1
|
Wang J, Zhang J, Li Y, Xia X, Yang H, Kim JH, Zhang W. Silver single atoms and nanoparticles on floatable monolithic photocatalysts for synergistic solar water disinfection. Nat Commun 2025; 16:981. [PMID: 39856098 PMCID: PMC11761480 DOI: 10.1038/s41467-025-56339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH2 loaded Ag single atoms and nanoparticles (AgSA+NP/ZIF). Atomically dispersed Ag sites form an Ag-N charge bridge, extending the lifetime of charge carriers and thereby promoting reactive oxygen species (ROS) generation. The photothermal effect of the plasmonic Ag nanoparticles reduces the bacterial resistance to ROS and impairs DNA repair capabilities. Under sunlight irradiation, the synergistic effect of Ag single atoms and nanoparticles enables 4.0 cm2 AgSA+NP/ZIF to achieve over 6.0 log inactivation (99.9999%) for the stress-resistant Escherichia coli (E. coli) in oligotrophic surface water within 30 min. Furthermore, 36 cm2 AgSA+NP/ZIF is capable of disinfecting at least 10.0 L of surface water, which meets the World Health Organization (WHO) recommended daily per capita drinking water allocation (8.0 L). This study presents a decentralized and sustainable approach for water disinfection in off-grid areas.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education & State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jiahe Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education & State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education & State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Hengjing Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education & State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, USA
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
2
|
Zhu J, Dong Y, Wang Q, Han J, Li Z, Xu D, Fischer L, Ulbricht M, Ren Z. Advancements in magnetic catalysts: Preparation, modification, and applications in photocatalytic and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177595. [PMID: 39571808 DOI: 10.1016/j.scitotenv.2024.177595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
Owing to their widely available source materials, simple magnetic separation, and low cost, magnetic catalysts have demonstrated considerable application potential in modern photocatalysis technologies and environmental remediation. This review summarizes the synthesis and modification methods of magnetic catalysts and describes recent advances using different synthesis methods. Several key problems still need to be solved in the existing progress, such as the fact that the catalytic activity of magnetic catalysts decreases over time. Under an external magnetic field, magnetic catalysts exhibit satisfactory energy bandgaps and charge transfer rates for photocatalysis, enabling wide and comprehensive photocatalytic applications. In addition, they are strong candidate materials for wastewater treatment and new-energy applications. In summary, the review provides future directions for the development of novel magnetic catalysts, contaminant removal, and even large-scale practical applications.
Collapse
Affiliation(s)
- Jinyu Zhu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yilin Dong
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiuwen Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinlong Han
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zexun Li
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongyu Xu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China.
| |
Collapse
|
3
|
Imtiaz F, Rashid J, Kumar R, Eniola JO, Barakat MAEF, Xu M. Recent advances in visible light driven inactivation of bloom forming blue-green algae using novel nano-composites: Mechanism, efficiency and fabrication approaches. ENVIRONMENTAL RESEARCH 2024; 248:118251. [PMID: 38278506 DOI: 10.1016/j.envres.2024.118251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Over the years, algae have proved to be a water pollutant due to global warming, climate change, and the unregulated addition of organic compounds in water bodies from diffused resources. Harmful algal blooms (HABs) are severely affecting the health of humans and aquatic ecosystems. Among available anti-blooming technologies, semiconductor photocatalysis has come forth as an effective alternative. In the recent past, literature has been modified extensively with a decisive knowledge regarding algal invasion, desired preparation of nanomaterials with enhanced visible light absorption capacity and mechanisms for algal cell denaturation. The motivation behind this review article was to gather algal inactivation data in a systematic way based on various research studies, including the construction of nanoparticles and purposely to test their anti-algal activities under visible irradiation. Additionally, this article mentions variety of starting materials employed for preparation of various nano-powders with focus on their synthesis routes, analytical techniques as well as proposed mechanisms for lost cellular integrity in context of reduced chlorophyll' a' level, cell rapture, cell leakage and damages to other physiological constituents; credited to oxidative damage initiated by reactive oxidation species (ROS). Various floating and recyclable composited catalysts Ag2CO3-N: GO, Ag/AgCl@ZIF-8, Ag2CrO4-g-C3N4-TiO2/mEP proved to be game-changers owing to their enhanced VL absorption, adsorption, stability, separation and reusability. An outlook for the generalized limitations of published reports, cost estimations for practical implementation, issues and challenges faced by nano-photocatalysts and possible opportunities for future studies are also proposed. This review will be able to provide vast insights for coherent fabrication of catalysts, breakthroughs in experimental methodologies and help in elaboration of damage mechanisms.
Collapse
Affiliation(s)
- Fatima Imtiaz
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Jamshaid Rashid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Rajeev Kumar
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamiu O Eniola
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Abou El-Fetouh Barakat
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Central Metallurgical R & D Institute, Helwan, 11421, Cairo, Egypt
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| |
Collapse
|
4
|
She P, Li S, Li X, Rao H, Men X, Qin JS. Photocatalytic antibacterial agents based on inorganic semiconductor nanomaterials: a review. NANOSCALE 2024; 16:4961-4973. [PMID: 38390689 DOI: 10.1039/d3nr06531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial contamination and antibiotic pollution have threatened public health and it is important to develop a rapid and safe sterilization strategy. Among various disinfection strategies, photocatalytic antibacterial methods have drawn increasing attention due to their efficient disinfection performances and environment-friendly properties. Although there are some reviews about bacterial disinfection, specific reviews on photocatalysis focused on inorganic semiconductor nanomaterials are rarely reported. Herein, we present a systematic summary of recent disinfection developments based on inorganic nanomaterials (including metal oxides, sulfides, phosphides, carbon materials, and corresponding heterostructures) over the past five years. Moreover, key factors and challenges for inorganic nanomaterial-based photocatalytic disinfection are outlined, which holds great potential for future photocatalytic antibacterial applications.
Collapse
Affiliation(s)
- Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xuejing Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiaoju Men
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
5
|
Daub NA, Aziz F, Mhamad SA, Chee DNA, Jaafar J, Yusof N, Salleh WNW, Ismail AF. Harnessing the photocatalytic potential of bismuth ferrite-activated carbon nanocomposite (BFO-AC) for Staphylococcus aureus decontamination under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16629-16641. [PMID: 38321283 DOI: 10.1007/s11356-024-32261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.
Collapse
Affiliation(s)
- Nur Atiqah Daub
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Shakhawan Ahmad Mhamad
- Chemistry Department, College of Education, University of Sulaimany, 46001, Sulaimani, Kurdistan, Iraq
| | - Dayang Norafizan Awang Chee
- Faculty Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Wan Norharyati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
6
|
Chen X, Sun D, He Z, Kang S, Miao Y, Li Y. Ferrite bismuth-based nanomaterials: From ferroelectric and piezoelectric properties to nanomedicine applications. Colloids Surf B Biointerfaces 2024; 233:113642. [PMID: 37995631 DOI: 10.1016/j.colsurfb.2023.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Bismuth ferrite (BiFeO3), a perovskite-type oxide, possesses unique morphology and multiferroicity, rendering it highly versatile for various applications. Recent investigations have demonstrated that BiFeO3 exhibits enhanced Fenton-like and photocatalytic behaviors, coupled with its piezoelectric/ferroelectric properties. BiFeO3 can catalytically generate highly oxidative reactive oxygen species (ROS) when exposed to hydrogen peroxide or light irradiation. Consequently, bismuth ferrite-based nanomaterials have emerged as promising candidates for various biomedical applications. However, the precise fabrication of BiFeO3-based materials with controllable features and applications in diverse biomedical scenarios remains a formidable challenge. In this review, we initially summarize the Fenton reaction property, ferroelectric, and piezoelectric properties of BiFeO3. We further survey the current methodologies for synthesizing BiFeO3 nanomaterials with diverse morphologies. Subsequently, we explore the effects of element doping and heterojunction formation on enhancing the photocatalytic activity of BiFeO3, focusing on microstructural, electronic band structure, and modification approaches. Additionally, we provide an overview of the recent advancements of BiFeO3-based nanomaterials in biomedicine. Finally, we discuss the prevailing obstacles and prospects of BiFeO3 for biomedical applications, offering valuable insights and recommendations for forthcoming research endeavors.
