1
|
Liu W, Zhou F, Yang H, Shi Y, Qin Y, Sun H, Zhang L. CuS enabled efficient Fenton-like oxidation of phenylarsonic acid and inorganic arsenic immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136171. [PMID: 39413521 DOI: 10.1016/j.jhazmat.2024.136171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Herein, copper sulfide (CuS) was introduced to the Fenton-like (Fe(III)/H2O2) system for the efficient removal of phenylarsonic acid (PAA). Results of reactive oxygen and Fe/Cu species showed that CuS preferentially reacted with Fe(III) and H2O2 to generate Cu(I) and superoxide anion (•O2-). These reductive species could efficiently promote the Fe(III)/Fe(II) and Cu(II)/Cu(I) cycles, and are beneficial to the sequential Fenton reaction to generate •OH. The organoic/inorganic arsenic species detected in the CuS/Fe(III)/H2O2 system confirmed that PAA was oxidized by •OH to hydroxylated organoarsenic and phenolic intermediates, which were further mineralized to oxalate and formic acid. Meanwhile, the inorganic As(III)/As(V) released during PAA degradation were efficiently immobilized by CuS. The PAA removal efficiency remained as high as 92.9 % after 5 cycles of the CuS-mediated Fenton-like process. These results demonstrate an innovative method for the treatment of organoarsenic-contaminated water, and provide new insights into the enhanced Fenton-like process utilizing sulfide minerals.
Collapse
Affiliation(s)
- Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Huan Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunxiao Shi
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Deng J, Liu Y, Gui S, Yi Q, Nie H. Nano silver oxide-modified activated carbon as a novel catalyst for efficient removal of bacteria and micropollutants in aquatic environment. RSC Adv 2024; 14:30180-30191. [PMID: 39315016 PMCID: PMC11418389 DOI: 10.1039/d4ra04604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Heterogeneous Fenton process is a promising water treatment technology for sterilization and degradation of organic pollutants, due to the strong oxidation of hydroxyl radicals (OH˙) generated. However, the low H2O2 activation efficiency and the instability of catalyst leading to low OH˙ production restricted development of this technology. Herein, we synthesized a novel porous activated carbon-loaded nano silver oxide (nAg2O/AC) catalyst to enhance the activation of H2O2 for removing bacteria (E. coli) and micropollutants (Tetracycline, TC) from water. In the nAg2O/AC Fenton system, reductive hydroxyl groups on AC accelerated Ag(i)/Ag cycle through mediated electron transfer, which markedly increased H2O2 activation efficiency to 73.7% (About 2.9 times that of traditional Fenton). Hence, nAg2O/AC Fenton achieved up to 6.0 log and 100% removal efficiency for E. coli and TC, respectively. The OH˙ as the major oxidizing species in nAg2O/AC Fenton system was detected and verified by radical scavenging tests and electron spin resonance (ESR) measurement. After 4 and 5 cycles of experiments, the removal of E. coli and TC still reached 5.2 log and 96%, respectively, confirming good stability of nAg2O/AC for considerable application prospects. This study concluded that nAg2O/AC is a promising H2O2 catalyst for simultaneous removal of bacteria and micropollutants in aqueous environment.
Collapse
Affiliation(s)
- Jianping Deng
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Yong Liu
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Shuanglin Gui
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Qizhen Yi
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Hanbing Nie
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| |
Collapse
|
3
|
Xu J, Cheng H, Zhang H, Sun C, Tian H, Yang J, Ding Y, Lin X, Wang P, Huang C. Visible light irradiation enhanced sulfidated zero-valent iron/peroxymonosulfate process for organic pollutant degradation. ENVIRONMENTAL RESEARCH 2024; 257:119292. [PMID: 38824982 DOI: 10.1016/j.envres.2024.119292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
This study developed a novel process named sulfidated zero-valent iron/peroxymonosulfate/visible light irradiation (S-mZVI/PMS/vis) for enhanced organic pollutant degradation. The S-mZVI/PMS/vis process exhibited remarkable catalytic activity, achieving a 99.6% rhodamine B (RhB) removal within 10 min. The degradation rate constant of RhB by the S-mZVI/PMS/vis process was found to be 6.49 and 79.84 times higher than that by the S-mZVI/PMS and PMS/vis processes, respectively. Furthermore, the S-mZVI/PMS/vis process worked efficiently across a wide pH range (3.0-9.0), and the result of five-cycle experiments demonstrated the excellent reusability and stability of S-mZVI. Radical quenching tests and electron paramagnetic resonance analysis indicated that ·O2-, 1O2, and h+ significantly contributed to the degradation of RhB through the S-mZVI/PMS/vis process. The visible light irradiation increased the Fe2+ concentration, improved the Fe3+/Fe2+ cycle, and consequently enhanced the PMS decomposition, reactive species production, and RhB degradation. This work offers a promising strategy to highly efficiently activate PMS for organic pollutants elimination from aqueous solutions.
Collapse
Affiliation(s)
- Jialu Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - He Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jikun Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yingxin Ding
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xuan Lin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
4
|
Zhang R, Liu Z. Removal efficiency and mechanism of photo-fenton degradation of tetracycline by MoS 2/MIL101(Fe) nanocomposites. CHEMOSPHERE 2024; 364:143052. [PMID: 39121962 DOI: 10.1016/j.chemosphere.2024.143052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In recent years, antibiotic pollution has received increasing attention. Tetracycline (TC) is a commonly used antibiotic in human medicine. The presence of TC in the environment inhibits bacterial growth and enhances antibiotic resistance in organisms. In this study, MoS2/MIL101(Fe) nanocomposites are mainly constructed to remove TC pollutants using photo-fenton technology and improve the ability of photo-fenton to treat antibiotic pollutants. The system shows excellent performance for the removal of tetracycline, and the removal rate of TC by MoS2/MIL101(Fe) nanocomposite reaches 93%. Through a series of experiments such as XRD, FTIR, XPS, SEM, ESR, UV-VIS DRS, Band gap energies, photocurrent response (I-t) and Zeta potential-pH, the results show that the system promotes the Fe3+/Fe2+ cycle reaction, significantly promotes the photodecomposition of H2O2 and the formation of O2- and •OH, and broadens the pH range of the photo-fenton oxidation reaction. The combination of the metal-assisted catalyst MoS2 and the metal-organic framework MIL101(Fe) has been demonstrated to effectively enhance the ability of the Fenton reaction for the treatment of antibiotics, showcasing innovative synergy. Furthermore, the utilization of molybdenite as a substitute for MoS2 in the preparation process avoids environmental pollution associated with the synthesis of MoS2. In this study, a novel, efficient, energy-saving and environmentally friendly catalyst for the removal of tetracycline has been developed, and has a wide range of applicability.
Collapse
Affiliation(s)
- Rong Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Zhuannian Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
5
|
Zhang AY, Lin ZX, Zhang JY, Zhang MH, Zhang C, Zhao L, Liu L, Da W, Ye L. Regulating iron center by defective MoS 2 for superior Fenton-like catalysis in water purification: The key role of surface interaction and superoxide radical in accelerating metal redox-cycling. CHEMOSPHERE 2024; 364:143173. [PMID: 39182728 DOI: 10.1016/j.chemosphere.2024.143173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Transition metals exhibit high reactivity for Fenton-like catalysis in environmental remediation, but how to save consumption and reduce pollution is of great interest. In this study, rationally designed defect-engineered Fe@MoS2 (Fe@D-MoS2) was prepared by incorporating reactive iron onto structural defects generated from the chemical acid-etching, aiming to improve the energetic consumption of the catalyst in Fenton-like applications. Morphological and structural properties were elucidated in details, the Fenton-like reactivity was evaluated with five phenolic contaminants for oxidant activation, radical generation and environmental remediation. Compared to Fe@MoS2, Fe@D-MoS2 exhibited a 18.9-fold increase in phenol degradation (0.09 versus 1.79 min-1). Quenching experiments, electron paramagnetic resonance tests and electrochemical measurements revealed the dominant sulfate and superoxide radicals. Rendered by strong metal-substrate surface and electronic interactions from regulated chemical environment and coordination structure, the inert ≡ Fe(III) was reduced to the reactive ≡ Fe(II) accompanied by the ≡ Mo(IV) oxidation to ≡ Mo(V) in MoS2 lattice, with adjacent sulfur serving as the key electron transfer bridge. Therefore, this work shows that the incorporation of reactive centers is able to boost two-dimensional sulfide materials for environmental catalysis applications.
