1
|
Guo J, Luo Y, Fang C, Jin J, Xia P, Wu B, Zhang X, Yu H, Ren H, Shi W. Advancing the Effect-Directed Identification in Combined Pollution: Using Pathways to Link Effects and Toxicants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18642-18653. [PMID: 39392738 DOI: 10.1021/acs.est.4c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The difficulty in associating diverse pollutants with mixture effects has led to significant challenges in identifying toxicants in combined pollution. In this study, pathways were used to link effects and toxicants. By pathways evaluated by the concentration-dependent transcriptome, individual effects were extended to molecular mechanisms encompassing 135 pathways corresponding to 6 biological processes. Accordingly, mechanism-based identification of toxicants was achieved by constructing a pathway toxicant database containing 2413 chemical-pathway interactions and identifying pathway active fragments of 72 pathways. The developed method was applied to two different wastewaters, industrial wastewater OB and municipal wastewater HL. Although lethality and teratogenesis were both observed at the individual level, different molecular mechanisms were revealed by pathways, with cardiotoxicity- and genotoxicity-related pathways significantly enriched in OB, and neurotoxicity- and environmental information processing-related pathways significantly enriched in HL. Further suspect and nontargeted screening generated 59 and 86 causative toxicants in OB and HL, respectively, among which 29 toxicants were confirmed, that interacted with over 90% of enriched pathways and contributed over 50% of individual effects. After upgrading treatments based on causative toxicants, consistent removal of toxicants, pathway effects, and individual effects were observed. Mediation by pathways enables mechanism-based identification, supporting the assessment and management of combined pollution.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Yiwen Luo
- Environmental Protection Key Laboratory of Chemical Ecological Effects and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Chao Fang
- National Engineering Research Centre of Energy-Efficient Semi-conductor Devices and Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinsha Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pu Xia
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham B15 2TT, U.K
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
2
|
Han C, You J, Zhao A, Liao K, Ren H, Hu H. Intermittent polarization: A promising strategy for microbial electricity driven reduction of DOM toxicity in actual industrial wastewater. WATER RESEARCH 2024; 262:122099. [PMID: 39024670 DOI: 10.1016/j.watres.2024.122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Dissolved organic matter (DOM) in actual industrial wastewater comprises various compounds that trigger toxicity in aquatic organisms; thus, advanced treatment for reducing DOM toxicity is urgently needed to ensure safe effluent discharge. Herein, we successfully reduced the toxicity of DOM in actual industrial wastewater without external chemical addition by applying intermittent polarization to electrochemical bioreactors. The bioreactor operated under intermittent polarization effectively reduced the toxicity of DOM by 76.7 %, resulting in the toxicity of effluent DOM (determined by malformation rate of zebrafish larvae) reaching less than 3.5 %. Notably, DOM compounds with high double-bond equivalence (DBE ≥ 8) were identified as the key components responsible for the toxicity of DOM through ultrahigh-resolution mass spectrometry analysis. Insight into microbe-DOM interactions revealed that intermittent polarization promoted the microbial consumption of high-DBE components of DOM by both affecting microbial composition (β = -0.5421, p < 0.01) and function (β = -0.4831, p < 0.01), thus regulating effluent DOM toxicity. The study findings demonstrate that intermittent polarization is a promising strategy for microbial electricity-driven reduction of DOM toxicity in actual industrial wastewater to meet the increasing safety requirements of receiving waters.
