1
|
He L, Yao F, Zhong Y, Tan C, Chen S, Pi Z, Li X, Yang Q. Electrochemical reductive removal of trichloroacetic acids by a three-dimensional binderless carbon nanotubes/ CoP/Co foam electrode: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134120. [PMID: 38537573 DOI: 10.1016/j.jhazmat.2024.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Numerous chlorinated disinfection by-products (DBPs) are produced during the chlorination disinfection of water. Among them, chloroacetic acids (CAAs) are of great concern due to their potential human carcinogenicity. In this study, effective electrocatalytic dechlorination of trichloroacetic acids (TCAA), a typical CAAs, was achieved in the electrochemical system with the three-dimensional (3D) self-supported CoP on cobalt foam modified by carbon nanotubes (CNT/CoP/CF) as the cathode. At a 10 mA cm-2 current density, 74.5% of TCAA (500 μg L-1) was converted into AA within 100 min. In-situ growth of CoP increased the effective electrochemical surface area of the electrode. Electrodeposited CNT promoted electron transfer from the electrode surface to TCAA. Therefore, the production of surface-adsorbed atomic hydrogen (H*) on CNT/CoP/CF was improved, further resulting in excellent electrochemical dechlorination of TCAA. The dechlorination pathway of TCAA proceeded into acetic acids via direct electronic transfer and H*-mediated reduction on CNT/CoP/CF electrode. Additionally, the electroreduction efficiency of CNT/CoP/CF for TCAA exceeded 81.22% even after 20 cycles. The highly efficient TCAA reduction performance (96.57%) in actual water revealed the potential applicability of CNT/CoP/CF in the complex water matrix. This study demonstrated that the CNT/CoP/CF is a promising non-noble metal cathode to remove chlorinated DBPs in practice.
Collapse
Affiliation(s)
- Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Urban and Environment Sciences, Hunan University of Technology, Hunan Province 412007, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
2
|
Zeng Y, Xu L, Su J, Liu S, Ali A, Zhang P, Cao S. Denitrification driven by additional ferrous (Fe 2+) and manganous (Mn 2+) and removal mechanism of tetracycline and cadmium (Cd 2+) by biogenic Fe-Mn oxides. ENVIRONMENTAL RESEARCH 2024; 246:118159. [PMID: 38218519 DOI: 10.1016/j.envres.2024.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.
Collapse
Affiliation(s)
- Yuxin Zeng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
3
|
Sandoval MA, Coreño O, García V, Salazar-González R. Enhancing industrial swine slaughterhouse wastewater treatment: Optimization of electrocoagulation technique and operating mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119556. [PMID: 37984271 DOI: 10.1016/j.jenvman.2023.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
In this study, industrial swine slaughterhouse effluents were treated by an electrocoagulation process (EC) with aluminum and iron electrodes. Batch and semicontinuous operation were performed. EC tests were carried out in batch operating mode for 2.5 h using fixed current densities (j = 10, 20, and 30 mA cm-2) in sulfate and chloride media. At the laboratory scale, higher TOC removal efficiencies were observed using aluminum electrodes at 20 mA cm-2 without the addition of a supporting electrolyte (82.7%). However, the EC process with Fe electrodes consumed 43.6% less energy. After the best operating parameters were found at the laboratory scale, the process was tested as a semicontinuous prepilot process using a filter-press FM01-LC-type electrochemical reactor equipped with flat plate aluminum electrodes. In this stage, current densities and mean linear flow rates were assessed. The highest TOC removal efficiency of 72.7% (i.e., residual TOC concentration of 85.18 mg L-1) in the semicontinuous process was achieved by the application of j = 25 mA cm-2 and ur = 0.64 cm s-1 with an energy consumption of 19.80 kW h m-3. The residual COD and TP concentrations met the international standard limits. Moreover, complete decoloration and disinfection were accomplished. EDXRF, SEM, EDAX, XRD, and FTIR analyses indicated that pollutants were removed by adsorption on aluminum/iron hydroxides/oxyhydroxides.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas km. 10.5, 36262, Guanajuato, Guanajuato, Mexico; Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico.
| | - Oscar Coreño
- Departamento de Ingeniería Civil, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Ricardo Salazar-González
- Analysis, Treatment, Electrochemistry, Recovery and Reuse of Water Research Group, WATER(2), Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
4
|
Xue Y, Jia Y, Liu S, Yuan S, Ma R, Ma Q, Fan J, Zhang WX. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132106. [PMID: 37506648 DOI: 10.1016/j.jhazmat.2023.132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shiyin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Raner Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
5
|
Albrektienė-Plačakė R, Bazienė K, Gargasas J. Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6519. [PMID: 37834656 PMCID: PMC10573546 DOI: 10.3390/ma16196519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Sapropel was used as a biodegradable material for water treatment. Sapropel is a sedimentary layer of a mix of organic and inorganic substances accumulated in the bottoms of lakes for thousands of years. It is a jelly-like homogeneous mass and has properties of sorption. Sapropel is used as a biosorbent and an environment-friendly fertiliser, and it is used in building materials and in the beauty industry as well. In water, there are abundant various solutes that may cause a risk to human health. Such substances include fluorides, nitrates and lead in different sources of water. The goal of this investigation is to explore and compare the efficiencies of removal of different pollutants (fluorides, nitrates and lead) from aqueous solutions upon using sapropel as a sorbent. In this research, various doses of sapropel (0.1, 0.5, 1, 5, 10, 20, 50, 100 and 200 g/L) and various mixing times (15, 30, 60, 90 and 120 min) were used for removal of fluorides, nitrates and lead from aqueous solutions. It was found that the maximum efficiency (up to 98.57%) of lead removal from aqueous solutions by sapropel was achieved when the minimum doses of it (0.1 and 0.5 g/L) were used. The most efficient removal of fluorides (64.67%) was achieved by using 200 g/L of sapropel and mixing for 120 min. However, sapropel does not adsorb nitrates from aqueous solutions.
