1
|
Lei H, Zhou N, Zhang J, Lin R, Chen T, Wu J, Su L, Liu S, Liu T. Salinity as a key factor affects viral structure, function, and life strategies in lakes from arid and semi-arid regions. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138075. [PMID: 40163992 DOI: 10.1016/j.jhazmat.2025.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Salinity impacts lake microorganisms in arid and semiarid zones, affecting climate change. Viruses regulate community structure, facilitate gene transfer, and mediate nutrient cycling. However, studies on the diversity and functional differences of viruses in lakes of varying salinity are limited. Thus, we investigated metagenomic data from 20 lakes in Xinjiang Province, China, to determine viral distribution, virus-host linkage, function, and drivers in lakes of varying salinity. The results showed that salinity shaped the distribution of viral community composition, and Hafunaviridae was the dominant virus in high-salinity lakes. All the metagenome-assembled genomes (MAGs) belonging to Halobacteriota were predicted as hosts, with a lysogenic lifestyle predominating the life strategy, implying their potential protection in salt lakes. Moreover, some auxiliary metabolic genes (AMGs), such as cpeT and PTOX, were related to antioxidant and stress responses, which might help the host survive high salinity stress-induced peroxidation. Notably, the main antibiotic resistance genes (ARGs) carried by viruses, which conferred resistance to polymyxin and trimethoprim, related to the local use of veterinary antibiotics, suggesting that they are potential vehicles for the transmission of ARGs. Overall, these findings suggest that lake systems include unique viral varieties that may influence microbial ecosystems and host metabolism related to environmental adaptability.
Collapse
Affiliation(s)
- Haojun Lei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Nuowen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinhong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruifeng Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiang Wu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Su
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shufeng Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Tang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
3
|
Pérez-Cataluña A, Randazzo W, Martínez-Blanch JF, Codoñer FM, Sánchez G. Sample and library preparation approaches for the analysis of the virome of irrigation water. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4450-4457. [PMID: 36823282 DOI: 10.1002/jsfa.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The virome (i.e. community of mainly RNA and DNA eukaryotic viruses and bacteriophages) of waters is yet to be extensively explored. In particular, the virome of waters used for irrigation could therefore potentially carry viral pathogens that can contaminate fresh produce. One problem in obtaining viral sequences from irrigation waters is the relatively low amount of virus particles, as well as the presence of human, bacterial and protozoan cells. The present aimed study was to compare different processing, amplification, and sequencing approaches for virome characterization in irrigation waters. RESULTS Our analyses considered percentages of viral reads, values for diversity indices and number of families found in sequencing results. The results obtained suggest that enrichment protocols using two (bezonase and microccocal nuclease) or four enzymes at once (bezonase, microccocal nuclease, DNAse and RNase), regardless of an Amicon filtration step, are more appropriate than separated enzymatic treatments for virome characterization in irrigation water. The NetoVIR protocol combined with the ScriptSeq v2 RNA-Seq Library (P0-L20 protocol) showed the highest percentages of RNA viruses and identified the higher number of families. CONCLUSION Although virome characterization applied in irrigation waters is an important tool for protecting public health by informing on circulating human and zoonotic infections, optimized and standardized procedures should be followed to reduce the variability of results related to either the sample itself and the downstream bioinformatics analyses. Our results show that virome characterization can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided that appropriate and rigorous controls are included. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | | | - Francisco M Codoñer
- ADM-Lifesequencing - Health and Wellness - Adm Nutrition, Valencia, Spain
- Danone Nutricia Research, Singapore, Singapore
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| |
Collapse
|
4
|
Zhang D, You F, He Y, Te SH, Gin KYH. Corrected and Republished from: "Isolation and Characterization of the First Freshwater Cyanophage Infecting Pseudanabaena". J Virol 2023; 97:e0040523. [PMID: 37074059 PMCID: PMC10286775 DOI: 10.1128/jvi.00405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Cyanobacteria are the major primary producers in both freshwater and marine environments. However, the majority of freshwater cyanophages remain unknown due to the limited number of cyanophage isolates. In this study, we present a novel lytic freshwater cyanophage, PA-SR01, which was isolated from the Singapore Serangoon Reservoir. To our knowledge, this is the first isolate of a cyanophage that has been found to infect the cyanobacterium Pseudanabaena. PA-SR01 has a narrow host range, a short latent period, and is chloroform sensitive. PA-SR01 is a member of Siphoviridae with a long noncontractile tail. It is a double-stranded DNA virus with a 137,012-bp genome. Functional annotation for the predicted open reading frames (ORFs) of the PA-SR01 genome identified genes with putative functions related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Out of 166 predicted ORFs, only 17 ORFs have homology with genes with known function. Phylogenetic analysis of the major capsid protein and terminase large subunit further suggests that phage PA-SR01 is evolutionary distinct from known cyanophages. Metagenomics sequence recruitment onto the PA-SR01 genome indicates that PA-SR01 represents a new evolutionary lineage of phage which shares considerable genetic similarities with phage sequences in aquatic environments and could play key ecological roles. IMPORTANCE This study presents the isolation of the very first freshwater cyanophage, PA-SR01, that infects Pseudanabaena, and fills an important knowledge gap on freshwater cyanophages as well as cyanophages infecting Pseudanabaena.
Collapse
Affiliation(s)
- Dong Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Fang You
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Harn Te
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| |
Collapse
|
5
|
Kuo HWD, Zure D, Lin CR. Occurrences of similar viral diversity in campus wastewater and reclaimed water of a university dormitory. CHEMOSPHERE 2023; 330:138713. [PMID: 37088208 DOI: 10.1016/j.chemosphere.2023.138713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Water reuse from wastewater sources still remain some critical safety concerns associated with treacherous contaminants like pathogenic viruses. In this study, viral diversities in campus wastewater (CWW) and its reclaimed water (RCW) recycled for toilet flushing and garden irrigation of a university dormitory were assessed using metagenomic sequencing for acquisition of more background data. Results suggested majority (>80%) of gene sequences within assembled contigs predicted by open reading frame (ORF) finder were no-hit yet believed to be novel/unrevealed viral genomic information whereas hits matched bacteriophages (i.e., mainly Myoviridae, Podoviridae, and Siphoviridae families) were predominant in both CWW and RCW samples. Moreover, few pathogenic viruses (<1%) related to infections of human skin (e.g., Molluscum contagiosum virus, MCV), digestion system (e.g., hepatitis C virus, HCV), and gastrointestinal tract (e.g., human norovirus, HuNoV) were also noticed raising safety concerns about application of reclaimed waters. Low-affinity interactions of particular viral exterior proteins (e.g., envelope glycoproteins or spike proteins) for disinfectant ligand (e.g., chlorite) elucidated treatment limitations of current sewage processing systems even with membrane bioreactor and disinfectant contactor. Revolutionary disinfection approaches together with routine monitoring and new regulations are prerequisite to secure pathogen-correlated water quality for safer reuse of reclaimed waters.
