1
|
Xu W, Zhang J, Yang C, Ai F, Yin Y, Guo H. Differential impacts of organic and inorganic phosphorus on the growth and phosphorus utilization of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175392. [PMID: 39122037 DOI: 10.1016/j.scitotenv.2024.175392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Phytoplankton growth in freshwater is often limited by the availability of phosphorus (P), and thorough understandings of P availability are essential to prevent algal blooms. However, the differences in bioavailability and utilization mechanisms of different P forms remain unclear, especially whether organophosphorus could be used as P sources. This study investigated the effects of 0.5, 1.0, and 2.0 mg/L P on Microcystis aeruginosa, including dissolved organic P (DOP) (1-hydroxyethane 1,1-diphosphonic acid) and dissolved inorganic P (DIP) (dipotassium phosphate). Compared with DIP, intracellular P content absorbed in DOP treatment was significantly lower. DOP was more conducive to the synthesis of soluble protein and the release of extracellular polymeric substances. Alkaline phosphatase activity was generally enhanced in response to DIP deficiency. Both DIP and DOP promoted carbon uptake to the same extent. DOP groups absorbed carbon to synthesize energy and proteins in response to stress, while DIP groups were mainly used carbon for growth. They all reduced the content of microcystin releasing into the aquatic environment and therefore reduced ecological risk caused by microcystin. Compared with DIP, the expressions of photosynthesis-related genes were significantly down-regulated in DOP group, while the expressions of nucleoside phosphate catabolism, P transporter, and amino acid biosynthesis and metabolism were significantly up-regulated in response to P deficiency environment and the stress of 1.0 mg/L DOP concentration. In summary, the bioavailability of different P forms on cyanobacteria is different, so it is not sufficient to only use total P for assessing environmental risk. P forms should also be considered for risk management of freshwater ecosystems.
Collapse
Affiliation(s)
- Wenxuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengfu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Riedel R, Commichau FM, Benndorf D, Hertel R, Holzer K, Hoelzle LE, Mardoukhi MSY, Noack LE, Martienssen M. Biodegradation of selected aminophosphonates by the bacterial isolate Ochrobactrum sp. BTU1. Microbiol Res 2024; 280:127600. [PMID: 38211497 DOI: 10.1016/j.micres.2024.127600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Aminophosphonates, like glyphosate (GS) or metal chelators such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP), are released on a large scale worldwide. Here, we have characterized a bacterial strain capable of degrading synthetic aminophosphonates. The strain was isolated from LC/MS standard solution. Genome sequencing indicated that the strain belongs to the genus Ochrobactrum. Whole-genome classification using pyANI software to compute a pairwise ANI and other metrics between Brucella assemblies and Ochrobactrum contigs revealed that the bacterial strain is designated as Ochrobactrum sp. BTU1. Degradation batch tests with Ochrobactrum sp. BTU1 and the selected aminophosphonates GS, EDTMP, aminomethylphosphonic acid (AMPA), iminodi(methylene-phosphonic) (IDMP) and ethylaminobis(methylenephosphonic) acid (EABMP) showed that the strain can use all phosphonates as sole phosphorus source during phosphorus starvation. The highest growth rate was achieved with AMPA, while EDTMP and GS were least supportive for growth. Proteome analysis revealed that GS degradation is promoted by C-P lyase via the sarcosine pathway, i.e., initial cleavage at the C-P bond. We also identified C-P lyase to be responsible for degradation of EDTMP, EABMP, IDMP and AMPA. However, the identification of the metabolite ethylenediaminetri(methylenephosphonic acid) via LC/MS analysis in the test medium during EDTMP degradation indicates a different initial cleavage step as compared to GS. For EDTMP, it is evident that the initial cleavage occurs at the C-N bond. The detection of different key enzymes at regulated levels, form the bacterial proteoms during EDTMP exposure, further supports this finding. This study illustrates that widely used and structurally more complex aminophosphonates can be degraded by Ochrobactrum sp. BTU1 via the well-known degradation pathways but with different initial cleavage strategy compared to GS.
Collapse
Affiliation(s)
- Ramona Riedel
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany.
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Dirk Benndorf
- Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany; Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Katharina Holzer
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ludwig E Hoelzle
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Mohammad Saba Yousef Mardoukhi
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany; FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Emelie Noack
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany
| | - Marion Martienssen
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
3
|
Furtak A, Szafranek-Nakonieczna A, Furtak K, Pytlak A. A review of organophosphonates, their natural and anthropogenic sources, environmental fate and impact on microbial greenhouse gases emissions - Identifying knowledge gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120453. [PMID: 38430886 DOI: 10.1016/j.jenvman.2024.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Organophosphonates (OPs) are a unique group of natural and synthetic compounds, characterised by the presence of a stable, hard-to-cleave bond between the carbon and phosphorus atoms. OPs exhibit high resistance to abiotic degradation, excellent chelating properties and high biological activity. Despite the huge and increasing scale of OP production and use worldwide, little is known about their transportation and fate in the environment. Available data are dominated by information concerning the most recognised organophosphonate - the herbicide glyphosate - while other OPs have received little attention. In this paper, a comprehensive review of the current state of knowledge about natural and artificial OPs is presented (including glyphosate). Based on the available literature, a number of knowledge gaps have been identified that need to be filled in order to understand the environmental effects of these abundant compounds. Special attention has been given to GHG-related processes, with a particular focus on CH4. This stems from the recent discovery of OP-dependent CH4 production in aqueous environments under aerobic conditions. The process has changed the perception of the biogeochemical cycle of CH4, since it was previously thought that biological methane formation was only possible under anaerobic conditions. However, there is a lack of knowledge on whether OP-associated methane is also formed in soils. Moreover, it remains unclear whether anthropogenic OPs affect the CH4 cycle, a concern of significant importance in the context of the increasing rate of global warming. The literature examined in this review also calls for additional research into the date of OPs in waste and sewage and in their impact on environmental microbiomes.