Collapse
Affiliation(s)
- Chenglong Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Aixia Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
3
|
Zhang L, Zhang Y, Zhu M, Chen L, Wu B. A critical review on quantitative evaluation of aqueous toxicity in water quality assessment. CHEMOSPHERE 2023; 342:140159. [PMID: 37716564 DOI: 10.1016/j.chemosphere.2023.140159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Conventional chemical techniques have inherent limitations in detecting unknown chemical substances in water. As a result, effect-based methods have emerged as a viable alternative to overcome these limitations. These methods provide more accurate and intuitive evaluations of the toxic effects of water. While numerous studies have been conducted, only a few have been applied to national water quality monitoring. Therefore, it is crucial to develop toxicity evaluation methods and establish thresholds based on quantifying toxicity. This article provides an overview of the development and application of bioanalytical tools, including in vitro and in vivo bioassays. The available methods for quantifying toxicity are then summarized. These methods include aquatic life criteria for assessing the toxicity of a single compound, comprehensive wastewater toxicity testing for all contaminants in a water sample (toxicity units, whole effluent toxicity, the potential ecotoxic effects probe, the potential toxicology method, and the lowest ineffective dilution), methods based on mechanisms and relative toxicity ratios for substances with the same mode of action (the toxicity equivalency factors, toxic equivalents, bioanalytical equivalents), and effect-based trigger values for micropollutants. The article also highlights the advantages and disadvantages of each method. Finally, it proposes potential areas for applying toxicity quantification methods and offers insights into future research directions. This review emphasizes the significance of enhancing the evaluation methods for assessing aqueous toxicity in water quality assessment.
Collapse
Affiliation(s)
- Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Soares SS, Costa GG, Brito LB, de Oliveira GAR, Scalize PS. Assessment of surface water quality of the bois river (Goiás, Brazil) using an integrated physicochemical, microbiological and ecotoxicological approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:242-249. [PMID: 35505496 DOI: 10.1080/10934529.2022.2060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The data on water pollution is scarce in developing countries, including Brazil. The water quality assessment is important implementing the monitoring and remediation programs to minimize the risk of hazardous substances in freshwaters. Thus, this study evaluated the surface water quality of a stretch of the Bois River (Brazil), based on the physicochemical, microbiological and ecotoxicological analyses conducted in 2017, using Standard Methods and fish embryo acute toxicity (FET) test with zebrafish (Danio rerio). The results indicated that the quality of water samples located close to the discharge of tannery effluents was most impaired. Total phosphorus, BOD, DO, ammoniacal nitrogen, and thermotolerant coliforms parameters in P4 were not in accordance with the standards of current Brazilian legislation. Iron, lead, and copper levels were higher than environmental standards. The physicochemical quality of water samples was lower in the dry season than the rainy season. All samples (P1, P3, and P5) in rainy and dry seasons did not induce significant acute toxicity for zebrafish early-life stage; however other trophic levels (algae and microcrustacean) should be investigated to gain a better understanding of the toxicity during water quality analysis. In conclusion, the physicochemical and microbiological changes in the water of the Bois River can affect aquatic organisms as well as humans when it is used for drinking or in agriculture.
Collapse
Affiliation(s)
- Samara Silva Soares
- Graduate Program in Environmental and Sanitary Engineering, Laboratory of Water Analysis, School of Civil and Environmental Engineering, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gessyca Gonçalves Costa
- Graduate Program in Pharmaceutical Sciences, Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lara Barroso Brito
- Graduate Program in Pharmaceutical Sciences, Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Graduate Program in Pharmaceutical Sciences, Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paulo Sérgio Scalize