Collapse
Affiliation(s)
- Hsion-Wen David Kuo
- Department of Environmental Science and Engineering, Tunghai University, Taiwan.
| | - Diaiti Zure
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| | - Chih-Rong Lin
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| |
Collapse
|
6
|
Liao M, Xie Y, Shi M, Cui J. Over two decades of research on the marine RNA virosphere. IMETA 2022; 1:e59. [PMID: 38867898 PMCID: PMC10989941 DOI: 10.1002/imt2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
RNA viruses (realm: Riboviria), including RNA phages and eukaryote-infecting RNA viruses, are essential components of marine ecosystems. A large number of marine RNA viruses have been discovered in the last two decades because of the rapid development of next-generation sequencing (NGS) technology. Indeed, the combination of NGS and state-of-the-art meta-omics methods (viromics, the study of all viruses in a specific environment) has led to a fundamental understanding of the taxonomy and genetic diversity of RNA viruses in the sea, suggesting the complex ecological roles played by RNA viruses in this complex ecosystem. Furthermore, comparisons of viromes in the context of highly variable marine niches reveal the biogeographic patterns and ecological impact of marine RNA viruses, whose role in global ecology is becoming increasingly clearer. In this review, we summarize the characteristics of the global marine RNA virosphere and outline the taxonomic hierarchy of RNA viruses with a specific focus on their ancient evolutionary history. We also review the development of methodology and the major progress resulting from its applications in RNA viromics. The aim of this review is not only to provide an in-depth understanding of multifaceted aspects of marine RNA viruses, but to offer future perspectives on developing a better methodology for discovery, and exploring the evolutionary origin and major ecological significance of marine RNA virosphere.
Collapse
Affiliation(s)
- Meng‐en Liao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunyi Xie
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhen Campus of Sun Yat‐sen UniversityShenzhenChina
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- Laboatory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
7
|
Jantharadej K, Kongprajug A, Mhuantong W, Limpiyakorn T, Suwannasilp BB, Mongkolsuk S, Sirikanchana K. Comparative genomic analyses of pathogenic bacteria and viruses and antimicrobial resistance genes in an urban transportation canal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157652. [PMID: 35905960 DOI: 10.1016/j.scitotenv.2022.157652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Water commuting is a major urban transportation method in Thailand. However, urban boat commuters risk exposure to microbially contaminated bioaerosols or splash. We aimed to investigate the microbial community structures, identify bacterial and viral pathogens, and assess the abundance of antimicrobial resistance genes (ARGs) using next-generation sequencing (NGS) at 10 sampling sites along an 18 km transportation boat route in the Saen Saep Canal, which traverses cultural, commercial, and suburban land-based zones. The shotgun metagenomic (Illumina HiSeq) and 16S rRNA gene amplicon (V4 region) (Illumina MiSeq) sequencing platforms revealed diverse microbial clusters aligned with the zones, with explicit segregation between the cultural and suburban sites. The shotgun metagenomic sequencing further identified bacterial and viral pathogens, and ARGs. The predominant bacterial pathogens (>0.5 % relative abundance) were the Burkholderia cepacia complex, Arcobacter butzleri, Burkholderia vietnamiensis, Klebsiella pneumoniae, and the Enterobacter cloacae complex. The viruses (0.28 %-0.67 % abundance in all microbial sequences) comprised mainly vertebrate viruses and bacteriophages, with encephalomyocarditis virus (33.3 %-58.2 % abundance in viral sequences), hepatitis C virus genotype 1, human alphaherpesvirus 1, and human betaherpesvirus 6A among the human viral pathogens. The 15 ARG types contained 611 ARG subtypes, including those resistant to beta-lactam, which was the most diverse and abundant group (206 subtypes; 17.0 %-27.5 %), aminoglycoside (94 subtypes; 9.6 %-15.3 %), tetracycline (80 subtypes; 15.6 %-20.2 %), and macrolide (79 subtypes; 14.5 %-32.1 %). Interestingly, the abundance of ARGs associated with resistance to beta-lactam, trimethoprim, and sulphonamide, as well as A. butzleri and crAssphage, at the cultural sites was significantly different from the other sites (p < 0.05). We demonstrated the benefits of using NGS to deliver insights into microbial communities, and antimicrobial resistance, both of which pose a risk to human health. Using NGS may facilitate microbial risk mitigation and management for urban water commuters and proximal residents.
Collapse
Affiliation(s)
- Krittayapong Jantharadej
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, Enzyme Technology Research Team, Pathum Thani, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Group, Chulalongkorn University, Bangkok, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Group, Chulalongkorn University, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
8
|
Che R, Bai M, Xiao W, Zhang S, Wang Y, Cui X. Nutrient levels and prokaryotes affect viral communities in plateau lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156033. [PMID: 35597355 DOI: 10.1016/j.scitotenv.2022.156033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Viruses are the most abundant organisms in aquatic environments. Recent advances of viral metagenomic have greatly expanded our understanding of aquatic viral communities. However, little is known about the difference of viral communities and driving factors in freshwater lake. This study seeks to understand the spatio-temporal variation, differences, and driving factors of viral communities in two plateau lakes (Dianchi and Fuxian Lakes) with significant nutritional differences. The viral communities exhibited apparent seasonal variation in Dianchi Lake, while seasonal influences on the viral communities were greater than location-based influences. Two-thirds of all detected viral taxa were shared in two lakes, but there was variation in the composition of viral communities. Correlations between prokaryotic communities, environmental factors and viral communities were analyzed. The nutrients, chlorophyll a were primarily environmental parameters affecting viral communities, and the prokaryotic community was significantly correlated with the viral community. In addition, several viruses infecting humans were identified in two lakes, with the most abundant being Herpesviridae and Poxviridae. Overall, these findings provide information on the dynamics, composition, and differences of viral and prokaryotic communities in plateau lakes with different nutrient levels. These results suggest that nutritional levels and prokaryotic communities could play an important role in shaping viral communities in freshwater lakes.