Collapse
Affiliation(s)
- Adam Furtak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Institute of Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708, Lublin, Poland
| | - Karolina Furtak
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation - State Research Institute, Krańcowa 8, INCBR Centre, 24-100, Puławy, Poland
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
4
|
Sun S, Qiao M, Huang G, Zhang J, Yang B, Zhao X. An electrochlorination process integrating enhanced oxidation of phosphonate to orthophosphate and elimination: Verification of matrix chloridion-induced oxidation mechanism. WATER RESEARCH 2024; 249:120735. [PMID: 38007898 DOI: 10.1016/j.watres.2023.120735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 11/28/2023]
Abstract
Phosphonate used as scale inhibitor is a non-negligible eutrophic contaminant in corresponding polluted waters. Besides, its conversion to orthophosphate (ortho-P) is a precondition for realizing bioavailable phosphorus recovery. Due to the feeble degradation efficiency with less than 30 % from classical Fenton commonly used in industrial wastewater treatment and itself vulnerable to strong inhibition interference of matrix chloride ions, we proposed an electrochemical approach to transform the native salt in the solution into oxidizing substances, sort of achieving beneficial utilization of matrix waste, and enhanced the ortho-P conversion rate of 1-Hydroxyethane-1,1-diphosphonic acid (HEDP) to 89.2 % (± 3.6 %). In electrochlorination system, it was found that HEDP rapidly complexed with Fe(II) and then coordinated in-situ Fe(III) to release free HEDP via intramolecular metal-ligand electron transfer reaction. The subsequent degradation mainly rooted in the oxidation of pivotal reactive species HClO, FeIVO2+ and 1O2, causing C-P and CC bonds to fracture in sequence. Eventually the organically bound phosphorus of HEDP was recovered as ortho-P. This study acquainted the audiences with the rare mechanism of chloridion-triggered HEDP degradation under electrochemical way, as well as offered a feasible technology for synchronous transformation of organically bound phosphorus to ortho-P and elimination from phosphonates.
Collapse
Affiliation(s)
- Sainan Sun
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guanghua Huang
- Shanghai Tongji Environmental Engineering Technology Co. Ltd., Shanghai 200092, China
| | - Junke Zhang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
Latz M, Böhme A, Ulrich N. Reactivity-based identification of oxygen containing functional groups of chemicals applied as potential classifier in non-target analysis. Sci Rep 2023; 13:22828. [PMID: 38129561 PMCID: PMC10739825 DOI: 10.1038/s41598-023-50240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
In this work, we developed a reactivity-based strategy to identify functional groups of unknown analytes, which can be applied as classifier in non-target analysis with gas chromatography. The aim of this strategy is to reduce the number of potential candidate structures generated for a molecular formula determined by high resolution mass spectrometry. We selected an example of 18 isomers with the molecular formula C12H10O2 to test the performance of different derivatization reagents, whereas our aim was to select mild and fast reaction conditions. Based on the results for the isomers, we developed a four-step workflow for the identification of functional groups containing oxygen.
Collapse
Affiliation(s)
- Milena Latz
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
- Faculty of Chemistry and Mineralogy, Leipzig University, 04103, Leipzig, Germany
| | - Alexander Böhme
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Nadin Ulrich
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
6
|
Mutke XAM, Drees F, Lutze HV, Schmidt TC. Oxidation of the N-containing phosphonate antiscalants NTMP and DTPMP in reverse osmosis concentrates: Reaction kinetics and degradation rate. CHEMOSPHERE 2023; 341:139999. [PMID: 37643647 DOI: 10.1016/j.chemosphere.2023.139999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
N-containing organophosphonate antiscalants such as Aminotris (methylene phosphonic acid) (NTMP/ATMP) and Diethylenetriamine penta(methylene phosphonic acid) (DTPMP) are commonly used in reverse osmosis (RO) to prevent scaling, as well as to increase permeate yields. However, the concentrate in RO still contains antiscalants which can cause adverse effects in the environment such as mobilization of heavy metals. The abatement of antiscalants from RO concentrate can promote the precipitation of oversaturated scale-forming substances and reduce the risk of adverse environmental effects. In the present study, the degradation of NTMP and DTPMP as representatives for N-containing organophosphonate by ozone, hydroxyl radicals (•OH), and sulfate radicals (SO4•-) are studied regarding reaction kinetics and degradation in different matrices. The results show that NTMP and DTPMP react fast with ozone and sulfate radicals (formed in UV/persulfate). Reaction rate constants of ozone showed a strong pH dependency due to the dissociation of the amine. The apparent reaction rates for pH 7 have been determined to be kapp(NTMP + ozone) = 1.44 × 105 M-1 s-1 and kapp(DTPMP + ozone) = 1.16 × 106 M-1 s-1. Reaction kinetics of •OH and SO4•- did not play a distinctive pH dependency (k(•OH) = 109-1010 M-1 s-1 and k(SO4•-) = 107-108 M-1 s-1). Furthermore, real water experiments have shown that ozonation and UV/persulfate are effective tools to abate organophosphonates in RO concentrates. The formation of carcinogenic bromate in ozonation is minimized by the presence of N-containing organophosphonates presumably due to enhanced ozone consumption and scavenging of free bromine.
Collapse
Affiliation(s)
- Xenia A M Mutke
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Felix Drees
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Holger V Lutze
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany; Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany.
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| |
Collapse
|
7
|
Fan WY, Zhang X, Guo PC, Sheng GP. Highly efficient removal of phosphonates by ferrate-induced oxidation coupled with in situ coagulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131104. [PMID: 36870127 DOI: 10.1016/j.jhazmat.2023.131104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/05/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphonates, as a kind of important organic phosphorus in wastewater, should be removed in terms of their environmental risks. Unfortunately, traditional biological treatments fail to remove phosphonates effectively due to their biological inertness. The reported advanced oxidation processes (AOPs) usually require pH adjustment or coupling with other technologies to achieve high removal efficiency. Thus, a simple and efficient method for phosphonate removal is urgently needed. Herein, ferrate was found to remove phosphonates effectively in one-step under near-neutral circumstances by coupling oxidation and in-situ coagulation. Nitrilotrimethyl-phosphonic acid (NTMP), a typical phosphonate, could be efficiently oxidized by ferrate to release phosphate. The fraction of phosphate release increased with increasing ferrate dosage and reached 43.1% when 0.15 mM ferrate was added. Fe(VI) was responsible for NTMP oxidation, while Fe(V), Fe(IV) and ⋅OH played a minor role. Ferrate-induced phosphate release facilitated total phosphorus (TP) removal, because the phosphate is more easily removed via ferrate-resultant Fe(III) coagulation than the phosphonates. The coagulation removal of TP could reach up to 90% within 10 min. Furthermore, ferrate exerted high removal efficiencies for other commonly used phosphonates with approximately or up to 90% TP removal. This work provides a one-step efficient method to treat phosphonate-containing wastewaters.
