1
|
Liu Q, Zhang N, Ge J, Zhang L, Guo L, Zhang H, Song K, Luo J, Zhao L, Yang S. Aquatic plants combined with microbial fuel cells promote sulfamethoxazole and sul genes removal from aquaculture pond sediments via bioelectrochemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124680. [PMID: 39116922 DOI: 10.1016/j.envpol.2024.124680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in the aquaculture environment are receiving increasing public attention as emerging contaminants. In this study, aquatic plant (P) and sediment microbial fuel cells (SMFC) were used individually and in combination (P-SMFC) to simulate in situ remediation of sulfamethoxazole (SMX) and sul genes in aquaculture environments. The results showed that the average power densities of SMFC and P-SMFC were 622.18 mW m-2 and 565.99 mW m-2, respectively. The addition of 5 mg kg-1 of SMX to the sediment boosted the voltages of SMFC and P-SMFC by 36.3% and 51.5%, respectively. After 20 days of treatment, the removal efficiency of SMX from the sediment was 86.17% and 89.60% for SMFC and P-SMFC group, respectively, which were significantly higher than the control group (P < 0.05). However, removal of SMX by plants was not observed. P-SMFC group significantly reduced the biotoxicity of SMX to Staphylococcus aureus and Escherichia coli in the overlying water (P < 0.05). P and P-SMFC groups significantly reduced the abundance of ARGs intl1 and sul1 (P < 0.05). The removal rate of ARGs intl1, sul1 and sul2 from sediments by P-SMFC ranged from 94.22% to 97.08%. However, SMFC increased the abundance of sul3. SMFC and P-SMFC increased the relative abundance of some of sulfate-reducing bacteria such as Desulfatiglans, Thermodesulfovibrionia and Sva0485 in sediments. These results showed that aquatic plants promoted the removal of ARGs and SMFC promoted the removal of antibiotics, and the combination with aquatic plants and SMFC achieved a synergistic removal of both SMX and ARGs. Therefore, current study provides a promising approach for the in situ removal of antibiotics and ARGs in the aquaculture environment.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Nisha Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiayu Ge
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Leji Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lipeng Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hanwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Carneiro RB, Gil-Solsona R, Subirats J, Restrepo-Montes E, Zaiat M, Santos-Neto ÁJ, Gago-Ferrero P. Biotransformation pathways of pharmaceuticals and personal care products (PPCPs) during acidogenesis and methanogenesis of anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135444. [PMID: 39153297 DOI: 10.1016/j.jhazmat.2024.135444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Jessica Subirats
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
3
|
Xu H, Yang XL, Zhang ZH, Xia YG, Song HL. External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. BIORESOURCE TECHNOLOGY 2024; 410:131300. [PMID: 39153696 DOI: 10.1016/j.biortech.2024.131300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (Pmax) (named MFC-HP) and lower Pmax (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased Pmax of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH4+-N removal and maintained high Pmax (424.33 mW/m2) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC.
Collapse
Affiliation(s)
- Han Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Zhi-Hao Zhang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yang-Guang Xia
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| |
Collapse
|
4
|
Cheng Y, Wu Y, Peng C, Yang Y, Xuan L, Wang L, Wang Y, Xu A, Liu Y. Insights on aggregation-algae consortium based removal of sulfamethoxazole: Unraveling removal effect, enhanced method and toxicological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122512. [PMID: 39278014 DOI: 10.1016/j.jenvman.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The escalating occurrence of the antibiotic Sulfamethoxazole (SMX) in the environment presents a significant global threat to ecological systems and human health. Despite the growing interest in using microalgae for antibiotic biodegradation, strategies to enhance SMX elimination remain underexplored. In this study, we isolated a novel aggregation-algae consortium (AAC) from a municipal wastewater treatment plant (WWTP) and examined its potential for SMX removal, optimized culture conditions, SMX metabolite fate and the physicochemical impact on microalgal cells. The findings revealed that the AAC demonstrated remarkable resistance to SMX, even at concentrations as high as 10 mg/L, and could degrade SMX via free radical reactions. Although ion repulsion limited the biodegradation of AAC, the addition of peptone and yeast extract resulted in a significant enhancement, increased by 16.71%, 39.12% and 46.77% of three SMX groups. Moreover, AAC exhibited exceptional adaptability in real wastewater, achieving removal of 87.05%, 97.39% and 20.80% for total dissolved nitrogen, total dissolved phosphorus and SMX, respectively. The decreased degradation toxicity of SMX following AAC treatment was further validated by ECOSAR software and in vitro tests using Caenorhabditis elegans. This study advanced our understanding of SMX biodegradation and provided a novel approach for treating wastewater contaminated with SMX.
Collapse
Affiliation(s)
- Yongtao Cheng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuanyuan Wu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chuanyue Peng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yang Yang
- Anhui Shunyu Water Co., Ltd, Hefei, Anhui, 231100, PR China
| | - Liang Xuan
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - Lin Wang
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - Yan Wang
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
5
|
Neyrot S, Acha D, Morales-Belpaire I. The fate of sulfamethoxazole in microcosms of the macrophyte Schoenoplectus californicus and its impact on microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124947. [PMID: 39278559 DOI: 10.1016/j.envpol.2024.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Sulfamethoxazole is a widely used antibiotic frequently found as an environmental pollutant. It can alter microbial communities and increase antibiotic resistance, becoming a public health risk. Constructed wetlands have the potential for removing sulfamethoxazole from polluted waters, but the role of different macrophytes in this process is not well understood. We investigated the fate of sulfamethoxazole and its effect on bacterial communities in microcosms containing Schoenoplectus californicus, an altitude-tolerant macrophyte. Within the first ten hours after introducing sulfamethoxazole (initial concentration 5 mg/L) to the microcosms, the concentration in the liquid phase significantly differed between microcosms with and without S. californicus. However, over the long term (15 and 30 days post-addition), the removal percentage (around 75%) in the liquid phase was not significantly influenced by S. californicus, indicating that sediments might be primarily responsible for removing the antibiotic. The presence of S. californicus promoted algae growth in the microcosms, and we determined that algae contributed to sulfamethoxazole removal from the liquid phase, likely through adsorption. Additionally, we characterized bacterial communities in the microcosm sediments via nanopore sequencing to identify changes following sulfamethoxazole addition. The relative abundance of Proteobacteria increased from 37-46% to 48-99% with the addition of the antibiotic. Conversely, the relative abundance of cyanobacteria decreased significantly after sulfamethoxazole was added (from 17-35% to less than 2%), suggesting it may serve as a biological marker for sulfamethoxazole pollution. In addition, the functional profile of the community was estimated from taxonomic diversity using PICRUST.
Collapse
Affiliation(s)
- Sara Neyrot
- .Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Dario Acha
- .Unidad de Ecología Acuática, Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Isabel Morales-Belpaire
- .Instituto de Biología Molecular y Biotecnología. Carrera de Biología. Facultad de Ciencias Puras y Naturales. Universidad Mayor de San Andrés. Bolivia.
| |
Collapse
|
6
|
Rao W, Sun Y, Guo Q, Zhang J, Zhang Z, Liang S. Anaerobic dynamic membrane bioreactor treating sulfamethoxazole wastewater: advantages of dynamic membrane and its fouling mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135832. [PMID: 39278033 DOI: 10.1016/j.jhazmat.2024.135832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Discharge of improperly treated sulfamethoxazole (SMX) wastewater seriously threats environmental security and public health. Anaerobic dynamic membrane bioreactors (AnDMBRs) technology would be cost-effective for SMX wastewater treatment, considering its low cost and satisfactory treatment efficiency. The performance of AnDMBR, though demonstrated to be excellent in treating many types of wastewaters, was for the first time investigated for treating SMX wastewater. Particular efforts were devoted to elucidating the advantages of dynamic membrane (DM) and the governing mechanism responsible for DM fouling with the presence of SMX. The threshold SMX concentration for AnDMBR was found to be 90 mg/L and the AnDMBR exhibited excellent removal efficiency of COD (90.91 %) and SMX (88.95 %) as well as satisfactory acute toxicity reduction rate (88.84 %). It was noteworthy that the DM made indispensable contributions to the removal of COD (14.26 %) and SMX (22.20 %) as well as the acute reduction of toxicity (25.81 %). The presence of SMX significantly accelerated DM fouling mainly by increasing its specific resistance, which was attributed to the increased content of small particles, high-valence metal ions and EPS content (mainly hydrophobic proteins), resulting in a denser DM structure with lower porosity. Besides, the biofouling-related bacteria (Firmicutes) was found to be enriched in the DM with the presence of SMX.