Collapse
Affiliation(s)
- Raoqiong Che
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meng Bai
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Shiying Zhang
- Yunnan Engineering Laboratory of Soil Fertility and Pollution Remediation, Yunnan Agricultural University, Kunming 650201, China
| | - Yongxia Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
Gu X, Yang Y, Mao F, Lee WL, Armas F, You F, Needham DM, Ng C, Chen H, Chandra F, Gin KY. A comparative study of flow cytometry-sorted communities and shotgun viral metagenomics in a Singapore municipal wastewater treatment plant. IMETA 2022; 1:e39. [PMID: 38868719 PMCID: PMC10989988 DOI: 10.1002/imt2.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 06/19/2022] [Indexed: 06/14/2024]
Abstract
Traditional or "bulk" viral enrichment and amplification methods used in viral metagenomics introduce unavoidable bias in viral diversity. This bias is due to shortcomings in existing viral enrichment methods and overshadowing by the more abundant viral populations. To reduce the complexity and improve the resolution of viral diversity, we developed a strategy coupling fluorescence-activated cell sorting (FACS) with random amplification and compared this to bulk metagenomics. This strategy was validated on both influent and effluent samples from a municipal wastewater treatment plant using the Modified Ludzack-Ettinger (MLE) process as the treatment method. We found that DNA and RNA communities generated using bulk samples were mostly different from those derived following FACS for both treatments before and after MLE. Before MLE treatment, FACS identified five viral families and 512 viral annotated contigs. Up to 43% of mapped reads were not detected in bulk samples. Nucleo-cytoplasmic large DNA viral families were enriched to a greater extent in the FACS-coupled subpopulations compared with bulk samples. FACS-coupled viromes captured a single-contig viral genome associated with Anabaena phage, which was not observed in bulk samples or in FACS-sorted samples after MLE. These short metagenomic reads, which were assembled into a high-quality draft genome of 46 kbp, were found to be highly dominant in one of the pre-MLE FACS annotated virome fractions (57.4%). Using bulk metagenomics, we identified that between Primary Settling Tank and Secondary Settling Tank viromes, Virgaviridae, Astroviridae, Parvoviridae, Picobirnaviridae, Nodaviridae, and Iridoviridae were susceptible to MLE treatment. In all, bulk and FACS-coupled metagenomics are complementary approaches that enable a more thorough understanding of the community structure of DNA and RNA viruses in complex environmental samples, of which the latter is critical for increasing the sensitivity of detection of viral signatures that would otherwise be lost through bulk viral metagenomics.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Yi Yang
- NUS Environmental Research InstituteNational University of SingaporeSingaporeSingapore
| | - Feijian Mao
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Fang You
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - David M. Needham
- Monterey Bay Aquarium Research InstituteMoss LandingCaliforniaUSA
- GEOMAR Helmholtz Centre for Ocean ResearchOcean EcoSystems Biology UnitKielGermany
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Charmaine Ng
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Hongjie Chen
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Franciscus Chandra
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Karina Yew‐Hoong Gin
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- NUS Environmental Research InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
10
|
Dhakar V, Geetanjali AS. Role of pepper mild mottle virus as a tracking tool for fecal pollution in aquatic environments. Arch Microbiol 2022; 204:513. [PMID: 35864362 PMCID: PMC9303839 DOI: 10.1007/s00203-022-03121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
The plant pathogen pepper mild mottle virus (PMMoV) has recently been proposed as a water quality indicator, it is a RNA virus belonging to the genus Tobamovirus in the family Virgoviridae that causes harm to the pepper crops. After consuming processed food products containing infected peppers, such as hot sauces, PMMoV is excreted in high concentrations in feces; therefore, this is the most common RNA virus, constantly found in the feces of humans. The fecal-oral pathway is emerging as an environmental problem. The presence of high concentrations of pathogens associated with human excreta in environmental waters or water reuse supplies poses a threat to public health. Due to the difficulty in determining the presence of pathogens effectively in water, attempts to monitor microbial water quality often use surrogates or indicator organisms that can be easily detected; therefore, PMMoV is used as a viral surrogate in aquatic environment. This paper describes the incidence and persistence of PMMoV in aquatic environments and in waste treatment plants and its usefulness for quantifying virus reductions by advanced water treatment technologies. In recent research, SARS-CoV-2 was reported to be found in wastewater and utilized for the purpose of monitoring coronavirus illness outbreaks. Since PMMoV is readily identified in the human feces and can also serve as an indicator of human waste, the determined PMMoV concentrations may be utilized to give the normalized report of the SARS-CoV-2 concentration, so that, the amount of human waste found in the wastewater can be taken into consideration.
Collapse
Affiliation(s)
- Vaishali Dhakar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - A. Swapna Geetanjali
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| |
Collapse
|
11
|
Mailepessov D, Arivalan S, Kong M, Griffiths J, Low SL, Chen H, Hapuarachchi HC, Gu X, Lee WL, Alm EJ, Thompson J, Wuertz S, Gin K, Ng LC, Wong JCC. Development of an efficient wastewater testing protocol for high-throughput country-wide SARS-CoV-2 monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154024. [PMID: 35217043 PMCID: PMC8860745 DOI: 10.1016/j.scitotenv.2022.154024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Wastewater-based surveillance has been widely used as a non-intrusive tool to monitor population-level transmission of COVID-19. Although various approaches are available to concentrate viruses from wastewater samples, scalable methods remain limited. Here, we sought to identify and evaluate SARS-CoV-2 virus concentration protocols for high-throughput wastewater testing. A total of twelve protocols for polyethylene glycol (PEG) precipitation and four protocols for ultrafiltration-based approaches were evaluated across two phases. The first phase entailed an initial evaluation using a small sample set, while the second phase further evaluated five protocols using wastewater samples of varying SARS-CoV-2 concentrations. Permutations in the pre-concentration, virus concentration and RNA extraction steps were evaluated. Among PEG-based methods, SARS-CoV-2 virus recovery was optimal with 1) the removal of debris prior to processing, 2) 2 h to 24 h incubation with 8% PEG at 4 °C, 3) 4000 xg or 14,000 xg centrifugation, and 4) a column-based RNA extraction method, yielding virus recovery of 42.4-52.5%. Similarly, the optimal protocol for ultrafiltration included 1) the removal of debris prior to processing, 2) ultrafiltration, and 3) a column-based RNA extraction method, yielding a recovery of 38.2%. This study also revealed that SARS-CoV-2 RNA recovery for samples with higher virus concentration were less sensitive to changes in the PEG method, but permutations in the PEG protocol could significantly impact virus yields when wastewater samples with lower SARS-CoV-2 RNA were used. Although both PEG precipitation and ultrafiltration methods resulted in similar SARS-CoV-2 RNA recoveries, the former method is more cost-effective while the latter method provided operational efficiency as it required a shorter turn-around-time (PEG precipitation, 9-23 h; Ultrafiltration, 5 h). The decision on which method to adopt will thus depend on the use-case for wastewater testing, and the need for cost-effectiveness, sensitivity, operational feasibility and scalability.
