal of arsenic from water reservoirs.
Collapse
Affiliation(s)
- Qudrat Ullah Khan
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China
- Zhongshan-Fudan Joint Innovation Center, Zhongshan 528437, China
| | - Nabila Begum
- School of Medicine, Foshan University, Foshan 528000, China
| | - Zia Ur Rehman
- Department of Chemistry, The University of Haripur, Haripur 22620, Pakistan
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University Dera Ismail Khan, Dera Ismail Khan 29220, Khyber Pakhtunkhwa, Pakistan
| | - El Sayed M. Tag El Din
- Electrical Engineering Department, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Asma A. Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan 528000, China
| | - Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Godiya CB, Kumar S, Park BJ. Superior catalytic reduction of methylene blue and 4-nitrophenol by copper nanoparticles-templated chitosan nanocatalyst. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
14
|
Wei Q, Song F, Lu T, Farooq U, Chen W, Zhang Q, Qi Z. Mobility of tetracycline in saturated porous media: Single and combined functions of ligands and ferrihydrite colloids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Li K, Zou S, Jin G, Yang J, Dou M, Qin L, Su H, Huang F. Efficient removal of selenite in aqueous solution by MOF-801 and Fe3O4/MOF-801: Adsorptive behavior and mechanism study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Mabrouk M, Abd El-Wahab RM, Abo-Elfadl MT, Beherei HH, Selim MM, Ibrahim AM, Das DB. Magnetic nanosystems substituted with zinc for enhanced antibacterial, drug delivery and cell viability behaviours. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Passieux R, Sudre G, Montembault A, Renard M, Hagege A, Alcouffe P, Haddane A, Vandesteene M, Boucard N, Bordenave L, David L. Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu 2+ and Zn 2. ACS Biomater Sci Eng 2022; 8:1735-1748. [PMID: 35226455 DOI: 10.1021/acsbiomaterials.2c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The wet spinning of cytocompatible, bioresorbable, and knittable chitosan (CTS) monofilaments would be advantageous for a variety of surgical applications. The complexation capacity of chitosan with Cu2+ or Zn2+ can be leveraged to enhance its antibacterial activity, but not at the expense of cytocompatibility. In this work, a wet-spinning process was adapted for the in situ incorporation of Cu2+ or Zn2+ with chitosan dopes to produce monofilaments at different drawing ratios (τtot) with various cation/glucosamine molar ratios, evaluated in the fibers (rCu,f and rZn,f). Cytocompatibility and antibacterial activity of wet-spun monofilaments were, respectively, quantified by in vitro live-dead assays on balb 3T3 and by different evaluations of the proliferation inhibition of Staphylococcus epidermidis (Gram+) and Escherichia coli (Gram-). Knittability was tested by a specific tensile test using a knitting needle and evaluated with an industrial knitting machine. It was found that rCu,f = 0.01 and rZn,f = 0.03 significantly increase the antibacterial activity without compromising cytocompatibility. Wet spinning with τtot = 1.6 allowed the production of knittable CTS-Cu monofilaments, as confirmed by knitting assays under industrial conditions.
Collapse
Affiliation(s)
- Renaud Passieux
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France.,INSERM, U1026, BIOTIS Laboratory, Université de Bordeaux, Bordeaux F-33000, France.,MDB Texinov, Saint Didier de la Tour 38110, France
| | - Guillaume Sudre
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Alexandra Montembault
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Martine Renard
- CIC-IT INSERM; CHU de Bordeaux, Université de Bordeaux, Pessac 33600, France
| | - Agnès Hagege
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institute of Analytical Sciences (ISA) UMR 5280, Villeurbanne 69100, France
| | - Pierre Alcouffe
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Ali Haddane
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | | | | | - Laurence Bordenave
- INSERM, U1026, BIOTIS Laboratory, Université de Bordeaux, Bordeaux F-33000, France
| | - Laurent David
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| |
Collapse
|
18
|
Filip J, Vinter Š, Čechová E, Sotolářová J. Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst 2021; 146:6394-6415. [PMID: 34596173 DOI: 10.1039/d1an00677k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inorganic selenium, the most common form of harmful selenium in the environment, can be determined using electrochemical sensors, which are compact, fast, reliable and easy-to-operate devices. Despite progress in this area, there is still significant room for developing high-performance selenium electrochemical sensors. To achieve this, one should take into account (i) the electrochemical process that selenium undergoes on the electrode; (ii) the valence state of selenium species in the sample and (iii) modification of the sensor surface by a material with high affinity to selenium. The goal of this review is to provide a knowledge base for these issues. After the Introduction section, mechanisms and principles of the electrochemical reduction of selenium are introduced, followed by a section introducing the modification of electrodes with materials interacting with selenium and a section dedicated to speciation methods, including the reduction of non-detectable Se(VI) to detectable Se(IV). In the following sections, the main types of materials (metallic, polymers, hybrid (nano)materials…) interacting with inorganic selenium (mostly absorbents) are reviewed to show the diversity of properties that may be endowed to sensors if the materials were to be used for the modification of electrodes. These features for the main material categories are outlined in the conclusion section, where it is stated that the engineered polymers may be the most promising modifiers.