- Graduate Program in Environmental and Sanitary Engineering, Laboratory of Water Analysis, School of Civil and Environmental Engineering, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Lawton E, Antczak P, Walker S, Germain-Cripps E, Falciani F, Routledge EJ. An investigation into the biological effects of indirect potable reuse water using zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147981. [PMID: 34323829 DOI: 10.1016/j.scitotenv.2021.147981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Advanced treatment technologies are being assessed as a proactive measure to assist with the transformation of treated wastewater into a source of water for potable water production. We investigated the biological effects along an advanced water treatment pilot plant, using zebrafish embryos throughout early development. The study compared phenotypic observations with global transcriptome responses, enabling us to keep an open mind about the chemicals that might influence the biological activity. There was no evidence of acute toxicity at any treatment stage, but skeletal, cardiovascular and pigmentation changes occurred in a small proportion of embryos along the treatment process, and in a tap water; not detected in the aquarium water control. Reverse osmosis (RO) reduced the concentration of measured chemical contaminants in the water the most, while eliminating the occurrence of abnormalities detected in fish embryos. Conversely, advanced oxidation reversed the benefits of RO treatment by increasing the frequency of teratogenic and sub-lethal abnormalities seen. Using the molecular responses of zebrafish embryos to different IPR water, we report the bioactivity within the water at different stages of advanced treatment and associate these to perturbed biological functions. Transcriptomic analysis revealed alterations to the retinoid system, which was consistent with the observed teratogenic effects. Changes to tryptophan metabolism (associated with the production of melatonin required for the control of normal circadian rhythms) and somatolactin-beta (associated with normal pigmentation in fish) were also found. We show that underexplored forms of biological activity occur in treated wastewater effluent, and/or may be created depending on the type of advanced treatment process used. By integrating the available analytical chemistry we highlight chemical groups associated to this response. Our study shows that more detailed and in-depth characterisation of chemicals and biological pathways associated with advanced treatment water systems are needed to mitigate possible risks to downstream organisms.
Collapse
Affiliation(s)
- E Lawton
- Brunel University London, Institute for Environment Health and Societies, UB8 3PH, UK
| | - P Antczak
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, L69 7ZB, UK; University of Cologne, Faculty of Medicine and Cologne University Hospital, Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - S Walker
- Brunel University London, Institute for Environment Health and Societies, UB8 3PH, UK
| | | | - F Falciani
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, L69 7ZB, UK
| | - E J Routledge
- Brunel University London, Institute for Environment Health and Societies, UB8 3PH, UK.
| |
Collapse
|
6
|
Gu L, Peng S, Zhang J, Lu X, Xia C, Yu J, Sun L. Development and validation of an activated immune model with zebrafish eleutheroembryo based on caudal fin acupuncture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147288. [PMID: 33930807 DOI: 10.1016/j.scitotenv.2021.147288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollutants are ubiquitous in global aquatic ecosystems and may cause immunotoxicity in aquatic organisms. However, disadvantages remain in the existing in vivo immunotoxicological methods, which make it difficult to meet the increasing demands for screening and for discriminating the immunotoxicity of environmental pollutants. In this study, the immune response in zebrafish eleutheroembryo was activated by acupuncture of the caudal fin at 72 hours post fertilization (hpf), and this immune model was further validated with a well-defined immunosuppressor, beclomethasone dipropionate (BDP). It was shown that acupuncture resulted in no increase in mortality in zebrafish eleutheroembryos. The transcription and protein levels of most immune genes were significantly increased after acupuncture, which indicated that acupuncture can effectively activate the immune response in zebrafish eleutheroembryos. Following exposure to BDP (0.01-1 μmol/L), the suppressive effects on the immune system were more significant in zebrafish that received acupuncture than in zebrafish that did not receive acupuncture. Considering these advantages, including its sensitivity, safety, and simple operation, over existing methods, the established immune model of zebrafish is promising for assessing the immunotoxicity of environmental pollutants.