Collapse
Affiliation(s)
- Wenkai Rao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuqi Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingyang Guo
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| | - Zhen Zhang
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Quan H, Jia Y, Zhang H, Ji F, Shi Y, Deng Q, Hao T, Khanal SK, Sun L, Lu H. Insights into the role of electrochemical stimulation on sulfur-driven biodegradation of antibiotics in wastewater treatment. WATER RESEARCH 2024; 266:122385. [PMID: 39255566 DOI: 10.1016/j.watres.2024.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
The presence of antibiotics in wastewater poses significant threat to our ecosystems and health. Traditional biological wastewater treatment technologies have several limitations in treating antibiotic-contaminated wastewaters, such as low removal efficiency and poor process resilience. Here, a novel electrochemical-coupled sulfur-mediated biological system was developed for treating wastewater co-contaminated with several antibiotics (e.g., ciprofloxacin (CIP), sulfamethoxazole (SMX), chloramphenicol (CAP)). Superior removal of CIP, SMX, and CAP with efficiencies ranging from 40.6 ± 2.6 % to 98.4 ± 1.6 % was achieved at high concentrations of 1000 μg/L in the electrochemical-coupled sulfur-mediated biological system, whereas the efficiencies ranged from 30.4 ± 2.3 % to 98.2 ± 1.4 % in the control system (without electrochemical stimulation). The biodegradation rates of CIP, SMX, and CAP increased by 1.5∼1.9-folds under electrochemical stimulation compared to the control. The insights into the role of electrochemical stimulation for multiple antibiotics biodegradation enhancement was elucidated through a combination of metagenomic and electrochemical analyses. Results showed that sustained electrochemical stimulation significantly enriched the sulfate-reducing and electroactive bacteria (e.g., Desulfobulbus, Longilinea, and Lentimicrobiumin on biocathode and Geobactor on bioanode), and boosted the secretion of electron transport mediators (e.g., cytochrome c and extracellular polymeric substances), which facilitated the microbial extracellular electron transfer processes and subsequent antibiotics removal in the sulfur-mediated biological system. Furthermore, under electrochemical stimulation, functional genes associated with sulfur and carbon metabolism and electron transfer were more abundant, and the microbial metabolic processes were enhanced, contributing to antibiotics biodegradation. Our study for the first time demonstrated that the synergistic effects of electrochemical-coupled sulfur-mediated biological system was capable of overcoming the limitations of conventional biological treatment processes. This study shed light on the mechanism of enhanced antibiotics biodegradation via electrochemical stimulation, which could be employed in sulfur-mediated bioprocess for treating antibiotic-contaminated wastewaters.
Collapse
Affiliation(s)
- Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Fahui Ji
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Yongsen Shi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Qiujin Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China.
| |
Collapse
|
8
|
Akay C, Ulrich N, Rocha U, Ding C, Adrian L. Sequential Anaerobic-Aerobic Treatment Enhances Sulfamethoxazole Removal: From Batch Cultures to Observations in a Large-Scale Wastewater Treatment Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12609-12620. [PMID: 38973247 PMCID: PMC11256761 DOI: 10.1021/acs.est.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Sulfamethoxazole (SMX) passes through conventional wastewater treatment plants (WWTPs) mainly unaltered. Under anoxic conditions sulfate-reducing bacteria can transform SMX but the fate of the transformation products (TPs) and their prevalence in WWTPs remain unknown. Here, we report the anaerobic formation and aerobic degradation of SMX TPs. SMX biotransformation was observed in nitrate- and sulfate-reducing enrichment cultures. We identified 10 SMX TPs predominantly showing alterations in the heterocyclic and N4-arylamine moieties. Abiotic oxic incubation of sulfate-reducing culture filtrates led to further degradation of the major anaerobic SMX TPs. Upon reinoculation under oxic conditions, all anaerobically formed TPs, including the secondary TPs, were degraded. In samples collected at different stages of a full-scale municipal WWTP, anaerobically formed SMX TPs were detected at high concentrations in the primary clarifier and digested sludge units, where anoxic conditions were prevalent. Contrarily, their concentrations were lower in oxic zones like the biological treatment and final effluent. Our results suggest that anaerobically formed TPs were eliminated in the aerobic treatment stages, consistent with our observations in batch biotransformation experiments. More generally, our findings highlight the significance of varying redox states determining the fate of SMX and its TPs in engineered environments.
Collapse
Affiliation(s)
- Caglar Akay
- Department
Molecular Environmental Biotechnology, Helmholtz
Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department
Exposure Science, Helmholtz Centre for Environmental
Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Ulisses Rocha
- Department
Applied Microbial Ecology, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Chang Ding
- Department
Molecular Environmental Biotechnology, Helmholtz
Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Lorenz Adrian
- Department
Molecular Environmental Biotechnology, Helmholtz
Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Chair
of Geobiotechnology, Technische Universität
Berlin, Ackerstraße
76, Berlin 13355, Germany
| |
Collapse
|
9
|
Carneiro RB, Gomes GM, Camargo FP, Zaiat M, Santos-Neto ÁJ. Anaerobic co-metabolic biodegradation of pharmaceuticals and personal care products driven by glycerol fermentation. CHEMOSPHERE 2024; 357:142006. [PMID: 38621493 DOI: 10.1016/j.chemosphere.2024.142006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Anaerobic digestion in two sequential phases, acidogenesis and methanogenesis, has been shown to be beneficial for enhancing the biomethane generation from wastewater. In this work, the application of glycerol (GOH) as a fermentation co-substrate during the wastewater treatment was evaluated on the biodegradation of different pharmaceuticals and personal care products (PPCPs). GOH co-digestion during acidogenesis led to a significant increase in the biodegradation of acetaminophen (from 78 to 89%), ciprofloxacin (from 25 to 46%), naproxen (from 73 to 86%), diclofenac (from 36 to 48%), ibuprofen (from 65 to 88%), metoprolol (from 45 to 59%), methylparaben (from 64 to 78%) and propylparaben (from 68 to 74%). The heterotrophic co-metabolism of PPCPs driven by glycerol was confirmed by the biodegradation kinetics, in which kbio (biodegradation kinetics constant) values increased from 0.18 to 2.11 to 0.27-3.60 L g-1-VSS d-1, for the operational phases without and with GOH, respectively. The assessment of metabolic pathways in each phase revealed that the prevalence of aromatic compounds degradation, metabolism of xenobiotics by cytochrome P450, and benzoate degradation routes during acidogenesis are key factors for the enzymatic mechanisms linked to the PPCPs co-metabolism. The phase separation of anaerobic digestion was effective in the PPCPs biodegradation, and the co-fermentation of glycerol provided an increase in the generation potential of biomethane in the system (energetic potential of 5.0 and 6.3 kJ g-1-CODremoved, without and with GOH, respectively). This study showed evidence that glycerol co-fermentation can exert a synergistic effect on the PPCPs removal during anaerobic digestion mediated by heterotrophic co-metabolism.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| | - Gisele M Gomes
- São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Franciele P Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil.
| | - Marcelo Zaiat
- São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
10
|
Derwis D, Al-Hazmi HE, Majtacz J, Ciesielski S, Mąkinia J. Enhancing nitrogen removal in the partial denitrification/anammox processes for SO 4- - Rich wastewater treatment: Insights into autotrophic and mixotrophic strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120908. [PMID: 38631168 DOI: 10.1016/j.jenvman.2024.120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
The investigation of partial denitrification/anammox (PD/anammox) processes was conducted under autotrophic (N-S cycle) and mixotrophic (N-S-C cycle) conditions over 180 days. Key findings revealed the remarkable capability of SO42--dependent systems to produce NO2- effectively, supporting anaerobic NH4+ oxidation. Additionally, SO42- served as an additional electron acceptor in sulfate reduction ammonium oxidation (SRAO). Increasing influent SO42- concentrations notably improved ammonia utilization rates (AUR) and NH4+ and total nitrogen (TN) utilization efficiencies, peaking at 57% for SBR1 and nearly 100% for SBR2. Stoichiometric analysis showed a 7.5-fold increase in AUR (SRAO and anammox) in SBR1 following SO42- supplementation. However, the analysis for SBR2 indicated a shift towards SRAO and mixotrophic denitrification, with anammox disappearing entirely by the end of the study. Comparative assessments between SBR1 and SBR2 emphasized the impact of organic compounds (CH3COONa) on transformations within the N-S-C cycle. SBR1 performance primarily involved anammox, SRAO and other SO42- utilization pathways, with minimal S-dependent autotrophic denitrification (SDAD) involvement. In contrast, SBR2 performance encompassed SRAO, mixotrophic denitrification, and other pathways for SO42- production. The SRAO process involved two dominant genera, such as Candidatus Brocadia and PHOS-HE36.
Collapse
Affiliation(s)
- Dominika Derwis
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, Olsztyn, 10-719, Poland.