Collapse
Affiliation(s)
- Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Štěpán Vinter
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Erika Čechová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Jitka Sotolářová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| |
Collapse
|
19
|
Assessment of adsorption performance of chitosan/ZrO2 biosorbent composite towards Cs (I) and Co (II) metal ions from aqueous solution. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02753-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Ali I, Shrivastava V. Recent advances in technologies for removal and recovery of selenium from (waste)water: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112926. [PMID: 34118514 DOI: 10.1016/j.jenvman.2021.112926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) is distributed into different environmental compartments by natural and anthropogenic activities, and generally discharged in the form of selenate [SeO42-] and selenite [SeO32-], which are both toxic. Physical-chemical and biological treatment processes have been reported to exhibit good treatment efficiencies for Se from aqueous streams, only a few demonstrated to achieve effluent concentrations <5 μg/L. Moreover, there are only a few numbers of studies that describe the progress in technological developments over the last decade. Therefore, to unify the state of knowledge, identify ongoing research trends, and determine the challenges associated with available technologies, this systematic review critically analyses the published research on Se treatment. Specific topics covered in this review include (1) Se chemistry, toxicity, sources and legislation, (2) types of Se treatment technologies, (3) development in Se treatment approaches, (4) Se recovery and circular economy and (5) future prospects. The current research has been found to majorly focused on Se removal via adsorption techniques. However, the key challenges facing Se treatment technologies are related to the presence of competing ions in the solution and the persistence of selenate compared to selenite during their reduction.
Collapse
Affiliation(s)
- Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium.
| | | |
Collapse
|
21
|
Pincus LN, Petrović PV, Gonzalez IS, Stavitski E, Fishman ZS, Anastas PT, Zimmerman JB. Selective adsorption of arsenic over phosphate by transition metal cross-linked chitosan. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 412:128582. [PMID: 37771372 PMCID: PMC10538593 DOI: 10.1016/j.cej.2021.128582] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The ability of transition metal chitosan complexes (TMCs) of varying valence and charge to selectively adsorb As(III) and As(V) over their strongest adsorptive competitor, phosphate is examined. Fe(III)-chitosan, Al(III)-chitosan, Ni(II)-chitosan, Cu(II)-chitosan, and Zn(II)-chitosan are synthesized, characterized via Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray Diffractometry (XRD), and their selective sorption capabilities towards As(III) and As(V) in the presence of phosphate are evaluated. It was found that the stability of the metal-chitosan complexes varied, with Al(III)- and Zn(II)-chitosan forming very unstable complexes resulting in precipitation of gibbsite, and Wulfingite and Zincite, respectively. Cu(II)-, Ni(II)-, and Fe(III)-chitosan formed a mixture of monodentate and bidentate complexes. The TMCs which formed the bidentate complex (Cu(II)-, Ni(II)-, and Fe(III)-) showed greater adsorption capability for As(V) in the presence of phosphate. Using the binary separation factor ∝ t / c , it can be shown that only Fe(III)-chitosan is selective for As(V) and As(III) over phosphate. Density Functional Theory (DFT) modeling and extended X-ray adsorption fine structure (EXAFS) determined that Fe(III)-chitosan and Ni(II)-chitosan adsorbed As(V) and As(III) via inner-sphere complexation, while Cu(II)-chitosan formed mainly outer-sphere complexes with As(V) and As(III). These differences in complexation likely result in the observed differences in selective adsorption capability towards As(V) and As(III) over phosphate. It is hypothesized that the greater affinity of Fe(III)- and Ni(II)-chitosan towards As(V) and As(III) compared to Cu(II)-chitosan is due to their forming less-stable, more reactive chitosan complexes as predicted by the Irving Williams Series.