Collapse
Affiliation(s)
- Wen-Yuan Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; USTC-CityU Joint Advanced Research Center, Suzhou Research Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Pu-Can Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Mutke XAM, Tavichaiyuth K, Drees F, Lutze HV, Schmidt TC. Oxidation of the nitrogen-free phosphonate antiscalants HEDP and PBTC in reverse osmosis concentrates: Reaction kinetics and degradation rate. WATER RESEARCH 2023; 233:119571. [PMID: 36841164 DOI: 10.1016/j.watres.2023.119571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Reverse osmosis (RO) is an advanced technology used to produce potable water from a variety of water sources, including surface water, seawater and wastewater. The yield of the product water from the RO systems is increased by the addition of antiscalants which prevent scaling from calcium and other ions. Removal of antiscalants from RO concentrate can induce the precipitation of oversaturated scale-forming substances, enable additional water recovery from RO concentrates, and reduce the risk of eutrophication after concentrate disposal into the receiving water (e.g., river water). This study aims to provide a better insight into oxidation reactions of the N-free phosphonate antiscalants 1-hydroxyethane-1,1-diphosphonic acid (HEDP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) with ozone, hydroxyl radical (•OH) and sulfate radicals (SO4•-). Ozone barely reacts with HEDP and PBTC at pH 7 (k < 10 M-1s - 1), while second order reaction rates of SO4•- and •OH were determined to be in the range 107-108M - 1s - 1. Sulfate, silicate and chloride matrices increased HEDP ozone degradation rate possibly due to metal complexation effect. Whereas carbonate and chloride hindered PBTC ozone degradation, and natural organic matter (NOM) inhibited both HEDP and PBTC degradation through scavenging of •OH. The SO4•-- radical based oxidation process of HEDP and PBTC is mainly inhibited by carbonate and NOM, interestingly only HEDP degradation is inhibited by chloride whereby the PBTC could not be fully degraded (degradation < 60%). The oxidation of PBTC is in real RO concentrates in both processes limited to 10% degradation, whereas HEDP could be degraded up to 60% with ozone and UV/persulfate application.
Collapse
Affiliation(s)
- Xenia A M Mutke
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Kittitouch Tavichaiyuth
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Felix Drees
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Holger V Lutze
- Civil- and Environmental Engineering, Institute IWAR, Technical University of Darmstadt, Franziska-Braun-Str. 7, 64287 Darmstadt, Germany; Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany; IWW Water Centre, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany; IWW Water Centre, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Nitrogen-doped carbon nanotube modified ultrafiltration membrane activating peroxymonosulfate for catalytic transformation of phosphonate and mitigation of membrane fouling. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
10
|
Zhu J, Wang S, Yang Z, Pan B. Robust polystyrene resin-supported nano-CoFe 2O 4 mediated peroxymonosulfate activation for efficient oxidation of 1-hydroxyethane 1,1-diphosphonic acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130281. [PMID: 36334573 DOI: 10.1016/j.jhazmat.2022.130281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanosized spinel cobalt ferrite (CoFe2O4) shows high performance in peroxymonosulfate (PMS) activation for decontamination in water, but is yet challenged by the easily leached Co(II) with high toxicity. Herein, macroporous polystyrene resin is used as the support to improve the stability of CoFe2O4 nanoparticles during PMS activation. CoFe2O4@S201 exerted high catalytic activity toward PMS activation for oxidation of 1-hydroxyethane 1,1-diphosphonic acid (HEDP), with the apparent rate normalized by Co content 38.2 times higher than that of the unsupported CoFe2O4. Meanwhile, one order of magnitude lower Co leaching (< 2.1 μg L-1) was detected during the catalytic oxidation. The Co(II)-PMS complex was the primary oxidant responsible for the oxidation of HEDP. The catalytic durability and stability of CoFe2O4@S201 for degradation of HEDP in actual wastewater were systematically evaluated in both batch and continuous-flow mode. It is found that the organic resin, which is often considered to be intolerant to oxidation, is rather stable during the non-radical process. The total cobalt leaching of the fresh CoFe2O4@S201 cannot be ignored in the 100-h continuous-flow run. In contrast, much lower cobalt leaching and slightly higher oxidation efficiency were observed for the regenerated CoFe2O4@S201, which might be due to the removal of unreactive and unstable Co sites on the surface in the first trial. The findings shed light on the potential of organic supports for improving the stability and activity of nanosized CoFe2O4 and other nano-catalysts toward practical application.
Collapse
Affiliation(s)
- Jinglin Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Ding C, Xia M, Wang F, Lei W, Ni Y. The sensitive detection and mechanism of Fe-3,5-dimethyl pyrazole fluorescent sensor to diethylenetriamine pentamethylene phosphonic acid: Experimental study and quantum chemical calculation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121623. [PMID: 35872426 DOI: 10.1016/j.saa.2022.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Diethylenetriamine pentamethylene phosphonic acid (DTPMP) is one of the most commonly used amino organic phosphonates. The existing methods for DTPMP detection are complicated, time-consuming, and cannot detect trace DTPMP in the natural environment. In the present work, the Fe-based 3,5-dimethyl pyrazole fluorescent sensor (Fe-DP) was constructed. The addition of Fe3+ to DP solution can greatly decrease the fluorescent intensity of DP, while the addition of different concentrations of DTPMP will restore the fluorescence intensity of DP to different degrees, to achieve quantitative detection of DTPMP, and the detection limit (LOD) of DTPMP was lower as 0.105 μΜ. The Fe-DP fluorescent sensor exhibited excellent anti-interference ability and good stability. Moreover, the fluorescence quenching mechanism of DP by Fe3+ was revealed by UV absorption spectrum and Multiwfn wavefunction analysis based on density function theory (DFT). The results revealed that the excitation of DP belonged to local excitation, in which the electrons were donated primarily by the N atom with double bond and redistributed within the pyrazole ring.The fluorescence quenching of adding Fe3+ was not caused by resonance energy transfer or charge transfer, which did not belong to dynamic quenching, but due to the ground state complex formed by the coordination of Fe3+ and the double bond N atom on the DP pyrazole ring.