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| |
Collapse
|
11
|
He Y, Jiang L, Wu X, Zhang W, Zong Y, Wang J, Chen J, Shan J, Kong D, Ji R. Fate of sulfamethoxazole in wetland sediment under controlled redox conditions. WATER RESEARCH 2024; 254:121350. [PMID: 38402752 DOI: 10.1016/j.watres.2024.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Redox condition is an important controlling factor for contaminant removal in constructed wetlands; however, the redox-sensitivity of antibiotic removal in wetland sediments under controlled conditions with specific electron acceptors remains unclear. Here, using a 14C radioactive tracer, we explored fate of sulfamethoxazole (SMX) in a wetland sediment slurry under oxic, nitrate-reducing, iron-reducing, and methanogenic conditions. In the sterile treatment, unlike the comparable SMX dissipation from the water phase under four redox conditions, non-extractable residues (NERs) of SMX was highest formed in the sediment under oxic condition, mainly in sequestered and ester/amide-linked forms. Microorganisms markedly promoted SMX transformation in the slurry. The dissipation rate of SMX and its transformation products (TPs) followed the order: oxic ≈ iron-reducing > methanogenic >> nitrate-reducing conditions, being consistent with the dynamics of microbial community in the sediment, where microbial diversity was greater and networks connectivity linking dominant bacteria to SMX transformation were more complex under oxic and iron-reducing conditions. Kinetic modeling indicated that the transformation trend of SMX and its TPs into the endpoint pool NERs depended on the redox conditions. Addition of wetland plant exudates and sediment dissolved organic matter at environmental concentrations affected neither the abiotic nor the biotic transformation of SMX. Overall, the iron-reducing condition was proven the most favorable and eco-friendly for SMX transformation, as it resulted in a high rate of SMX dissipation from water without an increase in toxicity and subsequent formation of significant stable NERs in sediment. Our study comprehensively revealed the abiotic and biotic transformation processes of SMX under controlled redox conditions and demonstrated iron-reducing condition allowing optimal removal of SMX in constructed wetlands.
Collapse
Affiliation(s)
- Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Longxue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing 210042, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| |
Collapse
|
12
|
Nguyen AH, Oh S. Side effects of the addition of an adsorbent for the nitrification performance of a microbiome in the treatment of an antibiotic mixture. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133034. [PMID: 38035522 DOI: 10.1016/j.jhazmat.2023.133034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
This work determined the effect of biochar (BC) as an adsorbent on the nitrifying microbiome in regulating the removal, transformation, fate, toxicity, and potential environmental consequences of an antibiotic mixture containing oxytetracycline (OTC) and sulfamethoxazole (SMX). Despite the beneficial role of BC as reported in the literature, the present study revealed side effects for the nitrifying microbiome and its functioning arising from the presence of BC. Long-term monitoring revealed severe disruption to nitratation via the inhibition of both nitrite oxidizers (e.g., Nitrospira defluvii) and potential comammox species (e.g., Ca. Nitrospira nitrificans). Byproducts (BPs) more toxic than the parent compounds were found to persist at a high relative abundance, particularly in the presence of BC. Quantitative structure-activity relationship modeling determined that the physicochemical properties of the toxic BPs significantly differed from those of OTC and SMX. The results suggested that the BPs tended to mobilize and accumulate on the surface of the solids in the system (i.e., the BC and biofilm), disrupting the nitrifiers growing at the interface. Collectively, this study provides novel insights, demonstrating that the addition of adsorbents to biological systems may not necessarily be beneficial; rather, they may generate side effects for specific bacteria that have important ecosystem functions.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
13
|
Fang Y, Lin G, Liu Y, Zhang J. Advanced treatment of antibiotic-polluted wastewater by a consortium composed of bacteria and mixed cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123293. [PMID: 38184153 DOI: 10.1016/j.envpol.2024.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
This study constructed a cyanobacteria-bacteria consortium using a mixture of non-toxic cyanobacteria (Synechococcus sp. and Chroococcus sp.) immobilized in calcium alginate and native bacteria in wastewater. The consortium was used for the advanced treatment of sulfamethoxazole-polluted wastewater and the production of cyanobacterial lipid. Mixed cyanobacteria increased the abundances of denitrifying bacteria and phosphorus-accumulating bacteria as well as stimulated various functional enzymes in the wastewater bacterial community, which efficiently removed 70.01-71.86% of TN, 91.45-97.04% of TP and 70.72-76.85% of COD from the wastewater. The removal efficiency of 55.29-69.90% for sulfamethoxazole was mainly attributed to the upregulation of genes encoding oxidases, reductases, oxidoreductases and transferases in two cyanobacterial species as well as the increased abundances of Stenotrophomonas, Sediminibacterium, Arenimonas, Novosphingobium, Flavobacterium and Hydrogenophaga in wastewater bacterial community. Transcriptomic responses proved that mixed cyanobacteria presented an elevated lipid productivity of 33.90 mg/L/day as an adaptive stress response to sulfamethoxazole. Sediminibacterium, Flavobacterium and Exiguobacterium in the wastewater bacterial community may also promote cyanobacterial lipid synthesis through symbiosis. Results of this study proved that the mixed cyanobacteria-bacteria consortium was a promising approach for advanced wastewater treatment coupled to cyanobacterial lipid production.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Guannan Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
14
|
Nguyen HT, Maeng SK, Lee TK, Oh S. Environmental consequences of transformation products from an antibiotic mixture and their mitigation in a wastewater microbiome using an HCl-modified adsorbent. BIORESOURCE TECHNOLOGY 2024; 395:130402. [PMID: 38295960 DOI: 10.1016/j.biortech.2024.130402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
This study enhanced our understanding of antibiotic mixtures' occurrence, transformation, toxicity, and ecological risks. The role of acid-modified biochar (BC) in treating antibiotic residues was explored, shedding light on how BC influences the fate, mobility, and environmental impact of antibiotics and transformation products (TPs) in an activated sludge (AS) microbiome. A mixture of oxytetracycline and sulfamethoxazole was found to synergistically (or additively) inhibit cell growth of AS and disrupt the microbiome structure, species richness/diversity, and function. The formation of TPs with potentially higher toxicity and persistence than the original compounds was identified, explaining the microbiome disruption. Agricultural waste-derived BC was optimized for contaminant adsorption, leading to a reduction in toxicity when added to AS by sequestering TPs on its surface. This work highlighted adsorbents as a practical engineering strategy for mitigating liquid-phase contaminants' toxicological consequences, proactively controlling the fate and effects of antibiotics and TPs.
Collapse
Affiliation(s)
- Hiep T Nguyen
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
15
|
Wang L, Lei Z, Yun S, Yang X, Chen R. Quantitative structure-biotransformation relationships of organic micropollutants in aerobic and anaerobic wastewater treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169170. [PMID: 38072270 DOI: 10.1016/j.scitotenv.2023.169170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Biotransformation is one of the dominant processes to remove organic micropollutants (OMPs) in wastewater treatment. However, studies on the role of molecular structure in determining the biotransformation rates of OMPs are limited. We evaluated the biotransformation of 14 OMPs belonging to different chemical classes under aerobic and anaerobic conditions, and then explored the quantitative structure-biotransformation relationships (QSBRs) of the OMPs based on biotransformation rates using valid molecular structure descriptors (electrical and physicochemical parameters). Pseudo-first-order kinetic modeling was used to fit the biotransformation rate, and only 2 of the 14 OMPs showed that the biotransformation rate constant (kbio) values were higher under anaerobic conditions than aerobic conditions, indicating that aerobic conditions were more favorable for biotransformation of most OMPs. QSBRs infer that the electrophilicity index (ω) is a reliable predictor for OMPs biotransformation under aerobic conditions. ω corresponds to the interaction between OMPs and microbial enzyme active sites, this process is the rate-limiting step of biotransformation. However, under anaerobic conditions the QSBR based on ω was not significant, indicating that specific functional groups may be more critical than electrophilicity. In conclusion, QSBRs can serve as alternative tools for the prediction of the biotransformation of OMPs and provide further insights into the factors that influence biotransformation.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Sining Yun
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
16
|
Ye Y, Peng C, Zhu D, Yang R, Deng L, Wang T, Tang Y, Lu L. Identification of sulfamethazine degraders in swine farm-impacted river and farmland: A comparative study of aerobic and anaerobic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169299. [PMID: 38104834 DOI: 10.1016/j.scitotenv.2023.169299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sulfonamides (SAs) are extensively used antibiotics in the prevention and treatment of animal diseases, leading to significant SAs pollution in surrounding environments. Microbial degradation has been proposed as a crucial mechanism for removing SAs, but the taxonomic identification of microbial functional guilds responsible for SAs degradation in nature remain largely unexplored. Here, we employed 13C-sulfamethazine (SMZ)-based DNA-stable isotope probing (SIP) and metagenomic sequencing to investigate SMZ degraders in three distinct swine farm wastewater-receiving environments within an agricultural ecosystem. These environments include the aerobic riparian wetland soil, agricultural soil, and anaerobic river sediment. SMZ mineralization activities exhibited significant variation, with the highest rate observed in aerobic riparian wetland soil. SMZ had a substantial impact on the microbial community compositions across all samples. DNA-SIP analysis demonstrated that Thiobacillus, Auicella, Sphingomonas, and Rhodobacter were dominant active SMZ degraders in the wetland soil, whereas Ellin6067, Ilumatobacter, Dongia, and Steroidobacter predominated in the agricultural soil. The genus MND1 and family Vicinamibacteraceae were identified as SMZ degrader in both soils. In contrast, anaerobic SMZ degradation in the river sediment was mainly performed by genera Microvirga, Flavobacterium, Dechlorobacter, Atopostipes, and families Nocardioidaceae, Micrococcaceae, Anaerolineaceae. Metagenomic analysis of 13C-DNA identified key SAs degradation genes (sadA and sadC), and various of dioxygenases, and aromatic hydrocarbon degradation-related functional genes, indicating their involvement in degradation of SMZ and its intermediate products. These findings highlight the variations of indigenous SAs oxidizers in complex natural habitats and emphasize the consideration of applying these naturally active degraders in future antibiotic bioremediation.