Collapse
Affiliation(s)
- Lauren N. Pincus
- Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06511
- Yale Center for Green Chemistry and Green Engineering, 370 Prospect St., New Haven, CT 06511, United States
| | - Predrag V. Petrović
- Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States
- Yale Center for Green Chemistry and Green Engineering, 370 Prospect St., New Haven, CT 06511, United States
| | - Isabel S. Gonzalez
- Yale University, Department of Chemical and Environmental Engineering, 17 Hillhouse Ave, New Haven, CT 06511, United States
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zachary S. Fishman
- Yale University, Department of Chemical and Environmental Engineering, 17 Hillhouse Ave, New Haven, CT 06511, United States
| | - Paul T. Anastas
- Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States
- Yale Center for Green Chemistry and Green Engineering, 370 Prospect St., New Haven, CT 06511, United States
| | - Julie B. Zimmerman
- Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06511
- Yale Center for Green Chemistry and Green Engineering, 370 Prospect St., New Haven, CT 06511, United States
| |
Collapse
|
22
|
Yadav MK, Gupta AK, Ghosal PS, Mukherjee A. Effect of coexisting ions on adsorptive removal of arsenate by Mg-Fe-(CO 3) LDH: multi-component adsorption and ANN-based multivariate modeling. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:572-584. [PMID: 33760681 DOI: 10.1080/10934529.2021.1898870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The adsorptive removal of a pollutant from water is significantly affected by the presence of coexisting ions with various concentrations. Here, we have studied adsorption of arsenate [As(V)] by calcined Mg-Fe-(CO3)-LDH in the presence of different cations (Mg2+, Na+, K+, Ca2+, and Fe3+) and anions (CO32‒, Cl‒, PO43‒, SO42‒, and NO3‒) with their different concentrations to simulate the field condition. The experimental results indicated that Ca2+, Mg2+, and Fe3+ have a synergistic effect on removal efficiency of As(V), whereas PO43‒ and CO32‒ ions have a significant antagonistic impact. Overall, the order of inhibiting effect of coexisting anions on adsorption of As(V) was arrived as NO3-˂Cl-<SO42-<CO32-<PO43-. Among them, competitive adsorption of phosphate with arsenic at different initial phosphate concentrations was found to be responsive to formulate a binary adsorption system. We have also developed a modified non-competitive Langmuir and Langmuir-Freundlich models; however, the modified competitive Langmuir model was arrived to be the most adequate model for this binary system. An Artificial Neural Network based multivariate prediction model was developed, delineating the impact of coexisting ions on the adsorption system. The proposed method may appropriately demonstrate the overall system and exhibited a significantly adequate prediction model with high R2, high F-value, and low error values.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Abhijit Mukherjee
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
23
|
Weerasundara L, Ok YS, Bundschuh J. Selective removal of arsenic in water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115668. [PMID: 33017746 DOI: 10.1016/j.envpol.2020.115668] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| | - Yong-Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
24
|
Pincus LN, Rudel HE, Petrović PV, Gupta S, Westerhoff P, Muhich CL, Zimmerman JB. Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9769-9790. [PMID: 32515947 PMCID: PMC10514893 DOI: 10.1021/acs.est.0c01666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Development of novel adsorbents often neglects the competitive adsorption between co-occurring oxo-anions, overestimating realistic pollutant removal potentials, and overlooking the need to improve selectivity of materials. This critical review focuses on adsorptive competition between commonly co-occurring oxo-anions in water and mechanistic approaches for the design and development of selective adsorbents. Six "target" oxo-anion pollutants (arsenate, arsenite, selenate, selenite, chromate, and perchlorate) were selected for study. Five "competing" co-occurring oxo-anions (phosphate, sulfate, bicarbonate, silicate, and nitrate) were selected due to their potential to compete with target oxo-anions for sorption sites resulting in decreased removal of the target oxo-anions. First, a comprehensive review of competition between target and competitor oxo-anions to sorb on commonly used, nonselective, metal (hydr)oxide materials is presented, and the strength of competition between each target and competitive oxo-anion pair is classified. This is followed by a critical discussion of the different equations and models used to quantify selectivity. Next, four mechanisms that have been successfully utilized in the development of selective adsorbents are reviewed: variation in surface complexation, Lewis acid/base hardness, steric hindrance, and electrostatic interactions. For each mechanism, the oxo-anions, both target and competitors, are ranked in terms of adsorptive attraction and technologies that exploit this mechanism are reviewed. Third, given the significant effort to evaluate these systems empirically, the potential to use computational quantum techniques, such as density functional theory (DFT), for modeling and prediction is explored. Finally, areas within the field of selective adsorption requiring further research are detailed with guidance on priorities for screening and defining selective adsorbents.
Collapse
Affiliation(s)
- Lauren N Pincus
- School of Forestry and Environmental Studies, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
- Yale University, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), New Haven, Connecticut 06511, United States
- Yale Center for Green Chemistry and Green Engineering, 370 Prospect St., New Haven, Connecticut 06511, United States
| | - Holly E Rudel
- Yale University, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| | - Predrag V Petrović
- School of Forestry and Environmental Studies, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