Collapse
Affiliation(s)
- Ramunė Albrektienė-Plačakė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Kristina Bazienė
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Justinas Gargasas
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
6
|
Wang Y, Rahimnejad S, Sun WJ, Li LX, Zhang HY, Cao Q, He JH. Bimetallic Cu-Fe catalysts on MXene for synergistically electrocatalytic conversion of nitrate to ammonia. J Colloid Interface Sci 2023; 648:595-603. [PMID: 37315481 DOI: 10.1016/j.jcis.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
NO3- is a common water pollutant that can serve as a potential nitrogen source for electrocatalytic NH3 production. However, an efficient and complete removal of low NO3- concentrations remains a challenge. Fe1Cu2@MXene bimetallic catalysts were constructed on two-dimensional Ti3C2Tx MXene carriers via a simple solution-based synthetic method and used for the electrocatalytic reduction of NO3-. The combination of the rich functional groups, high electronic conductivity on the MXene surface, and the synergistic effect between the Cu and Fe sites enabled the composite to effectively catalyse NH3 synthesis, with a 98% conversion of NO3- in 8 h and a selectivity for NH3 of up to 99.6%. In addition, Fe1Cu2@MXene showed excellent environmental and cyclic stability at various pH values and temperatures over multiple (14) cycles. Semiconductor analysis techniques and electrochemical impedance spectroscopy confirmed that the synergistic effect provided by the dual active sites of the bimetallic catalyst enabled fast electron transport. This study provides new insights into the synergistic promotion of NO3- reduction reactions using bimetals.
Collapse
Affiliation(s)
- Yang Wang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Sara Rahimnejad
- Department of Chemistry, Science & Learning Center, Whittier College, CA 90602, United States
| | - Wu-Ji Sun
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lan-Xin Li
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hao-Yu Zhang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Qiang Cao
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jing-Hui He
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Wang H, Huang J, Cai J, Wei Y, Cao A, Liu B, Lu S. In Situ/Operando Methods for Understanding Electrocatalytic Nitrate Reduction Reaction. SMALL METHODS 2023:e2300169. [PMID: 37035954 DOI: 10.1002/smtd.202300169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
With the development of industrial and agricultural, a large amount of nitrate is produced, which not only disrupts the natural nitrogen cycle, but also endangers public health. Among the commonly used nitrate treatment techniques, the electrochemical nitrate reduction reaction (eNRR) has attracted extensive attention due to its mild conditions, pollution-free nature, and other advantages. An in-depth understanding of the eNRR mechanism is the prerequisite for designing highly efficient electrocatalysts. However, some traditional characterization tools cannot comprehensively and deeply study the reaction process. It is necessary to develop in situ and operando techniques to reveal the reaction mechanism at the time-resolved and atomic level. This review discusses the eNRR mechanism and summarizes the possible in situ techniques used in eNRR. A detailed introduction of various in situ techniques and their help in understanding the reaction mechanism is provided. Finally, the current challenges and future opportunities in this research area are discussed and highlighted.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingying Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Cao
- Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Yuan S, Xue Y, Ma R, Ma Q, Chen Y, Fan J. Advances in iron-based electrocatalysts for nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161444. [PMID: 36621470 DOI: 10.1016/j.scitotenv.2023.161444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Excessive nitrate has been a critical issue in the water environment, originating from the burning of fossil fuels, inefficient use of nitrogen fertilizers, and discharge of domestic and industrial wastewater. Among the effective treatments for nitrate reduction, electrocatalysis has become an advanced technique because it uses electrons as green reducing agents and can achieve high selectivity through cathode potential control. The effectiveness of electrocatalytic nitrate reduction (NO3RR) mainly lies in the electrocatalyst. Iron-based catalysts have the advantages of high activity and low cost, which are well-used in the field of electrocatalytic nitrates. A comprehensive overview of the electrocatalytic mechanism and the iron-based materials for NO3RR are given in terms of monometallic iron-based materials as well as bimetallic and oxide iron-based materials. A detailed introduction to NO3RR on zero valent iron, single-atom iron catalysts, and Cu/Fe-based bimetallic electrocatalysts are provided, as they are essential for the improvement of NO3RR performance. Finally, the advantages of iron-based materials for NO3RR and the problems in current applications are summarized, and the development prospects of efficient iron-based catalysts are proposed.
Collapse
Affiliation(s)
- Shiyin Yuan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinghao Xue
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Raner Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanyan Chen
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jianwei Fan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
9
|
He L, Zeng T, Yao F, Zhong Y, Tan C, Pi Z, Hou K, Chen S, Li X, Yang Q. Electrocatalytic reduction of nitrate by carbon encapsulated Cu-Fe electroactive nanocatalysts on Ni foam. J Colloid Interface Sci 2023; 634:440-449. [PMID: 36542973 DOI: 10.1016/j.jcis.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Electrocatalytic denitrification is an attractive and effective method for complete elimination of nitrate (NO3-). However, its application is limited by the activity and stability of the electrocatalyst. In this work, a novel bimetallic electrode was synthesized, in which N-doped graphitized carbon sealed with Cu and Fe nanoparticles and immobilized them on nickel foam (CuFe NPs@NC/NF) without any chemical binder. The immobilized Cu-Fe nanoparticles not only facilitated the adsorption of the reactant but also enhanced the electron transfer between the cathode and NO3-, thus promoting the electrochemical reduction of NO3-. Therefore, the as-prepared electrode exhibited enhanced electrocatalytic activity for NO3- reduction. The composite electrode with the Cu/Fe molar ratio of 1:2 achieved the highest NO3- removal (79.4 %) and the lowest energy consumption (0.0023 kW h mg-1). Furthermore, the composite electrode had a robust NO3- removal capacity under various conditions. Benefitting from the electrochlorination on the anode, this electrochemical system achieved nitrogen (N2) selectivity of 94.0 %. Moreover, CuFe NPs@NC/NF exhibited good stability after 15 cycles, which should be attributed to the graphitized carbon layer. This study confirmed that CuFe NPs@NC/NF electrode is a promising and inexpensive electrode with long-term stability for electrocatalytic denitrification.
Collapse
Affiliation(s)
- Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Tianjing Zeng
- Hunan Ecological and Environmental Monitoring Center, Changsha, 410027, PR China
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha, 410004, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
10
|
Simultaneous electrokinetic removal and in situ electrochemical degradation of a high nitrogen accumulated greenhouse soil. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Bian X, Shi F, Li J, Liang J, Bao C, Zhang H, Jia J, Li K. Highly selective electrocatalytic reduction of nitrate to nitrogen in a chloride ion-free system by promoting kinetic mass transfer of intermediate products in a novel Pd-Cu adsorption confined cathode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116405. [PMID: 36352730 DOI: 10.1016/j.jenvman.2022.116405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The mass transfer on the catalyst surface has a great influence on the selectivity of electrocatalytic nitrate reduction to nitrogen. In this study, a Pd-Cu adsorption confined nickel foam cathode is designed in the absence of both proton exchange membranes and chloride ions. The repulsion of the cathode enables intermediate products such as nitrite to accumulate in the confined region, resulting in an increase in the possibility of a second-order reaction to form nitrogen. The system can obtain more than 92% continuous N2 selectivity when it is used to treat 200 mg L-1 NO3--N under a current density of 8 mA cm-2, which is not only higher than those of semiconfined and nonconfined systems but also significantly better than the results obtained by Pd-Cu directly modified cathodes prepared by electrodeposition or impregnation. It is found that a high initial nitrate concentration and low current density are more beneficial for the accumulation of intermediates on Pd-Cu catalysts, thus improving the formation of nitrogen. A mechanism study reveals that the intermediates can completely occupy the active sites on the surface of Pd, avoiding the generation of active hydrogen, and therefore inhibiting the first-order reaction to produce ammonia. Moreover, the reducibility of Pd-Cu can also be gradually improved under the function of the cathode so that the system exhibits good stability. This study demonstrates an environmentally friendly and promising method for total nitrogen removal from industrial wastewater with high conductivity.