Collapse
Affiliation(s)
- Diyar Mailepessov
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way #06-05/08, Helios Block, Singapore 138667, Singapore
| | - Sathish Arivalan
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way #06-05/08, Helios Block, Singapore 138667, Singapore
| | - Marcella Kong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way #06-05/08, Helios Block, Singapore 138667, Singapore
| | - Jane Griffiths
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way #06-05/08, Helios Block, Singapore 138667, Singapore
| | - Swee Ling Low
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way #06-05/08, Helios Block, Singapore 138667, Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | | | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore 637459, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Karina Gin
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way #06-05/08, Helios Block, Singapore 138667, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way #06-05/08, Helios Block, Singapore 138667, Singapore.
| |
Collapse
|
12
|
Abstract
Microviruses encompass an astonishing array of small, single-stranded DNA phages that, due to the surge in metagenomic surveys, are now known to be prevalent in most environments. Current taxonomy concedes the considerable diversity within this lineage to a single family (the Microviridae), which has rendered it difficult to adequately and accurately assess the amount of variation that actually exists within this group. We amassed and curated the largest collection of microviral genomes to date and, through a combination of protein-sharing networks and phylogenetic analysis, discovered at least three meaningful taxonomic levels between the current ranks of family and genus. When considering more than 13,000 microviral genomes from recognized lineages and as-yet-unclassified microviruses in metagenomic samples, microviral diversity is better understood by elevating microviruses to the level of an order that consists of three suborders and at least 19 putative families, each with their respective subfamilies. These revisions enable fine-scale assessment of microviral dynamics: for example, in the human gut, there are considerable differences in the abundances of microviral families both between urban and rural populations and in individuals over time. In addition, our analysis of genome contents and gene exchange shows that microviral families carry no recognizable accessory metabolic genes and rarely, if ever, engage in horizontal gene transfer across microviral families or with their bacterial hosts. These insights bring microviral taxonomy in line with current developments in the taxonomy of other phages and increase the understanding of microvirus biology.
Collapse
|
13
|
French R, Charon J, Lay CL, Muller C, Holmes EC. Human Land-Use Impacts Viral Diversity and Abundance in a New Zealand River. Virus Evol 2022; 8:veac032. [PMID: 35494173 PMCID: PMC9049113 DOI: 10.1093/ve/veac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Although water-borne viruses have important implications for the health of humans and other animals, little is known about the impact of human land use on viral diversity and evolution in water systems such as rivers. We used metatranscriptomic sequencing to compare the diversity and abundance of viruses at sampling sites along a single river in New Zealand that differed in human land-use impacts, ranging from pristine to urban. From this, we identified 504 putative virus species, of which 97 per cent were novel. Many of the novel viruses were highly divergent and likely included a new subfamily within the Parvoviridae. We identified at least sixty-three virus species that may infect vertebrates—most likely fish and water birds—from the Astroviridae, Birnaviridae, Parvoviridae, and Picornaviridae. No putative human viruses were detected. Importantly, we observed differences in the composition of viral communities at sites impacted by human land use (farming and urban) compared to native forest sites (pristine). At the viral species level, the urban sites had higher diversity (327 virus species) than the farming (n = 150) and pristine sites (n = 119), and more viruses were shared between the urban and farming sites (n = 76) than between the pristine and farming or urban sites (n = 24). The two farming sites had a lower viral abundance across all host types, while the pristine sites had a higher abundance of viruses associated with animals, plants, and fungi. We also identified viruses linked to agriculture and human impact at the river sampling sites in farming and urban areas that were not present at the native forest sites. Although based on a small sample size, our study suggests that human land use can impact viral communities in rivers, such that further work is needed to reduce the impact of intensive farming and urbanisation on water systems.
Collapse
Affiliation(s)
- Rebecca French
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Justine Charon
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Callum Le Lay
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Chris Muller
- Wildbase, School of Veterinary Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
14
|
Bar-Or I, Yaniv K, Shagan M, Ozer E, Weil M, Indenbaum V, Elul M, Erster O, Mendelson E, Mannasse B, Shirazi R, Kramarsky-Winter E, Nir O, Abu-Ali H, Ronen Z, Rinott E, Lewis YE, Friedler E, Bitkover E, Paitan Y, Berchenko Y, Kushmaro A. Regressing SARS-CoV-2 Sewage Measurements Onto COVID-19 Burden in the Population: A Proof-of-Concept for Quantitative Environmental Surveillance. Front Public Health 2022; 9:561710. [PMID: 35047467 PMCID: PMC8762221 DOI: 10.3389/fpubh.2021.561710] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2021] [Indexed: 01/19/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, a member of the coronavirus family of respiratory viruses that includes severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East respiratory syndrome (MERS). It has had an acute and dramatic impact on health care systems, economies, and societies of affected countries during the past 8 months. Widespread testing and tracing efforts are being employed in many countries in attempts to contain and mitigate this pandemic. Recent data has indicated that fecal shedding of SARS-CoV-2 is common and that the virus RNA can be detected in wastewater. This indicates that wastewater monitoring may provide a potentially efficient tool for the epidemiological surveillance of SARS-CoV-2 infection in large populations at relevant scales. In particular, this provides important means of (i) estimating the extent of outbreaks and their spatial distributions, based primarily on in-sewer measurements, (ii) managing the early-warning system quantitatively and efficiently, and (iii) verifying disease elimination. Here we report different virus concentration methods using polyethylene glycol (PEG), alum, or filtration techniques as well as different RNA extraction methodologies, providing important insights regarding the detection of SARS-CoV-2 RNA in sewage. Virus RNA particles were detected in wastewater in several geographic locations in Israel. In addition, a correlation of virus RNA concentration to morbidity was detected in Bnei-Barak city during April 2020. This study presents a proof of concept for the use of direct raw sewage-associated virus data, during the pandemic in the country as a potential epidemiological tool.
Collapse
Affiliation(s)
- Itay Bar-Or
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Merav Weil
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Victoria Indenbaum
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Michal Elul
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Oran Erster
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Ella Mendelson
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Batya Mannasse
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Rachel Shirazi
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Oded Nir
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Hala Abu-Ali
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Ehud Rinott
- Maccabi Healthcare Services, Tel-Aviv, Israel
| | - Yair E. Lewis
- Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Eran Friedler
- Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Eden Bitkover
- Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Yakir Berchenko
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
15
|
Solomon C, Hewson I. Putative Invertebrate, Plant, and Wastewater Derived ssRNA Viruses in Plankton of the Anthropogenically Impacted Anacostia River, District of Columbia, USA. Microbes Environ 2022; 37:ME21070. [PMID: 35264468 PMCID: PMC9763036 DOI: 10.1264/jsme2.me21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Anacostia River is a highly impacted watershed in the Northeastern United States which experiences combined sewage outfall in downstream waters. We examined the composition of RNA viruses at three sites in the river using viral metagenomics. Viromes had well represented Picornaviruses, Tombusviruses, Wolframviruses, Nodaviruses, with fewer Tobamoviruses, Sobemoviruses, and Densoviruses (ssDNA). Phylogenetic ana-lyses of detected viruses provide evidence for putatively autochthonous and allochthonous invertebrate, plant, and vertebrate host origin. The number of viral genomes matching Ribovaria increased downstream, and assemblages were most disparate between distant sites, suggesting impacts of the combined sewage overflows at these sites. Additionally, we recovered a densovirus genome fragment which was highly similar to the Clinch ambidensovirus 1, which has been attributed to mass mortality of freshwater mussels in Northeastern America. Taken together, these data suggest that RNA viromes of the Anacostia River reflect autochthonous production of virus particles by benthic metazoan and plants, and inputs from terrestrial habitats including sewage.