Collapse
Affiliation(s)
- Ai-Yong Zhang
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Water Conservancy and Water Resources in Anhui Province, Anhui and Huaihe River Institute of Hydraulic Research, Hefei, 230088, China
| | - Zhi-Xian Lin
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing-Yu Zhang
- Key Laboratory of Water Conservancy and Water Resources in Anhui Province, Anhui and Huaihe River Institute of Hydraulic Research, Hefei, 230088, China
| | - Ming-He Zhang
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chi Zhang
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu Zhao
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Liu
- Hefei Design Institute of China National Tobacco Corporation, Hefei, 230051, China.
| | - Wei Da
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lyumeng Ye
- Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences, the Ministry of Ecology and Environment of PRC, Guangzhou, 510655, China.
| |
Collapse
|
6
|
Teng Z, Yang H, Zhang Q, Cai W, Lu YR, Kato K, Zhang Z, Ding J, Sun H, Liu S, Wang C, Chen P, Yamakata A, Chan TS, Su C, Ohno T, Liu B. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production. Nat Chem 2024; 16:1250-1260. [PMID: 38918581 DOI: 10.1038/s41557-024-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 05/03/2024] [Indexed: 06/27/2024]
Abstract
Providing affordable, safe drinking water and universal sanitation poses a grand societal challenge. Here we developed atomically dispersed Au on potassium-incorporated polymeric carbon nitride material that could simultaneously boost photocatalytic generation of ·OH and H2O2 with an apparent quantum efficiency over 85% at 420 nm. Potassium introduction into the poly(heptazine imide) matrix formed strong K-N bonds and rendered Au with an oxidation number close to 0. Extensive experimental characterization and computational simulations revealed that the low-valent Au altered the materials' band structure to trap highly localized holes produced under photoexcitation. These highly localized holes could boost the 1e- water oxidation reaction to form highly oxidative ·OH and simultaneously dissociate the hydrogen atom in H2O, which greatly promoted the reduction of oxygen to H2O2. The photogenerated ·OH led to an efficiency enhancement for visible-light-response superhydrophilicity. Furthermore, photo-illumination in an onsite fixed-bed reactor could disinfect water at a rate of 66 L H2O m-2 per day.
Collapse
Affiliation(s)
- Zhenyuan Teng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hongbin Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Qitao Zhang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Wenan Cai
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu-shi, Japan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Kosaku Kato
- Department of Chemistry, Okayama University, Okayama-shi, Japan
| | - Zhenzong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Han Sun
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Sixiao Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Akira Yamakata
- Department of Chemistry, Okayama University, Okayama-shi, Japan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu-shi, Japan.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Song H, Cheng Z, Qin R, Chen Z, Wang T, Wang Y, Jiang H, Du Y, Wu F. Iron/Molybdenum Sulfide Nanozyme Cocatalytic Fenton Reaction for Photothermal/Chemodynamic Efficient Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14346-14354. [PMID: 38953474 DOI: 10.1021/acs.langmuir.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.
Collapse
Affiliation(s)
- Huiping Song
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Ran Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Xu J, Liu Z, Jin T, Yang X, Chen H, Chen JP. Development and testing of alginate/C 3N 4porphyrin bead as a self-initiated Fenton photocatalyst for highly efficient atrazine removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173112. [PMID: 38734090 DOI: 10.1016/j.scitotenv.2024.173112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Fenton reaction has been widely used for efficient treatment of organic wastewater. However, its applications are limited by such key factors as pH < 3. In this study, we developed, tested, and optimized an alginate/C3N4porphyrin bead (C3N4por-SA) as a recyclable photocatalyst in a photocatalysis-self-Fenton process to overcome these limitations. Porphyrin-modified C3N4 (C3N4por) was used as the H2O2 donator, while Fe(III) nodes served as the Fenton reagent. The as-prepared floating alginate/C3N4por bead utilized the light source as a driving force for the catalysis. Under visible light irradiation for 6 h, the model pollutant atrazine was degraded by 70.96 % by the optimized photocatalyst (named as C3N4por-SA-Fe1Ca5), demonstrating better photocatalytic performance than alginate/C3N4 beads. This improvement was attributed to the higher H2O2 yield from C3N4por. The alginate/C3N4por bead showed better photocatalytic activity even after several consecutive cycles and could easily be recovered for reuse. Furthermore, Fe(III)/Ca(II) bimetallic alginate bead exhibited better photocatalytic activity and a higher content of •OH radicals than the Ca(II) monometallic alginate beads, due to the ability of Fe(III) nodes to serve as a Fenton reagent. The influences of light sources, and commonly existing matters (namely SO42-, Cl-, CO32-, NO3-, and humic acid) were investigated. Moreover, the alginate/C3N4por bead demonstrated good photocatalytic performance in a simulated natural environment without the addition of extra H2O2, with an atrazine removal percentage of up to 96.3 % after 3-h irradiation. These findings indicated the great potential of alginate/C3N4por bead in practical applications.
Collapse
Affiliation(s)
- Jiajie Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhiyu Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tenghui Jin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xusheng Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Huihuang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - J Paul Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
9
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
10
|
Wu H, Han X, Guo X, Wen Y, Zheng B, Liu B. MnFe 2O 4/MoS 2 catalyst used for ozonation: optimization and mechanism analysis of phenolic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45588-45601. [PMID: 38967847 DOI: 10.1007/s11356-024-33984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
The performance of catalytic ability of MFe2O4/MoS2 in the ozonation process was investigated in this work. The synthesized MnFe2O4/MoS2 was optimize prepared and then characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and magnetic saturation strength. The results showed that when Cphenol = 200 mg/L, initial pH = 9.0, Q = 0.10 L/min, and CMnFe2O4/MoS2 = 0.10 g/L, MnFe2O4/MoS2 addition improved the degradation efficiency of phenol by 20.0%. The effects of pH, catalyst dosage, and inorganic ions on the phenol removal by the MnFe2O4/MoS2 catalytic ozonation were investigated. Five cycle experiments proved that MnFe2O4/MoS2 had good recyclability and stability. MnFe2O4/MoS2 also showed good catalytic performance in the treatment of coal chemical wastewater pesticide wastewater. The MnFe2O4 doped with MoS2 could provide abundant surface active sites for ozone and promote the stable cycle of Mn2+/Mn3+and Fe2+/Fe3+, thus generating large amounts of •OH and improving the degradation of phenol by ozonation. The MnFe2O4/MoS2/ozonation treatment system provides a technical reference and theoretical basis for industrial wastewater treatment.
Collapse
Affiliation(s)
- Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xiao Han
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xinrui Guo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yiyun Wen
- Jiangsu Hejiahai Environmental Design and Research Institute Co., Ltd, Nanjing, 210012, PR China
| | - Bin Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Biming Liu
- School of Energy and Environment, Anhui University of Technology, Ma Anshan, 243002, PR China.
| |
Collapse
|
11
|
Li L, Wang M, Pan Y, Liu B, Chen B, Zhang M, Liu X, Wang Z. Simultaneous decomplexation of Pb-EDTA and elimination of free Pb ions by MoS 2/H 2O 2: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134292. [PMID: 38631254 DOI: 10.1016/j.jhazmat.2024.134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The critical challenge of effectively removing Pb-EDTA complexes and Pb(II) ions from wastewater is pivotal for environmental remediation. This research introduces a cutting-edge bulk-MoS2/H2O2 system designed for the simultaneous decomplexation of Pb-EDTA complexes and extraction of free Pb(II) ions, streamlining the process by eliminating the need for subsequent treatment stages. The system exhibits outstanding efficiency, achieving 98.1% decomplexation of Pb-EDTA and 98.6% removal of Pb. Its effectiveness is primarily due to the generation of reactive oxygen species, notably •OH and O2•- radicals, facilitated by bulk-MoS2 and H2O2. Key operational parameters such as reagent dosages, Pb(II): EDTA molar ratios, solution pH, and the presence of coexisting ions were meticulously evaluated to determine their impact on the system's performance. Through a suite of analytical techniques, the study confirmed the disruption of Pb-O and Pb-N bonds, further elucidating the decomplexation process. It also underscored the synergistic role of bulk-MoS2's adsorption properties and the formation of PbMoO4-like precipitates in enhancing Pb elimination. Demonstrating the bulk-MoS2/H2O2 system as a robust, one-step solution that meets stringent Pb emission standards, this study provides in-depth insights into the removal mechanisms of Pb-EDTA, affirming its potential for broader application in wastewater treatment practices.
Collapse
Affiliation(s)
- Li Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xun Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Li B, Zuo Q, Deng J, Deng Z, Li P, Wu J. Enhanced inactivation of Escherichia coli through hydrogen peroxide decomposition assisted by nanoscale cupric oxide-decorated activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121327. [PMID: 38824892 DOI: 10.1016/j.jenvman.2024.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
In this study, nanoscale cupric oxide-decorated activated carbon (nCuO@AC) was synthesized by impregnation-calcination and employed to assist the decomposition of H2O2 for effective sterilization with Escherichia coli as target bacteria. Characteristic technologies demonstrated that copper oxide particles of 50-100 nm were uniformly distributed on AC surface. Owing to electron transfer from hydroxyl and aldehyde to CuO on AC, surface-bonded Cu(II) was partially reduced to Cu(I) in the nCuO matrix. The resultant Cu(I) expedited the decomposition of H2O2 and converted it into ·OH radicals which were identified by quenching experiment and electron paramagnetic resonance test. Due to oxidation attack of generated ·OH, the nCuO@AC-H2O2 system achieved a much higher inactivation rate of 6.0 log within 30 min as compared to those of 2.1 and 1.3 log in the nCuO@AC and nCuO-H2O2 systems. It also exhibited excellent pH adaptability and high inactivation efficiency under neutral conditions. After four cycles, the nCuO@AC-H2O2 system could still inactivate 5.5 log bacteria, indicating excellent stability and reusability of nCuO@AC. Spent nCuO@AC could be regenerated by eluting surficial copper oxides with hydrochloric acid, and re-coating nCuO particles through impregnation-calcination with a regeneration rate of 96.6%. Our results demonstrated that nCuO@AC was an efficient and prospective catalyst to assist the decomposition of H2O2 for effective inactivation of bacteria in water.