Collapse
Affiliation(s)
- Xingzhou Chen
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Di Sun
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shifei Kang
- Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Dahlan NAN, Putri LK, Er CC, Ng BJ, Ooi CW, Tan LL, Chai SP. Effective Low-Powered Photocatalytic Disinfection via Synchronous Introduction of Oxygen Dopants and Carbon Defects in Carbon Nitride. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53371-53381. [PMID: 37935594 DOI: 10.1021/acsami.3c10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Establishing an effective metal-free photocatalyst for sustainable applications remains a huge challenge. Herein, we developed ultrathin oxygen-doped g-C3N4 nanosheets with carbon defects (OCvN) photocatalyst via a facile gas bubble template-assisted thermal copolymerization method. A series of OCvN with different dopant amounts ranging from 0 to 10% were synthesized and used as photocatalysts under illumination of low-power (2 × 18 W, 0.18 mW/cm2) and commercially available energy-saving light bulbs. Upon testing for photocatalytic Escherichia coli inactivation, the best-performing sample, OCvN-3, demonstrated an astonishing disinfection activity of over 7-log reduction after 3 h of illumination, boasting an 18-fold improvement in its antibacterial activity compared to that of pristine g-C3N4. The enhanced performance was attributed to the synergistic effects of increased surface area, extended visible light harvesting, improved electronic conductivity, and ultralow resistance to charge transfer. This study successfully introduced a green photocatalyst that demonstrates the most effective disinfection performance ever recorded among metal-free g-C3N4 materials. Its disinfection capabilities are comparable to those of metal-based photocatalysts when they are exposed to low-power light.
Collapse
Affiliation(s)
- Nur Atika Nikma Dahlan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Lutfi Kurnianditia Putri
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chen-Chen Er
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Boon-Junn Ng
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
8
|
Ran B, Ran L, Wang Z, Liao J, Li D, Chen K, Cai W, Hou J, Peng X. Photocatalytic Antimicrobials: Principles, Design Strategies, and Applications. Chem Rev 2023; 123:12371-12430. [PMID: 37615679 DOI: 10.1021/acs.chemrev.3c00326] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nowadays, the increasing emergence of antibiotic-resistant pathogenic microorganisms requires the search for alternative methods that do not cause drug resistance. Phototherapy strategies (PTs) based on the photoresponsive materials have become a new trend in the inactivation of pathogenic microorganisms due to their spatiotemporal controllability and negligible side effects. Among those phototherapy strategies, photocatalytic antimicrobial therapy (PCAT) has emerged as an effective and promising antimicrobial strategy in recent years. In the process of photocatalytic treatment, photocatalytic materials are excited by different wavelengths of lights to produce reactive oxygen species (ROS) or other toxic species for the killing of various pathogenic microbes, such as bacteria, viruses, fungi, parasites, and algae. Therefore, this review timely summarizes the latest progress in the PCAT field, with emphasis on the development of various photocatalytic antimicrobials (PCAMs), the underlying antimicrobial mechanisms, the design strategies, and the multiple practical antimicrobial applications in local infections therapy, personal protective equipment, water purification, antimicrobial coatings, wound dressings, food safety, antibacterial textiles, and air purification. Meanwhile, we also present the challenges and perspectives of widespread practical implementation of PCAT as antimicrobial therapeutics. We hope that as a result of this review, PCAT will flourish and become an effective weapon against pathogenic microorganisms and antibiotic resistance.
Collapse
Affiliation(s)
- Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Liao
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Dandan Li
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Keda Chen
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
9
|
Yang H, He D, Liu C, Zhou X, Qu J. Magnetic photocatalytic antimicrobial materials for water disinfection. Sep Purif Technol 2023; 325:124697. [DOI: 10.1016/j.seppur.2023.124697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Geldasa FT, Kebede MA, Shura MW, Hone FG. Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Adv 2023; 13:18404-18442. [PMID: 37342807 PMCID: PMC10278095 DOI: 10.1039/d3ra01505j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Photocatalysis is a more proficient technique that involves the breakdown or decomposition of different organic contaminants, various dyes, and harmful viruses and fungi using UV or visible light solar spectrum. Metal oxides are considered promising candidate photocatalysts owing to their low cost, efficiency, simple fabricating method, sufficient availability, and environment-friendliness for photocatalytic applications. Among metal oxides, TiO2 is the most studied photocatalyst and is highly applied in wastewater treatment and hydrogen production. However, TiO2 is relatively active only under ultraviolet light due to its wide bandgap, which limits its applicability because the production of ultraviolet is expensive. At present, the discovery of a photocatalyst of suitable bandgap with visible light or modification of the existing photocatalyst is becoming very attractive for photocatalysis technology. However, the major drawbacks of photocatalysts are the high recombination rate of photogenerated electron-hole pairs, the ultraviolet light activity limitations, and low surface coverage. In this review, the most commonly used synthesis method for metal oxide nanoparticles, photocatalytic applications of metal oxides, and applications and toxicity of different dyes are comprehensively highlighted. In addition, the challenges in the photocatalytic applications of metal oxides, strategies to suppress these challenges, and metal oxide studied by density functional theory for photocatalytic applications are described in detail.
Collapse
Affiliation(s)
- Fikadu Takele Geldasa
- Adama Science and Technology University, Department of Applied Physics P. O. Box1888 Adama Ethiopia
- Oda Bultum University, Department of Physics P. O. Box 226, Chiro Ethiopia
| | - Mesfin Abayneh Kebede
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa Florida Science Campus Johannesburg 1710 South Africa
| | - Megersa Wodajo Shura
- Adama Science and Technology University, Department of Applied Physics P. O. Box1888 Adama Ethiopia
| | - Fekadu Gashaw Hone
- Addis Ababa University, Department of Physics P.O. Box: 1176 Addis Ababa Ethiopia
| |
Collapse
|
11
|
Ma J, Shi Y, An D, Chen Y, Guo J, Qian Y, Wang S, Lu J. Inactivation mechanism of E. coli in water by enhanced photocatalysis under visible light irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161450. [PMID: 36623654 DOI: 10.1016/j.scitotenv.2023.161450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Developing efficient and economical technologies for drinking water disinfection remains a challenge. We synthesized Ag/AgBr/LDH doped with various silver mass concentrations and explored its ability to inactivate E. coli under visible light irradiation (λ ≥ 400 nm). Our results indicated a total inactivation of E. coli (107 CFU·mL-1) within 80 min using 2 % Ag/AgBr/LDH in a laboratory-scale test. The method was evaluated for disinfecting three effluent samples collected from one drinking water treatment plant, covering representative water treatment processes. After five consecutive runs, the inactivation efficiency decreased slightly to 89 % in CFU·mL-1, indicating that the photocatalysts had excellent stability and reusability. The mechanisms were analyzed by combining chemical and biological methods. It was verified that singlet oxygen (1O2), hydrogen peroxide (H2O2), and photo-generated electrons (e-) were significant contributors to the inactivation process. Scanning electron microscopy images analysis showed the disruption of the membrane integrity of E. coli by photocatalytic oxidation. Internal component leakage and reduced enzyme activity were also observed in terms of K+ leakage, β-galactosidase activity, and antioxidant enzyme activity. The results by the transcriptomic analysis implied that Ag/AgBr/LDH regulating the oxidative stress response and cell membrane damage related genes was the main inactivation mechanism.
Collapse
Affiliation(s)
- Jiaxin Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yijun Shi
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Jun Guo
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Sheng Wang
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200086, China
| | - Jinrong Lu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200086, China
| |
Collapse
|
12
|
Ming J, Sun X, Ma Q, Liu N, Zhang C, Kawazoe N, Chen G, Yang Y. Advanced photocatalytic sterilization for recalcitrant Enterococcus sp. contaminated water by newly developed Z-scheme Bi 2WO 6 based composites under solar light. CHEMOSPHERE 2023; 310:136912. [PMID: 36270522 DOI: 10.1016/j.chemosphere.2022.136912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Pathogenic contamination is one of the major causes of clean water shortage, which poses great risk to human health. Herein, g-C3N4 (CN) was firstly introduced to Ag/Ag2O/BiPO4/Bi2WO6 (Ag/P/BWO) to construct a novel Z-scheme composite CN-Ag/P/BWO for disinfecting Enterococcus sp. contaminated water. CN-Ag/P/BWO showed excellent disinfection performance toward recalcitrant Enterococcus sp. under simulated solar light irradiation, achieving complete inactivation of 1.5 × 107 cfu mL-1 of bacterial cells only within 60 min, which was mainly attributed to the improved light absorption ability, charge carries separation/transfer efficiency and surface wettability. Additionally, the disinfection mechanism of CN-Ag/P/BWO toward Enterococcus sp. was systematically investigated. Photogenerated active species h+, ·OH and ·O2- worked together and played crucial roles in photocatalytic inactivation. The antioxidant system enabled Enterococcus sp. self-protection ability at the beginning of disinfection through secreting more antioxidant enzymes. However, with accumulation of active species, bacterial cell membrane and energy system were damaged, which further led to leakage of intracellular components and decomposition of bacteria. Besides, CN-Ag/P/BWO exhibited high practicability for different environmental factors and also performed well for real lake water disinfection. The high stability further confirmed its practicability for water disinfection. This work not only systematically revealed the disinfection mechanism toward Enterococcus sp., but also provided an efficient method for water disinfection.