- Yale Center for Green Chemistry and Green Engineering, 370 Prospect St., New Haven, Connecticut 06511, United States
| | - Srishti Gupta
- Yale University, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), New Haven, Connecticut 06511, United States
- School of Sustainable Engineering and The Built Environment, Arizona State University, Box 3005, Tempe, Arizona 85287-3005 United States
| | - Paul Westerhoff
- Yale University, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), New Haven, Connecticut 06511, United States
- School of Sustainable Engineering and The Built Environment, Arizona State University, Box 3005, Tempe, Arizona 85287-3005 United States
| | - Christopher L Muhich
- Yale University, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), New Haven, Connecticut 06511, United States
- School for the Engineering of Mater, Transport, and Energy, Ira A Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85001, United States
| | - Julie B Zimmerman
- School of Forestry and Environmental Studies, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
- Yale University, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), New Haven, Connecticut 06511, United States
- Yale Center for Green Chemistry and Green Engineering, 370 Prospect St., New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| |
Collapse
|
25
|
Chini MK, Purohit S, Bheemaraju A, Chakraborty T, Singh KP, Ivaturi A, Satapathi S. Carbon‐Based Adsorbents from Naturally Available Bermuda Grasses: Removal of TDS and Arsenic Ions. ChemistrySelect 2020. [DOI: 10.1002/slct.201902892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mrinmoy Kumar Chini
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| | - Smruti Purohit
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| | | | - Tanmoyendu Chakraborty
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| | | | - Aruna Ivaturi
- Smart Materials Research and Device Technology (SMaRDT) Group Department of Pure and Applied Chemistry University of Strathclyde Thomas Graham building Glasgow G1 1XL United Kingdom
| | - Soumitra Satapathi
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| |
Collapse
|
26
|
Zhang C, Liu S, Li S, Tao Y, Wang P, Ma X, Chen L. Enahanced biosorption of Cu(II) by magnetic chitosan microspheres immobilized Aspergillus sydowii (MCMAs) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Saavedra R, Muñoz R, Taboada ME, Bolado S. Influence of organic matter and CO 2 supply on bioremediation of heavy metals by Chlorella vulgaris and Scenedesmus almeriensis in a multimetallic matrix. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109393. [PMID: 31299473 DOI: 10.1016/j.ecoenv.2019.109393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
This research evaluated the influence of organic matter (OM) and CO2 addition on the bioremediation potential of two microalgae typically used for wastewater treatment: Chlorella vulgaris (CV) and Scenedesmus almeriensis (SA). The heavy metal (HM) removal efficiencies and biosorption capacities of both microalgae were determined in multimetallic solutions (As, B, Cu, Mn, and Zn) mimicking the highest pollutant conditions found in the Loa river (Northern Chile). The presence of OM decreased the total biosorption capacity, specially in As (from 2.2 to 0.0 mg/g for CV and from 2.3 to 1.7 mg/g for SA) and Cu (from 3.2 to 2.3 mg/g for CV and from 2.1 to 1.6 mg/g for SA), but its influence declined over time. CO2 addition decreased the total HM biosorption capacity for both microalgae species and inhibited CV growth. Finally, metal recovery using different eluents (HCl, NaOH, and CaCl2) was evaluated at two different concentrations. HCl 0.1 M provided the highest recovery efficiencies, which supported values over 85% of As, 92% of Cu, and ≈100% of Mn and Zn from SA. The presence of OM during the loaded stage resulted in a complete recovery of As, Cu, Mn, and Zn when using HCl 0.1 M as eluent.
Collapse
Affiliation(s)
- Ricardo Saavedra
- Institute of Sustainable Processes, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - María Elisa Taboada
- Department of Chemical Engineering, Universidad de Antofagasta, Avenue 02800, CP, 1240000, Antofagasta, Chile
| | - Silvia Bolado
- Institute of Sustainable Processes, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
28
|
Alkurdi SSA, Herath I, Bundschuh J, Al-Juboori RA, Vithanage M, Mohan D. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? ENVIRONMENT INTERNATIONAL 2019; 127:52-69. [PMID: 30909094 DOI: 10.1016/j.envint.2019.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is an emerging contaminant on a global scale posing threat to environmental and human health. The relatively brief history of the applications of biochar and bone char has mapped the endeavors to remove As from water to a considerable extent. This critical review attempts to provide a comprehensive overview for the first time on the potential of bio- and bone-char in the immobilization of inorganic As in water. It seeks to offer a rational assessment of what is existing and what needs to be done in future research as an implication for As toxicity of human health risks through acute and chronic exposure to As contaminated water. Bio- and bone-char are recognized as promising alternatives to activated carbon due to their lower production and activation cost. The surface modification via chemical methods has been adopted to improve the adsorption capacity for anionic As species. Surface complexation, ion exchange, precipitation and electrostatic interactions are the main mechanisms involved in the adsorption of As onto the char surface. However, arsenic-bio-bone char interactions along with their chemical bonding for the removal of As in aqueous solution is still a subject of debate. Hence, the proposed mechanisms need to be scrutinized further using advanced analytical techniques such as synchrotron-based X-ray. Moving this technology from laboratory phase to field scale applications is an urgent necessity in order to establish a sustainable As mitigation in drinking water on a global scale.