Collapse
Affiliation(s)
- Yuqiu Ye
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruiyu Yang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Linjie Deng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Tao Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yun Tang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
17
|
Zhou S, Liu M, Shi Y, Jia Y, Sun L, Lu H. Enhancing anaerobic digestion performance of oxytetracycline-laden wastewater through micro-nano bubble ozonation pretreatment. BIORESOURCE TECHNOLOGY 2024; 394:130239. [PMID: 38142907 DOI: 10.1016/j.biortech.2023.130239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
This study investigated the potential of micro-nano bubble (MNB) ozonation pretreatment to eliminate oxytetracycline (OTC) from wastewater and improve subsequent anaerobic digestion (AD) performance. The findings revealed that MNB ozonation achieved efficient OTC oxidation (>99 % in 60 min), and significantly enhanced methane production by 51 % compared to conventional ozonation (under 30 min of pretreatment). Additionally, MNB ozonation resulted in a decrease in the soluble chemical oxygen demand and reduced volatile fatty acid accumulation compared to conventional ozonation. Furthermore, the study sheds light on the profound impact of OTC and its oxidation by-products on the sludge microbiome. Exposure to OTC and its oxidation by-products resulted in alterations in extracellular polymeric substances composition and led to significant shifts in microbial community structure. This study highlights the promise of MNB ozonation as an effective approach for pharmaceutical pollutant removal and the optimization of AD performance in wastewater treatment, with implications for improved environmental sustainability.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Min Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yongsen Shi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
18
|
Wang A, Hou J, Xu Q, Wu J, Xing B. Green synthesis of zero valent iron using tannins to activate persulfate for sulfamethoxazole degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122418. [PMID: 37625770 DOI: 10.1016/j.envpol.2023.122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Majority zero-valent iron (ZVI) materials are prepared by reducing agents in liquid phase, resulting in the high environmental pollution and poor particle size distribution uniformity. Therefore, this study employed a green synthesis method to prepare ZVI. Tannins (TA) with phenolic hydroxyl groups that are characterized by strong reducing capacity were employed to synthesize ZVI (TA@ZVI). The dispersity and stability of ZVI was improved by TA, which inhibited the agglomeration of ZVI. Meanwhile, the specific surface area of TA@ZVI was higher than chemical prepared ZVI, increasing the reactive sites. The organic matter components enriched on TA could promote the adsorption of pollutants and complex with Fe(II/III) to enhance the reactivity of TA@ZVI. Also, the polyphenol structure in TA was oxidized to quinone, which facilitated electron transport. In order further test the performance of TA@ZVI, SMX was chosen as a target pollutant to study the oxidative degradation performance of TA@ZVI. SO4•- degraded about 16.4%-25.5% SMX and •OH degraded about 49.8%-63.9% SMX in the pH range of 4-6 while •OH played a dominant role in the neutral and alkaline conditions. Moreover, the presence of TA reduced Fe(III) to Fe(II) and promoted the release of Fe(II), providing a continuous source of •OH for the oxidative degradation of SMX. Besides, the conversion of Fe(II/III) was accelerated due to TA, which delayed the formation of passivation layer. Thus, TA enhanced the antioxidant capacity of ZVI. Generally, this study provided an environmental-friendly technology to synthesize and improve the reactivity of ZVI.
Collapse
Affiliation(s)
- Anqi Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qichen Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
19
|
Piaggio A, Mittapalli S, Calderón-Franco D, Weissbrodt D, van Lier J, de Kreuk M, Lindeboom R. The fate of sulfamethoxazole and trimethoprim in a micro-aerated anaerobic membrane bioreactor and the occurrence of antibiotic resistance in the permeate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2344-2363. [PMID: 37966187 PMCID: wst_2023_324 DOI: 10.2166/wst.2023.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This study investigates the effects, conversions, and resistance induction, following the addition of 150 μg·L-1 of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), in a laboratory-scale micro-aerated anaerobic membrane bioreactor (MA-AnMBR). TMP and SMX were removed at 97 and 86%, indicating that micro-aeration did not hamper their removal. These antibiotics only affected the pH and biogas composition of the process, with a significant change in pH from 7.8 to 7.5, and a decrease in biogas methane content from 84 to 78%. TMP was rapidly adsorbed onto the sludge and subsequently degraded during the long solids retention time of 27 days. SMX adsorption was minimal, but the applied hydraulic retention time of 2.6 days was sufficiently long to biodegrade SMX. The levels of three antibiotic-resistant genes (ARGs) (sul1, sul2, and dfrA1) and one mobile genetic element biomarker (intI1) were analyzed by qPCR. Additions of the antibiotics increased the relative abundances of all ARGs and intI1 in the MA-AnMBR sludge, with the sul2 gene folding 15 times after 310 days of operation. The MA-AnMBR was able to reduce the concentration of antibiotic-resistant bacteria (ARB) in the permeate by 3 log.
Collapse
Affiliation(s)
- Antonella Piaggio
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands E-mail:
| | - Srilekha Mittapalli
- NX Filtration, Nanotechnology Research, Josink Esweg 44, 7545 PN, Enschede, The Netherlands
| | - David Calderón-Franco
- Faculty of Applied Science, Department of Biotechnology, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - David Weissbrodt
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Jules van Lier
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Merle de Kreuk
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Ralph Lindeboom
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
20
|
Qian G, Shao J, Hu P, Tang W, Xiao Y, Hao T. From micro to macro: The role of seawater in maintaining structural integrity and bioactivity of granules in treating antibiotic-laden mariculture wastewater. WATER RESEARCH 2023; 246:120702. [PMID: 37837903 DOI: 10.1016/j.watres.2023.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Granular sludge (GS) has superior antibiotic removal ability to flocs, due to GS's layered structure and rich extracellular polymeric substances. However, prolonged exposure to antibiotics degrades the performance and stability of GS. This study investigated how a seawater matrix might help maintain the structural integrity and bioactivity of granules. The results demonstrated that GS had better sulfadiazine (SDZ) removal efficiency in a seawater matrix (85.6 %) than in a freshwater matrix (57.6 %); the multiple ions in seawater enhanced boundary layer diffusion (kiR1 = 0.0805 mg·g-1·min-1/2 and kiR2 = 0.1112 mg·g-1·min-1/2) and improved adsorption performance by 15 % (0.123 mg/g-SS freshwater vs. 0.141 mg/g-SS seawater). Moreover, multiple hydrogen bonds (1-3) formed between each SDZ and lipid bilayer fortified the adsorption. Beyond S-N and S-C bond hydrolyses that took place in freshwater systems, there was an additional biodegradation pathway for GS to be cultivated in a saltwater system that involved sulfur dioxide extrusion. This additional pathway was attributable to the greater microbial diversity and larger presence of sulfadiazine-degrading bacteria containing SadAC genes, such as Leucobacter and Arthrobacter, in saltwater wastewater. The findings of this study elucidate how seawater influences GS properties and antibiotic removal ability.
Collapse
Affiliation(s)
- Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Jingyi Shao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Wentao Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
21
|
Zhang H, Quan H, Song S, Sun L, Lu H. Comprehensive assessment of toxicity and environmental risk associated with sulfamethoxazole biodegradation in sulfur-mediated biological wastewater treatment. WATER RESEARCH 2023; 246:120753. [PMID: 37871376 DOI: 10.1016/j.watres.2023.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Incomplete mineralization of sulfamethoxazole (SMX) in wastewater treatment systems poses a threat to ecological health. The toxicity and environmental risk associated with SMX biodegradation in the sulfur-mediated biological process were examined for the first time through a long-term (180 days) bioreactor study and a series of bioassays. The results indicated that the sulfur-mediated biological system was highly resistant and tolerant to SMX toxicity, as evidenced by the enrichment of sulfate-reducing bacteria (SRB), the improved microbial metabolic activity, and the excellent performance on pollutants removal under long-term SMX exposure. SMX can be effectively biodegraded by the cleavage and rearrangement of the isoxazole ring, hydrogenation and hydroxylation reactions in sulfur-mediated biological wastewater system. These biodegradation pathways effectively reduced the acute toxicity, antibacterial activity, and ecotoxicities of SMX and its biotransformation products (TPs) in the effluent of the sulfur-mediated biological system. The TPs produced via hydrogenation (TP1), hydroxylation, and isoxazole ring cleavage (TP3, TP4, TP5, TP8, and TP9) exhibited lower toxicity than SMX. Under SMX stress, although the abundance of sulfonamide resistance genes increased, the total abundance of ARGs decreased due to the extrusion of some intracellular SMX by the efflux pump genes and the inactivation of some SMX through the biodegradation process. Efflux pump and inactivation, as the main resistance mechanisms of antibiotics in the sulfur-mediated biological system, play a crucial role in microbial self-defense. The findings of this study demonstrate the great potential of the sulfur-mediated biological system in SMX removal, detoxication, and ARGs environmental risk reduction.