Collapse
Affiliation(s)
- Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qian Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Zhiyi Deng
- School of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Zhao Y, Wang A, Ren S, Zhang Y, Zhang N, Song Y, Zhang Z. Activated carbon fiber as an efficient co-catalyst toward accelerating Fe 2+/Fe 3+ cycling for improved removal of antibiotic cefaclor via electro-Fenton process using a gas diffusion electrode. ENVIRONMENTAL RESEARCH 2024; 249:118254. [PMID: 38301762 DOI: 10.1016/j.envres.2024.118254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Ni Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
14
|
Li L, Guo J, Zheng K, Heng H, Zhang Y, Xie C, Yin M, Zhou B. MoS 2-mediated active hydrogen modulation to boost Fe 2+ regeneration in solar-driven electro-Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134274. [PMID: 38608587 DOI: 10.1016/j.jhazmat.2024.134274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The sluggish kinetics of Fe2+ regeneration seriously hinders the performance of Fenton process. However, the conventional Fenton system excessively stifle hydrogen-producing reactions, ignoring the significance of active hydrogen (H*) in Fe3+ reduction. Herein, a strategy of H* modulation is developed by decorating molybdenum disulfide (MoS2) on a graphite felt (GF) cathode to boost Fe2+ regeneration in solar-driven electro-Fenton (SEF) process. With MoS2 regulation, moderately dispersed MoS2 on GF can serve as a bifunctional cathode, where the H* and hydrogen peroxide (H2O2) are simultaneously generated through H+ reduction and O2 reduction, respectively. The in-situ generated H2O2 can trigger Fenton reactions with Fe2+, while the H* with robust reducing potential can significantly expedite Fe3+ reduction, consequently enhancing the HO• production. Both DFT calculations and EPR experiments confirm that H* can be activated via MoS2 decoration. The results show that Fe2+ concentration in the MoS2 @GF-SEF system remains at 15.74 mg/L (56.21%) after 6 h, which is 17.89 times that of the GF-SEF system. Moreover, the HO• content and organics degradation rate in the MoS2 @GF-SEF are 3.61 and 5.30 times those of the GF-SEF, respectively. This study provides a practical cathode strategy of H* modulation to enhance HO• production and electro-Fenton process. ENVIRONMENTAL IMPLICATION: Boosting Fe2+ regeneration is of great value for the Electro-Fenton process. Herein, report a strategy to achieve this goal based on a MoS2 @GF cathode. Remarkably, the MoS2 @GF system exhibits exceptional efficiency for both various refractory organic compounds with environmentally hazardous effects and sterilization aspects, which can also work over a wide range of pH values (3-11). Specially, this system is driven only by solar energy. These characteristics make the electro-Fenton system more suitable for practical wastewater treatment.
Collapse
Affiliation(s)
- Linsen Li
- Hebei Key Laboratory of Public Health Safety, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, PR China.
| | - Jiaqing Guo
- Hebei Key Laboratory of Public Health Safety, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, PR China
| | - Kun Zheng
- Hebei Key Laboratory of Public Health Safety, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, PR China
| | - Huiqi Heng
- Hebei Key Laboratory of Public Health Safety, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mingyuan Yin
- Hebei Key Laboratory of Public Health Safety, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Yin Y, Chang J, Li H, Li X, Wan J, Wang Y, Zhang W. Selective formation of high-valent iron in Fenton-like system for emerging contaminants degradation under near-neutral and high-salt conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133101. [PMID: 38042006 DOI: 10.1016/j.jhazmat.2023.133101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
In view of the near-neutral and high-salt conditions, the Fenton technology with hydroxyl radicals (HO•) as the main reactive species is difficult to satisfy the removal of trace emerging contaminants (ECs) in pharmaceutical sewage. Here, a layered double hydroxide FeZn-LDH was prepared, and the selective formation of ≡Fe(IV)=O in Fenton-like system was accomplished by the chemical environment regulation of the iron sites and the pH control of the microregion. The introduced zinc can increase the length of Fe-O bond in the FeZn-LDH shell layer by 0.22 Å compared to that in Fe2O3, which was conducive to the oxygen transfer process between ≡Fe(III) and H2O2, resulting in the ≡Fe(IV)=O formation. Besides, the amphoteric hydroxide Zn(OH)2 can regulate the pH of the FeZn-LDH surface microregion, maintaining reaction pH at around 6.5-7.5, which could avoid the quenching of ≡Fe(IV)=O by H+. On the other hand, owing to the anti-interference of ≡Fe(IV)=O and the near-zero Zeta potential on the FeZn-LDH surface, the trace ECs can also be effectively degraded under high-salt conditions. Consequently, the process of ≡Fe(IV)=O generation in FeZn-LDH system can satisfy the efficient removal of ECs under near-neutral and high-salt conditions.
Collapse
Affiliation(s)
- Yue Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Jingjing Chang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Zhou Z, Ye G, Zong Y, Zhao Z, Wu D. Improvement of Fe(Ⅲ)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132924. [PMID: 37984133 DOI: 10.1016/j.jhazmat.2023.132924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
The homogeneous sodium percarbonate (SPC) systems are limited by narrow pH range, ineffective consumption of oxidant, and weak reusability of catalyst. Herein, molybdenum (Mo) powder and sodium tripolyphosphate (STPP) were selected to overcome these challenges. Sulfamethoxazole (SMX), as a model contaminant, was almost completely degraded in 60 min with higher removal rate (0.1367 min-1) than the Mo or STPP-absent system. In addition, Mo/STPP-Fe(Ⅲ)/SPC system was cost-effective in terms of oxidant consumption, requiring only 0.2 mM SPC. About activation mechanism, the main active species for SMX degradation was pH-dependent, with hydroxyl radical (·OH) as the dominant active species at pHi = 7 and ·OH, carbonate radical (CO3·-), and superoxide radical (O2·-) derived from a series of chain reaction at pHi = 10, respectively. Due to the generation of various electrophilic free radical, the system exhibited excellent performance towards electron-rich pollutants under a wide pH range. Furthermore, Mo exhibited excellent stability and reusability. SMX was degraded through hydroxylation, N-S cleavage, amino and sulfanilamide oxidation into intermediates whose toxicities were evaluated by Toxicity Estimation Software Tool (T.E.S.T.) software. This work provided new insights to Fe/SPC system towards high-efficiency and low consumption treatment of practical application.
Collapse
Affiliation(s)
- Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Sheng S, Fu J, Song S, He Y, Qian J, Yi Z. Enhanced electron transfer for activation of peroxymonosulfate via MoS 2 modified iron-based perovskite. ENVIRONMENTAL TECHNOLOGY 2024; 45:1092-1108. [PMID: 36250403 DOI: 10.1080/09593330.2022.2137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of fluoroquinolone antibiotics, which are found in various environmental media, is a constant threat to ecological safety and human health. In this paper, SrFeO3@MoS2 heterogeneous catalyst was prepared to activate peroxymonosulfate (PMS) for the degradation of levofloxacin (LVO). The characteristics of SrFeO3@MoS2 samples were studied and the optimum conditions for the removal of LVO by SrFeO3@MoS2/PMS system were investigated. The removal of LVO by the SrFeO3@MoS2-0.3/PMS system could reach 96.06% within 20 min of reaction. The effect of inorganic anions (SO42-, Cl-, NO3- and H2PO4-) commonly found in actual water bodies on catalytic reaction was explored. The reusability investigation revealed that the catalyst could still remove 88.06% of LVO within 20 min after four cycles. Moreover, SO4•-, •OH and 1O2 were identified by Electron Paramagnetic Resonance (EPR) tests and scavenger experiments, where the SO4•- and •OH were dominant reactive species. Combining with the XPS characterisation, the activation mechanism of SrFeO3@MoS2-0.3/PMS was proposed, and the oxygen vacancies and transition metals on the sample surface were active sites of PMS activation. Furthermore, the possible degradation pathways of LVO were well-established based on the detected intermediates.