Collapse
Affiliation(s)
- Xingchen Bian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Feng Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jingdong Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jianxing Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Hongbo Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
12
|
Li X, Xing W, Hu T, Luo K, Wang J, Tang W. Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Rapid and effective nitrate reduction over wide pH range using CuxO-CNT with the presence of KBH4: The role of in situ produced hydrogen and zero-valent copper. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Li Y, Wu M, Wu J, Wang Y, Zheng Z, Jiang Z. Mechanistic insight and rapid co-adsorption of nitrogen pollution from micro-polluted water over MgAl-layered double hydroxide composite based on zeolite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Zahmatkesh S, Amesho KT, Sillanpaa M, Wang C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: Challenges, opportunities, and progressive research trends. CLEANER CHEMICAL ENGINEERING 2022. [PMCID: PMC9176107 DOI: 10.1016/j.clce.2022.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 has aroused drastic effects on the global economy and public health. In response to this, personal protective equipment, hand hygiene, and social distancing have been considered the most important ways to prevent the direct spread of the virus. SARS-CoV-2 would be possible survive in wastewater for a few days, leading to secondary transmission via contact with water and wastewater. Thus, the most economical and practical approaches for decentralized wastewater treatment are renewable energies such as the solar energy disinfestation process. However, as freshwater requirements increase and fossil fuels become unsustainable, renewable energy becomes more attractive for desalination applications. Solar photovoltaic, membrane-based, and electricity desalination technologies are becoming increasingly popular due to their lower energy requirements. Several aquatic environments could be benefitted from solar energy wastewater disinfection. Besides, utilizing solar energy during the day can inactivate SARS-CoV-2 to nearly 90%. However, conventional membrane-based desalination practices have also been integrated, including reverse osmosis (RO) and electrodialysis (ED). Several exciting membrane processes have been developed recently, including membrane distillation (MD), pressure-reduced osmosis (PRO), and reverse electrodialysis (RED). Such operations can produce clean and sustainable electricity from brine and impaired water, generally considered hazardous to the environment. As a result, neither PRO nor RED can produce electricity without mixing a high salinity solution (such as seawater or brine and wastewater, respectively) with a low salinity solution. Herein, we critically review the progress in applying renewable energy such as solar energy and geothermal energy for generating electricity from wastewater treatment and uniquely discuss the effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment. We also highlight the significant process made on the membrane processes utilizing renewable energy and research gaps from the standpoint of producing clean and sustainable energy. The significant points of this review are: (1) among various types of renewable energy, solar energy and geothermal energy have been predominantly studied for wastewater treatment, (2) effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment are critically analyzed, and (3) the knowledge gaps and anticipated future research outlook have been consequently proposed thereof.
Collapse
|
16
|
Zhou Y, He Y, Zhou Z, Xiao X, Wang M, Chen B. A newly isolated microalga Chlamydomonas sp. YC to efficiently remove ammonium nitrogen of rare earth elements wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115284. [PMID: 35584596 DOI: 10.1016/j.jenvman.2022.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to establish a practical approach to remove ammonium nitrogen of rare earth elements (REEs) wastewater by an indigenous photoautotrophic microalga. Firstly, a new microalgal strain was successfully isolated from REEs wastewater and identified as Chlamydomonas sp. (named Chlamydomonas sp. YC). The obtained results showed that microalga could completely remove the NH4+-N of 10% REEs wastewater after 10 days of cultivation; however, the highest NH4+-N removal rate was attained by microalga to treat undiluted REEs wastewater. Then, three cultivation modes including batch, semi-continuous and continuous cultivation methods were developed to evaluate the ability of NH4+-N removal rate by this microalga to treat diluted (10%) and undiluted REEs wastewater. It was found that, Chlamydomonas sp. YC exhibited superior performance towards NH4+-N removal rates (32.75-61.05 mg/(L·d)) by semi-continuous and continuous processes for the treatments of 10% and undiluted REEs wastewater in comparison to the results (19.50-30.38 mg/(L·d) by batch process. Interestingly, under the same treatment conditions, among the three cultivation modes, microalga exhibited the highest removal rates of NH4+-N in undiluted REEs wastewater by semi-continuous (61.05 mg/(L·d)) and continuous (57.10 mg/(L·d) processes. In term of the biochemical analysis, microalgal biomass obtained from the wastewater treatment had 35.40-44.40% carbohydrate and 4.97-6.03% lipid, which could be potential ingredients for sustainable biofuels production. And the highest carbohydrate and lipid productivities attained by Chlamydomonas sp. YC in the continuous mode were 226.36 mg/(L·d) and 32.98 mg/(L·d), respectively. Taken together, the established processes mediated with Chlamydomonas sp. YC via continuous cultivation was the great promising approaches to efficiently remove NH4+-N of REEs wastewater and produce valuable biomass for sustainable and renewable biofuels in a simultaneous manner.
Collapse
Affiliation(s)
- Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Zhihua Zhou
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
17
|
He L, Yao F, Zhong Y, Tan C, Hou K, Pi Z, Chen S, Li X, Yang Q. Achieving high-performance electrocatalytic reduction of nitrate by N-rich carbon-encapsulated Ni-Cu bimetallic nanoparticles supported nickel foam electrode. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129253. [PMID: 35739771 DOI: 10.1016/j.jhazmat.2022.129253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The cathode with low-energy consumption and long-term stability is pivotal to achieve the conversion of nitrate (NO3-) to nitrogen (N2) by electrocatalytic denitrification. Herein, a binder-free electrode was synthesized by directly immobilizing N-doped graphitized carbon layer-encapsulated NiCu bimetallic nanoparticles on nickel foam (NF) (NiCu@N-C/NF) and served as the cathode for electrocatalytic NO3- reduction. Morphological characterization indicated that Ni and Cu nanoparticles were encapsulated by the N-doped graphitized carbon layer and well-dispersed on the surface of NF. Compared with monometallic composite cathode (Cu@N-C/NF and Ni@N-C/NF), NiCu@N-C/NF exhibited better NO3- removal performance (98.63 %) and lower energy consumption (0.007 kW·h mmol-1), which should be attributed to its strong adsorption ability to NO3- and excellent electron transfer property. Meanwhile, its electrocatalytic performance could be maintained in wide initial NO3- concentration (1.79-7.14 mM) and solution pH (3-11). With the assistance of electrochlorination, the N2 selectivity of electrochemical system was up to 99.89 % in the presence of 0.028 M Cl-. More importantly, NiCu@N-C/NF electrode displayed an ultra-high stability during ten recycling experiments. This study indicated that the binderless composite cathode NiCu@N-C/NF had great potential in electrocatalytic NO3- removal from wastewater.