Collapse
Affiliation(s)
- Caroline Solomon
- School of Science, Technology, Accessibility, Mathematics and Public Health, Gallaudet University, 800 Florida Ave NE, Washington, DC 20002 USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca NY 14853 USA, Corresponding author. E-mail: ; Tel: +1–607–255–0151; Fax: +1–607–255–3904
| |
Collapse
|
16
|
Wong JCC, Tan J, Lim YX, Arivalan S, Hapuarachchi HC, Mailepessov D, Griffiths J, Jayarajah P, Setoh YX, Tien WP, Low SL, Koo C, Yenamandra SP, Kong M, Lee VJM, Ng LC. Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147419. [PMID: 33964781 PMCID: PMC8081581 DOI: 10.1016/j.scitotenv.2021.147419] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 05/20/2023]
Abstract
Wastewater-based surveillance for SARS-CoV-2 has been used for the early warning of transmission or objective trending of the population-level disease prevalence. Here, we describe a new use-case of conducting targeted wastewater surveillance to complement clinical testing for case identification in a small community at risk of COVID-19 transmission. On 2 July 2020, a cluster of COVID-19 cases in two unrelated households residing on different floors in the same stack of an apartment building was reported in Singapore. After cases were conveyed to healthcare facilities and six healthy household contacts were quarantined in their respective apartments, wastewater surveillance was implemented for the entire residential block. SARS-CoV-2 was subsequently detected in wastewaters in an increasing frequency and concentration, despite the absence of confirmed COVID-19 cases, suggesting the presence of fresh case/s in the building. Phone interviews of six residents in quarantine revealed that no one was symptomatic (fever/respiratory illness). However, when nasopharyngeal swabs from six quarantined residents were tested by PCR tests, one was positive for SARS-CoV-2. The positive case reported episodes of diarrhea and the case's stool sample was also positive for SARS-CoV-2, explaining the SARS-CoV-2 spikes observed in wastewaters. After the case was conveyed to a healthcare facility, wastewaters continued to yield positive signals for five days, though with a decreasing intensity. This was attributed to the return of recovered cases, who had continued to shed the virus. Our findings demonstrate the utility of wastewater surveillance as a non-intrusive tool to monitor high-risk COVID-19 premises, which is able to trigger individual tests for case detection, highlighting a new use-case for wastewater testing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yin Xiang Setoh
- National Environment Agency, Singapore; University of Queensland, Australia
| | | | | | | | | | | | | | - Lee Ching Ng
- National Environment Agency, Singapore; Nanyang Technological University, Singapore.
| |
Collapse
|
17
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
18
|
Bar-Or I, Yaniv K, Shagan M, Ozer E, Weil M, Indenbaum V, Elul M, Erster O, Mendelson E, Mannasse B, Shirazi R, Kramarsky-Winter E, Nir O, Abu-Ali H, Ronen Z, Rinott E, Lewis YE, Friedler E, Bitkover E, Paitan Y, Berchenko Y, Kushmaro A. Regressing SARS-CoV-2 Sewage Measurements Onto COVID-19 Burden in the Population: A Proof-of-Concept for Quantitative Environmental Surveillance. Front Public Health 2021. [PMID: 35047467 DOI: 10.1101/2020.04.26.20073569] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, a member of the coronavirus family of respiratory viruses that includes severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East respiratory syndrome (MERS). It has had an acute and dramatic impact on health care systems, economies, and societies of affected countries during the past 8 months. Widespread testing and tracing efforts are being employed in many countries in attempts to contain and mitigate this pandemic. Recent data has indicated that fecal shedding of SARS-CoV-2 is common and that the virus RNA can be detected in wastewater. This indicates that wastewater monitoring may provide a potentially efficient tool for the epidemiological surveillance of SARS-CoV-2 infection in large populations at relevant scales. In particular, this provides important means of (i) estimating the extent of outbreaks and their spatial distributions, based primarily on in-sewer measurements, (ii) managing the early-warning system quantitatively and efficiently, and (iii) verifying disease elimination. Here we report different virus concentration methods using polyethylene glycol (PEG), alum, or filtration techniques as well as different RNA extraction methodologies, providing important insights regarding the detection of SARS-CoV-2 RNA in sewage. Virus RNA particles were detected in wastewater in several geographic locations in Israel. In addition, a correlation of virus RNA concentration to morbidity was detected in Bnei-Barak city during April 2020. This study presents a proof of concept for the use of direct raw sewage-associated virus data, during the pandemic in the country as a potential epidemiological tool.
Collapse
Affiliation(s)
- Itay Bar-Or
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Merav Weil
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Victoria Indenbaum
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Michal Elul
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Oran Erster
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Ella Mendelson
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Batya Mannasse
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Rachel Shirazi
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Oded Nir
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Hala Abu-Ali
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Ehud Rinott
- Maccabi Healthcare Services, Tel-Aviv, Israel
| | - Yair E Lewis
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eran Friedler
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eden Bitkover
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Yakir Berchenko
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
19
|
Bar-Or I, Yaniv K, Shagan M, Ozer E, Weil M, Indenbaum V, Elul M, Erster O, Mendelson E, Mannasse B, Shirazi R, Kramarsky-Winter E, Nir O, Abu-Ali H, Ronen Z, Rinott E, Lewis YE, Friedler E, Bitkover E, Paitan Y, Berchenko Y, Kushmaro A. Regressing SARS-CoV-2 Sewage Measurements Onto COVID-19 Burden in the Population: A Proof-of-Concept for Quantitative Environmental Surveillance. Front Public Health 2021. [PMID: 35047467 DOI: 10.1101/2020.04.26.20073569v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, a member of the coronavirus family of respiratory viruses that includes severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East respiratory syndrome (MERS). It has had an acute and dramatic impact on health care systems, economies, and societies of affected countries during the past 8 months. Widespread testing and tracing efforts are being employed in many countries in attempts to contain and mitigate this pandemic. Recent data has indicated that fecal shedding of SARS-CoV-2 is common and that the virus RNA can be detected in wastewater. This indicates that wastewater monitoring may provide a potentially efficient tool for the epidemiological surveillance of SARS-CoV-2 infection in large populations at relevant scales. In particular, this provides important means of (i) estimating the extent of outbreaks and their spatial distributions, based primarily on in-sewer measurements, (ii) managing the early-warning system quantitatively and efficiently, and (iii) verifying disease elimination. Here we report different virus concentration methods using polyethylene glycol (PEG), alum, or filtration techniques as well as different RNA extraction methodologies, providing important insights regarding the detection of SARS-CoV-2 RNA in sewage. Virus RNA particles were detected in wastewater in several geographic locations in Israel. In addition, a correlation of virus RNA concentration to morbidity was detected in Bnei-Barak city during April 2020. This study presents a proof of concept for the use of direct raw sewage-associated virus data, during the pandemic in the country as a potential epidemiological tool.