Collapse
Affiliation(s)
- Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China; Guangdong Water Co., Ltd., Shenzhen 518021, China
| | - Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Shiliu Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China.
| |
Collapse
|
22
|
Zhao Q, Wu QL, Wang HZ, Si QS, Sun LS, Li DN, Ren NQ, Guo WQ. Attenuation effects of ZVI/PDS pretreatment on propagation of antibiotic resistance genes in bioreactors: Driven by antibiotic residues and sulfate assimilation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132054. [PMID: 37473569 DOI: 10.1016/j.jhazmat.2023.132054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi-Shi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Shi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - De-Nian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
23
|
Sambaza SS, Naicker N. Contribution of wastewater to antimicrobial resistance: A review article. J Glob Antimicrob Resist 2023; 34:23-29. [PMID: 37285914 DOI: 10.1016/j.jgar.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) is a global challenge that has raised concern globally, owing to its detrimental effects on the health and economy of countries. The ever-growing threat of AMR and sources of AMR are still being investigated. Wastewater plays an important role as a habitat for bacteria and an environment conducive to gene transfer. The primary aim of this review was to highlight the contribution of wastewater to AMR. METHODS Evidence of AMR in wastewater was drawn from literature published in the last 10 years, from 2012 to 2022. RESULTS Wastewater from agricultural practices, pharmaceutical manufacturing plants, and hospital effluents was established to promote AMR. Furthermore, stress factors such as the presence of antibiotics, heavy metals, pH, and temperature initiate and propagate AMR in bacteria living in wastewater. AMR in bacteria from wastewater was established to be either natural or acquired. Wastewater treatment techniques such as membrane filtration, coagulation, adsorption, and advanced oxidation processes have been used to remove resistant bacteria with varying success levels. CONCLUSION Wastewater is a major contributor to AMR, and an understanding of its role in AMR is necessary to find a lasting solution. In this regard, the spread of AMR in wastewater should be considered a threat that requires a strategy to stop further damage.
Collapse
Affiliation(s)
| | - Nisha Naicker
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa; Epidemiology and Surveillance, National Institute for Occupational Health, National Health Laboratory Services, Braamfontein, South Africa
| |
Collapse
|
24
|
Yan H, Xu L, Su J, Wei H, Li X, Cao S. Biotransformation of sulfamethoxazole by newly isolated surfactant-producing strain Proteus mirabilis sp. ZXY4: Removal efficiency, pathways, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 385:129422. [PMID: 37406832 DOI: 10.1016/j.biortech.2023.129422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In this study, the SMX degrading strain Proteus mirabilis sp. ZXY4 with surfactant manufacturing potential was isolated from sludge utilizing blood agar and CTAB agar plate. FTIR analysis indicated that the biosurfactant generated by strain ZXY4 was glycolipid. 3D-EEM demonstrated that SMX biodegradation was strongly connected to biosurfactants, the synergistic effect of biodegradation and biosurfactant made strain ZXY4 have excellent SMX degradation performance. Under the optimal conditions of inoculation dosage of 15%, temperature of 30 ℃, pH of 7 and initial SMX concentration of 5 mg L-1, strain ZXY4 could completely degrade SMX within 24 h. SMX biodegrades at low concentrations (less than5 mg L-1) followed by the zero-order kinetic model, high concentration (>5 mg L-1) is more consistent with the first-order kinetic model. LC-MS analysis revealed 14 SMX degradation intermediates, and five potential biodegradation mechanisms were postulated. The findings provide new insights into the biodegradation of SMX.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ling Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
25
|
Nguyen AH, Oh S. Effect of antibiotic cocktail exposure on functional disturbance of nitrifying microbiome. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131571. [PMID: 37178533 DOI: 10.1016/j.jhazmat.2023.131571] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The present study quantitatively determined the degree and type of functional disturbance in the nitrifying microbiome caused by exposure to a single oxytetracycline (OTC) and a two-antibiotic mixture containing OTC and sulfamethoxazole (SMX). While the single antibiotic had a pulsed disturbance on nitritation that was recoverable within three weeks, the antibiotic mixture caused a more significant pulsed disturbance on nitritation and a potential press disturbance on nitratation that was not recoverable for over five months. Bioinformatic analysis revealed significant perturbations for both canonical nitrite-oxidizing (Nitrospira defluvii) and potential complete ammonium-oxidizing (Ca. Nitrospira nitrificans) populations that were strongly associated with the press perturbation on nitratation. In addition to this functional disturbance, the antibiotic mixture reduced the biosorption of OTC and altered its biotransformation pathways, resulting in different transformation products compared with those produced when OTC was treated as a single antibiotic. Collectively, this work elucidated how the antibiotic mixture can affect the degree, type, and duration of the functional disturbance on nitrifying microbiome and offer new insights into the environmental consequences of antibiotic residues (e.g., their fate, transformation, and ecotoxicity) when present as an antibiotic mixture rather than single antibiotics.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
26
|
Fan X, Qian S, Bao Y, Sha H, Liu Y, Cao B. Desorption behavior of antibiotics by microplastics (tire wear particles) in simulated gastrointestinal fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121252. [PMID: 36764374 DOI: 10.1016/j.envpol.2023.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are widely distributed throughout the environment. Upon ingesting MPs, the pollutants that they carry are then desorbed into organisms. This results in the accumulation of various chemicals within the organism. This study systematically examined the mechanism of antibiotic desorption using tire wear particles (TWP) as a carrier of antibiotics in simulated human gastrointestinal fluid and fish intestinal fluid. The findings of this study revealed the formation of cracks, pores, and depressions on the surface of photoaged TWP in an aquatic environment, as well as additional adsorption sites that are more favorable for the attachment of pollutants. Furthermore, the simulated human gastric fluid had a higher desorption rate than that of the fish intestinal fluid. The competition for TWP adsorption sites in the gastrointestinal fluid and the potential dissolution of antibiotics were the primary drivers of the increase in the desorption rate. The desorption rate in the simulated human gastrointestinal fluid was greater than that in the simulated fish intestinal fluid due to the composition of the gastrointestinal fluid. However, the carrying of pollutants by MPs poses a potential threat to human health. This study improves our understanding of TWP toxicity and has significant implications for the development of risk assessments.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China; College of Environment, Hohai University, Nanjing, 210098, China; Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou, 215000, China.
| | - Shenwen Qian
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yiquan Bao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Haidi Sha
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
27
|
Muthukumar Sathya P, Mohan H, Venkatachalam J, Seralathan KK. A hybrid technique for sulfamethoxazole (SFM) removal using Enterobacter hormaechei HaG-7: Bio-electrokinetic degradation, pathway and toxicity. CHEMOSPHERE 2023; 313:137485. [PMID: 36526143 DOI: 10.1016/j.chemosphere.2022.137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Prolonged exposure to antibiotics would likely favor the development of antibiotic resistance and their gene transfer among bacterial communities that are responsible for enriched antibiotic resistant microbes. Sulfamethoxazole (SFM) is a commonly used antibiotic that is released into the environment through human and animal wastes. Improper degradation of SFM poses severe threats to mankind and all life forms. The present study aims in analyzing the process and the probability of utilizing bio-electrokinetic degradation for elimination of SFM from artificially contaminated soil employing Enterobacter hormaechei HaG-7. The desired optimal conditions for SFM degradation (∼98%) were observed at SFM initial concentration (100 mg/L) with an inoculum dose (1% v/v) and applied potential voltage (1.5 V) at pH (7). The results indicated efficient and complete degradation of SFM when compared with the conventional biodegradation.
Collapse
Affiliation(s)
| | - Harshavardhan Mohan
- Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Janaki Venkatachalam
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
28
|
Hu X, Huo J, Xie H, Hu Z, Liang S, Zhang J. Removal performance, biotransformation pathways and products of sulfamethoxazole in vertical subsurface flow constructed wetlands with different substrates. CHEMOSPHERE 2023; 313:137572. [PMID: 36528159 DOI: 10.1016/j.chemosphere.2022.137572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
For decades, sulfamethoxazole (SMX) has been frequently detected in the aquatic environments due to its high usage and refractory to degradation. Constructed wetland (CW) is regarded as an efficient advanced wastewater technology to eliminate organic pollutants including SMX. In CW system, substrate adsorption and further biodegradation are extremely important in SMX removal; however, the removal performance of SMX by CWs with different substrates varies greatly, and the biotransformation pathways, products, and mechanisms of SMX remain unclear. To address this, we constructed a CW with conventional substrate (CS, gravel) as control (C-CW) and three CWs with emerging substrates (ES, biochar, zeolite and pyrite for B-CW, Z-CW and P-CW, respectively), and explored the performance and mechanisms of SMX removal in CWs. Results illustrated that the removal performance of SMX in CWs with ES reached 94.89-99.35%, and significantly higher than that with CS of 89.50% (p < 0.05). Biodegradation contributed >90% SMX removal in all CWs. The microbial compositions and functions differed among CWs at the middle layer (mixed layer), which shaped diverse resistance pattern and metabolism pathways of microbiomes under SMX stress: P-CW and B-CW cope with SMX stress by enhancing material and energy metabolism, whereas Z-CW does that by enhancing metabolism and exocytosis of xenobiotics. Additionally, nine transformation pathways with 15 transformation products were detected in this study. A reversible process of desamino-SMX being reconverted to SMX might exist in P-CW, which caused a lower SMX removal efficiency in P-CW. This study provided a comprehensive insight into the processes and mechanisms of SMX removal in CWs with different substrates, which would be a useful guidance for substrate selection in CWs in terms of enhanced micropollutants removal.
