1
|
Wang C, Zhu J, Wang H, Zhang L, Li Y, Zhang Y, Wu Z, Zhou Q. Sedimentary organic matter load influences the ecological effects of submerged macrophyte restoration through rhizosphere metabolites and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175419. [PMID: 39128520 DOI: 10.1016/j.scitotenv.2024.175419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/06/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Organic matter (OM) accumulation in lake sediments has doubled owing to human activities over the past 100 years, which has negatively affected the restoration of submerged vegetation and ecological security. Changes in the pollution structure of sediments caused by plant recovery and rhizosphere chemical processes under different sediment OM levels are the theoretical basis for the rational application of plant rehabilitation technology in lake management. This study explored how Vallisneria natans mediates changes in sediment N and P through rhizospheric metabolites and microbial community and function under low (4.94 %) and high (17.35 %) sediment OM levels. V. natans promoted the accumulation of NH4-N in the high-OM sediment and the transformation of Fe/Al-P to Ca-P in the low-OM sediment. By analyzing 63 rhizospheric metabolites and the sediment microbial metagenome, the metabolites lactic acid and 3-hydroxybutyric acid and the genus Anammoximicrobium were found to mediate NH4-N accumulation in the high-OM sediment. Additionally, 3-hydroxy-decanoic acid, adipic acid, and the genus Bdellovibrionaceae mediated the transformation of Fe/Al-P to Ca-P in the low-OM sediment. The growth of V. natans enriched the abundance of functional genes mediating each step from nitrate to ammonia and the genes encoding urease in the high-OM sediment, and it up-regulated three genes related to microbial phosphorus uptake in the low-OM sediment. This study revealed the necessity of controlling endogenous pollution by recovering submerged macrophytes under high- and low-OM conditions from the perspective of the transformation of inorganic nitrogen and phosphorus.
Collapse
Affiliation(s)
- Chuan Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan 430062, China.; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China..
| | - Jianglong Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan 430062, China
| | - Huihui Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Liping Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Yahua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China.; China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan 430074, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China..
| |
Collapse
|
2
|
Mao X, Zhao H, Kattel G, Jiang G, Ji Y, Liu T, Yang J, Liu Z, Wang C, Zhao H, Liu L, Dong Q. Both nutrients and macrophytes regulate organic carbon burial: Insights from high-resolution spatiotemporal records of a large shallow lake (Baiyangdian) in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175239. [PMID: 39111439 DOI: 10.1016/j.scitotenv.2024.175239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Both ecological regime shifts and carbon cycling in lakes have been the subject of global debates in recent years. However, the direct linkage between them is poorly understood. Lake Baiyangdian, a representative large shallow lake with the coexistence of a macrophyte-dominated area (MDA) and an algae-dominated area (ADA) in eastern China, allowing better understanding of the relationship between regime shifts and organic carbon (OC) burial in lakes. On the basis of Bayesian isotopic mixing modelling of C/N ratios and δ13C values, the sediment OC is primarily of autochthonous origin. The mean OC burial rate (OCBR) was 39 g C m-2 yr-1 before eutrophication occurred in 1990 and increased approximately 2.7-fold to 106 g C m-2 yr-1 after eutrophication. Partial least squares path modelling revealed that this change can be largely attributed to enhanced primary productivity and rapid burial as a result of intensified human perturbation. In terms of spatial patterns, the OCBR was greater in the MDA than in the ADA, which may be related to the different burial and mineralization processes of debris from macrophytes and algae. It then deduced that a decrease in the OCBR and an increase in the mineralization rate might have occurred after a shift from a macrophyte-dominated state to an algae-dominated state. Our findings highlight that eutrophication generally increases OC burial by enhancing lake primary productivity. However, once nutrient levels reach a critical range, lake ecosystems may shift from a macrophyte-dominated state to an algae-dominated state, which can lead to a significant reduction in the carbon burial capacity of lakes. Therefore, more attention should be given to avoiding shifts in eutrophic lakes, as such shifts can alter carbon cycling.