Collapse
Affiliation(s)
- Itay Bar-Or
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Merav Weil
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Victoria Indenbaum
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Michal Elul
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Oran Erster
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Ella Mendelson
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Batya Mannasse
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Rachel Shirazi
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Jerusalem, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Oded Nir
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Hala Abu-Ali
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research (ZIWR), Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
| | - Ehud Rinott
- Maccabi Healthcare Services, Tel-Aviv, Israel
| | - Yair E Lewis
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eran Friedler
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eden Bitkover
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Yakir Berchenko
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
20
|
Wei ZL, Miao J, Yang ZW, Shi DY, Wu HY, Yang D, Yin J, Wang HR, Li HB, Chen ZS, Li JW, Jin M. Contamination sources of the enteric virus in recreational marine water shift in a seasonal pattern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140641. [PMID: 32653709 DOI: 10.1016/j.scitotenv.2020.140641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/31/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Human enteric virus occurrence in bathing beaches poses a potential health risk to swimmers. They may come from several sources, but the understanding of the seasonal contribution of contamination sources to virus occurrence is still lacking. Here, the surveillance of human enteric viruses at the First Bathing Beach in Qingdao was performed January-December 2018. The occurrence of Enteric viruses, assayed with quantitative polymerase chain reaction (qPCR), was analyzed at temporal and spatial levels to determine the viral contamination sources. The results showed that only Astroviruses (AstVs) and Adenoviruses (HAdVs) were found in the swimming area. Their occurrence correlated significantly with the sewage-polluted area, but HAdVs were only found in autumn and AstVs in spring. Meanwhile, enteric viruses in the swimming area showed significantly higher levels than the surrounding area, particularly AstVs in summer with the swimmer crowd. All these data imply that sewage discharge and swimmers co-contribute to the viral occurrence in a seasonal pattern, with the former being more focused in warm seasons (spring and autumn) and the latter in hot seasons (summer). These results indicate that sewage discharge and crowd swimmers, as unsafe swimming conditions, should be avoided to improve public health at the bathing beaches.
Collapse
Affiliation(s)
- Zi-Lin Wei
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Jing Miao
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Zhong-Wei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Dan-Yang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Hai-Yan Wu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Hua-Ran Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Hai-Bei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Zheng-Shan Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China.
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China.
| |
Collapse
|
21
|
Zheng L, Liang X, Shi R, Li P, Zhao J, Li G, Wang S, Han S, Radosevich M, Zhang Y. Viral Abundance and Diversity of Production Fluids in Oil Reservoirs. Microorganisms 2020; 8:microorganisms8091429. [PMID: 32957569 PMCID: PMC7563284 DOI: 10.3390/microorganisms8091429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
Viruses are widely distributed in various ecosystems and have important impacts on microbial evolution, community structure and function and nutrient cycling in the environment. Viral abundance, diversity and distribution are important for a better understanding of ecosystem functioning and have often been investigated in marine, soil, and other environments. Though microbes have proven useful in oil recovery under extreme conditions, little is known about virus community dynamics in such systems. In this study, injection water and production fluids were sampled in two blocks of the Daqing oilfield limited company where water flooding and microbial flooding were continuously used to improve oil recovery. Virus-like particles (VLPs) and bacteria in these samples were extracted and enumerated with epifluorescence microscopy, and viromes of these samples were also sequenced with Illumina Hiseq PE150. The results showed that a large number of viruses existed in the oil reservoir, and VLPs abundance of production wells was 3.9 ± 0.7 × 108 mL-1 and virus to bacteria ratio (VBR) was 6.6 ± 1.1 during water flooding. Compared with water flooding, the production wells of microbial flooding had relative lower VLPs abundance (3.3 ± 0.3 × 108 mL-1) but higher VBR (7.9 ± 2.2). Assembled viral contigs were mapped to an in-house virus reference data separate from the GenBank non-redundant nucleotide (NT) database, and the sequences annotated as virus accounted for 35.34 and 55.04% of total sequences in samples of water flooding and microbial flooding, respectively. In water flooding, 7 and 6 viral families were identified in the injection and production wells, respectively. In microbial flooding, 6 viral families were identified in the injection and production wells. The total number of identified viral species in the injection well was higher than that in the production wells for both water flooding and microbial flooding. The Shannon diversity index was higher in the production well of water flooding than in the production well of microbial flooding. These results show that viruses are very abundant and diverse in the oil reservoir's ecosystem, and future efforts are needed to reveal the potential function of viral communities in this extreme environment.
Collapse
Affiliation(s)
- Liangcan Zheng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA; (X.L.); (M.R.)
| | - Rongjiu Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
| | - Ping Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyi Zhao
- No. 2 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163414, China; (J.Z.); (G.L.)
| | - Guoqiao Li
- No. 2 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163414, China; (J.Z.); (G.L.)
| | - Shuang Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
| | - Siqin Han
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA; (X.L.); (M.R.)
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
- Correspondence:
| |
Collapse
|
22
|
Isolation and Characterization of the First Freshwater Cyanophage Infecting Pseudanabaena. J Virol 2020; 94:JVI.00682-20. [PMID: 32611754 PMCID: PMC7431792 DOI: 10.1128/jvi.00682-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
Cyanobacteria are the major primary producers in both freshwater and marine environments. However, the majority of freshwater cyanophages remain unknown due to the limited number of cyanophage isolates. In this study, we present a novel lytic freshwater cyanophage, PA-SR01, which was isolated from the Singapore Serangoon Reservoir. To our knowledge, this is the first isolate of a cyanophage that has been found to infect the cyanobacterium Pseudanabaena PA-SR01 has a narrow host range, a short latent period, and is chloroform sensitive. Distinct from the majority of cyanophage isolates, PA-SR01 has a tailless morphology. It is a double-stranded DNA virus with a 137,012-bp genome. Functional annotation for the predicted open reading frames (ORFs) of the PA-SR01 genome identified genes with putative functions related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Out of 166 predicted ORFs, only 17 ORFs have homology with genes with known function. Phylogenetic analysis of the major capsid protein and terminase large subunit further suggests that phage PA-SR01 is evolutionary distinct from known cyanophages. Metagenomics sequence recruitment onto the PA-SR01 genome indicates that PA-SR01 represents a new evolutionary lineage of phage which shares considerable genetic similarities with phage sequences in aquatic environments and could play key ecological roles.IMPORTANCE This study presents the isolation of the very first freshwater cyanophage, PA-SR01, that infects Pseudanabaena, and fills an important knowledge gap on freshwater cyanophages as well as cyanophages infecting Pseudanabaena.