Collapse
Affiliation(s)
- Jie Ming
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Xiang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Qiansu Ma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Na Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Cheng Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Naoki Kawazoe
- Research Center of Functional Materials, National Institute for Materials Science,1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Guoping Chen
- Research Center of Functional Materials, National Institute for Materials Science,1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
13
|
Zhang Y, Huang K, Chen X, Wei M, Yu X, Su H, Gan P, Yu K. Inactivation of Ciliate Uronema Marinum under UV/Peroxydisulfate Advanced Disinfection System in Marine Water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Tang Z, Ma D, Chen Q, Wang Y, Sun M, Lian Q, Shang J, Wong PK, He C, Xia D, Wang T. Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129373. [PMID: 35728326 DOI: 10.1016/j.jhazmat.2022.129373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The pathogenic microorganisms in water pose a great threat to human health. Photothermal and photothermocatalytic disinfection using nanomaterials (NPs) has offered a promising and effective strategy to address the challenges in solar water disinfection (SODIS), especially in the point-of-use operations. This review aims at providing comprehensive and state-of-the-art knowledge of photothermal-based disinfection by NPs. The fundamentals and principles of photothermal-based disinfection were first introduced. Then, recent advances in developing photothermal/photothermocatalytic catalysts were systematically summarized. The light-to-heat conversion and disinfection performance of a large variety of photothermal materials were presented. Given the complicated mechanisms of photothermal-based disinfection, the attacks from reactive oxygen species and heat, the destruction of bacterial cells, and the antibacterial effects of released metal ions were highlighted. Finally, future challenges and opportunities associated with the development of cost-effective photothermal/photothermocatalytic disinfection systems were outlined. This review will provide guidance in designing future NPs and inspire more research efforts from environmental nano-communities to move towards practical water disinfection operations.
Collapse
Affiliation(s)
- Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dingren Ma
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingzhe Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China; Institute of Environmental Health and Pollution Control, School of Environmental Science & Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Tianqi Wang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China.
| |
Collapse
|
15
|
Xie Y, Yin X, Jiao Y, Sun Y, Wang C. Visible-light-responsive photocatalytic inactivation of ofloxacin-resistant bacteria by rGO modified g-C 3N 4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63142-63154. [PMID: 35449335 DOI: 10.1007/s11356-022-20326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The visible light responsive graphitic nitride (g-C3N4) mediated photocatalysis has drawn extensive attention in water treatment field. Carbon doping could improve the photocatalytic activity of g-C3N4 in promoting charge separation efficiency, visible-light utilization, etc. In this paper, the g-C3N4 (as MC) was modified by barbituric acid (as MCB0.07) and further treated by reduced graphene oxide (rGO) (as n%GCN) and then applied to inactivate ofloxacin-resistant bacteria (OFLA) under light irradiation at UVA-visible wavelength. The results showed that the n%GCN presented strong photocatalytic activity when the GO mass ratio was 7.5% (as 7.5%GCN). The inactivation efficiencies of OFLA by MC, MCB0.07, and 7.5%GCN were 5.77 log, 8.48 log, and 8.25 log, respectively, under UVA-visible wavelength (λ > 305 nm), compared to 4.83 log, 5.56 log, and 6.08 log, respectively, within 16 h under visible wavelength (λ > 400 nm). The rGO-doping obviously improved the inactivation efficiency of MCB0.07 on OFLA under visible wavelength. Furthermore, the photoreactivation and dark repair phenomena of OFLA were examined after MC, MCB0.07, and 7.5%GCN treatment, respectively, and it was found that all approaches led to permanent damage to OFLA of which the regrowth was not observed after 24-48 h. Based on the quenching test, reactive oxygen species of O2-• and hole (h+) exhibited dominant roles in the photocatalytic inactivation of OFLA, which may result in oxidative stress and damage to the cell membrane. This study could shed light on the inactivation of OFLA under visible light radiation by rGO modified g-C3N4.
Collapse
Affiliation(s)
- Yuqian Xie
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiufeng Yin
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuzhu Jiao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
16
|
Chuaicham C, Sekar K, Balakumar V, Uchida J, Katsurao T, Sakabe H, Ohtani B, Sasaki K. Efficient photocatalytic degradation of emerging ciprofloxacin under visible light irradiation using BiOBr/carbon quantum dot/saponite composite. ENVIRONMENTAL RESEARCH 2022; 212:113635. [PMID: 35688220 DOI: 10.1016/j.envres.2022.113635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The use of visible-driven photocatalysts has fascinated attention as a capable and sustainable approach for wastewater remediation. In this work, BiOBr/carbon quantum dot (CQDs)/saponite composites (CQDs/Clay@BiOBr) were fabricated via hydrothermally using two different CQDs/Clay precursors (in-situ synthesis (IS) and physical mixing (PM)). The obtained products were characterized, and the photocatalytic performances of the prepared samples were evaluated in the photocatalytic decomposition of emerging ciprofloxacin (CIP) pharmaceutical waste. The highest CIP mineralization performance was achieved when a combination of BiOBr and CQDs/Clay (IS) with the appropriate proportion because the strong adhesion between CQDs and clay generate a great heterojunction in the composite. The stronger interaction of CQDs and better distribution of CQDs on the surface of clay in the CQDs/Clay (IS) enhanced the interaction of BiOBr and CQDs, and avoided the re-agglomeration of excess of CQDs on surface of BiOBr which reduce the active surface to receive the light and react with CIP. The ultrafast degradation rate of the optimized CQDs/Clay@BiOBr composite was better compared to others. The significant improvement in the CIP degradation efficiency of the CQDs/Clay@BiOBr composite was attributed to the excellent separation and transportation of photogenerated electrons and holes, as confirmed by photoluminescence, photocurrent density, and electrochemical impedance spectroscopy results. Moreover, the photocatalytic degradation mechanism of CIP in the CQDs/Clay@BiOBr composite was proposed based on the electronic states of each material in the composite and on a scavenger test. Thus, the proposed CQDs/Clay@BiOBr composite can be employed as a potential visible-light-driven photocatalyst for the decomposition of organic contaminants in wastewater.
Collapse
Affiliation(s)
- Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Karthikeyan Sekar
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Junya Uchida
- Kureha Corporation, Iwaki, Fukushima, 974-8686, Japan
| | | | | | - Bunsho Ohtani
- Institute for Catalysis, Hokkaido University, Sapporo, 001-0021, Japan
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Institute for Catalysis, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
17
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
18
|
Chen S, Wang J, Tang K, Liao H, Xu Y, Wang L, Niu C. Multi-Modal Imaging Monitored M2 Macrophage Targeting Sono-Responsive Nanoparticles to Combat MRSA Deep Infections. Int J Nanomedicine 2022; 17:4525-4546. [PMID: 36193213 PMCID: PMC9526443 DOI: 10.2147/ijn.s383237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022] Open
Abstract
Background MRSA with high morbidity and mortality is prone to cause serious infection, SDT has become a new antibiotic-free modality for bacterial infection treatment. Switching from proinflammatory M1 macrophages to anti-inflammatory M2 macrophages dominant could activate the immune system to generate an anti-infection immune response. Methods Herein, we developed M2 macrophages derived cell membranes coated PLGA nanoparticles with IR780 encapsulation (M2/IR780@PLGA) for antibacterial SDT and subsequent M2 macrophage polarization to enhance the therapeutic efficacy of MRSA myositis. For in situ visualization of antibacterial SDT, both diagnostic high-frequency US and magnetic resonance imaging (MRI) were introduced to monitor the sono-therapeutic progression of M2/IR780@PLGA nanoparticles in mice with bacterial myositis. Results Our developed M2/IR780@PLGA nanoparticles exhibited excellent antibacterial effects due to the IR780 under low-frequency US irradiation in vitro. In an MRSA-infected mice model, a great deal of M2/IR780@PLGA nanoparticles accumulated at the site of inflammation due to M2 macrophage coating. The infected legs in the M2/IR780@PLGA nanoparticles-based SDT group were significantly smaller, fewer blood flow signals, a slight muscular edema without obvious intermuscular abscesses under high-frequency US and MR images guidance. Histopathology proved the infected legs in the M2/IR780@PLGA nanoparticles-mediated SDT group had less clumped bacteria infiltration, more M2 macrophage expression and less M1 macrophage expression. The percentage of mature dendritic cells in spleens was much higher in the group of mice with M2/IR780@PLGA nanoparticles-based SDT. Conclusion This study provides a promising nanoparticles-based SDT anti-bacterial strategy, which could effectively enhance the antibacterial SDT and subsequent promote M2 macrophage polarization to boost the therapeutic efficacy of MRSA myositis.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Kui Tang
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Haiqin Liao
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Chengcheng Niu, Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China, Email
| |
Collapse
|
19
|
Zuarez-Chamba M, Rajendran S, Herrera-Robledo M, Priya AK, Navas-Cárdenas C. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity. ENVIRONMENTAL RESEARCH 2022; 209:112834. [PMID: 35122745 DOI: 10.1016/j.envres.2022.112834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Bi-based photocatalysts have been considered suitable materials for water disinfection under natural solar light due to their outstanding optical and electronic properties. However, until now, there are not extensive reviews about the development of Bi-based materials and their application in bacterial inactivation in aqueous solutions. For this reason, this work has focused on summarizing the state of the art related to the inactivation of Gram- and Gram + pathogenic bacteria under visible light irradiation using different Bi-based micro and nano structures. In this sense, the photocatalytic bacterial inactivation mechanisms are analyzed, considering several modifications. The factors that can affect the photocatalytic performance of these materials in real conditions and at a large scale (e.g., water characteristics, pH, light intensity, photocatalyst dosage, and bacteria level) have been studied. Furthermore, current alternatives for improving the photocatalytic antibacterial activity and reuse of Bi-based materials (e.g., surface engineering, crystal facet engineering, doping, noble metal coupling, heterojunctions, Z-scheme junctions, coupling with graphene derivatives, magnetic composites, immobilization) have been explored. According to several reports, inactivation rate values higher than 90% can be achieved by using the modified Bi-based micro/nano structures, which become them excellent candidates for photocatalytic water disinfection. However, these innovative photocatalytic materials bring a variety of future difficulties and opportunities in water disinfection.