Collapse
Affiliation(s)
- Sheng Sheng
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China
| | - Jingjing Fu
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China
| | - Siyuan Song
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Ziyang Yi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Weng Z, Lin Y, Guo S, Zhang X, Guo Q, Luo Y, Ou X, Ma J, Zhou Y, Jiang J, Han B. Site Engineering of Covalent Organic Frameworks for Regulating Peroxymonosulfate Activation to Generate Singlet Oxygen with 100 % Selectivity. Angew Chem Int Ed Engl 2023; 62:e202310934. [PMID: 37668453 DOI: 10.1002/anie.202310934] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Singlet oxygen (1 O2 ) is an excellent reactive oxygen species (ROSs) for the selective conversion of organic matter, especially in advanced oxidation processes (AOPs). However, due to the huge dilemma in synthesizing single-site type catalysts, the control and regulation of 1 O2 generation in AOPs is still challenging and the underlying mechanism remains largely obscure. Here, taking advantage of the well-defined and flexibly tunable sites of covalent organic frameworks (COFs), we report the first achievement in precisely regulating ROSs generation in peroxymonosulfate (PMS)-based AOPs by site engineering of COFs. Remarkably, COFs with bipyridine units (BPY-COFs) facilitate PMS activation via a nonradical pathway with 100 % 1 O2 , whereas biphenyl-based COFs (BPD-COFs) with almost identical structures activate PMS to produce radicals (⋅OH and SO4 .- ). The BPY-COFs/PMS system delivers boosted performance for selective degradation of target pollutants from water, which is ca. 9.4 times that of its BPD-COFs counterpart, surpassing most reported PMS-based AOPs systems. Mechanism analysis indicated that highly electronegative pyridine-N atoms on BPY-COFs provide extra sites to adsorb the terminal H atoms of PMS, resulting in simultaneous adsorption of O and H atoms of PMS on one pyridine ring, which facilitates the cleavage of its S-O bond to generate 1 O2 .
Collapse
Affiliation(s)
- Zonglin Weng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yuanfang Lin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Siyuan Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xinfei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xinwen Ou
- School of Physics, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Chang D, Sun J, Wang C, Hao L, Zeng M. Construction of a novel ferrihydrite/MoS 2 heterogeneous Fenton-like catalyst for efficient degradation of organic pollutants under neutral conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105742-105755. [PMID: 37715903 DOI: 10.1007/s11356-023-29776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
In this work, we have fabricated a novel Fenton-like ferrihydrite/MoS2 (Fh/MoS2) composite and verified that the introduction of a small amount of iron on the surface of MoS2 can directly promote the exposure of Mo4+, finally enhancing the catalytic activity of the catalyst. Even though the content of iron element is only 1.19% in the composite, the reaction rate constant of Fh/MoS2 system for the degradation of environmental pollutants, such as organic dyes, antibiotic, and ionic liquid, is all much better than that of pure MoS2 system, which is attributed to much more generation of reactive oxygen species derived from synergistic effect of Fe3+/Fe2+ and Mo4+/Mo6+ redox cycles. The results of XPS and low-temperature EPR confirm that the exposure amount of Mo4+ active sites of 10% Fh/MoS2 is greatly increased, which is conducive to the conversion of Fe3+ to Fe2+ in the reaction process, thus effectively promoting the activation of H2O2.
Collapse
Affiliation(s)
- Da Chang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Juanjuan Sun
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Chang Wang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
20
|
Dong C, Wang ZQ, Yang C, Hu X, Wang P, Gong XQ, Lin L, Li XY. Dual-functional single-atomic Mo/Fe clusters-decorated C 3N 5 via three electron-pathway in oxygen reduction reaction for tandemly removing contaminants from water. Proc Natl Acad Sci U S A 2023; 120:e2305883120. [PMID: 37725637 PMCID: PMC10523597 DOI: 10.1073/pnas.2305883120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/21/2023] Open
Abstract
Inspired by the development of single-atom catalysts (SACs), the fabrication of multimetallic SACs can be a promising technical approach for the in situ electro-Fenton (EF) process. Herein, dual-functional atomically dispersed Mo-Fe sites embedded in carbon nitride (C3N5) (i.e., MoFe/C3N5) were synthesized via a facile SiO2 template method. The atomically isolated bimetallic configuration in MoFe/C3N5 was identified by combining the microscopic and spectroscopic techniques. The MoFe/C3N5 catalyst on the cathode exhibited a remarkable catalytic activity toward the three electron-dominated oxygen reduction reaction in sodium sulfate, leading to a highly effective EF reaction with a low overpotential for the removal of organic contaminants from wastewater. The new catalyst showed a superior performance over its conventional counterparts, owing to the dual functions of the dual-metal active sites. Density functional theory (DFT) analysis revealed that the dual-functional 50-MoFe/C3N5 catalyst enabled a synergistic action of the Mo-Fe dual single atomic centers, which can alter the adsorption/dissociation behavior and decrease the overall reaction barriers for effective organic oxidation during the EF process. This study not only sheds light on the controlled synthesis of atomically isolated catalyst materials but also provides deeper understanding of the structure-performance relationship of the nanocatalysts with dual active sites for the catalytic EF process. Additionally, the findings will promote the advanced catalysis for the treatment of emerging organic contaminants in water and wastewater.
Collapse
Affiliation(s)
- Chencheng Dong
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhi-qiang Wang
- Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaomeng Hu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xue-qing Gong
- Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| | - Xiao-yan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| |
Collapse
|
21
|
Schöneich C. Primary Processes of Free Radical Formation in Pharmaceutical Formulations of Therapeutic Proteins. Biomolecules 2023; 13:1142. [PMID: 37509177 PMCID: PMC10376966 DOI: 10.3390/biom13071142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidation represents a major pathway for the chemical degradation of pharmaceutical formulations. Few specific details are available on the mechanisms that trigger oxidation reactions in these formulations, specifically with respect to the formation of free radicals. Hence, these mechanisms must be formulated based on information on impurities and stress factors resulting from manufacturing, transportation and storage. In more detail, this article focusses on autoxidation, metal-catalyzed oxidation, photo-degradation and radicals generated from cavitation as a result of mechanical stress. Emphasis is placed on probable rather than theoretically possible pathways.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
22
|
Cheng H, Huang C, Wang P, Ling D, Zheng X, Xu H, Feng C, Liu H, Cheng M, Liu Z. Molybdenum disulfide co-catalysis boosting nanoscale zero-valent iron based Fenton-like process: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 227:115752. [PMID: 36965812 DOI: 10.1016/j.envres.2023.115752] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
The conventional Fenton process has the drawbacks of low efficiency of Fe3+/Fe2+ conversion, low utilization of H2O2, and narrow range of pH. In this paper, molybdenum sulfide (MoS2) was used as a co-catalyst to boost the nanoscale zero-valent iron (nZVI) based heterogeneous Fenton-like process for the degradation of Rhodamine B (RhB). The catalytic performance, influences of parameters, degradation mechanism, and toxicity of intermediates were explored. Compared with the conventional like-Fenton process, the existence of MoS2 accelerated the decomposition of H2O2 and the RhB degradation rate constant of MoS2/nZVI/H2O2 reached more than six times that of nZVI/H2O2. In addition, the effective pH range of MoS2/nZVI/H2O2 was broadened to 9.0 with 84.9% of RhB being removed within 15 min. The co-catalytic system of MoS2 and nZVI was stable and had high reusability according to the results of four consecutive runs. Quenching tests and electron paramagnetic resonance (EPR) demonstrated that hydroxyl radical (·OH), superoxide anions (·O2-), and singlet oxygen (1O2) were all involved in MoS2/nZVI/H2O2. Compared with nZVI/H2O2 system, MoS2 not only increased the corrosion of nZVI but also accelerated the conversion of Fe3+/Fe2+. ECOSAR analysis suggested that the overall acute and chronic toxicity of the degradation products decreased after treatment. Hence, this MoS2 co-catalytic nZVI based Fenton-like process can be used as a promising alternative for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Dingxun Ling
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyu Zheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
23
|
Wang X, Liu X, Tong Y, Liu C, Ding Y, Gao J, Fang G, Zha X, Wang Y, Zhou D. Oxygen vacancies-dominated reactive species generation from peroxymonosulfate activated by MoO 3-x for pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131798. [PMID: 37336112 DOI: 10.1016/j.jhazmat.2023.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Interface oxygen vacancies (OVs) are commonly used to improve the catalytic performance of activators in persulfate-based advanced oxidation processes, but the underlying mechanism was not fully explored. This work reports a facile heat treatment method to regulate OVs in MoO3-x to elucidate the mechanism of peroxymonosulfate (PMS) activated by OVs to degrade 2,4,4-Trichlorobiphenyl (PCB28). Electron spin resonance, free radical quenching, X-ray photoelectron spectroscopy, and Raman spectroscopy confirmed that both reducing Mo species and OVs of MoO3-x surface were responsible for PMS activation. Further experiments and Density Function Theory (DFT) calculation suggest that OVs in MoO3-x induced the formation of superoxide radical (O2•-), and then O2•- was transformed into singlet oxygen (1O2) or mediated PMS activation to generate radicals, which contritbued to 70.2% of PCB28 degradation. The steady-state concentrations of free radical calculated with the kinetics model show that OVs were more favorable to mediate PMS to generate hydroxyl radicals (•OH) under oxic conditions, while reducing Mo species would like to induce PMS to produce sulfate radicals (SO4•-). Overall, this study is dedicated to a new insight into the in-depth mechanism of PMS activation by OVs-rich catalysts and provides a novel strategy for reactive species regulation in PMS based oxidation process.