Collapse
Affiliation(s)
- Linqi Gu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Shaohong Peng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jieyu Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xingfan Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Caihong Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jie Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
7
|
Mu X, Chen X, Liu J, Yuan L, Wang D, Qian L, Qian Y, Shen G, Huang Y, Li X, Li Y, Lin X. A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:113876. [PMID: 32806432 DOI: 10.1016/j.envpol.2019.113876] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 06/11/2023]
Abstract
The potential risks of phthalates affecting human and animal health as well as the environment are emerging as serious concerns worldwide. However, the mechanism by which phthalates induce developmental effects is under debate. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) increased the rate of heart defects including abnormal heart rate and pericardial edema. Changes in the transcriptional profile demonstrated that genes involved in the development of the heart, such as tbx5b, nppa, ctnt, my17, cmlc1, were significantly altered by DEHP and DBP at 50 μg/L, which agreed with the abnormal cardiac outcomes. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) further showed that significant hypomethylation of nppa and ctnt was identified after DEHP and DBP exposure, which was consistent with the up-regulation of these genes. Notably, hypermethylation on the promoter region (<1 kb) of tbx5b was found after DEHP and DBP exposure, which might be responsible for its decrease in transcription. In conclusion, phthalates have the potential to induce cardiac birth defects, which might be associated with the transcriptional regulation of the involved developmental factors such as tbx5b. These findings would contribute to understand the molecular pathways that mediated the cardiac defects caused by phthalates.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Le Qian
- College of Sciences, China Agricultural University, People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiangming Lin
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
Ribeiro RX, da Silva Brito R, Pereira AC, Monteiro KBES, Gonçalves BB, Rocha TL. Ecotoxicological assessment of effluents from Brazilian wastewater treatment plants using zebrafish embryotoxicity test: A multi-biomarker approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139036. [PMID: 32493656 DOI: 10.1016/j.scitotenv.2020.139036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/28/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Effluent from wastewater treatment plants (WWTPs) remains one of the major pollutants of aquatic environments; however, knowledge about its ecotoxic effects at fish early life stages is limited. The ecotoxicity of effluent from Brazilian WWTPs was herein analyzed based on responses of multiple biomarkers in the zebrafish embryotoxicity test (ZET). Ecotoxicity was analyzed based on mortality rate, hatching rate, spontaneous movement rate (neurotoxicity), heart rate (cardiotoxicity), frequency of morphological changes and morphometric parameters during 144 h exposure time. Results showed that embryos exposed to affluent and effluent presented high mortality rate and delayed hatching rate, as well as changes in morphometric parameters. Exposed embryos also showed physiological, sensory, skeletal and muscular changes, which confirms that the ecotoxic effect of WWTPs effluent is systemic and associated with the presence of several pollutants, even at low concentrations (mixture toxicity). The present study is pioneer in using responses of multiple biomarkers in ZET as suitable approach to assess the ecotoxicity of WWTPs effluent in developing countries, as well as to add value and contribute to studies on WWTPs worldwide. Zebrafish is a suitable vertebrate model to assess the ecotoxicity of WWTP effluent.
Collapse
Affiliation(s)
- Renan Xavier Ribeiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo Pereira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Keyle Borges E Silva Monteiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Companhia Saneamento de Goiás (SANEAGO), Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
9
|
Vimala RTV, Lija Escaline J, Murugan K, Sivaramakrishnan S. An overview of organic matters in municipal wastewater: Removal via self-assembly flocculating mechanism and the molecular level characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 266:110572. [PMID: 32392138 DOI: 10.1016/j.jenvman.2020.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
On considering the critical issues in attaining stringent water quality standards and not creating any environmental impacts, we focused for the first time the economically feasible, emerging technology known as Self-assembly flocculating (Saf process). In which, the study investigated the applicability of bioflocculant (a biopolymer-self-assembly in nature) act as a surrogates on relying the removal of broad spectrum of substances under optimized conditions (Dosage: 90 mg/L; pH: 7; CaCl2). On using different techniques, the results have proved in removing the organic matter such as pharmaceuticals (Gentamycin, Cholecalciferol, Fluvoxamine, 3-OH Desogestrel, and Pheniramine), endocrine disturbing compounds [Phthalic acid, Benzene, 1, 2, 4 -Trimethoxy-5-(1-Propenyl)-, Benzene, 1, 2-Dimethoxy-4-(2-Propenyl)-, 1, 2-Benzenedicarboxylic Acid, 3-Cyclohexen-1-ol], fluorescent components (Polysaccharide like material), and others. The toxicological assessment of self-assembly bioflocculant implemented on zebra fish were statistically correlated [r = 0.95, p < 0.01 and 0.05 for P1WW; r = 0.91, p < 0.01 and 0.05 for P2WW] and [r = 0.7 5, p < 0.05 for P1WT; r = 0.095, p < 0.01 and 0.05 for P2WT]. This integrated approach supplemented further information of zeta potential (-16 mV in P1WW and -14.6 mV in P2WW decreased to -1.05 mV and -1.56 mV) with particle size distribution to explain via Saf process. In this research, the new insight has established non-toxic, self-assembly, biodegradable, bioflocculant for effective bioremediation.