Collapse
Affiliation(s)
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapaca, Avda. General Velásquez, Arica, Chile
| | | | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Carlos Navas-Cárdenas
- School of Chemical Sciences and Engineering, Universidad Yachay Tech, Urcuquí, Ecuador.
| |
Collapse
|
20
|
Shi H, Xie Y, Wang W, Zhang L, Zhang X, Shi Y, Fan J, Tang Z. In-situ construction of step-scheme MoS 2/Bi 4O 5Br 2 heterojunction with improved photocatalytic activity of Rhodamine B degradation and disinfection. J Colloid Interface Sci 2022; 623:500-512. [PMID: 35597019 DOI: 10.1016/j.jcis.2022.04.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/24/2023]
Abstract
In this paper, a novel Step-scheme MoS2/Bi4O5Br2 heterojunction was fabricated through the in-situ mechanical agitation method and the photocatalytic activity of that was examined by the photocatalytic degradation Rhodamine B (RhB) and inactivation of E.coli under visible light irradiation (λ > 420 nm). The Step-scheme MoS2/Bi4O5Br2 heterojunctions displayed the enhanced photocatalytic ability compared to pure Bi4O5Br2 and MoS2 and the MoS2/Bi4O5Br2-3% (MS/BOB-3) heterojunction exhibited the strongest photocatalytic activity which can completely inactivate the 1 × 107 cfu/mL with 180 min and degrade RhB (10 mg/L) with 24 min visible light irradiation, respectively. The photocatalytic mechanism of the MoS2/Bi4O5Br2 heterojunction is was attributed to the generated active species (h+, ·O2- and ·OH) which can effectively destroy RhB molecular and cell-membrane of bacterial as demonstrated by multiple techniques such as LC-MS and fluorescence stain. Additionally, characterization results disclosed that the transfer pathway of charge carriers of constructed MoS2/Bi4O5Br2 heterojunction followed the Step-scheme channel, which not only facilitated the separation and migration of the photo-generated charge carriers, but also improved the light absorption ability of the samples and resulting in the promoted photocatalytic performance of MoS2/Bi4O5Br2 heterojunction. This work paves a new idea to develop novel bismuth oxyhalide-based photocatalytic system for wastewater purification.
Collapse
Affiliation(s)
- Huanxian Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi University of Chinese Medicine/Shaanxi Provice Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College. Xianyang 9712083, PR China; Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Idustrialization of Tradition Chinese Medicine Resources, Xianyang 712083, PR. China
| | - Yundong Xie
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Lihua Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi University of Chinese Medicine/Shaanxi Provice Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College. Xianyang 9712083, PR China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi University of Chinese Medicine/Shaanxi Provice Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College. Xianyang 9712083, PR China
| | - Jun Fan
- College of Food Science and Engineering, Northwest University, Xi'an 710069, PR China.
| | - Zhishu Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Idustrialization of Tradition Chinese Medicine Resources, Xianyang 712083, PR. China.
| |
Collapse
|
21
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
22
|
Zhu Y, Li C, Hou D, Gao G, Luo W, Duan Z, Zhang T, Xv Q, Wang Y, Tang J. MOF composites derived BiFeO 3@Bi 5O 7I n-n heterojunction for enhanced photocatalytic performance. NANOTECHNOLOGY 2022; 33:205601. [PMID: 34983034 DOI: 10.1088/1361-6528/ac47d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
BiFeO3is a photocatalyst with excellent performance. However, its applications are limited due to its wide bandgap. In this paper, MIL-101(Fe)@BiOI composite material is synthesized by hydrothermal method and then calcined at high temperature to obtain BiFeO3@Bi5O7I composite material with high degradation capacity. Among them, an n-n heterojunction is formed, which improves the efficiency of charge transfer, and the recombination of light-generated electrons and holes promotes improved photocatalytic efficiency and stability. The result of photocatalytic degradation of tetracycline under visible light irradiation showed, BiFeO3@Bi5O7I (1:2) has the best photodegradation effect, with a degradation rate of 86.4%, which proves its potential as a photocatalyst.
Collapse
Affiliation(s)
- Yu Zhu
- Taizhou University, College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing, Taizhou, 225300, People's Republic of China
| | - Chuwen Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Dongmei Hou
- Taizhou University, College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing, Taizhou, 225300, People's Republic of China
| | - Guicheng Gao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Weiqi Luo
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Zhengzhou Duan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Tang Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Qinyun Xv
- Taizhou University, College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing, Taizhou, 225300, People's Republic of China
| | - Yujia Wang
- Taizhou University, College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing, Taizhou, 225300, People's Republic of China
| | - Jijun Tang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| |
Collapse
|
23
|
Wang JT, Cai YL, Liu XJ, Zhang XD, Cai FY, Cao HL, Zhong Z, Li YF, Lü J. Unveiling the visible-light-driven photodegradation pathway and products toxicity of tetracycline in the system of Pt/BiVO 4 nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127596. [PMID: 34808448 DOI: 10.1016/j.jhazmat.2021.127596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The antibiotics pollution has currently captured increasing concerns due to its potential hazards to the environment and human health. The development of efficient and viable techniques for the removal of antibiotics is one of the research hotspots in fields of wastewater treatment and pharmaceutical industry. Although the photodegradation of antibiotics is widely studied, the evolution and toxicity of degradation intermediates have been rarely documented. Herein, Pt nanoparticles (NPs) decorated BiVO4 nanosheets (Pt/BiVO4 NSs) that exhibit excellent tetracycline (TC) photodegradation activity and stability have been prepared. Especially, the TC degradation efficiency reaches ca. 88.5% after 60 min under visible light irradiation, which is superior to most of the metal loaded two-dimensional photocatalysts reported hitherto. The excellent photocatalytic activity is attributable to the enhanced light absorption capacity and charge separation efficiency in Pt/BiVO4 NSs. h+, •O2- and •OH are the main active species for TC degradation, resulting in three possible degradation pathways. Furthermore, we first verify that TC solutions treated by Pt/BiVO4 NSs are harmless to Escherichia coli K-12 and various bacteria in natural rivers, which would not stimulate Escherichia coli to produce antibiotics resistance genes (ARGs). This work develops an environmentally friendly photodegradation strategy using Pt/BiVO4 NSs with potentials for efficient remediation of antibiotics pollution in wastewater.
Collapse
Affiliation(s)
- Jun-Tao Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Yong-Li Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Xiang-Ji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Xiao-Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Feng-Ying Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Hai-Lei Cao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China.
| | - Ya-Feng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China.