Collapse
Affiliation(s)
- Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
18
|
Huang J, Liu Z, Huang D, Jin T, Qian Y. Efficient removal of uranium (VI) with a phytic acid-doped polypyrrole/ carbon felt electrode using double potential step technique. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128775. [PMID: 35358817 DOI: 10.1016/j.jhazmat.2022.128775] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In order to efficiently extract uranium from uranium-containing wastewater, a novel acid doped polypyrrole/carbon felt (PA-PPy/CF) electrode was prepared via a facile electrodeposition method. For this material, PA and PPy combined to form a stable chemical structure by a charge compensation mechanism. The electrochemical characterization results showed that PA-PPy can significantly accelerate the electrochemical reduction rate of uranium ions. Moreover, a double potential step technique (DPST) was applied to prevent water splitting and maintained the electrocatalytic reduction activity of the surface groups during the electrochemical adsorption process. The removal efficiency obtained by the DPST method was six times higher than that obtained by the conventional chemical adsorption. When the concentrations of uranyl nitrate were 10, 20, 50, and 100 mg/L, the removal efficiencies of uranium were 98.8%, 98.1%, 94.6%, and 93.7%, and the adsorption capacities of uranium were 164.7, 326.9, 788.5, and 1562.0 mg/g, respectively. This material also showed an excellent recycling performance and remarkable selectivity for uranium ions. This work may shed light on the development of removal system for uranium (VI).
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Zhirong Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Dejuan Huang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Tianxiang Jin
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China; School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yong Qian
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
19
|
Yang Y, Ali A, Su J, Chang Q, Xu L, Su L, Qi Z. Phenol and 17β-estradiol removal by Zoogloea sp. MFQ7 and in-situ generated biogenic manganese oxides: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128281. [PMID: 35066225 DOI: 10.1016/j.jhazmat.2022.128281] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The pollution of multifarious pollutants such as heavy metal, organic compounds, and nitrate are a hot research topic at present. In this study, the functions of Zoogloea sp. MFQ7 and its biological precipitation formed during bacterial manganese oxidation on the removal of phenol and 17β-estradiol (E2) were investigated. Strain MFQ7, a manganese-oxidizing bacteria, can remove 98.34% of phenol under pH of 7.1, a temperature of 30 ℃ and Mn2+ concentration of 24.34 mg L-1, additionally, the optimum E2 removal by strain MFQ7 was 100.00% at pH of 7.1, temperature of 28 ℃ and Mn2+ concentration of 28.45 mg L-1 by using response surface methodology (RSM) based on Box-Behnken design (BBD) model. The maximum adsorption capacity of bio-precipitation for phenol and E2 was 201.15 mg g-1 and 65.90 mg g-1, respectively. Furthermore, adsorption kinetics and isotherms analysis, XPS, FTIR spectra, Mn(III) trapping experiments elucidated chemical adsorption and Mn(III) oxidation contribute to the removal of phenol and E2 by biogenic manganese oxides. These findings indicated that the adsorption and oxidation of manganese are expected to be one of the effective means to remove these typical organic pollutants containing phenol and E2.
Collapse
Affiliation(s)
- Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| |
Collapse
|
20
|
Xu H, Ma Y, Chen J, Zhang WX, Yang J. Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle. Chem Soc Rev 2022; 51:2710-2758. [PMID: 35274646 DOI: 10.1039/d1cs00857a] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrate enrichment, which is mainly caused by the over-utilization of fertilisers and industrial sewage discharge, is a major global engineering challenge because of its negative influence on the environment and human health. To solve this serious problem, many technologies, such as the activated sludge method, reverse osmosis, ion exchange, adsorption, and electrodialysis, have been developed to reduce the nitrate levels in water bodies. However, the applications of these traditional techniques are limited by several drawbacks, such as a long sludge retention time, slow kinetics, and undesirable by-products. From an environmental perspective, the most promising nitrate reduction technology is enabled to convert nitrate into benign N2, and features low cost, high efficiency, and environmental friendliness. Recently, electrocatalytic nitrate reduction has been proven by satisfactory research achievements to be one of the most promising methods among these technologies. This review provides a comprehensive account of nitrate reduction using electrocatalysis methods. The fundamentals of electrocatalytic nitrate reduction, including the reaction mechanisms, reactor design principles, product detection methods, and performance evaluation methods, have been systematically summarised. A detailed introduction to electrocatalytic nitrate reduction on transition metals, especially noble metals and alloys, Cu-based electrocatalysts, and Fe-based electrocatalysts is provided, as they are essential for the accurate reporting of experimental results. The current challenges and potential opportunities in this field, including the innovation of material design systems, value-added product yields, and challenges for products beyond N2 and large-scale sewage treatment, are highlighted.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Wei-Xian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
21
|
Zhao X, Li X, Zhang H, Chen X, Xu J, Yang J, Zhang H, Hu G. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127319. [PMID: 34583155 DOI: 10.1016/j.jhazmat.2021.127319] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Environmentally friendly electrochemical reduction pathways from NO3- to NH3 or N2 have provided feasible strategy into the green production of ammonia or the treatment of nitrate wastewater. Here, we anchored single-atom Cu with boron carbon nitride on carbon nanotube (BCN@Cu/CNT), and achieved the efficient operation of electrochemical nitrate reduction reaction (NIRR). BCN@Cu/CNT can efficiently catalyze the selective conversion of high-concentration nitrate into high-value-added ammonia, where the ammonia yield rate and Faradaic efficiency are as high as 172,226.5 μg h-1 mgcat.-1 and 95.32% (at -0.6 V), respectively. BCN@Cu/CNT also shows the ability to efficiently remove low-concentration nitrates in sewage. Specifically, here only takes 5 h to nearly 100% (99.32%) eliminate NO3- (50 mg L-1) in sewage without any residual NO2-. The excellent catalytic activity and physicochemical stability of BCN@Cu/CNT for NIRR suggest the promising industrial application prospects, including the green production of ammonia and the purification of nitrate wastewater.