Collapse
Affiliation(s)
- R T V Vimala
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - J Lija Escaline
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Kadarkarai Murugan
- Department of Zoology, Bharathiyar University, Coimbatore, Tamil Nadu, 641046, India
| | - S Sivaramakrishnan
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
10
|
Gauthier PT, Vijayan MM. Municipal wastewater effluent exposure disrupts early development, larval behavior, and stress response in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113757. [PMID: 31896476 DOI: 10.1016/j.envpol.2019.113757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
While wastewater treatment standards have been progressively increasing, emerging contaminants such as pharmaceuticals can nonetheless pass through treatment and end up in our watersheds. Pharmaceuticals in the parts-per-billion range can impact fish behavior, survival, and recruitment in the wild. However, the ecological risk posed by whole municipal wastewater effluents (MWWE), a complex mixture, is not clear. This knowledge gap is particularly evident for early lifestages (ELS) of fish, and because effluent discharge events are typically short, the effects of short-term MWWE exposures to ELS fish are particularly important from an environmental perspective. Here we tested the effects of rapid 30-min exposures, and short-term 24- and 72-h exposures to MWWE on development, behaviors, and stress response in zebrafish (Danio rerio) embryos, larvae, and juveniles. We obtained 24-h composite samples of tertiary-treated MWWE that contained a mixture of chemicals with affinities for serotonergic, adrenergic, dopaminergic, and ion-channel receptors. Embryos exposed to 5%, 10%, and 50% MWWE experienced developmental delays in somitogenesis and hatching rate, although there was no effect on survival. Embryonic photomotor responses were affected following 30-min and 24-h exposures to 10% and 50% MWWE, and larval visual motor responses were reduced from 24-h exposure to 10% MWWE. Exposure to 10% MWWE dulled the juvenile cortisol and lactate response following an acute air-exposure. Compromised behavioral and stress performances demonstrate the capacity of MWWE to impact phenotypes critical to the survival of fish in the environment. Taken together, we found that zebrafish were sensitive to toxic effects of MWWE at multiple life-stages.
Collapse
Affiliation(s)
- Patrick T Gauthier
- University of Calgary, Department of Biological Sciences, 2500 University Drive N.W., Calgary, T2N 1N4, Alberta, Canada
| | - Mathilakath M Vijayan
- University of Calgary, Department of Biological Sciences, 2500 University Drive N.W., Calgary, T2N 1N4, Alberta, Canada.
| |
Collapse
|
11
|
Deng S, Yan X, Zhu Q, Liao C. The utilization of reclaimed water: Possible risks arising from waterborne contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113020. [PMID: 31421574 DOI: 10.1016/j.envpol.2019.113020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 05/04/2023]
Abstract
Increasing interest of seeking substitutable water resources accrues from shortage of freshwater. One of the options considered is reclaimed water (also designated as recycled water) that has been widely used in daily life. Although reclaimed water can serve as a feasible reliever of water pressure, attention about its technologies and potential risks is growing in the meantime. Most established wastewater treatment plants (WWTPs) predate many new contaminants, which means treatment processes cannot ensure to dislodge certain contaminants completely from origin water. Furthermore, a wide range of factors, such as seasons and influent variations, affect occurrence and concentration of reclaimed water-borne contaminants, making research about quality of reclaimed water especially significant. Many reclaimed water-borne contaminants, including biological and chemical contaminants, are toxic to human health, and complex wastewater matrix may aggravate water quality of concern. The widespread use of reclaimed water continues to be a concern on agriculture, ecological environment and human health. This study aims to: 1) provide a critical review about occurrence and profiles of diverse contaminants in the treated reclaimed water, 2) discuss the possibility to avoid the secondary pollution in reuse of reclaimed water, and 3) reveal the prospective consequences of using reclaimed water on agriculture, ecological environment and human health.