| |
Collapse
|
24
|
Ershov DS, Besprozvannykh NV, Sinel’shchikova OY. Synthesis and Photocatalytic and Electrophysical Properties of Ceramic Materials in the PbO–Bi2O3–Fe2O3 System. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362201003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Du J, Liu R, Zhu E, Guo H, Li Z, Liu C, Che G. Visible-light-induced bactericidal properties of a novel thiophene-based linear conjugated polymer/TiO 2 heterojunction. J Mater Chem B 2022; 10:737-747. [PMID: 35022631 DOI: 10.1039/d1tb02333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low utilization of visible light and the fast recombination of photogenerated electron-hole pairs are the two intrinsic defects that have hindered the antibacterial applications of TiO2. The addition of organic photocatalytic agents to form heterojunctions with TiO2 powder can effectively address these problems. A novel linear conjugated polymer poly[(thiophene-ethylene-thiophene)-thiophene-3-carboxylic acid decyl ester] (PTCD) was successfully synthesized via Stille coupling polymerization. PTCD and TiO2 can form a heterojunction photocatalyst (PTCD/TiO2), and this product was characterized using NMR and XRD. The UV-vis spectra showed that the absorption edge of the PTCD/TiO2 heterojunction extends to approximately 700 nm, which indicates that the visible-light utilization is greatly improved. Staphylococcus aureus (S. aureus) was selected as the target organism to test the photocatalytic antimicrobial activity of the material. Photogenerated electrons can undergo directional transmission of the PTCD polymer to TiO2 on the PTCD/TiO2 heterojunction to realize excellent antibacterial properties. With an optimized PTCD loading ratio of 30%, PTCD/TiO2 showed an antibacterial rate that was 14.5 times greater than that of pure TiO2 in 4 h under visible-light irradiation.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China. .,College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Renming Liu
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Enwei Zhu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China. .,College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Haiyong Guo
- Department of Biological Science, School of Life Science, Jilin Normal University, Jilin, Siping 136000, P. R. China
| | - Zhiyi Li
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China. .,College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Guangbo Che
- Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
26
|
Jiang Z, Tan X, Huang Y. Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150924. [PMID: 34655628 DOI: 10.1016/j.scitotenv.2021.150924] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis has been widely used as an advanced oxidation process to control pollutants effectively. However, environmental photocatalysis' decontamination efficiency is restricted to the photogenerated electron-hole pairs' rapid recombination. Recently, emerging investigations have been directed to generate internal electric field by piezoelectric effect to enhance the separation efficiency of photogenerated charge carriers for better photocatalytic performance; however, there are still huge knowledge gaps on the rational application of piezo-photocatalysis in environmental remediation and disinfection. Thus, we have conducted a comprehensive review to better understand the physicochemical properties of piezoelectric materials (non-centrosymmetric crystal structures, piezoelectric coefficient, Young's modulus, and etc.) and current study states. We also elucidated the strategy of piezo-photo catalysis system constructions (mono-component, core-shell structure, and etc.) and underlying mechanisms of enhanced remediation performance. Addressing the current challenges and future scenarios (degradation of organic pollutants, disinfection, and etc.), the present review would shed light on the advanced wastewater treatment development towards sustainable control of emerging containments.
Collapse
Affiliation(s)
- Zhenying Jiang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Xianjun Tan
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
27
|
Malunga SM, Chaukura N, Mbiriri CI, Gwenzi W, Moyo M, Kuvarega AT. The Visible light photodegradation of methyl orange and Escherichia coli O157:H7 in wastewater. S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/10938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Water pollution due to dyes and pathogens is problematic worldwide, and the disease burden is higher in low-income countries where water treatment facilities are usually inadequate. Thus the development of low-cost techniques for the removal of dyes and pathogens in aquatic systems is critical for safeguarding human and ecological health. In this work, we report the fabrication and use of a photocatalyst derived from waste from coal combustion in removing dyes and pathogens from wastewater. Higher TiO2 loading of the photocatalyst increased the removal efficiency for methyl orange (95.5%), and fluorine-doping improved the disinfection efficacy from 76% to 95% relative to unmodified material. Overall, the work effectively converted hazardous waste into a value-added product that has potential in point-of-use water treatment. Future research should focus on upscaling the technique, investigating the fate of the potential of the photocatalysts for multiple reuse, and the recovery of TiO2 in treated water.
Collapse
Affiliation(s)
- Sibongile M. Malunga
- Chemistry Department, Bindura University of Science Education, Bindura, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, South Africa
| | - Chiedza I. Mbiriri
- Department of Biological Sciences, Bindura University of Science Education, Bindura, Zimbabwe
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, Harare, Zimbabwe
| | - Mambo Moyo
- Department of Chemical Technology, Midlands State University, Gweru, Zimbabwe
| | - Alex T. Kuvarega
- Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
28
|
An Overview of Graphene-Based 2D/3D Nanostructures for Photocatalytic Applications. Top Catal 2022. [DOI: 10.1007/s11244-021-01539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Bharathkumar S, Sakar M, Archana J, Navaneethan M, Balakumar S. Interfacial engineering in 3D/2D and 1D/2D bismuth ferrite (BiFeO 3)/Graphene oxide nanocomposites for the enhanced photocatalytic activities under sunlight. CHEMOSPHERE 2021; 284:131280. [PMID: 34217926 DOI: 10.1016/j.chemosphere.2021.131280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
3D-particulate and 1D-fiber structures of multiferroic bismuth ferrite (BiFeO3/BFO) and their composites with 2D-graphene oxide (GO) have been developed to exploit the different scheme of interfacial engineering as 3D/2D and 1D/2D systems. Particulates and fibers of BFO were developed via sol-gel and electrospinning fabrication approaches respectively and their integration with GO was performed via the ultrasonic-assisted chemical reduction process. The crystalline and phase formation of BiFeO3 and GO was confirmed from the XRD patterns obtained. The electron microscopic images revealed the characteristic integration of 3D particulates (with average size of 100 nm) and 1D fibers (with diameter of ~150 nm and few μm length) onto the 2D GO layers (thickness of ~27 nm). XPS analysis revealed that the BFO nanostructures have been integrated onto the GO through chemisorptions process, where it indicated that the ultrasonic process engineers the interface through the chemical modification of the surface of these 3D/2D and 1D/2D nanostructures. The photophysical studies such as the impedance and photocurrent measurements showed that the charge separation and recombination resistance is significantly enhanced in the system, which can directly be attributed to the effective interfacial engineering in the developed hetero-morphological composites. The degradation studies against a model pollutant Rhodamine B revealed that the developed nanocomposites exhibit superior photocatalytic activity via the effective generation of OH radicals as confirmed by the radical analysis studies (100% degradation in 150 and 90 min for 15% GO/BFO particulate and fiber composites, respectively). The developed system also demonstrated excellent photocatalytic recyclability, indicated their enhanced stability.
Collapse
Affiliation(s)
- S Bharathkumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India; Functional Materials and Energy Device Laboratory, Department of Physics and Nanotechnology, SRM IST, Kattankulathur, Chengalpattu, 603203, India
| | - M Sakar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India; Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, Karnataka, India
| | - J Archana
- Functional Materials and Energy Device Laboratory, Department of Physics and Nanotechnology, SRM IST, Kattankulathur, Chengalpattu, 603203, India.
| | - M Navaneethan
- Functional Materials and Energy Device Laboratory, Department of Physics and Nanotechnology, SRM IST, Kattankulathur, Chengalpattu, 603203, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
30
|
He J, Zheng Z, Lo IMC. Different responses of gram-negative and gram-positive bacteria to photocatalytic disinfection using solar-light-driven magnetic TiO 2-based material, and disinfection of real sewage. WATER RESEARCH 2021; 207:117816. [PMID: 34740165 DOI: 10.1016/j.watres.2021.117816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 05/13/2023]
Abstract
A solar-light-driven magnetic photocatalyst, reduced-graphene-oxide/Fe,N-TiO2/Fe3O4@SiO2 (RGOFeNTFS), was developed for the photocatalytic disinfection of different strains of bacteria: gram-negative Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), and gram-positive Enterococcus faecalis (E. faecalis). The different responses of the bacteria during the reaction were investigated. Gram-positive E. faecalis was found to be more susceptible to photocatalytic disinfection and exhibited a higher leakage of intracellular components than the two gram-negative bacteria. The interactions between the bacteria and RGOFeNTFS were analyzed for Zeta potential, hydrophilicity and SEM. Under the experimental conditions, the opposite surface charges of the bacteria (negative Zeta potential) and RGOFeNTFS (positive Zeta potential) contribute to their interactions. With a more negative Zeta potential (than E. coli and E. faecalis), S. typhimurium interacts more strongly with RGOFeNTFS and is mainly attacked by •OH near the photocatalyst surface. E. coli and E. faecalis (with less negative Zeta potentials) interact less strongly with RGOFeNTFS, and compete for the dominant reactive species (•O2-) in the bulk solution. Therefore, the co-existence of bacteria significantly inhibits the photocatalytic disinfection of E. coli and E. faecalis, but insignificantly for S. typhimurium. Moreover, photocatalytic disinfection using RGOFeNTFS show potential for treating real sewage, which meets the local discharge standard (of E. coli) after a 60-min reaction. In real sewage, different bacteria are disinfected simultaneously.
Collapse
Affiliation(s)
- Juhua He
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
31
|
Self-supporting rGO/BiOBr composite on loofah-sponge as a floating monolithic photocatalyst for efficient microcystis aeruginosa inactivation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zeng J, Li Z, Jiang H, Wang X. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. MATERIALS HORIZONS 2021; 8:2964-3008. [PMID: 34609391 DOI: 10.1039/d1mh00773d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its use of green and renewable energy and negligible bacterial resistance, photocatalytic bacterial inactivation is to be considered a promising sterilization process. Herein, we explore the relevant mechanisms of the photoinduced process on the active sites of semiconductors with an emphasis on the active sites of semiconductors, the photoexcited electron transfer, ROS-induced toxicity and interactions between semiconductors and bacteria. Pristine semiconductors such as metal oxides (TiO2 and ZnO) have been widely reported; however, they suffer some drawbacks such as narrow optical response and high photogenerated carrier recombination. Herein, some typical modification strategies will be discussed including noble metal doping, ion doping, hybrid heterojunctions and dye sensitization. Besides, the biosafety and biocompatibility issues of semiconductor materials are also considered for the evaluation of their potential for further biomedical applications. Furthermore, 2D materials have become promising candidates in recent years due to their wide optical response to NIR light, superior antibacterial activity and favorable biocompatibility. Besides, the current research limitations and challenges are illustrated to introduce the appealing directions and design considerations for the future development of photocatalytic semiconductors for antibacterial applications.