Collapse
Affiliation(s)
- Xiaolei Wang
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yunping Tong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yingzhi Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Xianghao Zha
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
24
|
Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev 2023; 195:114730. [PMID: 36791809 PMCID: PMC10170407 DOI: 10.1016/j.addr.2023.114730] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.
Collapse
Affiliation(s)
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
25
|
Huo M, Zou D, Lin Y, Lou Y, Liu G, Li S, Chen L, Yuan B, Zhang Q, Hou A. Enhanced degradation of emerging contaminants by percarbonate/Fe(II)-ZVI process: case study with nizatidine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53309-53322. [PMID: 36854942 DOI: 10.1007/s11356-023-25876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals have recently emerged as a significant environmental concern due to the growth of population, expansion of industry, and the shift in modern lifestyles. Herein, we present a Fe(II)/percarbonate (SPC) process with dramatically enhanced efficiency by the introduction of zerovalent iron (ZVI). After the addition of ZVI, the removal rate of nizatidine (NZTD) went up from 71.7 to 84.2%. The removal rate of NZTD decreases with rising pH and speeds up with increasing temperature. It was found that under the condition of pH = 7 and T = 25 °C, the molar ratio of the optimal concentration of NZTD degradation in the system was [NZTD]0:[SPC]0:[Fe(II)]0:[ZVI]0 = 1:8:24:16, with a degradation rate of 99.8%. At the same time, target pollutants can also be successfully eliminated from actual water bodies. Moreover, we test for toxicity using luminescent bacteria, and the results demonstrate that the system is capable of effectively decreasing the toxicity of NZTD. The research findings can contribute to the clarification of the migration and transformation law of NZTD in the oxidation process, thereby providing a scientific basis and technical support for the removal of NZTD in the tertiary water treatment for a water source.
Collapse
Affiliation(s)
- Mingxin Huo
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Deqiang Zou
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| | - Yi Lou
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Gen Liu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Siwen Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Lei Chen
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - BaoLing Yuan
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Qingyu Zhang
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Ao Hou
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
26
|
Qin X, Cao P, Quan X, Zhao K, Chen S, Yu H, Su Y. Highly Efficient Hydroxyl Radicals Production Boosted by the Atomically Dispersed Fe and Co Sites for Heterogeneous Electro-Fenton Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2907-2917. [PMID: 36749299 DOI: 10.1021/acs.est.2c06981] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The heterogeneous electro-Fenton (hetero-e-Fenton)-coupled electrocatalytic oxygen reduction reaction (ORR) is regarded as a promising strategy for ·OH production by simultaneously driving two-electron ORR toward H2O2 and stepped activating the as-generated H2O2 to ·OH. However, the high-efficiency electrogeneration of ·OH remains challengeable, as it is difficult to synchronously obtain efficient catalysis of both reaction steps above on one catalytic site. In this work, we propose a dual-atomic-site catalyst (CoFe DAC) to cooperatively catalyze ·OH electrogeneration, where the atomically dispersed Co sites are assigned to enhance O2 reduction to H2O2 intermediates and Fe sites are responsible for activation of the as-generated H2O2 to ·OH. The CoFe DAC delivers a higher ·OH production rate of 2.4 mmol L-1 min-1 gcat-1 than the single-site catalyst Co-NC (0.8 mmol L-1 min-1 gcat-1) and Fe-NC (1.0 mmol L-1 min-1 gcat-1). Significantly, the CoFe DAC hetero-e-Fenton process is demonstrated to be more energy-efficient for actual coking wastewater treatment with an energy consumption of 19.0 kWh kg-1 COD-1 than other electrochemical technologies that reported values of 29.7∼68.0 kW h kg-1 COD-1. This study shows the attractive advantages of efficiency and sustainability for ·OH electrogeneration, which should have fresh inspiration for the development of new-generation wastewater treatment technology.
Collapse
Affiliation(s)
- Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Kun Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
27
|
Liu F, Hou Y, Wang S, Li Z, Zhang B, Tong M. Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms. WATER RESEARCH 2023; 230:119508. [PMID: 36610181 DOI: 10.1016/j.watres.2022.119508] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The propagation of antibiotic-resistant bacteria (ARB) greatly endangers the ecological safety and human health. This study employed pyrite (FeS2, naturally abundant mineral) for periodate (PI) activation to disinfect ARB. FeS2/PI system could disinfect 1 × 107 CFU mL-1 of kanamycin-resistant E.coli below the limit of detection in 20 min. Efficient ARB inactivation performance was achieved in pH from 3 to 9, ionic strength from 0 to 300 mM, with HA (0.1-10 mg L-1) in suspension, and in real water samples including tap water, river water and sewage. FeS2/PI system could also efficiently disinfect gentamycin-resistant E.coli and Gram-positive B. subtilis. The generated reactive species including Fe(IV), ·O2- and ·OH would attack cell membrane and overwhelmed intracellular defense system. The intracellular kanamycin resistance genes in cells would be released and then degraded in FeS2/PI system. PI preferred to be adsorbed on Fe site of FeS2 (with lower adsorption energy, more occupancy of bonding state and stronger bonding strength). The subsequent transfer of electron cloud from Fe site to PI would cleave IO bond to generate reactive species. Moreover, FeS2/PI system could also combine with sand filtration system to efficiently capture and disinfect ARB. Therefore, FeS2/PI system is a promising approach to inactivate ARB in different scenarios.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
28
|
Tian C, Yuan P, Huang W, Song F, Zhao W. MoS 2 nanosheets embedded in α-FeOOH as an efficient cathode for enhanced MFC-electro-Fenton performance in wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 216:114818. [PMID: 36400219 DOI: 10.1016/j.envres.2022.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Microbial fuel cell-electro-Fenton system (MEF) has attracted attention due to refractory organic pollutants removal, where H2O2 is in-situ produced without external energy supply. Enhancement of H2O2 production and the activation of H2O2 to ·OH are the keys to improve degradation performance. Development of bifunctional catalytic cathode is a viable strategy. Herein, the α-FeOOH/MoS2 nanocomposites was fabricated by a novel facile hydrothermal method based on molybdenite-exfoliated MoS2 nanosheets suspension, which was used as modified cathode in a MEF system. The obtained α-FeOOH/1 wt%MoS2 cathode exhibited highest power density of 292.38 mW/m2, which was about 3.7 and 1.7 times higher than that of graphite plate and α-FeOOH, respectively. Doping of MoS2 nanosheets significantly enhanced electrocatalytic activity of the cathode and promoted in-situ H2O2 generation. Meanwhile, the exposed reductive Mo4+ on the surface of MoS2 could greatly facilitate the conversion cycle of Fe(III)/Fe(II), leading to the efficient activation of H2O2 into ·OH. The MEF with α-FeOOH/1 wt%MoS2 cathode exhibited excellent degradation and mineralization performance for MB, rhodamine B and tetracycline hydrochloride at optimized reaction condition. Furthermore, the MEF can simultaneously achieve MB oxidation and Cr(VI) reduction, and the corresponding removal ratio can reach up to 91.45% and 100%, respectively. Based on simple preparation method as well as recyclability and excellent catalytic property, the α-FeOOH/MoS2 composite catalyst is considered as a promising MEF cathode for efficient wastewater treatment.