Collapse
Affiliation(s)
- Xue Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xue Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 457001, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
22
|
Xu B, Chen Z, Zhang G, Wang Y. On-Demand Atomic Hydrogen Provision by Exposing Electron-Rich Cobalt Sites in an Open-Framework Structure toward Superior Electrocatalytic Nitrate Conversion to Dinitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:614-623. [PMID: 34914357 DOI: 10.1021/acs.est.1c06091] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic nitrate (NO3-) reduction to N2 via atomic hydrogen (H*) is a promising approach for advanced water treatment. However, the reduction rate and N2 selectivity are hindered by slow mass transfer and H* provision-utilization mismatch, respectively. Herein, we report an open-framework cathode bearing electron-rich Co sites with extraordinary H* provision performance, which was validated by electron spin resonance (ESR) and cyclic voltammetry (CV) tests. Benefiting from its abundant channels, NO3- has a greater opportunity to be efficiently transferred to the vicinity of the Co active sites. Owing to the enhanced mass transfer and on-demand H* provision, the nitrate removal efficiency and N2 selectivity of the proposed cathode were 100 and 97.89%, respectively, superior to those of noble metal-based electrodes. In addition, in situ differential electrochemical mass spectrometry (DEMS) indicated that ultrafast *NO2- to *NO reduction and highly selective *NO to *N2O or *N transformation played crucial roles during the NO3- reduction process. Moreover, the proposed electrochemical system can achieve remarkable N2 selectivity without the additional Cl- supply, thus avoiding the formation of chlorinated byproducts, which are usually observed in conventional electrochemical nitrate reduction processes. Environmentally, energy conservation and negligible byproduct release ensure its practicability for use in nitrate remediation.
Collapse
Affiliation(s)
- Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhixuan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
23
|
Su Y, Muller KR, Yoshihara-Saint H, Najm I, Jassby D. Nitrate Removal in an Electrically Charged Granular-Activated Carbon Column. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16597-16606. [PMID: 34874719 DOI: 10.1021/acs.est.1c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrate removal from groundwater remains a challenge. Here, we report on the development of a flow-through, electrically charged, granular-activated carbon (GAC)-filled column, which effectively removes nitrate. In this system, the GAC functioned as an anode, while a titanium sheet acted as a cathode. The high removal rate of nitrate was achieved through a combination of electrosorption and electrochemical transformation to N2. The column could be readily regenerated in situ by reversing the polarity of the applied potential. We demonstrate that in the presence of chloride, the mechanism responsible for the observed nitrate removal involves a combination of electroadsorption of nitrate to the anodically charged GAC, electroreduction of nitrate to ammonium, and the oxidation of ammonium to N2 gas by reactive chlorine and other oxidative radicals (with nearly 100% N2 selectivity). Given the ubiquitous presence of chloride in groundwater, this method represents a ready, green, and sustainable treatment process with significant potential for the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Katherine R Muller
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Hira Yoshihara-Saint
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Issam Najm
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
24
|
Zou X, Chen C, Wang C, Zhang Q, Yu Z, Wu H, Zhuo C, Zhang TC. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149645. [PMID: 34399327 DOI: 10.1016/j.scitotenv.2021.149645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment of nitrate-rich wastewater is important but challenging for the conventional biological denitrification process. Here, we propose combining the electrochemical reduction and anaerobic ammonium oxidation (anammox) processes together for treatment of nitrate-rich wastewater. This article reviews the mechanism and current research status of electrochemical reduction of nitrate to ammonium as well as the mechanism and applicability of the anammox process. This article discusses the principles, superiorities and challenges of this combined process. The feasibility of the combined process depends on the efficiency of electrochemical nitrate reduction to ammonium and the conditions in the anammox process to use the reduced ammonium as the substrate to achieve deep nitrogen removal. The article provides a feasible strategy for using the electrochemical reduction and anammox combined process to treat nitrate-rich wastewater.
Collapse
Affiliation(s)
- Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Tianping College of Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| | - Changhong Wang
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Qun Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Zhuowei Yu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Haiping Wu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Chao Zhuo
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept., University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| |
Collapse
|
25
|
Fu J, Yao F, Xie T, Zhong Y, Tao Z, Chen S, He L, Pi Z, Hou K, Wang D, Li X, Yang Q. In-situ growth of needle-like Co3O4 on cobalt foam as a self-supported cathode for electrochemical reduction of nitrate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Min B, Gao Q, Yan Z, Han X, Hosmer K, Campbell A, Zhu H. Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bokki Min
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Qiang Gao
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Zihao Yan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Xue Han
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Kait Hosmer
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Alayna Campbell
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Huiyuan Zhu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| |
Collapse
|
27
|
Zhang Q, Ba X, Liu S, Li Y, Cai L, Sun H, Jiang B. Synchronous anodic oxidation-cathodic precipitation strategy for efficient phosphonate wastes mineralization and recovery of phosphorus in the form of hydroxyapatite. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Denitrification on PdCu-AC with hydrogen from electrocatalytic water splitting. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Chen G, Wu G, Li N, Lu X, Zhao J, He M, Yan B, Zhang H, Duan X, Wang S. Landfill leachate treatment by persulphate related advanced oxidation technologies. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126355. [PMID: 34329014 DOI: 10.1016/j.jhazmat.2021.126355] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Landfill leachate is produced from garbage decomposition with highly toxic and bio-refractory compounds, which poses serious harm to environmental security and human health. Thus, it is urgent to treat landfill leachate properly. Persulfate (PS) oxidation has attracted extensive attentions in terms of fast reaction speed, non-selectivity to target pollutants and thorough oxidation. In recent years, PS oxidation has been widely adopted for landfill leachate purification. However, the related results have been rarely summarized. In this review, the treatment of landfill leachate by PS oxidation system is discussed systematically including oxidants, activation modes and oxidation mechanisms. In addition, the current situation of PS oxidation system and other coupled systems for landfill leachate treatment is also summarized. Finally, the challenges and future research directions of landfill leachate treatment based on PS oxidation process are proposed. Meaningfully, this review will provide valuable references for the development of landfill leachate treatment process, promoting the application of advanced oxidation technology in landfill leachate treatment.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Guanyun Wu
- Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China.