Collapse
Affiliation(s)
- Jiayu Zeng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
33
|
Mishra S, Kumari S, Kumar P, Samanta SK. Microwave synthesized strontium hexaferrite 2D sheets as versatile and efficient microwave catalysts for degradation of organic dyes and antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147853. [PMID: 34087737 DOI: 10.1016/j.scitotenv.2021.147853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/26/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Microwave catalysis is extremely lucrative due to prompt mineralization and superior efficiency. Ideal microwave catalysts should possess crystalline nature, large surface area, room temperature ferromagnetic, high dielectric properties apart from structural stability at elevated temperature. In the present article, the candidature of microwave synthesized strontium hexaferrite 2D sheets (2D SFO) has been explored as microwave catalysts for the degradation of a host of organic dyes and antibiotics. Malachite green (MG) and nile blue A (NB) in particular exhibited 99.8% and 97.6% degradation, respectively. Degradation reaction is established to follow pseudo-second-order kinetics. Total organic carbon (TOC) measurements hint at 52% and 60% mineralization for MG and NB, respectively. Liquid chromatography-mass spectroscopy (LCMS) measurements indicate the reaction pathways via intermediates and eventual mineralization to CO2 and H2O. Mott-Schottky measurements along with scavenger tests hint that both hydroxyl and superoxide radicals participate in the reaction. Having superior efficiency apart from the versatile nature of the 2D SFO microwave catalyst, the present research will guide to the emergence of microwave catalysis as a new technology.
Collapse
Affiliation(s)
- Sandhya Mishra
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar 801106, India
| | - Sushma Kumari
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar 801106, India
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta, Patna, Bihar 801106, India; Birck Nanotechnology Centre, Purdue University, West Lafayette, IN 47907, USA.
| | - Sujoy Kumar Samanta
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar 801106, India.
| |
Collapse
|
34
|
Bavani T, Madhavan J, Prasad S, AlSalhi MS, ALJaffreh M, Vijayanand S. Fabrication of novel AgVO 3/BiOI nanocomposite photocatalyst with photoelectrochemical activity towards the degradation of Rhodamine B under visible light irradiation. ENVIRONMENTAL RESEARCH 2021; 200:111365. [PMID: 34033832 DOI: 10.1016/j.envres.2021.111365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
In the present work, a visible light driven AgVO3/BiOI nanocomposite photocatalyst with different wt % (1, 2, 3) of AgVO3 was fabricated by using facile hydrothermal method. Further, the nanocomposite was characterized by FT-IR, XRD, SEM, TEM, EDS, UV-vis DRS, photoluminescence and photoelectrochemical studies. The structural characterization showed nanorods on nanosheet surface. Among different AgVO3 loaded samples, the photocatalytic efficiency of 1 wt % AgVO3/BiOI nanocomposite was found to be comparatively higher than the pure BiOI and AgVO3. The photodegradation rate constant values of pure BiOI, AgVO3 and 1, 2, 3 wt % AgVO3/BiOI nanocomposites are 0.006, 0.0033, 0.0255, 0.01575, 0.0116 min-1 respectively. This enhanced photocatalytic activity was due to the increasing visible light absorption ability and efficient separation of the charge carriers. Thereby, the 1 wt % AgVO3/BiOI nanocomposite photocatalyst exhibited increased photodegradation activity, photostability and recyclability characteristics. The radical trapping experiment confirmed the role of OH and h+ in the photocatalytic degradation of RhB. Based on this, the probable mechanism of degradation of RhB under visible light irradiation has also been proposed. Hence, we believe it could be a promising material that can be employed for the photodegradation of organic pollutants present in wastewater.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mamduh ALJaffreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| |
Collapse
|
35
|
Liu F, Ma Z, Deng Y, Wang M, Zhou P, Liu W, Guo S, Tong M, Ma D. Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, Escherichia coli Disinfection, and Paracetamol Degradation under Visible-Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5371-5381. [PMID: 33739828 DOI: 10.1021/acs.est.0c07857] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) have great application potentials in photocatalytic water treatment. By using p-phenylenediamine with different numbers and locations of heterocyclic nitrogen atoms as a precursor, five types of COFs with different nitrogen positions were synthesized. We found that Cr(VI) photoreduction,Escherichia coli inactivation, and paracetamol degradation by COFs were heterocyclic nitrogen location-dependent. Particularly, the photocatalytic performance for all three tested pollutants by five types of COFs followed the order of the best performance for COF-PDZ with two ortho position heterocyclic N atoms, medium for COF-PMD with two meta position heterocyclic N atoms, and COF-PZ with two para position heterocyclic N atoms, and COF-PD with a single heterocyclic N atom, the worst performance for COF-1 without a heterocyclic N atom. Compared to the other COFs, COF-PDZ contained improved quantum efficiency and thus enhanced generation of electrons. The lower energy barriers and larger energy gaps of COF-PDZ contributed to its improved quantum efficiencies. The stronger affinity to Cr(VI) with lower adsorption energy of COF-PDZ also contributed to its excellent Cr(VI) reduction performance. By transferring into a more stable keto form, COF-PDZ showed great stability through five regeneration and reuse cycles. Overall, this study provided an insight into the synthesis of high-performance structure-dependent COF-based photocatalysts.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhiyao Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuchen Deng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Meng Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Peng Zhou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shaojun Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
36
|
Chen YD, Duan X, Zhou X, Wang R, Wang S, Ren NQ, Ho SH. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. CHEMICAL ENGINEERING JOURNAL 2021. [PMID: 0 DOI: 10.1016/j.cej.2020.128207] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
37
|
Wang K, Huang D, Wang W, Li Y, Xu L, Li J, Zhu Y, Niu J. Enhanced decomposition of long-chain perfluorocarboxylic acids (C9-C10) by electrochemical activation of peroxymonosulfate in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143666. [PMID: 33257073 DOI: 10.1016/j.scitotenv.2020.143666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The decomposition of long-chain perfluorocarboxylic acids (PFCAs), including perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), were investigated by electrochemical activation of peroxymonosulfate (PMS) on porous Ti/SnO2-Sb membrane anode. The results indicated that PMS activation could efficiently promote PFNA/PFDA decomposition, with pseudo-first-order rate constants about 3.12/2.06 times as compared with that of direct electro-oxidations. The energy consumptions of PFNA and PFDA decomposition were 36.31 and 37.46 kWh·m-3·order-1, respectively. The quantitative detection results of •OH with electron paramagnetic resonance (EPR) demonstrated that PMS activation promoted •OH formation. The inhibited performance in radical scavengers indicated both •OH and SO4•- might be mainly involved in PFNA decomposition, while SO4•- might be mainly involved in PFDA decomposition during PMS activation process. The mineralization mechanism for long-chain PFCAs decomposition which was mainly by repeating CF2-unzipping cycle via radical reaction based on the intermediates verification and mass balance of C and F, was proposed. These results suggested that electrochemical activation of PMS on porous Ti/SnO2-Sb membrane anode exhibited high efficiency in mineralizing PFNA and PFDA under mild conditions. This work might provide an efficient way for persistent organic pollutants, including, but not limited to long-chain PFCAs elimination from wastewater.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Dahong Huang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Jiayin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
38
|
Rong H, He L, Li M, Zhang M, Yi K, Han P, Tong M. Different electrically charged proteins result in diverse transport behaviors of plastic particles with different surface charge in quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143837. [PMID: 33257066 DOI: 10.1016/j.scitotenv.2020.143837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The influence of proteins on the transport and deposition behaviors of microplastics (MPs) in quartz sand was examined at both low (5 mM) and high ionic strength (25 mM) in NaCl solutions at pH 6. Carboxylate- and amine-modified polystyrene latex microspheres with size of 200 nm were employed as negatively (CMPs) and positively surface charged MPs (AMPs), respectively, while bovine serum albumin (BSA) and bovine trypsin were utilized as representative negatively and positively charged proteins, respectively. The results showed that for two examined protein concentrations (both 1 and 10 mg/L TOC) under both ionic strength conditions, the presence of BSA increased the transport of both CMPs and AMPs, while the presence of trypsin decreased the transport of CMPs yet increased the transport of AMPs in porous media. The mechanisms driving to the changed transport of MPs induced by two types of proteins were found to be different. Particularly, steric interaction induced by BSA corona adsorbed onto CMPs surface as well as the repel effects resulted from BSA suspending in solutions were found to contribute to the enhanced CMPs transport with BSA copresent in suspensions. The increased sizes and the decreased electrostatic repulsion of CMPs due to the adsorption of trypsin onto CMPs, together with the addition of extra deposition sites due to the adsorption of trypsin onto quartz sand drove to the decreased CMPs transport with trypsin copresent in suspensions. The increased electrostatic repulsion due to the adsorption of BSA onto AMPs surfaces caused the enhanced AMPs transport with BSA in solutions. While, the decreased electrostatic attraction of AMPs due to the adsorption of trypsin onto AMPs, as well as the competition of deposition sites due to the adsorption of trypsin onto quartz sand contributed to the increased AMPs transport with trypsin copresent in suspensions. The results showed that the presence of different types of proteins would induce different transport behaviors of microplastics with different surface charge in porous media. Since proteins are widely present in aquatic systems, to more accurately predict the fate and transport of MPs in natural environments, the effects and mechanisms of proteins on the transport of MPs should be considered.