Collapse
Affiliation(s)
- Chao Ding
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Fengyun Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yue Ni
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
12
|
Ni Z, Li Y, Wang S. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. WATER RESEARCH 2022; 220:118663. [PMID: 35661507 DOI: 10.1016/j.watres.2022.118663] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Organic phosphorus (OP) is one of the main forms of phosphorus in lake ecosystems. Mounting evidence has shown that sediment OP has become a major but underestimated issue in addressing lake eutrophication and algal bloom. However, a holistic view of sediment OP remains missing. This review aims to provide an overview of progress on the studies of OP in lake sediments, focusing on the contribution of OP to internal P loading, its potential role in algal bloom, and the migration and transformation. In addition, this work systematically summarized current methods for characterizing OP content, chemical fraction, composition, bioavailability, and assessment of OP release in sediment, with the pros and cons of each method being discussed. In the end, this work pointed out following efforts needed to deepen the understanding of sediment OP, namely: (1) In-depth literature review from a global perspective regarding the contribution of sediment OP to internal P loading with further summary about its pattern of distribution, accumulation and historical changes; (2) better mathematical models for describing drivers and the linkages between the biological pump of algal bloom and the replenishment of sediment OP; (3) fully accounting the composition and molecular size of OP for better understanding its transformation process and mechanism; ; (4) developing direct, high-sensitivity and combined techniques to improve the precision for identifying OP in sediments; (5) establishing the response of OP molecular properties and chemical reactivity to OP biodegradability and designing a comprehensive and accurate composite index to deepen the understanding for the bioavailability of OP; and (6) integrating fundamental processes of OP in current models to better describe the release and exchange of P in sediment-water interface (SWI). This work is expected to provide critical information about OP properties and deliver perspectives of novel characterization methods.
Collapse
Affiliation(s)
- Zhaokui Ni
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake Watershed, Kunming 650034, China.
| |
Collapse
|
13
|
Pan S, Nie X, Guo X, Hu H, Liu B, Zhang Y. Enhanced removal of phosphonates from aqueous solution using PMS/UV/hydrated zirconium oxide process. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Martin PR, Buchner D, Jochmann MA, Elsner M, Haderlein SB. Two Pathways Compete in the Mn(II)-Catalyzed Oxidation of Aminotrismethylene Phosphonate (ATMP). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4091-4100. [PMID: 35294177 DOI: 10.1021/acs.est.1c06407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mn(II)-catalyzed oxidation by molecular oxygen is considered a relevant process for the environmental fate of aminopolyphosphonate chelating agents such as aminotrismethylene phosphonate (ATMP). However, the potential roles of Mn(III)ATMP-species in the underlying transformation mechanisms are not fully understood. We combined kinetic studies, compound-specific stable carbon isotope analysis, and equilibrium speciation modeling to shed light on the significance of such Mn-ATMP species for the overall ATMP oxidation by molecular oxygen. The fraction of ATMP complexed with Mn(II) inversely correlated with both (i) the Mn(II)-normalized transformation rate constants of ATMP and (ii) the observed carbon isotope enrichment factors (εc-values). These findings provide evidence for two parallel ATMP transformation pathways exhibiting distinctly different reaction kinetics and carbon isotope fractionation: (i) oxidation of ATMP present in Mn(III)ATMP complexes (εc ≈ -10 ‰) and (ii) oxidation of free ATMP by such Mn(III)ATMP species (εc ≈ -1 ‰) in a catalytic cycle. The higher reaction rate of the latter pathway implies that aminopolyphosphonates can be trapped in catalytic Mn-complexes before being transformed and suggests that Mn(III)ATMP might be a potent oxidant also for other reducible solutes in aqueous environments.
Collapse
Affiliation(s)
- Philipp R Martin
- Center for Applied Geoscience, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Daniel Buchner
- Center for Applied Geoscience, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 81377 Munich, Germany
| | - Stefan B Haderlein
- Center for Applied Geoscience, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Ni Y, Wang F, Xia M, Pei F, Wang H, Lei W. The “off-on” fluorescent probe based on salicylic acid for rapid and selective detection of 1-hydroxyethane-1,1-diphosphonic acid. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Sun S, Shan C, Yang Z, Wang S, Pan B. Self-Enhanced Selective Oxidation of Phosphonate into Phosphate by Cu(II)/H 2O 2: Performance, Mechanism, and Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:634-641. [PMID: 34902966 DOI: 10.1021/acs.est.1c06471] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphonate is an important category of highly soluble organophosphorus in contaminated waters, and its oxidative transformation into phosphate is usually a prerequisite step to achieve the in-depth removal of the total phosphorus. Currently, selective oxidation of phosphonate into phosphate is urgently desired as conventional advanced oxidation processes suffer from severe matrix interferences. Herein, we employed 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a model phosphonate and demonstrated its efficient and selective oxidation by the Cu(II)/H2O2 process at alkaline pH. In the presence of trace Cu(II) (0.020 mM), 90.8% of HEDP (0.10 mM) was converted to phosphate by H2O2 in 30 min at pH 9.5, whereas negligible conversion was observed by UV/H2O2 or a Fenton reaction (pH = 3.0). The oxidation of HEDP by Cu(II)/H2O2 was insignificantly affected by natural organic matters (10.0 mg TOC/L) and various anions including chloride, sulfate, and nitrate (10.0 mM). The complexation of Cu(II) with HEDP coupling Cu(III) produced in situ enabled an intramolecular electron transfer process, which features high selective oxidation. Selective degradation of HEDP was further validated by adding stoichiometric H2O2 into an industrial effluent, where the existing Cu(II) could serve as the catalyst. This study also provides a successful case to trigger selective oxidation of trace pollutants of concern upon synergizing with the nature of the contaminated water.