Collapse
Affiliation(s)
- Xiaojin Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Junyu Huo
- China Energy Engineering Group East China Electric Power Test Research Institute Co. Ltd., Hangzhou, 311200, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
29
|
Ouyang WY, Kümmel S, Adrian L, Zhu YG, Richnow HH. Carbon and hydrogen stable isotope fractionation of sulfamethoxazole during anaerobic transformation catalyzed by Desulfovibrio vulgaris Hildenborough. CHEMOSPHERE 2023; 311:136923. [PMID: 36349587 DOI: 10.1016/j.chemosphere.2022.136923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The fate of antibiotics in aquatic environments is of high concern and approaches are needed to assess the transformation of antibiotics in wastewater treatment plants. Here we used the model organism Desulfovibrio vulgaris Hildenborough to analyze compound specific isotope fractionation associated with anaerobic transformation of the antibiotic sulfamethoxazole (SMX). The results show that the rearrangement of the isoxazole ring in SMX is leading to significant carbon and hydrogen isotopic fractionation (εC = -5.8 ± 0.7‰, εH = -34 ± 9‰) during anaerobic transformation. The observed carbon isotopic fractionation is significantly higher than the values reported for aerobic degradation (εC = -0.6 ± 0.1‰) or abiotic reactions (εC = -0.8 to -4.8‰ for photolysis, εC = -0.8 to -2.2‰ for advanced oxidation). This indicates that carbon isotope fractionation can be used as a parameter to differentiate reaction mechanisms of SMX transformation. The corresponding apparent kinetic isotope effect (AKIEC) for anaerobic transformation of SMX was 1.029 ± 0.003, suggesting that the mechanism for anaerobic transformation is distinct from the mechanism reported for microbial aerobic degradation (AKIEC = 1.006 ± 0.001). In addition, dual-element (C-H) isotope analysis of SMX was performed in the present study, which was achieved by utilizing gas chromatography (GC) as the separation method instead of routine liquid chromatography. This dual-element isotope analysis resulted in a Λ value of 4.5 ± 2.2. Overall, compound specific isotope analysis can be a feasible tool to monitor the mitigation of SMX in wastewater treatment plants.
Collapse
Affiliation(s)
- Wei-Ying Ouyang
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Steffen Kümmel
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany
| | - Lorenz Adrian
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany; Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hans H Richnow
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Isodetect GmbH, Leipzig, Germany.
| |
Collapse
|
30
|
Stando K, Czyż A, Gajda M, Felis E, Bajkacz S. Study of the Phytoextraction and Phytodegradation of Sulfamethoxazole and Trimethoprim from Water by Limnobium laevigatum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16994. [PMID: 36554877 PMCID: PMC9779370 DOI: 10.3390/ijerph192416994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Phytoremediation is an environmentally friendly and economical method for removing organic contaminants from water. The purpose of the present study was to use Limnobium laevigatum for the phytoremediation of water from sulfamethoxazole (SMX) and trimethoprim (TRI) residues. The experiment was conducted for 14 days, in which the loss of the pharmaceuticals in water and their concentration in plant tissues was monitored. Determination of SMX and TRI was conducted using liquid chromatography coupled with tandem mass spectrometry. The results revealed that various factors affected the removal of the contaminants from water, and their bioaccumulation coefficients were obtained. Additionally, the transformation products of SMX and TRI were identified. The observed decrease in SMX and TRI content after 14 days was 96.0% and 75.4% in water, respectively. SMX removal mainly involved photolysis and hydrolysis processes, whereas TRI was mostly absorbed by the plant. Bioaccumulation coefficients of the freeze-dried plant were in the range of 0.043-0.147 for SMX and 2.369-2.588 for TRI. Nine and six transformation products related to SMX and TRI, respectively, were identified in water and plant tissues. The detected transformation products stemmed from metabolic transformations and photolysis of the parent compounds.
Collapse
Affiliation(s)
- Klaudia Stando
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Aleksandra Czyż
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Magdalena Gajda
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Ewa Felis
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland
| |
Collapse
|
31
|
Shi Z, Zhang J, Jiang Y, Wen Y, Gao Z, Deng W, Yin Y, Zhu F. Two low-toxic Klebsiella pneumoniae strains from gut of black soldier fly Hermetia illucens are multi-resistance to sulfonamides and cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120062. [PMID: 36049579 DOI: 10.1016/j.envpol.2022.120062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, pollution of antibiotics and heavy metal has often been reported in organic wastes. Saprophytic insects have been recorded as biological control agents in organic waste management. During organic waste conversion, the intestinal bacteria of the saprophytic insects play an important role in digestion, physiology, immunity and prevention of pathogen colonization. Black soldier fly (BSF) Hermetia illucens has been widely used as saprophytic insects and showed tolerance to sulfonamides (SAs) and cadmium (Cd). Diversity and changes in gut microbiota of black soldier fly larvae (BSFL) were evaluated through 16S rRNA high-throughput sequencing, and a decrease in diversity of gut microbiota along with an increase in SAs stress was recorded. Major members identified were Actinomycetaceae, Enterobacteriaceae, and Enterococcaceae. And fourteen multi-resistance Klebsiella pneumoniae strains were isolated. Two strains BSFL7-B-5 (from middle midgut of 7-day BSFL) and BSFL11-C-1 (from posterior midgut of 11-day BSFL) were found to be low-toxic and multi-resistance. The adsorption rate of SAs in 5 mg/kg solutions by these two strains reached 65.2% and 61.6%, respectively. Adsorption rate of Cd in 20 mg/L solutions was 77.2% for BSFL7-B-5. The strain BSFL11-C-1 showed higher than 70% adsorption rates of Cd in 20, 30 and 40 mg/L solutions. This study revealed that the presence of multi-resistance bacterial strains in the gut of BSFL helped the larvae against SAs or Cd stress. After determining how and where they are used, selected BSFL gut bacterial strains might be utilized in managing SAs or Cd contamination at suitable concentrations in the future.
Collapse
Affiliation(s)
- Zhihui Shi
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jie Zhang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yijie Jiang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yiting Wen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhenghui Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenhui Deng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yumeng Yin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Wang J, Liu H, Song S, Chen Y, Hu Y. Bio-Pd(0) diverting electron from CoQ-long chain to FDH/Hase-short chain during sulfamethoxazole degradation. CHEMOSPHERE 2022; 307:135689. [PMID: 35839988 DOI: 10.1016/j.chemosphere.2022.135689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Microbial electron output capacity is critical for organic contaminants biodegradation. Herein, original C. freundii JH could oxidate formate in anaerobic respiration, but lack the ability to degrade sulfamethoxazole (SMX). While the incorporation of Pd(0) could effectively improve the electron output via improving the combination between flavins and c-type cytochromes (c-Cyts), increasing the activities of key enzymes (formate dehydrogenase, hydrogenase, F0F1-ATPases), etc. More importantly, the presence of Pd(0) caused the NADH dehydrogenase (complex I) nearly in idle, and triggered the decrease of NADH/NAD+ ratio and increase of H+-efflux transmembrane gradient, eventually resulting in the electrons diverting from CoQ-involved long respiratory chain (decreasing from 91.67% to 36.25%) to FDH/Hases-based hydrogen-producing short chain (increasing from 22.44% to 84.88%), which further intensified the electron output. Above changes effectively launched and guaranteed the high-level SMX degradation by palladized C. freundii JH, alleviating the ecotoxicity of SMX in aquatic and terrestrial environments. These conclusions provided the new view to regulate the microbial electron output behaviors.
Collapse
Affiliation(s)
- Jinghao Wang
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Huimin Liu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Song Song
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
33
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
34
|
Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S. Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 361:127667. [PMID: 35878778 DOI: 10.1016/j.biortech.2022.127667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal.
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
35
|
Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol 2022; 13:1004589. [PMID: 36160234 PMCID: PMC9490129 DOI: 10.3389/fmicb.2022.1004589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The environmental and epidemiological problems caused by antibiotics and antibiotic resistance genes have attracted a lot of attention. The use of electron shuttles based on enhanced extracellular electron transfer for anaerobic biological treatment to remove widespread antibiotics and antibiotic resistance genes efficiently from wastewater or organic solid waste is a promising technology. This paper reviewed the development of electron shuttles, described the mechanism of action of different electron shuttles and the application of enhanced anaerobic biotreatment with electron shuttles for the removal of antibiotics and related genes. Finally, we discussed the current issues and possible future directions of electron shuttle technology.