| | - Xukai Lu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Jianhui Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Mengting He
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
30
|
Li Y, Ma J, Waite TD, Hoffmann MR, Wang Z. Development of a Mechanically Flexible 2D-MXene Membrane Cathode for Selective Electrochemical Reduction of Nitrate to N 2: Mechanisms and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10695-10703. [PMID: 34132087 DOI: 10.1021/acs.est.1c00264] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The contamination of water resources by nitrate is a major problem. Herein, we report a mechanically flexible 2D-MXene (Ti3C2Tx) membrane with multilayered nanofluidic channels for a selective electrochemical reduction of nitrate to nitrogen gas (N2). At a low applied potential of -0.8 V (vs Ag/AgCl), the MXene electrochemical membrane was found to exhibit high selectivity for NO3- reduction to N2 (82.8%) due to a relatively low desorption energy barrier for the release of adsorbed N2 (*N2) compared to that for the adsorbed NH3 (*NH3) based on density functional theory (DFT) calculations. Long-term use of the MXene membrane for treating 10 mg-NO3-N L-1 in water was found to have a high faradic efficiency of 72.6% for NO3- reduction to N2 at a very low electrical cost of 0.28 kWh m-3. Results of theoretical calculations and experimental results showed that defects on the MXene nanosheet surfaces played an important role in achieving high activity, primarily at the low-coordinated Ti sites. Water flowing through the MXene nanosheets facilitated the mass transfer of nitrate onto the low-coordinated Ti sites with this enhancement of particular importance under cathodic polarization of the MXene membrane. This study provides insight into the tailoring of nanoengineered materials for practical application in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jinxing Ma
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael R Hoffmann
- California Institute of Technology, The Linde-Robinson Laboratory, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
31
|
A coupled system of flow-through electro-Fenton and electrosorption processes for the efficient treatment of high-salinity organic wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L. Critical review of advanced oxidation processes in organic wastewater treatment. CHEMOSPHERE 2021; 275:130104. [PMID: 33984911 DOI: 10.1016/j.chemosphere.2021.130104] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
With the development of industrial society, organic wastewater produced by industrial manufacturing has caused many environmental problems. The vast majority of organic pollutants in water bodies are persistent in the environment, posing a threat to human and animal health. Therefore, efficient treatment methods for highly concentrated organic wastewater are urgently needed. Advanced oxidation processes (AOPs) are widely noticed in the area of treating organic wastewater. Compared with other chemical methods, AOPs have the characteristics of high oxidation efficiency and no secondary pollution. In this paper, the mechanisms, advantages, and limitations of AOPs are comprehensively reviewed. Besides, the basic principles of combining different AOPs to enhance the treatment efficiency are described. Furthermore, the applications of AOPs in various wastewater treatments, such as oily wastewater, dyeing wastewater, pharmaceutical wastewater, and landfill leachate, are also presented. Finally, we conclude that the main direction in the future of AOPs are the modification of catalysts and the optimization of operating parameters, with the challenges focusing on industrial applications.
Collapse
Affiliation(s)
- Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
33
|
Chauhan R, Srivastava VC. A Suitable Combination of Electrodes for Simultaneous Reduction of Nitrates and Oxidation of Ammonium Ions in an Explosive Industry Wastewater. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rohit Chauhan
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
34
|
Lin Z, Cheng S, Yu Z, Yang J, Huang H, Sun Y. Enhancing bio-cathodic nitrate removal through anode-cathode polarity inversion together with regulating the anode electroactivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142809. [PMID: 33097251 DOI: 10.1016/j.scitotenv.2020.142809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bio-cathodic nitrate removal uses autotrophic nitrate-reducing bacteria as catalysts to realize the nitrate removal process and has been considered as a cost-effective way to remove nitrate contamination. However, the present bio-cathodic nitrate removal process has problems with long start-up time and low performance, which are urgently required to improve for its application. In this study, we investigated an anode-cathode polarity inversion method for rapidly cultivating high-performance nitrate-reducing bio-cathode by regulating bio-anodic bio-oxidation electroactivities under different external resistances and explored at the first time the correlation between the oxidation performance and the reduction performance of one mixed-bacteria bioelectrode. A high bio-electrochemical nitrate removal rate of 2.74 ± 0.03 gNO3--N m-2 d-1 was obtained at the bioelectrode with high bio-anodic bio-oxidation electroactivity, which was 4.0 times that of 0.69 ± 0.03 gNO3--N m-2 d-1 at the bioelectrode with low bio-oxidation electroactivity, and which was 1.3-7.9 times that of reported (0.35-2.04 gNO3--N m-2 d-1). 16S rRNA gene sequences and bacterial biomass analysis showed higher bio-cathodic nitrate removal came from higher bacterial biomass of electrogenic bacteria and nitrate-reducing bacteria. A good linear correlation between the bio-cathodic nitrate removal performance and the reversed bio-anodic bio-oxidation electroactivity was presented and likely implied that electrogenic biofilm had either action as autotrophic nitrate reduction or promotion to the development of autotrophic nitrate removal system. This study provided a novel strategy not only to rapidly cultivate high-performance bio-cathode but also to possibly develop the bio-cathode with specific functions for substance synthesis and pollutant detection.
Collapse
Affiliation(s)
- Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haobin Huang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
35
|
Yao F, Jia M, Yang Q, Chen F, Zhong Y, Chen S, He L, Pi Z, Hou K, Wang D, Li X. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. WATER RESEARCH 2021; 193:116881. [PMID: 33571901 DOI: 10.1016/j.watres.2021.116881] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
A highly active and selective electrode is essential in electrochemical denitrification. Although the emerging Cu-based electrode has attracted intensive attentions in electrochemical NO3- reduction, the issues such as restricted activity and selectivity are still unresolved. In our work, a binder-free composite electrode (Cu3P/CF) was first prepared by direct growth of copper phosphide on copper foam and then applied to electrochemical NO3- reduction. The resulting Cu3P/CF electrode showed enhanced electrochemical performance for NO3- reduction (84.3%) with high N2 selectivity (98.01%) under the initial conditions of 1500 mg L-1 Cl- and 50 mg N L-1 NO3-. The cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) demonstrated that electrochemical NO3- reduction was achieved through electron transfer between NO3- and Cu0 originated from CF. The in-situ grown Cu3P served as the bifunctional catalyst, the electron mediator or bridge to facilitate the electron-transfer for NO3- reduction and the stable catalyst to produce atomic H* toward NO2- conversion. Meanwhile, the Cu3P/CF remained its electrocatalytic activity even after eight cyclic experiments. Finally, a 2-stage treatment strategy, pre-oxidation by Ir-Ru/Ti anode and post-reduction by Cu3P/CF cathode, was designed for electrochemical chemical oxygen demand (COD) and total nitrogen (TN) removal from real wastewater.
Collapse
Affiliation(s)
- Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China.
| | - Maocong Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China.