Collapse
Affiliation(s)
- Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| |
Collapse
|
12
|
Pereira AC, Gomes T, Ferreira Machado MR, Rocha TL. The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1841-1853. [PMID: 31325757 DOI: 10.1016/j.envpol.2019.06.100] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Nanotechnology and use of nanomaterials (NMs) improve life quality, economic growth and environmental health. However, the increasing production and use of NMs in commercial products has led to concerns about their potential toxicity on human and environment health, as well as its toxicological classification and regulation. In this context, there is an urgent need to standardize and validate procedures for nanotoxicity testing. Since the zebrafish embryotoxicity test (ZET) has been indicated as a suitable approach for the toxicity assessment of traditional and emergent pollutants, the aim of this review is to summarize the existing literature on embryotoxic and teratogenic effects of NMs on zebrafish. In addition, morphological changes in zebrafish embryos induced by NMs were classified in four reaction models, allowing classification of the mode of action and toxicity of different types of NM. Revised data showed that the interaction and bioaccumulation of NMs on zebrafish embryos were associated to several toxic effects, while the detoxification process was limited. In general, NMs induced delayed hatching, circulatory changes, pigmentation and tegumentary alterations, musculoskeletal disorders and yolk sac alterations on zebrafish embryos. Recommendations for nanotoxicological tests are given, including guidance for future research. This review reinforces the use of the ZET as a suitable approach to assess the health risks of NM exposure.
Collapse
Affiliation(s)
- Aryelle Canedo Pereira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
13
|
Shen X, Li R, Hodges BR, Feng J, Cai H, Ma X. Experiment and simulation of supersaturated total dissolved gas dissipation: Focus on the effect of confluence types. WATER RESEARCH 2019; 155:320-332. [PMID: 30852319 DOI: 10.1016/j.watres.2019.02.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Total dissolved gas supersaturation (TDGS) downstream caused by spill discharge from high dams can easily cause fish to suffer from gas bubble disease (GBD). One potential approach to mitigate the impact of TDGS is at the confluence of a downstream tributary, where the introduction of low-TDG water might provide refuge space for fish. In this study, we carried out a series of flume experimental cases and established a three-dimensional TDGS model at confluences. The formula of the dissipation coefficient of TDGS had been obtained by parts of experiment cases. The other parts of experimental cases were carried out to validate the established TDGS model. The biggest relative error of TDG concentration between the experiment and simulation was -5.7%. The results show that the convergence of tributary water (TDG = 100%) can affect the mainstream water (TDG = 140% ∼ 150%) significantly. The two most obvious features are the presence of the separation zone and secondary flow which become more significant as the flow rate increases. The separation zone area at the bottom is smaller than that at the surface. There are two secondary circulations on transversal planes which decrease as the longitudinal distance increases. In addition, the area below 110% and 120% of TDGS in different planes of different cases were compared in detail. This study can provide scientific basis for the utilization of the low-TDG-saturation region to protect fish from the damage of TDGS at confluences during high dam discharge.