Collapse
|
23
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. Expansion of known ssRNA phage genomes: From tens to over a thousand. SCIENCE ADVANCES 2020; 6:eaay5981. [PMID: 32083183 PMCID: PMC7007245 DOI: 10.1126/sciadv.aay5981] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 05/27/2023]
Abstract
The first sequenced genome was that of the 3569-nucleotide single-stranded RNA (ssRNA) bacteriophage MS2. Despite the recent accumulation of vast amounts of DNA and RNA sequence data, only 12 representative ssRNA phage genome sequences are available from the NCBI Genome database (June 2019). The difficulty in detecting RNA phages in metagenomic datasets raises questions as to their abundance, taxonomic structure, and ecological importance. In this study, we iteratively applied profile hidden Markov models to detect conserved ssRNA phage proteins in 82 publicly available metatranscriptomic datasets generated from activated sludge and aquatic environments. We identified 15,611 nonredundant ssRNA phage sequences, including 1015 near-complete genomes. This expansion in the number of known sequences enabled us to complete a phylogenetic assessment of both sequences identified in this study and known ssRNA phage genomes. Our expansion of these viruses from two environments suggests that they have been overlooked within microbiome studies.
Collapse
Affiliation(s)
- J. Callanan
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
| | - S. R. Stockdale
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - A. Shkoporov
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - L. A. Draper
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - R. P. Ross
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
- Teagasc Agricultural and Food Development Authority, Moorepark, Fermoy, County Cork, Ireland
| | - C. Hill
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
| |
Collapse
|
24
|
Metagenomic Analysis of Virioplankton from the Pelagic Zone of Lake Baikal. Viruses 2019; 11:v11110991. [PMID: 31671744 PMCID: PMC6893740 DOI: 10.3390/v11110991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022] Open
Abstract
This study describes two viral communities from the world’s oldest lake, Lake Baikal. For the analysis, we chose under-ice and late spring periods of the year as the most productive for Lake Baikal. These periods show the maximum seasonal biomass of phytoplankton and bacterioplankton, which are targets for viruses, including bacteriophages. At that time, the main group of viruses were tailed bacteriophages of the order Caudovirales that belong to the families Myoviridae, Siphoviridae and Podoviridae. Annotation of functional genes revealed that during the under-ice period, the “Phages, Prophages, Transposable Elements and Plasmids” (27.4%) category represented the bulk of the virome. In the late spring period, it comprised 9.6% of the virome. We assembled contigs by two methods: Separately assembled in each virome or cross-assembled. A comparative analysis of the Baikal viromes with other aquatic environments indicated a distribution pattern by soil, marine and freshwater groups. Viromes of lakes Baikal, Michigan, Erie and Ontario form the joint World’s Largest Lakes clade.
Collapse
|
25
|
Girardi V, Demoliner M, Gularte J, Spilki F. 'Don't put your head under water': enteric viruses in Brazilian recreational waters. New Microbes New Infect 2019; 29:100519. [PMID: 30899523 PMCID: PMC6406054 DOI: 10.1016/j.nmni.2019.100519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Like in many other countries, virologic analyses are not routinely performed in Brazil in monitoring water quality for recreational purposes. We surveyed current research regarding viral contamination of recreational water environments in Brazil. Among the enteric viruses studied in Brazilian recreational waters, we highlight adenoviruses, rotaviruses, enteroviruses and noroviruses. Although there has been relatively little research on outbreaks related to bathing in recreational water environments in Brazil, noroviruses and adenoviruses are the viruses that are most often related to outbreaks. Better surveillance of the occurrence of enteric viruses in water could improve the assessment of risk to human health as well as indicate the sources of contamination and thus demonstrate the importance of adequate environmental sanitation.
Collapse
Affiliation(s)
- V. Girardi
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| | - M. Demoliner
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| | - J.S. Gularte
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| | - F.R. Spilki
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| |
Collapse
|
26
|
Titcomb GC, Jerde CL, Young HS. High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the Wildlife-Human Interface. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Chatterjee A, Sicheritz-Pontén T, Yadav R, Kondabagil K. Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India. Sci Rep 2019; 9:3690. [PMID: 30842490 PMCID: PMC6403294 DOI: 10.1038/s41598-019-40171-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022] Open
Abstract
We report the detection of genomic signatures of giant viruses (GVs) in the metagenomes of three environment samples from Mumbai, India, namely, a pre-filter of a household water purifier, a sludge sample from wastewater treatment plant (WWTP), and a drying bed sample of the same WWTP. The de novo assembled contigs of each sample yielded 700 to 2000 maximum unique matches with the GV genomic database. In all three samples, the maximum number of reads aligned to Pandoraviridae, followed by Phycodnaviridae, Mimiviridae, Iridoviridae, and other Megaviruses. We also isolated GVs from every environmental sample (n = 20) we tested using co-culture of the sample with Acanthomoeba castellanii. From this, four randomly selected GVs were subjected to the genomic characterization that showed remarkable cladistic homology with the three GV families viz., Mimivirirdae (Mimivirus Bombay [MVB]), Megaviruses (Powai lake megavirus [PLMV] and Bandra megavius [BAV]), and Marseilleviridae (Kurlavirus [KV]). All 4 isolates exhibited remarkable genomic identity with respective GV families. Functionally, the genomes were indistinguishable from other previously reported GVs, encoding nearly all COGs across extant family members. Further, the uncanny genomic homogeneity exhibited by individual GV families across distant geographies indicate their yet to be ascertained ecological significance.