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, China; College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha, 410004, P.R. China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| |
Collapse
|
36
|
Wang Z, Young SD, Goldsmith BR, Singh N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Yin H, Yao F, Pi Z, Zhong Y, He L, Hou K, Fu J, Chen S, Tao Z, Wang D, Li X, Yang Q. Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. J Colloid Interface Sci 2021; 586:551-562. [DOI: 10.1016/j.jcis.2020.10.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 01/18/2023]
|
38
|
Electrochemical removal of nitrate from wastewater with a Ti cathode and Pt anode for high efficiency and N2 selectivity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Jiang Z, Wu J, Liu X, Yu H, Jiao C, Shen J, Pei Y. Facile synthesis of MgAl layered double hydroxides by a co-precipitation method for efficient nitrate removal from water: kinetics and mechanisms. NEW J CHEM 2021. [DOI: 10.1039/d1nj02035h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of MgAl-LDH as highly efficient adsorbents for removing low concentrations of NO3− were synthesized. The mechanism of NO3− removal has been comprehensively discussed in terms of its characterization, adsorption kinetics and thermodynamics.
Collapse
Affiliation(s)
- Zhuwu Jiang
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
- College of Civil Engineering
| | - Jiangnan Wu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Xinru Liu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Hai Yu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Chengyuan Jiao
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Jyunhong Shen
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Yanyan Pei
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| |
Collapse
|
40
|
Zhang W, Shen J, Zhang H, Zheng C, Wei R, Gao Y, Yang L. Efficient nitrate removal by Pseudomonas mendocina GL6 immobilized on biochar. BIORESOURCE TECHNOLOGY 2021; 320:124324. [PMID: 33147528 DOI: 10.1016/j.biortech.2020.124324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 05/22/2023]
Abstract
The performance of nitrate removal by Pseudomonas mendocina GL6 cells immobilized on bamboo biochar was investigated. The results showed that immobilized bacterial cells performed better nitrate removal than the free bacterial cells, and the nitrate removal rate increased from 6.51 mg/(L·h) of free cells to 8.34 mg/(L·h) of immobilized cells. The nitrate removal of immobilized bacterial cells fitted well to the zero-order kinetics model. Moreover, bath experiments showed that immobilized bacterial cells displayed more nitrate removal capacity under different conditions than free bacterial cells due to the protection of biochar carrier. The subsequent mechanistic study suggested that biochar promoted the expression level of denitrification functional genes (napA and nirK) and electron transfer genes involved in denitrification (napB and napC), which resulted in the increase of nitrate removal efficiency. Thus, biochar-immobilized P. mendocina GL6 has much potential to remove nitrate from wastewater via aerobic denitrification.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jianing Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huifen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Chaoqun Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ruping Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
41
|
Yao F, Jia M, Yang Q, Luo K, Chen F, Zhong Y, He L, Pi Z, Hou K, Wang D, Li X. Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III). CHEMOSPHERE 2020; 260:127537. [PMID: 32682133 DOI: 10.1016/j.chemosphere.2020.127537] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel method for complete Cr(Ⅵ) removal was achieved in a single-chamber cell with titanium (Ti) as anode via simultaneous indirect electro-reduction of Cr(Ⅵ) and in-situ precipitation of Cr(Ⅲ). The Cr(Ⅵ) and total Cr removal, and electric energy consumption were optimized as a function of electrochemical reactor, current density, initial Cr(Ⅵ) and chloride (Cl-) concentration, and initial solution pH. The maximum Cr(Ⅵ) and total Cr removal efficiency reached 80.5 and 79.4% respectively within 12 h at current density of 10 mA cm-2 as initial Cr(Ⅵ) concentration was 0.078 mM. Decreasing the initial solution pH was beneficial to Cr(Ⅵ) reduction, but Cr(Ⅲ) precipitation was inhibited, resulting in the poor total Cr removal. The suitable Cl- concentration guaranteed sufficient reducing agents (Ti3+ and Ti2+) for Cr(Ⅵ) removal. The reaction mechanism demonstrated that Ti anode could be corroded to produce Ti3+ and Ti2+, which provided the electrons for reduction of Cr(Ⅵ) to Cr(Ⅲ). Simultaneously, the solid products (Ti2O(6x-y-z+52)Cl2yCr2x(OH)2z(s)) were in-situ formed and precipitated from the solution due to the continuous generation of hydroxyl ion (OH-) from cathode. This study might provide a new electrochemical method with non-precious metal as the electrode for complete Cr(Ⅵ) removal from aqueous media.
Collapse
Affiliation(s)
- Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Maocong Jia
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Kun Luo
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, PR China.
| | - Fei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, PR China
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha, 410004, PR China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
42
|
Zhou H, Huang N, Zhao Y, Baig SA, Xiang J. Dechlorination of 2,4‐dichlorophenoxyacetic acid using biochar‐supported nano‐palladium/iron: Preparation, characterization, and influencing factors. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Hongyi Zhou
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Ning Huang
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yongkang Zhao
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Shams Ali Baig
- Department of Environmental Sciences Abdul Wali Khan University Mardan 23200 Pakistan
| | - Junchao Xiang
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
43
|
Cu+ based active sites of different oxides supported Pd-Cu catalysts and electrolytic in-situ H2 evolution for high-efficiency nitrate reduction reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Ouyang K, Jiang N, Xue W, Xie S. Enhanced photocatalytic activities of visible light-responsive Ag3PO4-GO photocatalysts for oxytetracycline hydrochloride degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Treatment of real deplating wastewater through an environmental friendly precipitation-electrodeposition-oxidation process: Recovery of silver and copper and reuse of wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Ye W, Zhang W, Hu X, Yang S, Liang W. Efficient electrochemical-catalytic reduction of nitrate using Co/AC 0.9-AB 0.1 particle electrode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139245. [PMID: 32408042 DOI: 10.1016/j.scitotenv.2020.139245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/07/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In this work, a composite particle electrode (Co/ACx-ABy) was proposed using cobalt as the catalyst, active carbon (AC) as the carrier, and acetylene black (AB) as the conductor. The proposed particle electrodes were applied in a continuous three-dimensional (3D) electrochemical reactor. Based upon the removal efficiency of total nitrogen (TN) and the corresponding energy consumption, the optimum mass ratio of AC to AB was determined to be 0.9:0.1. Scanning electron microscopy (SEM) and energy dispersive system (EDS)-mapping revealed the presence of metal particles on the surface of Co/AC0.9-AB0.1 electrode. Furthermore, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that Co/AC0.9-AB0.1 contained three valence states of Co, namely Co0, Co2+, and Co3+. Additionally, batch experiments showed that 95% of TN removal was achieved under the current of 0.4 A, pH of 7, hydraulic retention time (HRT) of 60 min and the initial TN of 20 mg/L. The addition of Cl- was obviously beneficial to the removal of TN, whereas HCO3-, PO43-, CO32-, and dissolved organic matter (DOM) inhibited the removal of TN. The cyclic voltammetry (CV) curve and the atomic H detected by electron spin resonance (ESR) demonstrated that nitrate was directly reduced by Co0 ions and indirectly reduced by H radicals.