Collapse
|
36
|
Kayal A, Mandal S. Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:639. [PMID: 35927593 DOI: 10.1007/s10661-022-10314-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are the major pharmaceutical wastes that are being exposed to the environment from the pharmaceutical industries and for the anthropogenic activities. The use of antibiotics for disease prevention and treatment in humans has been surpassed by the amount used in agriculture, particularly on livestock. It is stipulated that the overuse of antibiotics is the single largest reason behind the rise of bacterial anti-microbial resistance (AMR). The development of alternative therapy, like gene therapy, immunotherapy, use of natural products, and various nanoparticles, to control bacterial pathogens might be an alternative of antibiotics for mankind but the remediation of already exposed antibiotics from the lithosphere and hydrosphere needs to be envisioned with priority. The ever-increasing release of antibiotics in the environment makes it one of the major emerging contaminants (ECs). Decomposition of such antibiotic contaminants is a great challenge to get a cleaner environment. There are reports describing the degradation of antibiotics by photolysis, hydrolysis, using cathode and metal salts, or by degradation via microbes. Antimicrobials like sulfonamides are recalcitrant to natural biodegradation, exhibiting high thermal stability. There are recent reports on microbial degradation of a few common antibiotics and their derivatives but their applications in waste management are scanty. It could however be a major concern to the scientists whether to use the antibiotic degradation traits of a microbe for the removal of antibiotic wastes. The complexity of the genetic clusters of a microbe that are responsible for degradation is crucial, as a small genetic cluster might have higher chance of horizontal transfer into sensitive species of the normal microbial flora that in turn triggers the rise of antimicrobial resistance.
Collapse
Affiliation(s)
- Aindrila Kayal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
37
|
Chu Y, Zhang C, Wang R, Chen X, Ren N, Ho SH. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms. WATER RESEARCH 2022; 221:118834. [PMID: 35839594 DOI: 10.1016/j.watres.2022.118834] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Recently, the biotransformation of sulfamethoxazole (SMX) by microalgae has attracted increasing interest. In particular, cytochrome P450 (CYP450) has been suggested to be the main enzymatic contributor to this biodegradation. However, the molecular evidence of CYP450 enzymes being involved in SMX biodegradation remains relatively unclear, hindering its applicability. Herein, the biodegradation of SMX by Chlorella sorokiniana (C. sorokiniana) was investigated, and comprehensively elucidated the reaction mechanism underlying CYP450-mediated SMX metabolism. C. sorokiniana was able to efficiently remove over 80% of SMX mainly through biodegradation, in which CYP450 enzymes responded substantially to metabolize SMX in cells. Additionally, screening of transformation products (TPs) revealed that N4-hydroxylation-SMX (TP270) was the main TP in the SMX biodegradation pathway of microalgae. Molecular dynamics (MD) simulation suggested that the aniline of SMX was the most prone to undergo metabolism, while density functional theory (DFT) indicated that SMX was metabolized by CYP450 enzymes through H-abstraction-OH-rebound reaction. Collectively, this work reveals key details of the hydroxylamine group of SMX, elucidates the SMX biodegradation pathway involving CYP450 in microalgae in detail, and accelerates the development of using microalgae-mediated CYP450 to eliminate antibiotics.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
38
|
Pal S, Ahamed Z, Pal P. Removal of antibiotics and pharmaceutically active compounds from water Environment: Experiments towards industrial scale up. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Liu X, Chen J, Liu Y, Wan Z, Guo X, Lu S, Qiu D. Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113698. [PMID: 35636241 DOI: 10.1016/j.ecoenv.2022.113698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The antibiotic-degrading ability and mechanism of the bacteria in the novel and ecological bioelectrochemical technology-integrated constructed wetlands (BICW) remain unknown. In this study, the sulfamethoxazole (SMX) degrading strain Pseudomonas silesiensis F6a (F6a), which had high degradation efficiency, was firstly isolated from a substrate sample in BICW. The SMX degradation process of F6a follows pseudo first order kinetics. Four metabolic pathways and twelve degradation products were identified. Based on genomics and proteomics analysis, six key SMX-degrading genes, Gene4641 deoC, Gene0552 narI, Gene0546 luxS, Gene1753 nuoH, Gene0655 and Gene4650, were identified, which were mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage. Interestingly, we found the corresponding sulfonamides resistance genes were not detected in F6a, which may provide an evidence for low abundance of the sulfonamides resistance genes in BICW system. These findings would contribute to a better understanding of biotransformation of antibiotic in the BICW.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430070, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhengfen Wan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
40
|
Stando K, Korzeniewska E, Felis E, Harnisz M, Bajkacz S. Uptake of Pharmaceutical Pollutants and Their Metabolites from Soil Fertilized with Manure to Parsley Tissues. Molecules 2022; 27:molecules27144378. [PMID: 35889250 PMCID: PMC9317704 DOI: 10.3390/molecules27144378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9–97.1% for leaves and 51.7–95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4–26.3 ng g−1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.
Collapse
Affiliation(s)
- Klaudia Stando
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Correspondence: (K.S.); (S.B.)
| | - Ewa Korzeniewska
- Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland; (E.K.); (M.H.)
| | - Ewa Felis
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Monika Harnisz
- Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland; (E.K.); (M.H.)
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Correspondence: (K.S.); (S.B.)
| |
Collapse
|
41
|
Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 2022; 38:152. [PMID: 35781751 PMCID: PMC9250919 DOI: 10.1007/s11274-022-03334-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622, Pecs, Hungary
| |
Collapse
|
42
|
Xu D, Liu H, Yin Z, He K, Song S, Chen Y, Hu Y, Liu C. Oxytetracycline co-metabolism with denitrification/desulfurization in SRB mediated system. CHEMOSPHERE 2022; 298:134256. [PMID: 35271902 DOI: 10.1016/j.chemosphere.2022.134256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/30/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Aquaculture wastewater contained a high remnant of oxytetracycline (OTC) and nitrate. In this study, OTC co-metabolized with denitrification/desulfurization was investigated in terms of kinetic analysis, pathway, microbial communities and produces analysis in sulfate-reducing bacteria (SRB) mediated system. Long-term acclimatization with sulfate (300 mg-S/L) could markedly accelerate the removed rate of OTC from 0.9 to 1.4 mg/g-SS/d, with the kinetic constants increasing from 0.2760 to 0.5232 d-1, mainly via enzymes including adenosine-5'-phos-phosulfate reductase and cytochrome P450, and non-enzymatic process related to intermediates (adenosine-5'-phos-phosulfate and S0). Furthermore, OTC was likely detoxified by SRB enriched sludge mainly via hydrolysis, dehydration, oxidation and reduction. The denitrification process would postpone the OTC degradation via outcompeting electron donors with the desulfurization process. Redundancy analysis suggested that sulfur-oxidizing bacteria (Acidithiobacillus, Ochrobactrum) were highly related to OTC degradation processes. This study provides deep insight and a new opportunity for the treatment of aquaculture wastewater containing OTC, sulfate and nitrate by SRB sludge.