Collapse
Affiliation(s)
- Shuhui Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Impacts of nanoparticles and phosphonates in the behavior and oxidative status of the mediterranean mussels ( Mytilus galloprovincialis). Saudi J Biol Sci 2021; 28:6365-6374. [PMID: 34764754 PMCID: PMC8568998 DOI: 10.1016/j.sjbs.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 11/20/2022] Open
Abstract
The current study investigated the exposure of the Mediterranean mussel (Mytilus galloprovincialis) to gold nanoparticles decorated zinc oxide (Au-ZnO NPs) and phosphonate [Diethyl (3-cyano-1-hydroxy-1-phenyl-2-methylpropyl)] phosphate (PC). The mussels were exposed to concentrations of 50 and 100 µg L-1 of both compounds alone, as well as to a mixture of both pollutants (i.e. Mix). The singular and the combined effect of each pollutant was investigated by measuring the concentration of various metals (i.e., Cu, Fe, Mn, Zn and Au) in the the digestive glands and gills of mussels, their filtration capacity (FC), respiration rate (RR) and the response of oxidative biomarkers, respectively, following 14 days of exposure. The concentrations of Cu, Fe, Mn, Zn and Au increased directly with Au-ZnO NPs in mussel tissues, but significantly only for Zn. In contrast, the mixture of Au-ZnO100 NPs and PC100 did not induce any significant increase in the content of metals in digetsve glands and gills, suggesting antagonistic interactions between contaminants. In addition, FC and RR levels decreased following exposure to Au-ZnO100 NPs and PC100 treatments and no significant alterations were observed after the exposure to 50 µg.L-1 of both contaminants and Mix. Hydrogen peroxide (H2O2) level, GSH/GSSG ratio, superoxide dismutase (SOD), catalase (CAT) and acetylcholinesterase (AChE) activities showed significant changes following the exposure to both Au-ZnO NPs and PC, in the gills and the digestive glands of the mussel. However, no significant modifications were observed in both organs following the exposure to Mix. The current study advances the understanding of the toxicity of NPs and phosphonates on M. galloprovincialis and sets the path for future ecotoxicological studies regarding the synergic effects of these substances on marine species. Moreover, the current experiment suggests that the oxidative stress and the neurotoxic pathways are responsive following the exposure of marine invertebrates to both nanoparticles and phosphonates, with potential antagonist interactions of these substances on the physiology of targeted species.
Collapse
|
18
|
Yu S, Cai C, Zhang X, Sheng C, Jiang K. Method for the accurate determination of phytic acid in beverages by liquid chromatography-mass spectrometry after methylation with (trimethylsilyl) diazomethane. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Gao SX, Zhang X, Fan WY, Sheng GP. Molecular insight into the variation of dissolved organic phosphorus in a wastewater treatment plant. WATER RESEARCH 2021; 203:117529. [PMID: 34388499 DOI: 10.1016/j.watres.2021.117529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
To date, eutrophication becomes a great concern of vulnerable aquatic systems. Dissolved organic phosphorus (DOP) discharged from wastewater treatment plant (WWTP) holds a large source of phosphorus in receiving water. However, due to the complexity of DOP, their variation and fate in WWTP remain unknown at the molecular level, and are always overlooked. Here, the variation of DOP in a WWTP was uncovered via Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results show that 95% of DOP in the influent could be removed by the secondary biological treatment processes. The removed DOP species were mainly lipids with the molecular characteristics of low oxygen content, low unsaturation and low aromaticity. Meanwhile, during biological treatments, some new DOP species, especially lignin/carboxylic rich alicyclic molecules (CRAM) that possessed high oxygen content, high unsaturation and high aromaticity, were produced and released into the secondary effluent. In the subsequent tertiary treatment, coagulation by aluminum salt tended to remove high molecular weight and high oxygen content DOP species in the secondary effluent, which was complementary to the biological treatment. However, the sand filter usually retained microorganisms, which would result in the generation of new DOP species in this process. During the final ultraviolet disinfection process, DOP was effectively mineralized to phosphate, especially the species with high molecular weight and highly unsaturated aromatic DOP species (e.g., lignin/CRAM and tannin), which had higher UV absorbance. The revealed variation of DOP in WWTP is beneficial to optimize the treatment processes to enhance the removal of DOP.
Collapse
Affiliation(s)
- Shu-Xian Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Wen-Yuan Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
20
|
Son HS, Soukane S, Lee J, Kim Y, Kim YD, Ghaffour N. Towards sustainable circular brine reclamation using seawater reverse osmosis, membrane distillation and forward osmosis hybrids: An experimental investigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112836. [PMID: 34052611 DOI: 10.1016/j.jenvman.2021.112836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Desalination and wastewater treatment technologies require an effective solution for brine management to ensure environmental sustainability, which is closely linked with efficient process operations, reduction of chemical dosages, and valorization of brines. Within the scope of desalination brine reclamation, a circular system consisting of seawater reverse osmosis (SWRO), membrane distillation (MD), and forward osmosis (FO) three-process hybrid is investigated. The proposed design increases water recovery from SWRO brine (by MD) and dilutes concentrated brine to seawater level (by FO) for SWRO feed. It ultimately reduces SWRO process brine disposal and improves crystallization efficiency for a zero-liquid discharge application. The operating range of the hybrid system is indicated by a seawater volumetric concentration factor (VCF) ranging from 1.0 to 2.2, which covers practical and sustainable operation in full-scale applications. Within the proposed VCF range, different operating conditions of the MD and FO processes were evaluated in series with concentrated seawater as well as real SWRO brine from a full-scale desalination plant. Water quality and membrane surface were analyzed before and after experiments to assess the impact of the SWRO brine. Despite their low concentration (0.13 mg/L as phosphorous), antiscalants present in SWRO brine alleviated the flux decline in MD operations by 68.3% compared to operations using seawater concentrate, while no significant influence was observed on the FO process. A full spectrum of water quality analysis of real SWRO brine and Red Sea water is made available for future SWRO brine reclamation studies. The operating conditions and experimental results have shown the potential of the SWRO-MD-FO hybrid system for a circular brine reclamation.
Collapse
Affiliation(s)
- Hyuk Soo Son
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sofiane Soukane
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Junggil Lee
- Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 331-822, Republic of Korea
| | - Youngjin Kim
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, Sejong-si, Republic of Korea
| | - Young-Deuk Kim
- Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea; BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Zhu J, Wang S, Li H, Qian J, Lv L, Pan B. Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. WATER RESEARCH 2021; 202:117397. [PMID: 34246991 DOI: 10.1016/j.watres.2021.117397] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The increased release of phosphonates to natural waters causes global concern due to their potential threat to the aquatic environment. It is curial to mineralize phosphonates to orthophosphate (PO43-) before they are thoroughly removed from wastewater via conventional biological treatment. In this study, we systematically investigated the performance and mechanism of degradation of phosphonates in Co(II)-triggered peroxymonosulfate (PMS) activation process. The degradation efficiency of various phosphonates is highly dependent on their coordination with Co(II). Using 1-hydroxyethane 1,1-diphosphonic acid (HEDP) as a target pollutant, the Co(II)/PMS process is effective in a broad solution pH range from 5.0 to 10.0. Multiple experimental results imply that Co(II)-PMS complex is the primary reactive species, while hydroxyl radicals (HO•), sulfate radicals (SO4•-), singlet oxygen (1O2) and Co(III) play as the secondary reactive species for the degradation of HEDP. The presence of Cl-, HCO3-, and natural organic matters (NOM) inhibits the degradation of HEDP. However, in real water samples, the selectivity and efficiency for HEDP removal in the Co(II)/PMS process are higher than that in free radicals-mediated advanced oxidation processes. This study not only sheds new lights on the mechanism of Co(II)-triggered PMS activation process, but also provides feasible technology for the degradation of phosphonates in wastewater.