Collapse
Affiliation(s)
- Susan S A Alkurdi
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; Northern Technical University, Engineering Technical College, Kirkuk, Iraq
| | - Indika Herath
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| | - Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; School of Science, Engineering and Information Technology, Federation University Australia, University Drive, Mt Helen, VIC 3350, Australia
| | - Meththika Vithanage
- Office of the Dean, Faculty of Applied Sciences, Jayewardenepura, Nugegoda, Sri Lanka; International Centre for Applied Climate Science, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Pincus LN, Lounsbury AW, Zimmerman JB. Toward Realizing Multifunctionality: Photoactive and Selective Adsorbents for the Removal of Inorganics in Water Treatment. Acc Chem Res 2019; 52:1206-1214. [PMID: 30969749 DOI: 10.1021/acs.accounts.8b00668] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Persistent and potentially toxic inorganic oxoanions (e.g., arsenic and selenium) are one class of contaminants of concern in drinking water for which treatment technologies must be improved. Effective removal of these oxoanions is made difficult by the varying adsorption affinity of the different oxidation states, as well as the presence of background ions with similar chemical structure and behavior that strongly compete for adsorption sites, greatly reducing removal efficiencies. Recent studies pointing to the negative health effects of inorganic oxoanion contaminants have resulted or are expected to result in new regulations lowering their allowable maximum concentration level (MCL) in drinking water. While these regulations are intended to protect human and environmental health, they must also allow for balanced economic costs. As such, the MCLs are often set at levels that are not as health protective due to high treatment costs that continue to present a significant challenge for small (500-3300 people) to very small (25-500 people) communities. In this Account, we focus on the development of novel cost-effective, sustainable, and efficient multifunctional and selective adsorbents that offer solutions to the above challenges through two platforms: nanoenabled and transition-metal cross-linked chitosan (TMCC) and crystal facet engineered nanometal oxides (NMO). These complementary platforms offer treatment solutions at different scales and flow rates (e.g., in a point-of-use device versus a small-scale community system). Multifunctional adsorbents combine processes that traditionally require multiple steps offering the potential for reducing treatment time and costs. Development of selective adsorbents can greatly increase removal efficiencies of target contaminants by either promoting their adsorption or hindering adsorption of competitive ions. The following sections describe (1) synthesis of novel nanoenabled waste sourced bioadsorbents; (2) development of multifunctional adsorbents to simultaneously photo-oxidize arsenite and adsorb arsenate; (3) development of a selective adsorbent for removal of arsenate and selenite over phosphate; (4) investigations of the conventional wisdom that increased surface area yields increased oxoanion removal using selenium sorption on nanohematite as a case study; and (5) crystal engineering of nanohematite to promote selenite adsorption. The novel technologies developed through these research efforts can serve as templates for the creation of future adsorbents tailored for use targeting other oxoanion contaminants of interest.
Collapse
Affiliation(s)
- Lauren N. Pincus
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Amanda W. Lounsbury
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Julie B. Zimmerman
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| |
Collapse
|
30
|
Gurunathan P, Hari S, Suseela SB, Sankararajan R, Mukannan A. Production, characterization and effectiveness of cellulose acetate functionalized ZnO nanocomposite adsorbent for the removal of Se (VI) ions from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:528-543. [PMID: 30406595 DOI: 10.1007/s11356-018-3472-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, ZnO functionalized cellulose acetate nanocomposite (ZnO/CA NC) was synthesized using a simple chemical approach found to have a high surface area of 657.34 m2/g and utilized as adsorbents for the removal of Se (VI) from aqueous solutions. Investigations on X-ray diffraction (XRD) revealed that ZnO nanocomposite has a smaller crystallite size compared to ZnO nanoparticles which facilitated for reduced agglomeration confirmed by scanning electron microscopy (SEM). The ensuing properties of ZnO/CA NC displayed high maximum adsorption capacity of 160.5 mg/g for Se (VI) ions. Inner-sphere surface complexes on ZnO/CA NC under prevailing conditions for Se (VI) were discussed using FTIR spectroscopical results. In order to evaluate the removal efficiency, the effects of adsorbent dosage, pH, and temperature were thoroughly investigated. The amount of Se (VI) ions adsorbed on ZnO/CA NC was also determined by zeta potential. The fractional removal of pollutants (Se (VI)) was done using mass transfer model. In addition, prominent adsorption capacity was also tested utilizing concurrent anions (SO42-, Cl-, and F-) with reference to Se (VI) and cost prudent regenerability of adsorbent by NaOH solution was ascertained with anti-interference and recovery steps. ZnO/CA NC was obtained by simple chemical methodology and high surface adsorption capacities supply an encouraging technique for Se (VI) removal in water treatment applications.
Collapse
Affiliation(s)
- Padmalaya Gurunathan
- Department of Electronics and Communication Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
| | - Sivaram Hari
- Centre for Nanoscience and Technology, Anna University, Chennai, India
| | | | - Radha Sankararajan
- Department of Electronics and Communication Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
| | | |
Collapse
|
31
|
Wu X, Guo X, Zhang L. Fabrication of Porous Zirconia Microspheres as an Efficient Adsorbent for Removal and Recovery of Trace Se(IV) and Te(IV). Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xianqi Wu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xingjia Guo
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
32
|
Ouyang H, Chen N, Chang G, Zhao X, Sun Y, Chen S, Zhang H, Yang D. Selective Capture of Toxic Selenite Anions by Bismuth‐based Metal–Organic Frameworks. Angew Chem Int Ed Engl 2018; 57:13197-13201. [DOI: 10.1002/anie.201807891] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Ouyang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Ning Chen
- Canadian Light Source Saskatoon S7N 0X4 Canada
| | - Guojing Chang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Xiaoliang Zhao
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Yuanyuan Sun
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Shuai Chen
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Science Taiyuan 030001 P. R. China
| | - Huawei Zhang
- College of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 P. R. China
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| |
Collapse
|
33
|
Pincus LN, Melnikov F, Yamani JS, Zimmerman JB. Multifunctional photoactive and selective adsorbent for arsenite and arsenate: Evaluation of nano titanium dioxide-enabled chitosan cross-linked with copper. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:145-154. [PMID: 29990801 DOI: 10.1016/j.jhazmat.2018.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
A novel multifunctional sorbent material of nano-titanium dioxide-enabled chitosan beads cross-linked with copper (CuTICB) is capable of photo-oxidation of As(III) to the less-toxic and more easily adsorbed As(V) in UV light and selective adsorption of arsenite (As(III)) and arsenate (As(V)) in the presence of phosphate, a strong adsorptive competitor and inhibitor of arsenic removal performance. CuTICB is an attractive sorbent as simultaneous photo-oxidation and adsorption reduces treatment time and cost while selective adsorption improves removal efficiency of arsenic in typical environmental conditions where competitive ions are predominant. In CuTICB, nano-titanium dioxide (n-TiO2) anatase photo-oxidizes As(III) to As(V) through generation of reactive oxygen species. Additionally, Cu-chitosan bidentate crosslinkers form through Lewis acid-base coordinate bonding between Cu(II) and chitosan amine groups resulting in cationic behavior that electrostatically favors As(V) chelation even when phosphate concentrations are orders of magnitude higher. The influence of copper and n-TiO2 loading on arsenic photo-oxidation and selective removal over phosphate was explored to optimize CuTICB design using batch experiments under varying systems conditions. For a system requiring both photo-oxidation and selective adsorption, it was found that copper and n-TiO2 act non-linearly and synergistically, where maximum loadings of both does not yield the optimal selectivity or removal efficacy.