Collapse
Affiliation(s)
- Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
39
|
Xu P, Wang P, Wang Q, Wei R, Li Y, Xin Y, Zheng T, Hu L, Wang X, Zhang G. Facile synthesis of Ag 2O/ZnO/rGO heterojunction with enhanced photocatalytic activity under simulated solar light: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124011. [PMID: 33265040 DOI: 10.1016/j.jhazmat.2020.124011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Ag2O/ZnO/rGO heterojunction photocatalysts were synthesized via a rapid microwave hydrothermal method for photocatalytic degradation of bisphenol A (BPA) under simulated solar light. Ag doping efficiently decreased the bandgap of ZnO, and loading on rGO inhibited the recombination of photoinduced electron-hole pairs. The highest BPA removal rate (80%) was achieved with an Ag doping ratio of 5% and a GO loading ratio of 3 wt%. The enhanced photocatalytic performance was attributed to the narrower bandgap and the improved separation efficiency of electron-hole pairs. Moreover, the recycling experiments proved that Ag2O/ZnO/rGO possessed excellent photostability. Hole (h+) and •OH played crucial roles in the photocatalytic system. The degradation pathway of BPA including hydroxylation and the cleavage of covalent bonds was proposed. The toxicity assessment of intermediates elucidated that most of intermediates were less toxic than BPA. The as-prepared Ag2O/ZnO/rGO exhibited outstanding photostability and pH adaptability, having great potential to be applied to the degradation of emerging organic pollutants in wastewater.
Collapse
Affiliation(s)
- Peng Xu
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qiao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yanjun Xin
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Limin Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaojing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
40
|
Rajabather J, Albaqami MD, Lohedan HA, Arunachalam P, Thirunavukkarasu K, Appaturi JN. Preparation, characterization, and morphology insight of ZnO nanodisk–TiO
2
‐coated SWCNT thin film composites for catalytic sensor application. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- JothiRamalingam Rajabather
- Chemistry Department, College of Science King Saud University Riyadh 11451 Saudi Arabia
- Surfactant Research Chair, Chemistry Department, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Munirah D. Albaqami
- Chemistry Department, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Hamad A. Lohedan
- Surfactant Research Chair, Chemistry Department, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | | | - Kandasamy Thirunavukkarasu
- Department of chemistry Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India Chennai 600062 India
| | | |
Collapse
|
41
|
Fouad M, Gar Alalm M, El-Etriby HK, Boffito DC, Ookawara S, Ohno T, Fujii M. Visible-light-driven photocatalytic disinfection of raw surface waters (300-5000 CFU/mL) using reusable coated Ru/WO 3/ZrO 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123514. [PMID: 32717546 DOI: 10.1016/j.jhazmat.2020.123514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We selected ruthenium (Ru) to improve the photocatalytic activity of a WO3/ZrO2 composite. The synthesized Ru/WO3/ZrO2 was then compared to a benchmark photocatalyst (S-TiO2) in terms of photocatalytic disinfection of raw surface waters collected from the Nile Delta region, Egypt. The photocatalysts were immobilized on aluminum plates with polysiloxane to test them in repetitive cycles under the irradiation of a metal-halide lamp. Bacterial concentrations in the raw waters ranged from 300 to 5000 CFU/mL (CFU: colony-forming units) and different species and genus were detected including gram-negative (e.g., shigella, salmonella, vibrio parahaemolyticus, and vibrio cholera) and gram-positive bacteria (e.g., enterococcus). Ru/WO3/ZrO2 deactivated over 90 % of the bacterial content within 120 min for most sources, whereas S-TiO2 did not perform as highly. The bacterial count after 240 min of irradiation was below the detection limit for all different water sources. Moreover, the inhabitation of photocatalytic disinfection by natural organic matter (NOM) was investigated. Ru/WO3/ZrO2 was stable for four continuous cycles (960 min in total), suggesting the viability for practical application.
Collapse
Affiliation(s)
- Mohamed Fouad
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Gar Alalm
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan.
| | - Hisham Kh El-Etriby
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7 Québec, Canada
| | - Shinichi Ookawara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
42
|
Bavani T, Madhavan J, Prasad S, AlSalhi MS, AlJaafreh MJ. A straightforward synthesis of visible light driven BiFeO 3/AgVO 3 nanocomposites with improved photocatalytic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116067. [PMID: 33316499 DOI: 10.1016/j.envpol.2020.116067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Herein, an efficient visible-light-driven BiFeO3/AgVO3 nanocomposite was effectively fabricated via a facile co-precipitation procedure. The physicochemical properties of BiFeO3/AgVO3 nanocomposites were investigated via Fourier transform-infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV visible diffuse reflectance spectroscopy (DRS) and photoelectrochemical studies (PEC). The photocatalytic activity (PCA) of BiFeO3/AgVO3 nanocomposites was assessed with regard to the photocatalytic degradation of Rhodamine-B (RhB) when subjected to visible light irradiation (VLI). Upon 90 min of illumination, the optimal 3%-BiFeO3/AgVO3 nanocomposite showed a greater photocatalytic degradation, which was ∼3 times higher than the bare AgVO3. The lower PL intensity of 3%-BiFeO3/AgVO3 nanocomposite exposed the low recombination rate, which improved the photo-excited charge carriers separation efficiency. The experimental outcomes showed that the BiFeO3/AgVO3 nanocomposite might be an encouraging material for treatment of industrial and metropolitan wastewater. Moreover, a plausible RhB degradation mechanism was proposed proving the participation of the generated OH and O2- radicals in the degradation over BiFeO3/AgVO3 nanocomposite.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mamduh J AlJaafreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Zhang Q, Li M, Luo B, Luo Y, Jiang H, Chen C, Wang S, Min D. In situ growth gold nanoparticles in three-dimensional sugarcane membrane for flow catalytical and antibacterial application. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123445. [PMID: 33254733 DOI: 10.1016/j.jhazmat.2020.123445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
In this work, we decorated gold nanoparticles (Au NPs) in the porous, three-dimensional sugarcane membrane for the flow catalytical and antibacterial application. Due to the uniformly distributed Au NPs in sugarcane channels and the porous structure of sugarcane, the interaction between contaminant and catalysis was enhanced as water flowing through the Au NPs/sugarcane membrane. The Au NPs/sugarcane membrane exhibited superior catalytical efficiency for removing methylene blue (MB) with a turn over frequency of 0.27 molMB·molAu-1·min-1 and the water treatment rate reached up to 1.15×105 L/m2 h with >98.3 % MB removal efficiency. The Au NPs/sugarcane membrane also exhibited superior bacterial removal efficiency as E. coli suspension flowing through it, due to the superimposition effects of physical barrier in sugarcane and the antibacterial property of Au NPs. The tremendous catalytical and antibacterial performance of Au NPs/sugarcane membrane provides a promising potential for the rational design of flow catalytical membrane reactor to purify the microbial contaminated water.
Collapse
Affiliation(s)
- Qingtong Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Mingfu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Bin Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Yuying Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Hongrui Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
| |
Collapse
|
44
|
Wu M, Lei H, Chen J, Dong X. Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J Colloid Interface Sci 2020; 587:883-890. [PMID: 33239216 DOI: 10.1016/j.jcis.2020.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Mechanical energy as the green and sustainable energy source widely distributes in natural environment. In this paper, we successfully realize the conversion of mechanical energy through a friction route on the tribocatalyst of Bi2WO6. Under magnetic stirring, the friction between the PTFE-sealed magnetic bar and the catalyst particles resulted in the electron transfer crossing the contact interface, in which PTFE accepted the electrons and simultaneously the holes were left on the catalyst. The positively charged catalyst was demonstrated through electrostatic attraction and repulsion tests. Like photocatalytic process, the holes on the valence band of Bi2WO6 have strong oxidative ability that can efficiently oxidize organic pollutants. The tribocatalytic tests showed that the Bi2WO6 could eliminate organic dyes under magnetic stirring in dark, and we could further optimize the tribocatalytic performance via regulating the size of magnetic bar and reactor material. Finally, a high stability of tribocatalysis was revealed by the multiple tests. This work not only develops a green tribocatalysis strategy to oxidative purification of organic pollutants, but also provides a possible pathway to convert mechanical energy in environment to chemical energy, such as potential applications in environmental remediation and sustainable energy.