Collapse
Affiliation(s)
- Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Ben R Hodges
- Center for Water and the Environment, University of Texas at Austin, Austin, TX, USA
| | - Jingjie Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Huanjie Cai
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyi Ma
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
14
|
Lacaze É, Gendron AD, Miller JL, Colson TLL, Sherry JP, Giraudo M, Marcogliese DJ, Houde M. Cumulative effects of municipal effluent and parasite infection in yellow perch: A field study using high-throughput RNA-sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:797-809. [PMID: 30790752 DOI: 10.1016/j.scitotenv.2019.02.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Multiple metabolic, immune and reproductive effects have been reported in fish residing in effluent-impacted sites. Natural stressors such as parasites also have been shown to impact the responses of organisms to chronic exposure to municipal effluent in the St. Lawrence River (Quebec, Canada). In order to comprehensively evaluate the cumulative impacts of anthropogenic and natural stressors on the health of yellow perch, differential mRNA transcription profiles were examined in juvenile females collected from effluent-impacted and upstream sites with low or high infection levels of the larval trematode Apophallus brevis. Transcriptomics was used to identify biological pathways associated with environmental exposure. In total, 3463 isoforms were differentially transcribed between sites. Patterns reflecting the combined effects of stressors were numerically dominant, with a majority of downregulated transcripts (68%). The differentially expressed transcripts were associated with 27 molecular and cellular functions ranging from cellular development to xenobiotic metabolism and were involved in the development and function of 13 organ systems including hematological, hepatic, nervous, reproductive and endocrine systems. Based on RNA-seq results, sixteen genes were measured by qPCR. Significant differences were observed for six genes in fish exposed to both stressors combined, whereas parasites and effluent individually impacted the transcription of one gene. Lysozyme activity, lipid peroxidation, retinol-binding protein and glucose-6-phosphate dehydrogenase were selected as potential biomarkers of effects to study specific pathways of interest. Lipid peroxidation in perch liver was different between sites, parasite loads, and for combined stressors. Overall, results indicated that juvenile yellow perch responded strongly to combined parasite and effluent exposure, suggesting cumulative effects on immune responses, inflammation and lipid metabolism mediated by retinoid receptors. The present study highlight the importance of using a comprehensive approach combining transcriptomics and endpoints measured at higher levels of biological organization to better understand cumulative risks of contaminants and pathogens in aquatic ecosystems.
Collapse
Affiliation(s)
- Émilie Lacaze
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 105 McGill St., Montreal, QC H2E 2E7, Canada.
| | - Andrée D Gendron
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 105 McGill St., Montreal, QC H2E 2E7, Canada
| | - Jason L Miller
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Tash-Lynn L Colson
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 105 McGill St., Montreal, QC H2E 2E7, Canada
| | - James P Sherry
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Maeva Giraudo
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 105 McGill St., Montreal, QC H2E 2E7, Canada
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 105 McGill St., Montreal, QC H2E 2E7, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 105 McGill St., Montreal, QC H2E 2E7, Canada
| |
Collapse
|
15
|
Dehghani Darmian M, Hashemi Monfared SA, Azizyan G, Snyder SA, Giesy JP. Assessment of tools for protection of quality of water: Uncontrollable discharges of pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:190-197. [PMID: 29885614 DOI: 10.1016/j.ecoenv.2018.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Selecting an appropriate crisis management plans during uncontrollable loading of pollution to water systems is crucial. In this research the quality of water resources against uncontrollable pollution is protected by use of suitable tools. Case study which was chosen in this investigation was a river-reservoir system. Analytical and numerical solutions of pollutant transport equation were considered as the simulation strategy to calculate the efficient tools to protect water quality. These practical instruments are dilution flow and a new tool called detention time which is proposed and simulated for the first time in this study. For uncontrollable pollution discharge which was approximately 130% of the river's assimilation capacity, as long as the duration of contact (Tc) was considered as a constraint, by releasing 30% of the base flow of the river from the upstream dilution reservoir, the unallowable pollution could be treated. Moreover, when the affected distance (Xc) was selected as a constraint, the required detention time that the rubber dam should detained the water to be treated was equal to 187% of the initial duration of contact.
Collapse
Affiliation(s)
| | | | - Gholamreza Azizyan
- Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Shane A Snyder
- Dept. of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5 A Engineering Drive 1, T-Lab Building, #02-01, Singapore 117411, Singapore.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicological Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|