Collapse
Affiliation(s)
- Lauren N Pincus
- Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06511, United States
| | - Fjodor Melnikov
- Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States
| | - Jamila S Yamani
- Yale University, Department of Chemical and Environmental Engineering, 17 Hillhouse Ave, New Haven, CT 06511, United States
| | - Julie B Zimmerman
- Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06511, United States; Yale University, Department of Chemical and Environmental Engineering, 17 Hillhouse Ave, New Haven, CT 06511, United States.
| |
Collapse
|
34
|
Ouyang H, Chen N, Chang G, Zhao X, Sun Y, Chen S, Zhang H, Yang D. Selective Capture of Toxic Selenite Anions by Bismuth‐based Metal–Organic Frameworks. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan Ouyang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Ning Chen
- Canadian Light Source Saskatoon S7N 0X4 Canada
| | - Guojing Chang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Xiaoliang Zhao
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Yuanyuan Sun
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Shuai Chen
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Science Taiyuan 030001 P. R. China
| | - Huawei Zhang
- College of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 P. R. China
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong ProvinceSchool of Environmental Science and EngineeringQingdao University Qingdao 266071 P. R. China
| |
Collapse
|
35
|
Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D. Emerging opportunities for nanotechnology to enhance water security. NATURE NANOTECHNOLOGY 2018; 13:634-641. [PMID: 30082804 DOI: 10.1038/s41565-018-0203-2] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 05/12/2023]
Abstract
No other resource is as necessary for life as water, and providing it universally in a safe, reliable and affordable manner is one of the greatest challenges of the twenty-first century. Here, we consider new opportunities and approaches for the application of nanotechnology to enhance the efficiency and affordability of water treatment and wastewater reuse. Potential development and implementation barriers are discussed along with research needs to overcome them and enhance water security.
Collapse
Affiliation(s)
- Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - Candace K Chan
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Dino Villagrán
- Department of Chemistry, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
36
|
Cui W, Li P, Wang Z, Zheng S, Zhang Y. Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:268-276. [PMID: 28797943 DOI: 10.1016/j.jhazmat.2017.07.073] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/26/2023]
Abstract
MgO nanosheets with thickness ranges of 3-10 molecule layers and high specific area (166.44m2g-1) were successfully fabricated by an ultrasound-assisted exfoliation method and used as adsorbent for the removal of both selenite (Se(IV)) and selenate (Se(VI)) from aqueous solutions. The resulting MgO nanosheets displayed high maximum adsorption capacities of 103.52 and 10.28mgg-1 for Se(IV) and Se(VI), respectively. ATR-FTIR and XPS spectroscopic results suggested that both Se(IV) and Se(VI) formed inner-sphere surface complexes on MgO nanosheets under the present experimental conditions. Furthermore, high adsorption capacity for Se(IV/VI) in the presence of coexistent anions (SO42-, PO43-, Cl-, and F-) and efficient regeneratability of adsorbent by NaOH solution were observed in the competitive adsorption and regeneration steps. The simple one-step synthesis process of MgO nanosheets and high adsorption capacities offer a promising method for Se(IV/VI) removal in water treatment.
Collapse
Affiliation(s)
- Wenwen Cui
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, People's Republic of China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Ping Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, People's Republic of China.