Collapse
Affiliation(s)
- Congqi Tian
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China; Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Ping Yuan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Weili Huang
- Inner Mongolia Academy of Forestry, Hohhot, 010010, China
| | - Feiyu Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Wenyan Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
29
|
Yang J, Guo B, Li L, Chen Q, Shen C, Zhou J. Enhancement of peroxymonosulfate activation for 2,4-dichlorophenoxyacetic acid removal by MoSe 2 induced Fe redox cycles. CHEMOSPHERE 2023; 311:137170. [PMID: 36356816 DOI: 10.1016/j.chemosphere.2022.137170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The limited regeneration of Fe2+ in the Fe-catalyzed advanced oxidation processes (AOPs) constrained its application for the removal of organic pollutants. Herein, MoSe2 was introduced to promote the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the Fe2+/PMS system. Compared with Fe2+/PMS processes, the 2,4-D degradation efficiency and PMS decomposition rate respectively increased by 73.8% and 84.2% in the MoSe2/Fe2+/PMS system. DFT simulation results suggested that Se atoms acted smoothly as the bridge supporting the charge transfer from Mo to adjacent Fe atoms, which led to the reduction of Fe3+. The rapid regeneration of Fe2+ boosted the activation of PMS and the degradation of pollutants. Additionally, the electron paramagnetic resonance (EPR) and quenching experiments results indicated that SO4∙-, ∙OH, and 1O2 accounted for 2,4-D degradation, and SO4∙- and 1O2 predominated the reaction. The Mo based co-catalysts showed better co-catalytic effect than the W counterparts, and the moderate adsorption for PMS and lower electron transfer electron transfer resistance accounted for the more excellent co-catalytic performance of MoSe2 than that of WSe2. In addition, the degradation efficiency of 2,4-D was up to 95.5% after five cycles of MoSe2 in the co-catalytic system. The coexistent humic acid (HA) and Cl- showed ignorant negative effect on the degradation, while HCO3- would depress the oxidation reaction. The acidic etching wastewater can be applied as the Fe ions source in this co-catalytic process to remove 2,4-D effectively.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Binyu Guo
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Lei Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Juan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
30
|
Gao H, Yu H, Yu J, Xu T, Feng Y, Wang Y, Qian J, Tan C. The key role of crystal boron in enhanced degradation of refractory contaminants using heterogeneous Fe 3+/SPC system. CHEMOSPHERE 2023; 311:137131. [PMID: 36336018 DOI: 10.1016/j.chemosphere.2022.137131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
An origin Fenton-like system was discussed for the abatement of refractory contaminants. Sodium percarbonate (SPC) was utilized as the source of H2O2 and crystal boron (C-boron) was applied to enhance the activation of H2O2. Under the conditions of 0.50 mM Fe3+, 0.34 mM SPC, and heterogeneous catalysis using 100 mg L-1 C-boron, four target pollutants, at the initial concentrations of 20 μM, could be efficiently degraded by the Fenton-like system, with a degradation rate within 20 min up to 81.1% (aspirin, ASA), 92.8% (nitrobenzene, NB), 94.7% (flunixin meglumine, FMME), and 94.3% (benzoic acid, BA) respectively and total organic carbon removal up to 25.0%. The increase of Fe2+ concentration indicated that the conversion of Fe2+/Fe3+ was remarkably promoted by C-boron. Degradation reactions at acidic pH were comparatively fast, with pH-dependent kobs of 9.9 × 10-2 min-1 (ASA), 1.5 × 10-1 min-1 (NB), 1.7 × 10-1 min-1 (FMME), and 1.9 × 10-1 min-1 (BA), whereas those at neutral and alkaline pH were slower. Furthermore, reactive oxygen species including ·OH, 1O2, and O2·- were identified by in-situ electron paramagnetic resonance tests. The contribution ratios of ·OH turned out to be about 71.3-86.7% for the decomposition of four contaminants. The elimination of natural organic matter and the performance of material recycling highlighted the potential for its application in water treatment. The inhibition rate of Chlorella pyrenoidosa reached 211.9% in the C-boron/Fe3+/SPC system. The relatively high algae toxicity limited its application scope, which requires additional research to resolve.
Collapse
Affiliation(s)
- Haiying Gao
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Yu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jun Yu
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Tianhui Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yiming Feng
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Jun Qian
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
31
|
Wang L, Yang H, Yao J, Wu Q, He Z, Yang Y. Steady release-activation of hydrogen peroxide and molecular oxygen towards the removal of ciprofloxacin in the FeOCl/CaO 2 system. CHEMOSPHERE 2022; 308:136156. [PMID: 36029866 DOI: 10.1016/j.chemosphere.2022.136156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Difficult storage of hydrogen peroxide (H2O2), low production of reactive oxygen species (ROS), and inefficient Fe(II)/Fe(III) recycling limit the application of the Fenton-like process. Calcium peroxide (CaO2) based iron oxychloride (FeOCl) system was developed for solving these deficiencies, and ciprofloxacin (CIP) was effectively degraded within 20 min treatment. 0.33 mmol/L H2O2 and 2.4 mg/L dissolved oxygen (DO) were produced via CaO2. Quenching experiments and electron paramagnetic resonance results confirmed that hydroxyl radicals (·OH) and superoxide anion (·O2-) worked as the main ROS. Density functional theory (DFT) calculations and experimental results suggested that H atoms of H2O2 adsorbed on FeOCl favored the activation of H2O2 into ·OH and DO into ·O2-, and electrophilic Cl and O coordination in FeOCl contributed to the cycle of Fe(II)/Fe(III). ·OH and·O2- were responsible for CIP degradation, and toxicity assessments demonstrated that the developed system reduced the hazard of treated solution. Clarity of FeOCl/CaO2 system triple roles, including H2O2 and O2 production, activation into ROS, and Fe(II)/Fe(III) recycling, facilitates the efficient utilization of O2 in Fenton-like system.
Collapse
Affiliation(s)
- Lina Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zuming He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuankun Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
32
|
Yılmaz HÇ, Atalay FE, Kaya H, Erdemoğlu S. Sol-gel synthesis of TiO 2 on Co 3O 4-coated sporopollenin exine microcapsules (SECs) and photocatalytic performance of new semiconductor heterojunction material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78620-78636. [PMID: 35696060 DOI: 10.1007/s11356-022-21357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, a new approach was developed to prepare mesoporous hybrid TiO2/Co3O4 coated on Juglans sporopollenin exine microcapsules (SECs). TiO2 was synthesized on Co3O4-coated SECs used as substrate, by sol-gel method. The obtained semiconductor/semiconductor hetero-junction hybrid materials were characterized with X-ray diffractometry (XRD), UV-Vis absorption spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), particle size distribution, specific surface area, and zeta potential measurements. Photocatalytic performances of hybrid materials were tested for Reactive Black 5 dye under both UV and visible light. Equilibrium pH of the solution containing 10 mg/L Reactive Black 5 dye and 0.1% wt/v TiO2/Co3O4 was around 4.7. After irradiation in the solar box, more than 98% of the Reactive Black 5 was photocatalytically degraded within 60 min.
Collapse
Affiliation(s)
- Hatice Çağlar Yılmaz
- Department of Chemistry, Faculty of Science and Arts, İnönü University, 44280, Malatya, Turkey
| | - Funda Ersoy Atalay
- Department of Physics, Faculty of Science and Arts, İnönü University, 44280, Malatya, Turkey
| | - Harun Kaya
- Faculty of Engineering and Natural Sciences, Malatya Turgut Özal University, 44280, Malatya, Turkey
| | - Sema Erdemoğlu
- Department of Chemistry, Faculty of Science and Arts, İnönü University, 44280, Malatya, Turkey.
| |
Collapse
|
33
|
Studies in instant water disinfection using natural oils. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Zhou X, Yang Z, Chen Y, Feng H, Yu J, Tang J, Ren X, Tang J, Wang J, Tang L. Single-atom Ru loaded on layered double hydroxide catalyzes peroxymonosulfate for effective E. coli inactivation via a non-radical pathway: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129720. [PMID: 35952429 DOI: 10.1016/j.jhazmat.2022.129720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The Fenton-like processes are considered to be one of the most promising strategies for inactivating bacteria due to their capacity to produce reactive oxygen species (ROS). Herein, a catalytic system for efficient inactivation of Escherichia coli (E. coli) was developed by anchoring single-atom Ru on layered double hydroxides (LDH). The Ru/NiFe-LDH catalyst showed excellent performance in activating peroxymonosulfate (PMS) to inactivate E. coli. Under the combined action of the ultra-low concentrations of Ru/NiFe-LDH (40 mg/L) and PMS (5 mg/L), 7 log E. coli can be totally inactivated within 90 s. This was attributed to the combined effect of single-atom Ru adsorption to E. coli and the ROS produced in situ. Mechanism studies indicated that the 1O2 with electrophilic properties was the key active species responsible for the rapid inactivation of E. coli. The E. coli inactivation process suggested that the ROS produced first attacked the outer membrane of the cell, then the antioxidant enzymes in the cell were induced, the macromolecule substances were released and mineralized, eventually leading to irreversible cell death. This work firstly loads monoatomic Ru on LDH for bacterial inactivation, providing a feasible method for rapid inactivation of E. coli.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jialin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoyi Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
35
|
Integration of in situ Fenton-like self-cleaning and photothermal membrane distillation for wastewater treatment via Co-MoS2/CNT catalytic membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Blanco-Canella P, Lama G, Sanromán MA, Pazos M. Disinfection through Advance Oxidation Processes: Optimization and Application on Real Wastewater Matrices. TOXICS 2022; 10:512. [PMID: 36136477 PMCID: PMC9501268 DOI: 10.3390/toxics10090512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Disinfection is an essential and significant process for water treatment to protect the environment and human beings from pathogenic infections. In this study, disinfection through the generation of hydroxyl (Fenton process (FP)) and sulfate (Fenton-like process (FLP)) radicals was validated and optimized. The optimization was carried out in synthetic water through an experimental design methodology using the bacteria Escherichia coli as a model microorganism. Different variables were evaluated in both processes: precursor concentration (peroxymonosulfate (PMS) and H2O2), catalyst concentration (Fe+2), and pH in the Fenton process. After that, the optimized conditions (FP: 132.36 mM H2O2, 0.56 mM Fe+2 and 3.26 pH; FLP: 3.82 mM PMS and 0.40 mM Fe+2) were applied to real matrices from wastewater treatment plants. The obtained results suggest that both processes are promising for disinfection due to the high oxidant power of hydroxyl and sulfate radicals.