Collapse
Affiliation(s)
- Dong Xu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huimin Liu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zile Yin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Kuang He
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong, 510006, PR China
| | - Song Song
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chang Liu
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
43
|
Chen J, Yang Y, Ke Y, Chen X, Jiang X, Chen C, Xie S. Anaerobic sulfamethoxazole-degrading bacterial consortia in antibiotic-contaminated wetland sediments identified by DNA-stable isotope probing and metagenomics analysis. Environ Microbiol 2022; 24:3751-3763. [PMID: 35688651 DOI: 10.1111/1462-2920.16091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Anaerobic degradation has been demonstrated as an important pathway for the removal of sulfonamide (SA) in contaminated environments, and identifying the microorganisms responsible for the degradation of SA is a key step in developing bioaugmentation approaches. In this study, we investigated the anaerobic degradation activity of three SA [sulfadiazine (SDZ), sulfamethazine (SMZ) and sulfamethoxazole (SMX)] and the associated bacterial community in wetland sediments contaminated by aquaculture (in Fujian Province, coded with FJ), livestock farming (in Sichuan Province, coded with SC), or rural wastewaters (in Guangdong Province, coded with GD). Additionally, the combination of DNA-stable isotope probing (SIP) with metagenomics was further applied to assess the active SA-degrading microbes using SMX as a model SA. Among SDZ, SMZ and SMX, only SMX could be effectively dissipated, and the degradation of SMX was relatively fast in the microcosms of sediments with higher levels of SA contamination (FJ and SC). The anaerobic biotransformation pathway of SMX was initiated by hydrogenation with the cleavage of the N-O bond on the isoxazole ring. DNA-SIP revealed that the in situ active anaerobic SMX-degraders (5, 18 and 3 genera in sediments FJ, SC and GD respectively) were dominated by Proteobacteria in sediments FJ and SC, but by Firmicutes (two Family XVIII members) in sediment GD. Mycobacterium, unclassified Burkholderiaceae and Rhodocyclaceae were identified as the dominant active SMX-degrading bacteria in both sediments FJ and SC. Higher proportions of antibiotic resistance gene and genes involved in various functional categories were observed in sediments FJ and SC.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
44
|
Tang T, Liu M, Chen Y, Du Y, Feng J, Feng H. Influence of sulfamethoxazole on anaerobic digestion: Methanogenesis, degradation mechanism and toxicity evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128540. [PMID: 35220120 DOI: 10.1016/j.jhazmat.2022.128540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Sulfamethoxazole (SMX), one of the most widely used sulfonamides antibiotics, is frequently detected in the livestock wastewater. Currently, the focus needs to shift from performance effects to understanding of mechanisms and intermediate toxicity analysis. Our study found that SMX (0.5, 1, and 2 mg/L) stimulated methane production by promoting the process of acetogenesis and homo-acetogenesis. Since 1 mg/L SMX could inhibit the transformation of butyric acid, thus, the stimulation of methane was weak under this condition. Under anaerobic conditions, acetate kinase (AK) and cytochrome P450 enzymes (CYP450) continued to participate in SMX degradation. The increase in SMX concentration affected the release of metabolic enzymes, causing changes in SMX degradation pathways. Based on the main biotransformation products, five biotransformation pathways were proposed, the major transformation reactions including hydroxylation, hydrogenation, acetylation, deamination, oxidation, the elimination of oxygen atoms on sulfonyl, isoxazole ring and NS bond cleavage. Toxicity prediction analysis showed that the toxicities of most SMX transformation products were lower than that of SMX.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Jieling Feng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Haoran Feng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
45
|
Nightingale J, Carter L, Sinclair CJ, Rooney P, Kay P. The effect of anaerobic pig slurry redox potentials on the degradation of veterinary medicines. CHEMOSPHERE 2022; 296:133872. [PMID: 35134402 DOI: 10.1016/j.chemosphere.2022.133872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Veterinary medicines are frequently used within intensive livestock husbandry and there has been a growing interest regarding their fate in the environment. However, research has seldom assessed the influence of pig slurry properties on the fate of veterinary medicines even though such an understanding is essential for a more robust environmental risk assessment. Changes within manure degradation rates have the potential to alter the concentration of antibiotics applied to land, and the outcome of the risk assessment. The aim of this work was to investigate whether commonly reported redox potentials affect the degradation rates of acetyl-salicylic acid, ceftiofur, florfenicol, oxytetracycline, sulfamethoxazole, and tylosin. The employed redox potentials were -100 mV (reduced), -250 mV (anaerobic) and -400 mV (very anaerobic). A compound specific relationship was observed where the degradation of ceftiofur, florfenicol, oxytetracycline and sulfamethoxazole was inhibited under reduced conditions over that of very anaerobic; the respective DT50 values were 0.7-1.84 h, 1.35-3.61 h, 22.2-49.8 h, 131-211 h and 35.4-94 h. In contrast, tylosin was found to degrade faster at reduced conditions over very anaerobic (DT50 6.88-19.4 h). The presented research demonstrates the importance of redox potential on degradation rates and suggests we need stringent and harmonized redox control to improve the environmental risk assessment of veterinary medicines. Environmental relevance and significance: Given the significant effect of anaerobic redox potentials on veterinary medicine fate tighter regulation is required in manure degradation trials.
Collapse
Affiliation(s)
- John Nightingale
- Fera Science Ltd, CCSS, York, YO41 1LZ, UK; University of Leeds, Geography, Leeds, LS2 9JT, UK.
| | - Laura Carter
- University of Leeds, Geography, Leeds, LS2 9JT, UK.
| | | | | | - Paul Kay
- University of Leeds, Geography, Leeds, LS2 9JT, UK.
| |
Collapse
|
46
|
Zeng W, Liang H, Zhang H, Luo X, Lin D, Li G. Efficient electrochemical oxidation of sulfamethoxazole by a novel reduced TiO2 nanotube arrays-based flow-through electrocatalytic membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Unraveling pharmaceuticals removal in a sulfur-driven autotrophic denitrification process: Performance, kinetics and mechanisms. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Nightingale J, Carter L, Sinclair CJ, Rooney P, Dickinson M, Tarbin J, Kay P. Assessing the influence of pig slurry pH on the degradation of selected antibiotic compounds. CHEMOSPHERE 2022; 290:133191. [PMID: 34896423 DOI: 10.1016/j.chemosphere.2021.133191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Veterinary medicines are routinely used in animal husbandry and the environment may consequently be exposed to them via manure applications. This presents potential environmental and societal risks such as toxicological effects to aquatic/terrestrial organisms and the spread of antimicrobial resistance. Regulatory studies that assess the degradability of veterinary antibiotics during manure storage currently permit the use of just one manure per animal type although we speculate that heterogenic properties such as pH could be driving significant variability within degradation rates. To bridge this knowledge gap and assess degradation variability with pH, laboratory degradation studies were performed on a broad range of antibiotics (ceftiofur, florfenicol, oxytetracycline, sulfamethoxazole and tylosin) at three different environmentally relevant pH levels (5.5, 7, and 8.5). The effect of pig slurry pH on degradation rates was found to be significant and compound specific. Usually, acidic slurries were found to inhibit degradation when compared to neutral pH, for florfenicol, tylosin, and ceftiofur; the associated changes in DT50 (half-life) values were 2-209 h, 35.28-234 h, and 0.98-2.13 h, respectively. In some circumstances alkaline slurries were observed to enhance the degradation rate when compared to those for neutral pH, for tylosin, the respective changes in DT50 values were from 3.52 to 35.28 h. Comparatively, the degradation of sulfamethoxazole was enhanced by acidic conditions compared to neutral (DT50 20.6-31.6 h). Tentative identification of unknown transformation products (TPs) was achieved for sulfamethoxazole and florfenicol for the first time in pig slurries. These results reveal the importance of considering slurry pH when assessing the degradation of antibiotic compounds, which has implications for the acidification of manures and the environmental risk assessment for veterinary medicines. Environmental relevance and significance: Given the significant effect of pig slurry pH on degradation rates, manure degradation studies need to be harmonised and standardized, taking into account the influence of pH.
Collapse
Affiliation(s)
- John Nightingale
- Fera Science Ltd, York, YO41 1LZ, UK; University of Leeds, Geography, Leeds, LS2 9JT, UK.
| | - Laura Carter
- University of Leeds, Geography, Leeds, LS2 9JT, UK.
| | | | | | | | | | - Paul Kay
- University of Leeds, Geography, Leeds, LS2 9JT, UK.
| |
Collapse
|
49
|
Li S, Peng L, Yang C, Song S, Xu Y. Cometabolic biodegradation of antibiotics by ammonia oxidizing microorganisms during wastewater treatment processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114336. [PMID: 34953231 DOI: 10.1016/j.jenvman.2021.114336] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Studies on antibiotic removal during wastewater treatment processes are crucial since their release into the environment could bring potential threats to human health and ecosystem. Cometabolic biodegradation of antibiotics by ammonia oxidizing microorganisms (AOMs) has received special attentions due to the enhanced removal of antibiotics during nitrification processes. However, the interactions between antibiotics and AOMs are less well-elucidated. In this review, the recent research proceedings on cometabolic biodegradation of antibiotics by AOMs were summarized. Ammonia oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) played significant roles in both nitrification and cometabolic biodegradation of antibiotics. Antibiotics at varying concentrations might pose inhibiting or stimulating effect on AOMs, influencing the microbial activity, community abundance and ammonia monooxygenase subunit A gene expression level. AOMs-induced cometabolic biodegradation products were analyzed as well as the corresponding pathways for each type of antibiotics. The effects of ammonium availability, initial antibiotic concentration, sludge retention time and temperature were assessed on the cometabolic biodegradation efficiencies of antibiotics. This work might provide further insights into the fate and removal of antibiotics during nitrification processes.
Collapse
Affiliation(s)
- Shengjun Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Chenguang Yang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya Hainan, 572000, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| |
Collapse
|
50
|
Yang XL, Wang Q, Li T, Xu H, Song HL. Antibiotic removal and antibiotic resistance genes fate by regulating bioelectrochemical characteristics in microbial fuel cells. BIORESOURCE TECHNOLOGY 2022; 348:126752. [PMID: 35077813 DOI: 10.1016/j.biortech.2022.126752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics removal and ARGs control in microbial fuel cell (MFC) has received extensive attention. In particular, the critical role of bioelectrochemical characteristics deserves further study. Bioelectrochemical characteristics significantly affected sulfamethoxazole (SMX) removal and ARGs fate, in which the current intensity played a more critical role than anode potential. High-concentration SMX (2 mg/L and 10 mg/L) facilitated the anode potential tend to be close, and thus, the strengthening effect of current on the system was highlighted. However, the SMX degradation pathway under different bioelectrochemical characteristics was not affected. Furthermore, the higher current intensity was preferable to antibiotic removal, but unfavorable for ARGs control might be due to the oxidative stress on microorganisms. Low-concentration SMX (0.5 mg/L) contributed to improving higher electricity generation because of Geobacter enrichement. This study suggested that appropriate bioelectrochemical characteristics regulation in MFCs was essential in removing antibiotics and controlling ARGs.
Collapse
Affiliation(s)
- Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Qi Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Tao Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| |
Collapse
|