| | - Zheming Wang
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Shili Zheng
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, People's Republic of China
| | - Yi Zhang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, People's Republic of China
| |
Collapse
|
37
|
Yazdani MR, Virolainen E, Conley K, Vahala R. Chitosan⁻Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abatement of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers (Basel) 2017; 10:E25. [PMID: 30966060 PMCID: PMC6414967 DOI: 10.3390/polym10010025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022] Open
Abstract
This study examines zinc(II)⁻chitosan complexes as a bio-sorbent for phosphate removal from aqueous solutions. The bio-sorbent is prepared and is characterized via Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Point of Zero Charge (pHPZC)⁻drift method. The adsorption capacity of zinc(II)⁻chitosan bio-sorbent is compared with those of chitosan and ZnO⁻chitosan and nano-ZnO⁻chitosan composites. The effect of operational parameters including pH, temperature, and competing ions are explored via adsorption batch mode. A rapid phosphate uptake is observed within the first three hours of contact time. Phosphate removal by zinc(II)⁻chitosan is favored when the surface charge of bio-sorbent is positive/or neutral e.g., within the pH range inferior or around its pHPZC, 7. Phosphate abatement is enhanced with decreasing temperature. The study of background ions indicates a minor effect of chloride, whereas nitrate and sulfate show competing effect with phosphate for the adsorptive sites. The adsorption kinetics is best described with the pseudo-second-order model. Sips (R² > 0.96) and Freundlich (R² ≥ 0.95) models suit the adsorption isotherm. The phosphate reaction with zinc(II)⁻chitosan is exothermic, favorable and spontaneous. The complexation of zinc(II) and chitosan along with the corresponding mechanisms of phosphate removal are presented. This study indicates the introduction of zinc(II) ions into chitosan improves its performance towards phosphate uptake from 1.45 to 6.55 mg/g and provides fundamental information for developing bio-based materials for water remediation.
Collapse
Affiliation(s)
- Maryam Roza Yazdani
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, P.O. Box 15200, FI-00076 Aalto, Finland.
| | - Elina Virolainen
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, P.O. Box 15200, FI-00076 Aalto, Finland.
| | - Kevin Conley
- COMP Centre of Excellence, Department of Applied Physics, School of Science, Aalto University, FI-00076 Aalto, Finland.
| | - Riku Vahala
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, P.O. Box 15200, FI-00076 Aalto, Finland.
| |
Collapse
|
38
|
Zhu L, Zhang L, Li J, Zhang D, Chen L, Sheng D, Yang S, Xiao C, Wang J, Chai Z, Albrecht-Schmitt TE, Wang S. Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8606-8615. [PMID: 28650626 DOI: 10.1021/acs.est.7b02006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Selenium is of great concern owing to its acutely toxic characteristic at elevated dosage and the long-term radiotoxicity of 79Se. The contents of selenium in industrial wastewater, agricultural runoff, and drinking water have to be constrained to a value of 50 μg/L as the maximum concentration limit. We reported here the selenium uptake using a structurally well-defined cationic layered rare earth hydroxide, Y2(OH)5Cl·1.5H2O. The sorption kinetics, isotherms, selectivity, and desorption of selenite and selenate on Y2(OH)5Cl·1.5H2O at pH 7 and 8.5 were systematically investigated using a batch method. The maximum sorption capacities of selenite and selenate are 207 and 124 mg/g, respectively, both representing the new records among those of inorganic sorbents. In the low concentration region, Y2(OH)5Cl·1.5H2O is able to almost completely remove selenium from aqueous solution even in the presence of competitive anions such as NO3-, Cl-, CO32-, SO42-, and HPO42-. The resulting concentration of selenium is below 10 μg/L, well meeting the strictest criterion for the drinking water. The selenate on loaded samples could be desorbed by rinsing with concentrated noncomplexing NaCl solutions whereas complexing ligands have to be employed to elute selenite for the material regeneration. After desorption, Y2(OH)5Cl·1.5H2O could be reused to remove selenate and selenite. In addition, the sorption mechanism was unraveled by the combination of EDS, FT-IR, Raman, PXRD, and EXAFS techniques. Specifically, the selenate ions were exchanged with chloride ions in the interlayer space, forming outer-sphere complexes. In comparison, besides anion exchange mechanism, the selenite ions were directly bound to the Y3+ center in the positively charged layer of [Y2(OH)5(H2O)]+ through strong bidentate binuclear inner-sphere complexation, consistent with the observation of the higher uptake of selenite over selenate. The results presented in this work confirm that the cationic layered rare earth hydroxide is an emerging and promising material for efficient removal of selenite and selenate as well as other anionic environmental pollutants.