Collapse
|
37
|
Peng H, Chen R, Tao N, Xiao Y, Li C, Zhang T, Ye M. MoS 2 boosts the Fe 2+/PMS process for carbamazepine degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49267-49278. [PMID: 35217952 DOI: 10.1007/s11356-022-19172-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Activation of peroxymonosulfate (PMS) by Fe2+ is a green oxidation process for degradation of organic contaminants. However, the formation of iron mud and low PMS utilization lead to the decreased oxidation efficiency. In this work, commercial MoS2 particles were used as the catalyst for boosting the Fe2+/PMS process for carbamazepine (CBZ) removal. The CBZ removal efficiency by the MoS2/Fe2+/PMS process was significantly enhanced, increasing to 6.5 times that of the Fe2+/PMS process. The Fe3+ was reduced to Fe2+ by the exposed Mo4+ on the surface of MoS2, leading to the enhanced PMS utilization rate and increased Fe2+ concentration. The relative intensity of DMPO-HO• and DMPO- SO4-• followed the order of MoS2/PMS < Fe2+/PMS < MoS2/Fe2+/PMS, also suggesting the enhanced oxidation activity with the addition of MoS2 in the process of Fe2+/PMS. The commercial MoS2 had good stability shown by the CBZ removal efficiency remaining almost unchanged during 8-time cycling use. Finally, a possible CBZ degradation pathway was proposed for helping understand the oxidation mechanism of the MoS2/Fe2+/PMS process.
Collapse
Affiliation(s)
- Huan Peng
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Daxueyuan Rd, WISDRI Engineering & Research Incorporation Limited. No.33, Donghu High-Tech Development Zone, Wuhan, Hubei Province, People's Republic of China
| | - Rong Chen
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ningyao Tao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yangyi Xiao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chenxing Li
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Tuqiao Zhang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Miaomiao Ye
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
38
|
Liang L, Xiong Y, Duan Y, Zuo W, Liu L, Ye F, Zhao S. Colorimetric detection of creatinine based on specifically modulating the peroxidase-mimicking activity of Cu-Fenton system. Biosens Bioelectron 2022; 206:114121. [PMID: 35235861 DOI: 10.1016/j.bios.2022.114121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
|
39
|
Liang L, Duan Y, Xiong Y, Zuo W, Ye F, Zhao S. Synergistic cocatalytic effect of MoO3 and creatinine on Cu–Fenton reactions for efficient decomposition of H2O2. MATERIALS TODAY CHEMISTRY 2022; 24:100805. [DOI: 10.1016/j.mtchem.2022.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
40
|
Wang H, Liu H, Zou X, Sun F, Wang L, Hu J, Chen D, Liu M, Shen J, Chen T. H 2O 2 activation over Co substitution in Fe 1-xS for tetracycline degradation: Effect of Co substitution. CHEMOSPHERE 2022; 297:134131. [PMID: 35257708 DOI: 10.1016/j.chemosphere.2022.134131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this work, the effect of Co substitution in the Fe1-xS (CSP) on the activation of H2O2 to degrade tetracycline (TC) is investigated. A series of CSP samples with different Co content are synthesized via a high-temperature sulfidation method and characterized by XRD, XPS, SEM, and electrochemical analysis. The result showed that low Co content (≤1%) promotes the catalytic activity of Fe1-xS, while excessive Co (1%﹤x ≤ 3%) inhibits its catalytic activity. The investigation of Behnajady-Modirshahla-Ghanbery kinetic model (BMG) showed that the maximum initial degradation rate of TC over 1.0% CSP/H2O2 was 1.6 times than that of in CSP/H2O2 system. The Box-Behnken with Response Surface Methodology was employed to verify optimum condition for TC degradation. The quenching experiments and ESR determined that ·OH, ·O2- and 1O2 were involved in TC degradation with the treatment of 1.0% CSP/H2O2 system. Electrochemical analysis, ·OH quantification, and metal ion concentrations measure reveal that Co substitution accelerates electron transfer efficiency and Fe2+ regeneration. Furthermore, nine intermediates are identified and the possible degradation pathway of TC is proposed. The unique effect of Co provides novel insight and efficient strategies for improving the reactivity of iron sulfide.
Collapse
Affiliation(s)
- Hanlin Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fuwei Sun
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Luyao Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingchao Hu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianfei Shen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
41
|
Yang Z, Shan C, Pignatello JJ, Pan B. Mn(II) Acceleration of the Picolinic Acid-Assisted Fenton Reaction: New Insight into the Role of Manganese in Homogeneous Fenton AOPs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6621-6630. [PMID: 35502893 DOI: 10.1021/acs.est.1c08796] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The homogeneous Fe-catalyzed Fenton reaction remains an attractive advanced oxidation process for wastewater treatment, but sustaining the Fe(III)/Fe(II) redox cycle at a convenient pH without the costly input of energy or reductants remains a challenge. Mn(II) is known to accelerate the Fenton reaction, yet the mechanism has never been confidently established. We report a systematic kinetic and spectroscopic investigation into Mn(II) acceleration of atrazine or 2,4,6-trichlorophenol degradation by the picolinic acid (PICA)-assisted Fenton reaction at pH 4.5-6.0. Mn(II) accelerates Fe(III) reduction, superoxide radical (HO2•/O2•-) formation, and hydroxyl radical (HO•) formation. A Mn(II/III)-H2O2 redox cycle as an independent source of reactive oxygen species, as proposed in the literature, is shown to be insignificant. Rather, Mn(II) assists by participating directly and catalytically in the Fe(III)/Fe(II) redox cycle. Initially, Mn(II) (as MnII(PICA)+) complexes with a ferric hydroperoxo species, PICA-FeIII-OOH. The resulting binuclear complex undergoes intramolecular electron transfer to give Fe(II), which later generates HO• from H2O2, plus MnO2+, which later decomposes to HO2•/O2•- (an Fe(III) reductant) and Mn(II), completing the catalytic cycle. This scheme may apply to other Fenton-type systems that go through an FeIII-OOH intermediate. The findings here will inform the design of practical and sustainable Fenton-based AOPs employing Mn(II) in combination with chelating agents.
Collapse
Affiliation(s)
- Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, P. R. China
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Wu H, Liu R, Sun Y, Wen Y, Zhao Q, Lin S, Wang Y. Effect of MoS 2 on phenol decomposition in water after high-voltage pulse discharge treatment. CHEMOSPHERE 2022; 294:133808. [PMID: 35114266 DOI: 10.1016/j.chemosphere.2022.133808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum disulfide (MoS2) was added to the system after being treated with high-voltage pulse discharge plasma to improve the degradation efficiency of pollutants and reduce energy consumption. The discharge plasma-treated solution contains hydrogen peroxide and metal iron ions, and MoS2 addition can cause co-catalytic Fenton reaction. The effects of discharge time, initial pH, phenol concentration, MoS2 dosage, discharge voltage, and gas type on phenol removal and aqueous H2O2 concentration were mainly investigated. Results showed that the addition of MoS2 after plasma treatment can reduce the plasma treatment time by 70% and maintain or even increase the degradation efficiency of phenol from 40% (after 20 min of discharge plasma) to 92% (after turning off the discharge and dosing with MoS2 for 30 min). Acidic conditions (pH = 3-4) and oxygen were beneficial to phenol removal. MoS2 addition greatly improved the catalytic oxidation of discharge plasma. This study provides a promising direction for water treatment based on plasma technology.
Collapse
Affiliation(s)
- Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Ruoyu Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyun Wen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Quanfa Zhao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Shaohua Lin
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yong Wang
- Nanjing Branch of Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Nanjing, 210012, China
| |
Collapse
|
43
|
Li D, Yu J, Jia J, He H, Shi W, Zheng T, Ma J. Coupling electrode aeration and hydroxylamine for the enhanced Electro-Fenton degradation of organic contaminant: Improving H 2O 2 generation, Fe 3+/Fe 2+ cycle and N 2 selectivity. WATER RESEARCH 2022; 214:118167. [PMID: 35196618 DOI: 10.1016/j.watres.2022.118167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
To improve H2O2 generation and Fe3+/Fe2+ cycle simultaneously for enhancing Electro-Fenton performance, the electrode aeration (EA) and hydroxylamine sulfate (HA) were coupled. With dimethyl phthalate (DMP) as main target contaminant, combination of HA and EA greatly accelerated the degradation of DMP and exhibited a synergy in the pH of 2.0-6.9 through promoting the key reactions, including electrochemical two-electron reduction of O2 into H2O2 and redox cycles of Fe3+/Fe2+, which then improved the generation of hydroxyl radicals (·OH). The coupling EA and HA reduced the use of HA and converted most of HA into environment-friendly N2 (60.1-62.1% of HA products), while HA/solution aeration(SA) system consumed HA rapidly and the generated N2 only accounted for 5.8-6.7% of HA products. Furthermore, compared with HA/SA and EA Electro-Fenton systems, enhancement degree of DMP degradation in HA/EA Electro-Fenton process was higher in actual waterbody than in ultrapure water. The coupling EA and HA in the Electro-Fenton process could solve the low Fe3+/Fe2+ cycle efficiency and low H2O2 production simultaneously, and improve the N2 selectivity of HA transformation, which advanced its application in practical environmental remediation.