Collapse
Affiliation(s)
- Jinglin Zhu
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lu Lv
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Saidani W, Wahbi A, Sellami B, Helali MA, Khazri A, Mahmoudi E, Touil S, Joubert O, Beyrem H. Toxicity assessment of organophosphorus in Ruditapes decussatus via physiological, chemical and biochemical determination: A case study with the compounds γ-oximo- and γ-amino-phosphonates and phosphine oxides. MARINE POLLUTION BULLETIN 2021; 169:112556. [PMID: 34082359 DOI: 10.1016/j.marpolbul.2021.112556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus derivatives are widely used in human health care and have been detected in aquatic ecosystems. These compounds may pose significant risks to non-target exposed organisms and only limited studies are available on bioconcentration and the effects of organophosphorus derivatives on marine organisms. The aim of this work was to evaluate the possible toxic effects of two concentrations (20 and 40 μg/L) of γ-oximo- and γ-amino-phosphonates and phosphine oxides in mediterranean clams Ruditapes decussatus exposed for 14 days using different biomarkers and the changes of filtration and respiration rate. The use of clams in ecotoxicity evaluation is thus mandatory to assess the feasibility of assessing oxidative stress on R. decussatus after being exposed to γ-oximo- and γ-amino-phosphonates and phosphine oxides. The oxidative status was analyzed by measuring oxidative stress biomarkers RNS and ROS production in mitochondria, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferases (GSTs), lipid peroxidation (LPO) and acetylcholinesterase (AChE), whose alteration was indicative of organophosphorus exposure, in both gills and digestive gland of the clams. No significant alterations in RNS, ROS production, SOD, CAT and AChE activities and MDA content were observed in both organs of clams treated with γ-oximophosphine oxides. It was possible then to hypothesize that γ-oximophosphine oxides may have probably exerted an incomplete alteration of antioxidant defenses and damage, which was changed by the activation of defense mechanisms. On the contrary, oxidative stress parameters were changed after exposure to γ-amino-phosphonates and phosphine oxides. In addition, metals accumulation, filtration and respiration rates were altered following exposure to all the studied organophosphorus compounds.
Collapse
Affiliation(s)
- Wiem Saidani
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| | - Aymen Wahbi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), University of Carthage, Faculty of Sciences of Bizerte, CP 7021 Jarzouna, Tunisia
| | - Badreddine Sellami
- National Institute of Science and Technology of the Sea, Tabarka, Tunisia
| | - Mohamed Amine Helali
- Laboratory of Mineral Resources and Environment, Department of Geology, Faculty of Sciences of Tunis, University of Tunis-El Manar, 2092, Tunisia
| | - Abdelhafidh Khazri
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), University of Carthage, Faculty of Sciences of Bizerte, CP 7021 Jarzouna, Tunisia
| | - Olivier Joubert
- Institute Jean Lamour, UMR 7198, University of Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| |
Collapse
|
23
|
Wang S, Zhang B, Shan C, Yan X, Chen H, Pan B. Occurrence and transformation of phosphonates in textile dyeing wastewater along full-scale combined treatment processes. WATER RESEARCH 2020; 184:116173. [PMID: 32712507 DOI: 10.1016/j.watres.2020.116173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Phosphonates discharged from wastewater treatment plants (WWTPs) have attracted increasing concerns because of their potential impact on eutrophication and potential risks to aquatic ecosystems. However, very few studies are available on their occurrence and transformation in WWTPs, partly due to the lack of sensitive methods for phosphonate analysis in complex matrices. Herein, based on our recent progress in phosphonate analysis, the occurrence and transformation of phosphonates along the full-scale wastewater treatment processes of two textile dyeing WWTPs were revealed. A set of typical phosphonates, including six phosphonate chelators (PCs) and four potential degradation products of PCs (DP-PCs) were quantified in different units and the final dewatered sludge. Three PCs (2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), 1-hydroxyethane 1,1-diphosphonic acid (HEDP) and nitrilotris(methylene phosphonic acid) (NTMP)) at upmost mg/L and a considerable amount of four DP-PCs (9.12-608 μg/L) were detected in the influents of both WWTPs. In the subsequent treatment, NTMP could be removed more efficiently than PBTC and HEDP, especially in the coagulation unit, and the dissolved phosphonates were eliminated more readily than other dissolved organic phosphorus fractions. Of particular note, the toxicologically critical DP-PC (i.e., aminomethylphosphonic acid) was produced during the coagulation and biological treatment units. The final precipitation unit seemed essential to ensure satisfactory removal of PCs and DP-PCs. In addition, a significant accumulation of phosphonates in dewatered sludge (up to 7.81 g/kg) and the widespread occurrence of harmful DP-PCs also reminded us to pay more concerns on their potential risks during further sludge disposal in future.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xing Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Hong Chen
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Lu X, Wang F, Lei W, Xia M. The synthesis and modification of highly fluorescent carbon quantum dots for reversible detection of water-soluble phosphonate-1-hydroxyethane-1,1-diphosphonic acid by fluorescence spectroscopy. LUMINESCENCE 2020; 36:200-209. [PMID: 32805085 DOI: 10.1002/bio.3935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023]
Abstract
Photoluminescent (PL) carbon quantum dots (CQDs) were prepared successfully using a facile and green procedure. They exhibited striking blue fluorescence and excellent optical properties, with a quantum yield as high as 61.44%. Due to the fluorescence quenching effect and the stronger complexing ability of the phosphoric acid group of 1-hydroxyethane-1,1-diphosphonic acid (HEDP) to Fe3+ , CQDs doped with Fe3+ were adequately constructed as an efficient and sensitive fluorescent probe for HEDP-specific sensing. The proposed fluorescent probe had a sensitive and rapid response in the range 5-70 μM. Furthermore, quantitative molecular surface (QMS) analysis based on the Multiwfn program was applied to explore the complexation mode of HEDP and metal ions. The distribution of electrostatic potential (ESP), average local ionization energy (ALIE), the minimum value points and the position of the lone pair electrons on the surface of molecular van der Waals were further determined. More strikingly, this experiment achieved the quantitative detection of water-soluble phosphonate-HEDP, for the first time using fluorescence spectrometry. It has been proved to be an effective and intuitive sensing method for the detection of HEDP in real samples.