Collapse
Affiliation(s)
- Lin Zhu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics and Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences , 201800, Shanghai, P. R. China
| | - Jie Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Duo Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Lanhua Chen
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Daopeng Sheng
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Shitong Yang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Chengliang Xiao
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Jianqiang Wang
- Shanghai Institute of Applied Physics and Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences , 201800, Shanghai, P. R. China
| | - Zhifang Chai
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Shuao Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University , 215123, Suzhou, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 215123, Suzhou, P. R. China
| |
Collapse
|
39
|
Ur Rehman S, Khan AR, Sahiner M, Sengel SB, Aktas N, Siddiq M, Sahiner N. Removal of arsenate and dichromate ions from different aqueous media by amine based p(TAEA-co-GDE) microgels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:631-641. [PMID: 28432888 DOI: 10.1016/j.jenvman.2017.04.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
In this work, microgels based on tris(2-aminoethyl) amine (TAEA) and glycerol diglycidyl ether (GDE) via simple microemulsion polymerization was prepared as p(TAEA-co-GDE) microgels were used as adsorbent for removal of dichromate (Cr (VI)) and arsenate (As (V)) ions from different aqueous environments. The p(TAEA-co-GDE) microgels were demonstrated very efficient adsorption capacity for Cr (VI), and As (V) that are 164.98 mg/g, and 123.64 mg/g from distilled (DI) water, respectively. The effect of the medium pH on the adsorption capacity of p(TAEA-co-GDE) microgels for Cr (VI) and As (V) ions were investigated. The maximum adsorption capacity was obtained at pH 4.0 for both ions with maximum adsorbed amounts of 160.62, and 98.72 mg/g, respectively. In addition, the microgels were also shown moderate adsorption capacity for Cr (VI) and As (V) from other water sources; tap water with 115.18 mg/g and 82.86 mg/g, sea water with 64.24 mg/g and 46.88 mg/g and creek water with 73.52 mg/g and 59.33 mg/g, respectively. Moreover, the increase in adsorbent dose from 0.025 to 0.125 g enhanced % adsorption of Cr (VI) from 54.13 to 98.03, and As (V) from % 26.72-98.70, respectively. For the adsorption process Langmuir and Freundlich adsorption isotherms were applied and found that Langmuir adsorption isotherm with R2 value of 0.99 for both the metal ions are suitable. Moreover, the experimental adsorption capacities of Cr (VI) and As (V) were found very close to the theoretical values calculated from Langmuir adsorption isotherm. More importantly, the microgels were made magnetic responsive to recover them easily from adsorption medium for reuse studies by applying external magnetic field with little decrease in adsorption capacity. Additionally, reusability of p(TAEA-co-GDE) microgels was also evaluated for adsorption of Cr (VI) and As (V) from DI water.
Collapse
Affiliation(s)
- Saif Ur Rehman
- Department of Chemistry, COMSATS Institute of Information Technology, Kyber Pakhtunkhwa, Abbottabad, 22060, Pakistan
| | - Abdur Rahman Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Kyber Pakhtunkhwa, Abbottabad, 22060, Pakistan
| | - Mehtap Sahiner
- Ege University Leather Engineering, Bornova, Izmir, 35100, Turkey
| | - Sultan B Sengel
- Department of Chemistry, Faculty of Science & Arts, And Nanoscience and Technology Research and Application Center (NTRAC), Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| | - Nahit Aktas
- Chemical Engineering Department, Yuzuncu Yil University, Campus, Van, 65080, Turkey
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Science & Arts, And Nanoscience and Technology Research and Application Center (NTRAC), Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey.
| |
Collapse
|
40
|
Frantz TS, Silveira N, Quadro MS, Andreazza R, Barcelos AA, Cadaval TRS, Pinto LAA. Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5908-5917. [PMID: 28064395 DOI: 10.1007/s11356-016-8344-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Adsorption of copper ions onto chitosan films was studied, and the matrix effect was evaluated using a synthetic solution and a real effluent from closed copper mine. Chitosan films were prepared by casting technique and characterized. The adsorption study was carried out by equilibrium isotherms, thermodynamics, and kinetics. The thermodynamic parameters indicated that the copper adsorption onto chitosan film was favorable, spontaneous, and exothermic, suggesting an increased randomness at the solid/solution interface. The matrix effect was evaluated in kinetic assays, where a synthetic solution and a real system were carried out at different stirring rates. The highest values of adsorption capacity reached in all stirring rates were about 20% lower in the real effluent, and this reduction in the competitiveness was due to the presence of other ions in the matrix of the real effluent. The maximum adsorption capacity of copper ions onto chitosan films for the synthetic solution was of 450 mg g-1, and the removal percentage was in the range from 78 to 96%, and these values for the real effluent were of 360 mg g-1 and removal ranging from 62 to 76%. The mapping done of ions present in the water adsorbed of the mine in the films showed that the same was homogeneously distributed in the films' surfaces.
Collapse
Affiliation(s)
- Tuanny S Frantz
- School of Chemistry and Food, Federal University of Rio Grande (FURG), FURG, km 8 Itália Avenue, Carreiros District, Rio Grande, RS, Brazil
| | - Nauro Silveira
- School of Chemistry and Food, Federal University of Rio Grande (FURG), FURG, km 8 Itália Avenue, Carreiros District, Rio Grande, RS, Brazil
| | - Maurízio S Quadro
- Engineering Department, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Robson Andreazza
- Engineering Department, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Amauri A Barcelos
- Engineering Department, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Tito R S Cadaval
- School of Chemistry and Food, Federal University of Rio Grande (FURG), FURG, km 8 Itália Avenue, Carreiros District, Rio Grande, RS, Brazil
| | - Luiz A A Pinto
- School of Chemistry and Food, Federal University of Rio Grande (FURG), FURG, km 8 Itália Avenue, Carreiros District, Rio Grande, RS, Brazil.
| |
Collapse
|
41
|
Malwal D, Gopinath P. Rapid and efficient removal of arsenic from water using electrospun CuO–ZnO composite nanofibers. RSC Adv 2016. [DOI: 10.1039/c6ra24023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To remove arsenic effectively from water, we synthesized CuO–ZnO composite nanofibers using a simple electrospinning technique assisted by post-calcination.
Collapse
Affiliation(s)
- Deepika Malwal
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|