Collapse
Affiliation(s)
- Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jialin Jia
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; China Everbright Water Limited, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
44
|
Tang Y, Qin Z, Zhong Y, Yin S, Liang S, Sun H. Three-phase interface photocatalysis for the enhanced degradation and antibacterial property. J Colloid Interface Sci 2022; 612:194-202. [PMID: 34992019 DOI: 10.1016/j.jcis.2021.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Semiconductor photocatalysis, as a means of utilizing stranded renewable solar resources, is now emerging as a viable and promising approach for increasingly severe water pollution. In this work, a high-performance photocatalytic system has been fabricated by immobilizing spiky TiO2/Au nanohybrids on one side of hydrophobic nanoPE substrate (PE-TiO2/Au) that forces the enabling of air-liquid-solid triphase photocatalytic interface. Such a triphase system allows efficient oxygen access to the photocatalyst surface, which is feasible for charge separation and reactive oxygen species (ROS) production. Two modes of triphase systems with different gas flow paths were constructed, in which PE-TiO2/Au was floating on the aqueous solution surface (exposed mode) or immersing in aqueous phase (immersed mode). It is worth mentioning that the exposed PE-TiO2/Au enables a more efficient oxygen supply, thus leading to a 5.5-fold and 1.8-fold higher reaction kinetics as compared to normal liquid-solid diphase system and immersed PE-TiO2/Au. Meanwhile, PE-TiO2/Au also exerts bactericidal effect under visible light irradiation, which effectively inactivates S.aureus (>99.9%) in a lean period of 30 min. The qualities of high lethality rate and short reaction time are endowed to PE-TiO2/Au due to the co-effect of unique triphase interface microenvironment and elaborate heterojunction of spiky TiO2/Au nanohybrids. In this paper, we have revealed for the first time that the antibacterial efficiency can be effectively improved by increasing the oxygen supply with the construction of three-phase interface, which represents a promising option in designing highly efficient photocatalytic systems for sewage purification applications.
Collapse
Affiliation(s)
- Yanan Tang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Yinghui Zhong
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
45
|
Luo W, Chen Q, Ji L, Peng X, Huang G. Synergistic effect of various elements in Fe41Co7Cr15Mo14C15B6Y2 amorphous alloy hollow ball on catalytic degradation of methylene blue. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Song X, Ni J, Liu D, Shi W, Yuan Y, Cui F, Tian J, Wang W. Molybdenum disulfide as excellent Co-catalyst boosting catalytic degradation of sulfamethoxazole by nZVI/PDS process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Chen Z, Lian C, Huang K, Ji J, Yan Q, Zhang J, Xing M. “Small amount for multiple times” of H2O2 feeding way in MoS2-Fex heterogeneous fenton for enhancing sulfadiazine degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Liu H, Liu Y, Li X, Zheng X, Feng X, Yu A. Adsorption and Fenton-like Degradation of Ciprofloxacin Using Corncob Biochar-Based Magnetic Iron–Copper Bimetallic Nanomaterial in Aqueous Solutions. NANOMATERIALS 2022; 12:nano12040579. [PMID: 35214908 PMCID: PMC8880508 DOI: 10.3390/nano12040579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
An economical corncob biochar-based magnetic iron–copper bimetallic nanomaterial (marked as MBC) was successfully synthesized and optimized through a co-precipitation and pyrolysis method. It was successfully used to activate H2O2 to remove ciprofloxacin (CIP) from aqueous solutions. This material had high catalytic activity and structural stability. Additionally, it had good magnetic properties, which can be easily separated from solutions. In MBC/H2O2, the removal efficiency of CIP was 93.6% within 360 min at optimal reaction conditions. The conversion of total organic carbon (TOC) reached 51.0% under the same situation. The desorption experiments concluded that adsorption and catalytic oxidation accounted for 34% and 66% on the removal efficiency of CIP, respectively. The influences of several reaction parameters were systematically evaluated on the catalytic activity of MBC. OH was proved to play a significant role in the removal of CIP through electron paramagnetic resonance (EPR) analysis and a free radical quenching experiment. Additionally, such outstanding removal efficiency can be attributed to the excellent electronic conductivity of MBC, as well as the redox cycle reaction between iron and copper ions, which achieved the continuous generation of hydroxyl radicals. Integrating HPLC-MS, ion chromatography and density functional theory (DFT) calculation results, and possible degradation of the pathways of the removal of CIP were also thoroughly discussed. These results provided a theoretical basis and technical support for the removal of CIP in water.
Collapse
|
49
|
Li S, Wu Y, Zheng H, Zheng Y, Jing T, Tian J, Ma J, Na J. High microwave responsivity Co-Bi 25FeO 40 in synergistic activation of peroxydisulfate for high efficiency pollutants degradation and disinfection: Mechanism of enhanced electron transfer. CHEMOSPHERE 2022; 288:132558. [PMID: 34662639 DOI: 10.1016/j.chemosphere.2021.132558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Cobalt doped Bi25FeO40 was used as a heterogeneous catalyst in microwave (MW) co-activation of peroxydisulfate (PDS) system for organic contaminant purification and disinfection simultaneously. Due to low charge-transfer resistance and fast electron migration, Co-Bi25FeO40 showed superior catalytic efficiencies for activation PDS to degrade over 92.0% of bisphenol A (BPA) with the initial concentrations ranging from 40 mg/L to 120 mg/L in 5.0 min. The non-radical oxidation pathway via electron transfer regime on the surface of Co-Bi25FeO40 was the dominant reactive species in the reaction system. Benefit from the energy transfer and cross-coupling reactions of microwave, the Co-Bi25FeO40/MW/PDS system can generate abundant reactive sites to facilitate the formation of more surface-bonding complexes. Microwave energy can be absorbed by Co-Bi25FeO40 catalysts to promote activation of PDS and production of nanobubbles. The generated nanobubbles increase the temperature of the local solution to promote the reaction. The Co-Bi25FeO40/MW/PDS system also exhibited excellent bactericidal capability for Escherichia coli (E.coli). The catalysts, oxidants and microwaves acted on E. coli to form physical, and oxidative pressure simultaneously, causing cell damaged and made bacterial death. This work provides prospects toward high-efficiency integration of contaminant purification and pathogenic microorganisms inactivation.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jingzhi Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun Ma
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Na
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
50
|
Ye J, Dai J, Yang D, Li C, Yan Y, Wang Y. Interfacial engineering of vacancy-rich nitrogen-doped Fe xO y@MoS 2 Co-catalytic carbonaceous beads mediated non-radicals for fast catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126715. [PMID: 34332488 DOI: 10.1016/j.jhazmat.2021.126715] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
How to accelerate the Fe3+/Fe2+ conversion and fabricate recyclable iron-based catalysts with high reactivity and stability is highly desired yet challenging. Herein, vacancy-rich N@FexOy@MoS2 carbonaceous beads were firstly developed via employing sodium alginate, molybdenum disulfide (MoS2), and Fe-ZIFs through sol-gel self-assembly, followed by in-situ growth and pyrolysis strategies. As expected, A series of characterizations reflected that N@FexOy@MoS2 had high dispersibility and conductivity for fast mass and electron transport, and MoS2 as co-catalyst accelerated the circulation of Fe3+ to Fe2+ that attained 99.4% (0.345 min-1) norfloxacin degradation via PMS activation in a synergistic ''adsorption-driven-oxidation'' process, which much outperformed those of pure MoS2 (32.4%) and N@FexOy powder catalyst (45.3%). Moreover, confined Fe species, graphitic N, pyrrolic N, pyridinic N, and sulfur/oxygen vacancies were found as highly exposed active sites that contributed to the activation of PMS to dominate non-radicals (1O2 and O2·-) and other radicals following a contribution order 1O2 > O2·- > SO4·- > ·OH. More importantly, a fluidized-bed catalytic unit was evaluated and maintained the continuous zero discharge of NX. Overall, this study offered a generally applicable approach to fabricate removable Fe-based catalysts for contaminants remediation.
Collapse
Affiliation(s)
- Jian Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Dayi Yang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|