Collapse
Affiliation(s)
- Xin Lu
- Institute of Industrial Chemistry, Nanjing University of Science & Technology, Nanjing, China
| | - Fengyun Wang
- Institute of Industrial Chemistry, Nanjing University of Science & Technology, Nanjing, China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
25
|
Kuhn R, Bryant IM, Martienssen M. Supplementary data on rapid sample clean-up procedure of aminophosphonates for LC/MS analysis. MethodsX 2020; 7:100933. [PMID: 32509540 PMCID: PMC7264761 DOI: 10.1016/j.mex.2020.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/17/2020] [Indexed: 11/29/2022] Open
Abstract
Minimising matrix effects through high sample purity is of major importance for LC/MS analysis. Here we provide supplementary data and protocols related to the article “Rapid sample clean-up procedure of aminophosphonates for LC/MS analysis” (revised article submitted to Talanta) [1]. It is demonstrated that the tested phosphonates iminodi(methylenephosphonic acid) (IDMP), hydroxyethelidene(diphosphonic acid) (HEDP), aminotris(methylenephosphonic acid) (ATMP), ethylenediaminetetra(methyloenephosphonic acid) (EDTMP) and diethylenetriaminepenta(methylenephosphonic acid) (DTPMP) dissolved in tap water are not detectable by LC/MS without sample clean-up. Only the smallest aminophosphonate amino(methylenephosphonic acid) (AMPA) was detectable but the recovery is decreased drastically. The optimised sample clean-up with cation exchange resin (CER) Dowex 50WX8 is described in detail and illustrated. The protocol is provided. The influence of the incubation time, addition of different ammonium acetate concentrations, different samples pHs and different water qualities is demonstrated and preferred clean-up conditions are recommended. Calibration results of all tested aminophosphonates are validated regarding limit of detection, limit of quantification, lower limit of quantification, absolute and relative process standard deviation. A final recommendation for the best clean-up condition for all six tested aminophosphonates is provided.AMPA analysis without derivatisation is possible with optimised clean-up procedure Clean-up procedure is combinable with derivatisation method of[2] Procedure is simple, rapid and highly reproducible
Collapse
Affiliation(s)
- Ramona Kuhn
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, 03046 Cottbus, Germany
| | - Isaac Mbir Bryant
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, 03046 Cottbus, Germany
| | - Marion Martienssen
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, 03046 Cottbus, Germany
| |
Collapse
|
26
|
Influence of Wastewater Discharge on the Occurrence of PBTC, HEDP, and Aminophosphonates in Sediment, Suspended Matter, and the Aqueous Phase of Rivers. WATER 2020. [DOI: 10.3390/w12030803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sediment, suspended matter (SM), and water of a large river (Neckar; River1) and a small river (Körsch; River2) were analyzed for the phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), 1-hydroxyethylidene (1,1-diphosphonic acid) (HEDP), aminotris (methylphosphonic acid) (ATMP), ethylenediaminetetra (methylene phosphonic acid) (EDTMP), and diethylenetriaminepenta (methylene phosphonic acid) (DTPMP). Ten samplings were performed at intervals of one to two months during one year, each covering the relevant matrices before and behind the discharge point of a wastewater treatment plant (WWTP). In River1, the total concentration of dissolved phosphonate did not change significantly (2.4–5.8 µg/L before vs. 2.5–6.6 µg/L behind WWTP; p = 0.9360). In River2, it increased significantly from <0.1–1.6 µg/L to 19–39 µg/L (p < 0.0001). Based on the median, the total phosphonate load in River1 sediment increased 1.9-fold (6.7–29.4 mg/kg before vs. 17.8–53.5 mg/kg behind WWTP; p = 0.0033) and in River2 by a factor of eight (1.8–5.0 mg/kg before vs. 18.1–51.4 mg/kg behind WWTP; p < 0.0001). This indicates that phosphonates discharged by WWTPs adsorb onto solid particles and accumulate in the sediment. In the case of River2, the SM load could reach values of 1000–1710 mg/kg behind the WWTP, presumably due to the introduction of insufficiently retained activated sludge particles of >2000 mg/kg phosphonate loads. In general, the nitrogen-free phosphonates PBTC and HEDP were most predominant in both dissolved and adsorbed form, of which HEDP had the highest adsorption affinity.
Collapse
|
27
|
Affiliation(s)
- Xiaodi Hao
- Beijing University of Civil Engineering and Architecture (BUCEA), China.
| | - Guanghao Chen
- The Hong Kong University of Science and Technology (HKUST), China.
| | - Zhiguo Yuan
- The University of Queensland (UQ), Australia.
| |
Collapse
|
28
|
Rapid sample clean-up procedure for aminophosphonate determination by LC/MS analysis. Talanta 2020; 208:120454. [PMID: 31816760 DOI: 10.1016/j.talanta.2019.120454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022]
|
29
|
Oshchepkov A, Oshchepkov M, Kamagurov S, Redchuk A, Oshchepkova M, Popov K, Kataev E. Fluorescence detection of phosphonates in water by a naphthalimide-based receptor and its derived cryopolymers. NEW J CHEM 2020. [DOI: 10.1039/d0nj01734e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concentration of compound M in cryopolymers has a dramatic influence on the fluorescence response in the presence of phosphonates.