Collapse
Affiliation(s)
- Meixuan Wu
- Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Hua Lei
- Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jiayao Chen
- Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiaoping Dong
- Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China.
| |
Collapse
|
45
|
Liu F, Nie C, Dong Q, Ma Z, Liu W, Tong M. AgI modified covalent organic frameworks for effective bacterial disinfection and organic pollutant degradation under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122865. [PMID: 32470769 DOI: 10.1016/j.jhazmat.2020.122865] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) have recently been demonstrated to have great application potentials in water treatment. Their photocatalytic performance towards bacterial disinfection and organic pollutant degradation yet has seldom been investigated. In this study, AgI modified COFs (using 2,5-diaminopyridine and 1,3,5-triformylphloroglucinol as precursors) (COF-PD/AgI) were fabricated and their applications to photocatalytically disinfect bacteria and degrade organic pollutants were investigated. COF-PD/AgI exhibited effective photocatalytic performance towards Escherichia coli disinfection and organic pollutant (Rhodamine B and acetaminophen) degradation. SEM images were employed to investigate cell disinfection process, while theoretical density functional theory (DFT) calculation and intermediates determination were used to elucidate organic pollutant degradation processes. Scavenger experiments, ESR spectra and chemical probes experiments confirmed O2-, h+ and OH played important roles in the photocatalytic process. The formation of dual-band Z-scheme heterojunction improved photocatalytic performance. COF-PD/AgI remained high photocatalytic activity in the four consecutive cycles and could serve as a promising photocatalyst for water purification.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhiyao Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
46
|
Liu Y, Huang J, Feng X, Li H. Thermal-Sprayed Photocatalytic Coatings for Biocidal Applications: A Review. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2020; 30:1-24. [PMID: 38624582 PMCID: PMC7640575 DOI: 10.1007/s11666-020-01118-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Indexed: 05/03/2023]
Abstract
There have been ever-growing demands for disinfection of water and air in recent years. Efficient, eco-friendly, and cost-effective methods of disinfection for pathogens are vital to the health of human beings. The photocatalysis route has attracted worldwide attention due to its highly efficient oxidative capabilities and sustainable recycling, which can be used to realize the disinfection purposes without secondary pollution. Though many studies have comprehensively reviewed the work about photocatalytic disinfection, including design and fabrication of photocatalytic coatings, inactivation mechanisms, or practical applications, systematic reviews about the disinfection photocatalysis coatings from fabrication to effort for practical use are still rare. Among different ways of fabricating photocatalytic materials, thermal spray is a versatile surface coating technique and competitive in constructing large-scale functional coatings, which is a most promising way for the future environmental purification, biomedical and life health applications. In this review, we briefly introduced various photocatalytic materials and corresponding inactivation mechanisms for virus, bacteria and fungus. We summarized the thermal-sprayed photocatalysts and their antimicrobial performances. Finally, we discussed the future perspectives of the photocatalytic disinfection coatings for potential applications. This review would shed light on the development and implementation of sustainable disinfection strategies that is applicable for extensive use for controlling pathogens in the near future.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Jing Huang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Xiaohua Feng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Hua Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| |
Collapse
|
47
|
The Influence of Ship Waves on Sediment Resuspension in the Large Shallow Lake Taihu, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197055. [PMID: 32992466 PMCID: PMC7579285 DOI: 10.3390/ijerph17197055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
Sediment resuspension induces endogenous nutrient release in shallow lakes, which has been demonstrated to be associated with eutrophication. In addition to natural wind-driven resuspension, navigable shallow lakes (such as Lake Taihu, China) also experience resuspension from human activities, such as ship waves. Both processes determine the intensity, frequency, and duration of sediment resuspension, and may consequently affect the pattern of cyanobacteria blooms in the lake. In this study, acoustic Doppler Velocimeter (ADV), Optical Backscatter Sensor (OBS), and temperature wave tide gauge (instrument model :RBR duo TD|wave) were placed in an observation platform in the lake to obtain high-frequency flow velocities, suspended sediment concentration (SSC), and wave parameters before, during, and after a cargo ship passed by. We found that the ship wave disturbance intensity is greatly influenced by the draft depth. The movement generated by ship disturbance is primarily horizontal rather than vertical. Compared with the wind-induced wave, the disturbance caused by the ship waves has a high intensity, short duration, and narrow range of influence. The maximum total shear stress under ship disturbance can reach 9~90 times the critical shear stress under a natural state. Therefore, the effect of ship waves on sediment resuspension near the channel of Lake Taihu is much greater than that of wind-induced waves. These findings represent an important step towards understanding the quantitative relationship between ship wave disturbance and sediment resuspension, and lay the foundation for future research in order to understand and control the eutrophication of shallow lakes.
Collapse
|
48
|
Wang T, Wen J, Guo S, Mu L. Hypochlorite and visible-light irradiation affect the transformation and toxicity of graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138010. [PMID: 32213413 DOI: 10.1016/j.scitotenv.2020.138010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) that has many advanced properties, has been applied in various fields, such as water treatments and removal of contaminations. Hypochlorite is widely used in water treatments. However, the effects of hypochlorite on the transformations and risks of GO, and the toxicological responses remain largely unknown, especially under visible-light irradiation. The present work found that visible-light irradiation promoted the breakdown of sp2 structures of GO by hypochlorite, producing alkanes and arenes with short carbon skeletons. Compared to oxygen-containing radicals, chlorine-related radicals contributed to the breakdown of carbon atomic rings of GO. Compared to pristine GO, the transformed GO inhibited algal reproduction, reduced photosynthesis, and promoted oxidative stress and membrane permeability. Substantial plasmolysis and increased numbers of starch grains were observed in the exposure groups. Metabolomics analysis found that oxidative stress and increased membrane permeability linked to downregulated proline. The downregulated pathways of alanine, aspartate and glutamate metabolism were associated with the inhibition of algal reproduction. The downregulated pathways related to protein synthesis and the secondary metabolism explained the strong toxicity induced by GO with hypochlorite and visible-light irradiation. The above results provide insight into the safety assessment of GO.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingyu Wen
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for environmental factors control of Agro-product quality safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for environmental factors control of Agro-product quality safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
49
|
Wang Q, Li Q, Wei D, Su G, Wu M, Li C, Sun B, Dai L. Photochemical reactions of 1,3-butadiene with nitrogen oxide in different matrices: Kinetic behavior, humidity effect, product and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137747. [PMID: 32179348 DOI: 10.1016/j.scitotenv.2020.137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Understanding the photochemical reaction process between VOCs and co-pollutants in the troposphere is crucial for controlling the haze. The photochemical reactions of 1,3-butadiene (1,3-BD) with NO were carried out at 308 K for up to 96 h in clean air with various relative humidity (RH) values, and actual haze atmosphere. In the haze, the representative pseudo-first-order kinetic rate constants of the 1,3-BD-NO system was 1.53 time higher than those in dry clean air. The effect of the RH (0%-80%) on the conversion behavior of the 1,3-BD-NO system in clean air was studied, revealing that increasing RH promoted the photochemical reaction in the low range of 0%-40% but retarded it in the high range of 40%-80%. Interestingly, OH radicals were directly detected under different RH values, and the strongest OH signal was obtained at an RH of 40%. Multiple macromolecular products with carbon numbers of 10-36 were identified. Unexpectedly, richer products and extended unsaturation range were detected at an RH of 40% than 0%. The photochemical products were also analyzed using ion chromatography. A reaction mechanism was proposed from the detected NO2, O3, OH, HNO2, HNO3, organic acids and macromolecular products.
Collapse
Affiliation(s)
- Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Wei
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Zeng Z, Fan Y, Quan X, Yu H, Chen S, Zhang S. Energy-transfer-mediated oxygen activation in carbonyl functionalized carbon nitride nanosheets for high-efficient photocatalytic water disinfection and organic pollutants degradation. WATER RESEARCH 2020; 177:115798. [PMID: 32305702 DOI: 10.1016/j.watres.2020.115798] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Polymeric photocatalysts are promising candidates for water purification, however their catalytic performance are still unsatisfactory due to the fast charge recombination that leads to low reactive oxygen radicals production. In this study, a conceptual energy-transfer-mediated photocatalytic oxygen activation system over polymeric carbon nitride without the need of electron-hole separation is proposed, exhibiting remarkable singlet oxygen triggered bacteria inactivation performance as well as organic pollutants degradation. By structure and excitonic effect modulation, the oxygen activation process changes from the traditional electron-transfer mechanism to the final energy-transfer pathway, leading to the selective generation of singlet oxygen with high efficiency. The generated singlet oxygen is found to fervently attack the bacteria membrane, creating irreparable pores or holes on the cell membrane for cytoplasmic contents leaking out to accelerate bacteria destruction. The work demonstrated here offers a new photocatalytic oxygen activation pathway for achieving high-efficient reactive oxygen species generation performance without the need of charge separation.
Collapse
Affiliation(s)
- Zhenxing Zeng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shushen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|