Collapse
Affiliation(s)
- Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thomas Sicheritz-Pontén
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Rajesh Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
28
|
Girardi V, Mena KD, Albino SM, Demoliner M, Gularte JS, de Souza FG, Rigotto C, Quevedo DM, Schneider VE, Paesi SO, Tarwater PM, Spilki FR. Microbial risk assessment in recreational freshwaters from southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:298-308. [PMID: 30240914 DOI: 10.1016/j.scitotenv.2018.09.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, total coliforms (TC), Escherichia coli, enterovirus (EV), rotavirus (RV), and human mastadenovirus species C and F (HAdV-C and HAdV-F) were evaluated in water samples from Belo Stream. For HAdV-C and F, the infectivity was assessed by integrated cell culture quantitative real-time polymerase chain reaction (ICC-qPCR). Samples were collected monthly (May/2015 to April/2016) at four sites. Viral analyses were performed for both ultracentrifuge-concentrated and unconcentrated samples. For site P4 (used for recreational purposes), QMRA was applied to estimate health risks associated with exposure to E. coli and HAdV-C and F. TC and E. coli were present throughout the collection period. EV and RV were not detected. HAdV-C were present in 8.51% (1.89E + 06 to 2.28E + 07 GC (Genomic Copies)/L) and 21.27% (2.36E + 05 to 1.29E + 07 GC/L) for unconcentrated and concentrated samples, respectively. For HAdV-F were 12.76% (2.77E + 07 to 3.31E + 08 GC/L) and 48.93% (1.10E + 05 to 4.50E + 08 GC/L) for unconcentrated and concentrated samples, respectively. For unconcentrated samples, infectivity for HAdV-C was detected in 37.20% (1st ICC-qPCR) and 25.58% (2nd ICC-qPCR). For HAdV-F, infectivity was detected in 6.97% (1st ICC-qPCR) and 6.97% (2nd ICC-qPCR). For concentrated samples, HAdV-C infectious was observed in 17.02% (1st ICC-qPCR) and in 8.51% (2nd ICC-qPCR). For HAdV-F, were present in 8.51% for both 1st and 2nd ICC-qPCR. Statistical analyzes showed significant difference between the collection sites when analyzed the molecular data of HAdV-F, data of TC and E. coli. Correlation tests showed direct correlation between HAdV-F with E. coli and TC. E. coli concentrations translated to the lowest estimates of infection risks (8.58E-05 to 2.17E-03). HAdV-F concentrations were associated with the highest infection risks at 9.99E-01 and for group C, 1.29E-01 to 9.99E-01. These results show that commonly used bacterial indicators for water quality may not infer health risks associated with viruses in recreational freshwaters.
Collapse
Affiliation(s)
- Viviane Girardi
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil.
| | - Kristina D Mena
- School of Public Health, The University of Texas Health Science Center at Houston, El Paso, TX 79902, USA
| | - Suelen M Albino
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, no 2600, Porto Alegre, RS, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Juliana S Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Fernanda G de Souza
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, no 6627, Belo Horizonte, MG, Brazil
| | - Caroline Rigotto
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Daniela M Quevedo
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Vania E Schneider
- Instituto de Saneamento Ambiental (ISAM), Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, no 1130, Caxias do Sul, RS 95070-560, Brazil
| | - Suelen O Paesi
- Laboratório de Diagnóstico Molecular, Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, no 1130, Caxias do Sul, RS 95070-560, Brazil
| | - Patrick M Tarwater
- School of Public Health, Department of Biostatistics, The University of Texas Health Science Center at Houston, El Paso, TX 79902, USA
| | - Fernando R Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| |
Collapse
|
29
|
Symonds EM, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste)water treatment development and public health management. WATER RESEARCH 2018; 144:1-12. [PMID: 30005176 PMCID: PMC6162155 DOI: 10.1016/j.watres.2018.06.066] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
An enteric virus surrogate and reliable domestic wastewater tracer is needed to manage microbial quality of food and water as (waste)water reuse becomes more prevalent in response to population growth, urbanization, and climate change. Pepper mild mottle virus (PMMoV), a plant pathogen found at high concentrations in domestic wastewater, is a promising surrogate for enteric viruses that has been incorporated into over 29 water- and food-related microbial quality and technology investigations around the world. This review consolidates the available literature from across disciplines to provide guidance on the utility of PMMoV as either an enteric virus surrogate and/or domestic wastewater marker in various situations. Synthesis of the available research supports PMMoV as a useful enteric virus process indicator since its high concentrations in source water allow for identifying the extent of virus log-reductions in field, pilot, and full-scale (waste)water treatment systems. PMMoV reduction levels during many forms of wastewater treatment were less than or equal to the reduction of other viruses, suggesting this virus can serve as an enteric virus surrogate when evaluating new treatment technologies. PMMoV excels as an index virus for enteric viruses in environmental waters exposed to untreated domestic wastewater because it was detected more frequently and in higher concentrations than other human viruses in groundwater (72.2%) and surface waters (freshwater, 94.5% and coastal, 72.2%), with pathogen co-detection rates as high as 72.3%. Additionally, PMMoV is an important microbial source tracking marker, most appropriately associated with untreated domestic wastewater, where its pooled-specificity is 90% and pooled-sensitivity is 100%, as opposed to human feces where its pooled-sensitivity is only 11.3%. A limited number of studies have also suggested that PMMoV may be a useful index virus for enteric viruses in monitoring the microbial quality of fresh produce and shellfish, but further research is needed on these topics. Finally, future work is needed to fill in knowledge gaps regarding PMMoV's global specificity and sensitivity.
Collapse
Affiliation(s)
- E M Symonds
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| | - Karena H Nguyen
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - V J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M Breitbart
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| |
Collapse
|
30
|
Occurrence of Traditional and Alternative Fecal Indicators in Tropical Urban Environments under Different Land Use Patterns. Appl Environ Microbiol 2018; 84:AEM.00287-18. [PMID: 29776926 DOI: 10.1128/aem.00287-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the geospatial distribution of fecal indicator bacteria (FIB) (i.e., Escherichia coli, Enterococcus spp.) and the alternative fecal indicator pepper mild mottle virus (PMMoV) in tropical freshwater environments under different land use patterns. Results show that the occurrence and concentration of microbial fecal indicators were higher for urban than for parkland-dominated areas, consistent with land use weightage. Significant positive correlations with traditional FIB indicate that PMMoV is a suitable indicator of fecal contamination in tropical catchments waters (0.549 ≤ rho ≤ 0.612; P < 0.01). PMMoV exhibited a strong significant correlation with land use weightage (rho = 0.728; P < 0.01) compared to traditional FIB (rho = 0.583; P < 0.01). In addition, chemical tracers were also added to evaluate the potential relationships with microbial fecal indicators. The relationships between diverse variables (e.g., environmental parameters, land use coverage, and chemical tracers) and the occurrence of FIB and PMMoV were evaluated. By using stepwise multiple linear regression (MLR), the empirical experimental models substantiate the impact of land use patterns and anthropogenic activities on microbial water quality, and the output results of the empirical models may be able to predict the sources and transportation of human fecal pollution or sewage contamination. In addition, the high correlation between PMMoV data obtained from quantitative real-time PCR (qPCR) and viral metagenomics data supports the possibility of using viral metagenomics to relatively quantify specific microbial indicators for monitoring microbial water quality (0.588 ≤ rho ≤ 0.879; P < 0.05).IMPORTANCE The results of this study may support the hypothesis of using PMMoV as an alternative indicator of human fecal contamination in tropical surface waters from the perspective of land use patterns. The predictive result of the occurrence of human fecal indicators with high accuracy may reflect the source and transportation of human fecal pollution, which are directly related to the risk to human health, and thereafter, steps can be taken to mitigate these risks.
Collapse
|