Collapse
Affiliation(s)
| | - Maxim Oshchepkov
- JSC “Fine Chemicals R&D Centre”
- 107258 Moscow
- Russian Federation
- Mendeleev University of Chemical Technology of Russia
- 125047 Moscow
| | - Semen Kamagurov
- JSC “Fine Chemicals R&D Centre”
- 107258 Moscow
- Russian Federation
| | - Anatoly Redchuk
- JSC “Fine Chemicals R&D Centre”
- 107258 Moscow
- Russian Federation
| | - Margarita Oshchepkova
- Mendeleev University of Chemical Technology of Russia
- 125047 Moscow
- Russian Federation
| | | | - Evgeny Kataev
- Department of Chemistry and Pharmacy
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| |
Collapse
|
30
|
Behavior of PBTC, HEDP, and Aminophosphonates in the Process of Wastewater Treatment. WATER 2019. [DOI: 10.3390/w12010053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ten times at intervals of 1–2 months, individual treatment stages of two wastewater treatment plants (WWTPs) were analyzed for the five quantitatively most widely used phosphonates. The total dissolved concentration of the investigated phosphonates in the influents was between 131 µg/L and 384 µg/L. The nitrogen-free phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) and 1-hydroxyethylidene(1,1-diphosphonic acid) (HEDP) accounted for an average proportion of 83–85%. Diethylenetriaminepenta(methylene phosphonic acid) (DTPMP) contributed with 13–14%, whereas aminotris(methylphosphonic acid) (ATMP) (≤15 µg/L) and ethylenediaminetetra(methylene phosphonic acid) (EDTMP) (≤11 µg/L) contents detected in the WWTP influents were comparatively low. The application of new analytical methods allowed the quantification of phosphonates in the solid fraction of the WWTP influents for the first time. High loads of phosphonates were determined (223–2555 mg/kg), indicating that 20%–80% of the phosphonates are present in the adsorbed state. The removal of total dissolved phosphonate by secondary clarification was between 69.7% and 92.4% (medians: 90.7% and 87.7%). In both WWTPs, HEDP (medians: 89.2% and 86.4%) was slightly better eliminated than PBTC (medians: 87.2% and 82.5%). In the sand filtration stage of a WWTP, the average removal was not further improved. In contrast, an additional removal of dissolved phosphonates could be achieved by activated carbon treatment (median: 96.4%). The proportion of phosphonate-P in the dissolved unreactive phosphorus fraction was consistently between 10% and 40% throughout all treatment stages.
Collapse
|
31
|
Martin PR, Buchner D, Jochmann MA, Haderlein SB. Stable carbon isotope analysis of polyphosphonate complexing agents by anion chromatography coupled to isotope ratio mass spectrometry: method development and application. Anal Bioanal Chem 2019; 412:4827-4835. [PMID: 31813019 DOI: 10.1007/s00216-019-02251-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Compound-specific carbon isotope analysis (carbon CSIA) by liquid chromatography/isotope ratio mass spectrometry (LC-IRMS) is a novel and promising tool to elucidate the environmental fate of polar organic compounds such as polyphosphonates, strong complexing agents for di- and trivalent cations with growing commercial importance over the last decades. Here, we present a LC-IRMS method for the three widely used polyphosphonates 1-hydroxyethane 1,1-diphosphonate (HEDP), amino tris(methylenephosphonate) (ATMP), and ethylenediamine tetra(methylenephosphonate) (EDTMP). Separation of the analytes, as well as ATMP and its degradation products, was carried out on an anion exchange column under acidic conditions. Quantitative wet chemical oxidation inside the LC-IRMS interface to CO2 was achieved for all three investigated polyphosphonates at a comparatively low sodium persulfate concentration despite the described resilience of HEDP towards oxidative breakdown. The developed method has proven to be suitable for the determination of carbon isotope fractionation of ATMP transformation due to manganese-catalyzed reaction with molecular oxygen, as well as for equilibrium sorption of ATMP to goethite. A kinetic isotope effect was associated with the investigated reaction pathway, whereas no detectable isotope fractionation could be observed during sorption. Thus, CSIA is an appropriate technique to distinguish between sorption and degradation processes that contribute to a concentration decrease of ATMP in laboratory batch experiments. Our study highlights the potential of carbon CSIA by LC-IRMS to gain a process-based understanding of the fate of polyphosphonate complexing agents in environmental as well as technical systems.
Collapse
Affiliation(s)
- Philipp R Martin
- Center for Applied Geoscience (ZAG), Eberhard Karls University Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Daniel Buchner
- Center for Applied Geoscience (ZAG), Eberhard Karls University Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany.
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Stefan B Haderlein
- Center for Applied Geoscience (ZAG), Eberhard Karls University Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| |
Collapse
|
32
|
Armbruster D, Rott E, Minke R, Happel O. Trace-level determination of phosphonates in liquid and solid phase of wastewater and environmental samples by IC-ESI-MS/MS. Anal Bioanal Chem 2019; 412:4807-4825. [PMID: 31641823 DOI: 10.1007/s00216-019-02159-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Phosphonates are increasingly used as water-softening agents in detergents, care products, and industrial processes. Despite poor biodegradability, high removal rates during wastewater treatment (WWT) have been observed, owing to strong adsorption affinity to activated sludge and mineral surfaces. Due to phosphonates representing challenging analytes, no method for the compound-specific quantification of phosphonates from solid samples has hitherto been published. In order to improve the data foundation on the environmental fate of phosphonates, an analytical method based on anion exchange chromatography and detection by electrospray ionization coupled to tandem mass spectrometry (IC-ESI-MS/MS) was developed, allowing the trace quantification of phosphonates from surface water (LOQs between 0.04 and 0.16 μg/L), wastewater (LOQs between 0.6 and 2.3 μg/L), sediment and suspended matter of rivers (LOQ < 0.1 mg/kg), and suspended matter of wastewater (LOQ < 1 mg/kg). Specificity and selectivity were enhanced by the implementation of isotope-labeled internal phosphonate standards derived through synthesis. This study describes the development of a comprehensive tool set for the determination of aminotris(methylenephosphonic acid) (ATMP), diethylenetriaminepenta(methylenephosphonic acid) (DTPMP), ethylenediaminetetra(methylenephosphonic acid) (EDTMP), 1-hydroxyethanediphosphonic acid (HEDP), and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) during WWT and in the aqueous environment. In the investigated matrices, HEDP and PBTC were generally present in highest and EDTMP in lowest abundance. The phosphonate contents detected in river water were in the sub to low μg/L range, depending on the wastewater burden, whereas contents in the low to medium μg/L range were found in untreated wastewater. The loads of the solid phases exceeded the contents of the corresponding liquid phases by roughly three orders of magnitude. Current data imply that phosphonates undergo significant partitioning to the solid phase during WWT and in natural water bodies. Graphical abstract.
Collapse
Affiliation(s)
- Dominic Armbruster
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Eduard Rott
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Ralf Minke
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Oliver Happel
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| |
Collapse
|