Collapse
Affiliation(s)
- Wenjian Ye
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenwen Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinxin Hu
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuai Yang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenyan Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
47
|
Wang J, Ling L, Deng Z, Zhang WX. Nitrogen-doped iron for selective catalytic reduction of nitrate to dinitrogen. Sci Bull (Beijing) 2020; 65:926-933. [PMID: 36747425 DOI: 10.1016/j.scib.2020.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/29/2023]
Abstract
Nitrate is the leading cause of eutrophication worldwide and is one of the most challenging pollutants for restoration of polluted surface waters such as lakes, rivers and reservoirs. We report herein a new architecture of iron nanoparticles for high-efficiency denitrification by selective reduction of nitrate (NO3-) to dinitrogen (N2). The iron nanoparticles are doped with nitrogen (FeN) and encapsulated within a thin layer of nitride-carbon (NC). The nanoparticles have high pyrrolic N content (17.4 at.%) and large specific surface area (2040 m2/g). Laboratory experiments demonstrated high N2 selectivity (91%) and nitrate removal capacity (6004 mg N/g Fe) for treatment of nitrate-containing water. This iron-based nanomaterial overcomes shortcomings of conventional catalysts by eliminating the use of precious and toxic heavy metals (e.g., Pd, Pt, Cu, Ni) and minimizing the generation of undesirable byproducts (e.g., ammonia) from the reactions with nanoscale zero-valent iron (nZVI). The multiple electron transfers process from NO3- to N2 can be fine-tuned by adjusting the NC shell thickness. Superior electrocatalytic performance, low cost and minimal environmental impact of the iron-derived nanocatalyst offer promising prospects for water purification, waste treatment and environmental remediation.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
48
|
Chen F, Huang GX, Yao FB, Yang Q, Zheng YM, Zhao QB, Yu HQ. Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism. WATER RESEARCH 2020; 173:115559. [PMID: 32028250 DOI: 10.1016/j.watres.2020.115559] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2-, h+, •OH and SO4•- all worked, where h+, •OH and SO4•- were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2- was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•- and H2O/OH-. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.
Collapse
Affiliation(s)
- Fei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
| | - Gui-Xiang Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
| | - Fu-Bing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
49
|
Yao F, Yang Q, Yan M, Li X, Chen F, Zhong Y, Yin H, Chen S, Fu J, Wang D, Li X. Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121651. [PMID: 31767502 DOI: 10.1016/j.jhazmat.2019.121651] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel Pd/N-doped loofah sponge-derived biochar (Pd/NLSBC) material with three-dimensional (3D) network structure was prepared through the carbonization-impregnation method and applied as cathode for electrocatalytic bromate removal. The N-doped biochar not only increased the adsorption capacity of electrode, but also facilitated electron transfer, subsequently resulting in the high electrocatalytic activity for bromate removal. The results indicated higher bromate adsorption capacity of Pd/NLSBC electrode was favorable to the electrocatalytic bromate removal. The influences of significant operating factors including calcination temperature, initial solution pH, applied current intensity, and initial bromate concentration on electrocatalytic bromate removal were also optimized. Under the current intensity of 10 mA, Pd/NLSBC-800 exhibited the highest bromate removal efficiency (96.7 %) and the bromide conversion rate reached almost 100 % at the initial bromate concentration of 0.781 μmol L-1. This process could be effectively performed over a wide range of pH (2.0-9.0) and be well fitted to the pseudo-first-order kinetic model under different conditions. The reaction mechanism study indicated that both direct electron transfer and indirect reduction by the active hydrogen atom (H*) contributed to the elctrocatalytic bromate removal. Meanwhile, Pd/NLSBC-800 electrode could maintain its high electrocatalytic activity for bromate removal after five cycles.
Collapse
Affiliation(s)
- Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaolu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, PR China
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, PR China
| | - Huanyu Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shenjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
50
|
Beltrame TF, Zoppas FM, Marder L, Marchesini FA, Miró E, Bernardes AM. Use of a two-step process to denitrification of synthetic brines: electroreduction in a dual-chamber cell and catalytic reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1956-1968. [PMID: 31768960 DOI: 10.1007/s11356-019-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Membrane separation processes are being currently applied to produce drinking water from water contaminated with nitrate. The overall process generates a brine with high nitrate/nitrite concentration that is usually send back to a conventional wastewater treatment plant. Catalytic processes to nitrate reduction are being studied, but the main goal of achieving a high selectivity to nitrogen production is still a matter of research. In this work, a two-step process was evaluated, aiming to verify the best combination of operational parameters to efficiently reduce nitrate to nitrogen. In the first step, the nitrate was reduced to nitrite by electroreduction, applying a copper electrode and different cell potentials. A second step of the process was carried out by reducing the generated nitrite with a catalytic process by hydrogenation. The results showed that the highest nitrate reduction (89%) occurred when a cell potential of 11 V was applied. In this condition, the nitrite ion was generated with all experimental conditions evaluated. Then, to reduce the nitrite ion formed by catalytic reduction, activated carbon fibers (ACF) and powder γ-alumina (γ-Al2O3) were tested as supports for palladium (Pd). With both catalysts, the total nitrite conversion was obtained, being the selectivity to gaseous compounds 94% and 97% for Pd/Al2O3 and Pd/ACF, respectively. Considering the results obtained, a two-stage treatment setup to brine denitrification may be proposed. With electrochemistry, an operating condition was achieved in which ammonium production can be controlled to very low values, but the reduction is predominant to nitrite. With the second step, all nitrite is converted to nitrogen gas and just 3% of ammonium is produced with the most selective catalyst. The main novelty of this work is associated to the use of a two-stage process enabling 89% of nitrate reduction and 100% of nitrite reduction.
Collapse
Affiliation(s)
- Thiago Favarini Beltrame
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina
| | - Fernanda Miranda Zoppas
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina.
| | - Luciano Marder
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Fernanda Albana Marchesini
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina
| | - Eduardo Miró
- Instituto de Investigaciones en Catálisis y Petroquímica (FIQ, UNL-CONICET), Santiago del Estero, 2829, S3000, Santa Fe, Argentina
| | - Andrea Moura Bernardes
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais (LACOR, UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| |
Collapse
|