Collapse
Affiliation(s)
- Xin Mao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China; Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang 050024, China
| | - Hongmei Zhao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China.
| | - Giri Kattel
- Department of Infrastructure Engineering, University of Melbourne, Melbourne 3010, Australia; Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Gaolei Jiang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Yunping Ji
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Taibei Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Jingsong Yang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Zhe Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Chengmin Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Hua Zhao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Linjing Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Qiuyao Dong
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| |
Collapse
|
3
|
Wang Z, Nagata M, Murano H, Pignatello JJ. Participation of strong charge-assisted hydrogen bonds in interactions of dissolved organic matter represented by Suwannee River Humic Acid. WATER RESEARCH 2024; 265:122274. [PMID: 39167973 DOI: 10.1016/j.watres.2024.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Terrestrial dissolved organic matter (DOM) plays critical roles in many biotic and abiotic environmental reactions as well as in water treatment. Its structure is therefore of great interest. We examined dissolved Suwannee River Humic Acid (HA) to probe the potential participation of exceptionally strong, negative charge-assisted hydrogen bonds, (-)CAHB, in DOM cohesion and interaction with small weak acids using high performance size exclusion chromatography (HPSEC), transmission electron microscopy, zeta-pH curves, and pH drift experiments. The results support a previously proposed two-tier state of aggregation, in which tightly-knit primary particles (≤ ∼10 kDa) form larger secondary aggregates (up to micrometer in size). Evidence for (-)CAHB is gained through zeta potential changes and pH drift experiments. The primary particles interact with (-)CAHB-capable solutes (simple carboxylic acids and phosphate) but not (-)CAHB-incapable solutes. We identified disruption of intra-segmental and inter-molecular (-)CAHB leading to swelling and disaggregation, as well as formation of nouveau (-)CAHB with free groups on HA. The effects were solute-concentration dependent and greater at pH 5 than pH 6, consistent with CAHB theory. Phosphate induced the greatest shifts in the HPSEC molecular size distribution curves. The shifts were unaffected by prior stripping of innate polyvalent metals. We conclude that the (-)CAHB contributes to the cohesion of DOM, affecting its size and charge, and provides a means by which weak acid pollutants, nutrients, and natural compounds can interact with DOM. Such interactions have implications for the behavior of DOM in the environment, the fate and transport of anthropogenic pollutants, and the roles DOM play in water treatment technologies.
Collapse
Affiliation(s)
- Zhengyang Wang
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Mayu Nagata
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Hirotatsu Murano
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan.
| | - Joseph J Pignatello
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| |
Collapse
|
4
|
Xiong Y, Du Y, Liu M, Deng Y, Shi H, Gan Y, Wang Y. Revealing degradation pathways of soluble and dissolved organic matter in alluvial-lacustrine aquifer systems impacted by high levels of geogenic ammonium. WATER RESEARCH 2024; 264:122215. [PMID: 39154536 DOI: 10.1016/j.watres.2024.122215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
The excessive presence of geogenic ammonium (NH4+) in groundwater poses a global environmental concern, commonly linked to the degradation of nitrogen-containing dissolved organic matter (DOM). However, there is a gap in systematic studies on the combination of soluble organic matter (SOM) in sediments and DOM in groundwater, with few indoor incubation experiments to validate their degradation pathways. This study utilized ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry to analyze the molecular characteristics of DOM and SOM in aquifer systems affected by geogenic NH4+. Subsequently, indoor incubation experiments spanning up to 140 d were conducted to verify the degradation pathways. The experimental results revealed a two-phase degradation process for both the DOM and SOM. The initial stage was characterized by the degradation of aliphatic compounds (ALC) with the production of polyphenols (PPE) and highly unsaturated compounds (HUC). The second stage was dominated by the degradation of PPE and HUC, accompanied by the re-consumption of some ALC, while more recalcitrant HUC persisted. Notably, the first stage of SOM degradation exceeded that of DOM degradation, indicating that SOM exhibited greater resistance to aging. This phenomenon may be attributed to a wider range of active enzymes in sediments, the rapid replenishment of SOM by organic matter in sediments, or the accelerated degradation of DOM. The experimental results aligned with the molecular characterization of DOM and SOM in actual aquifer systems. It is hypothesized that NH4+ produced through the direct mineralization of SOM may contribute more to the enrichment of NH4+ in groundwater than that produced through the mineralization of DOM. This study is the first to analyze DOM and SOM together in aquifer systems and validate their degradation pathways through incubation experiments, thereby providing novel insights into the enrichment of geogenic NH4+ in groundwater.
Collapse
Affiliation(s)
- Yaojin Xiong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.
| | - Meihui Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China
| | - Huanhuan Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China
| | - Yiqun Gan
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China
| |
Collapse
|
5
|
Ni M, Liu R, Luo W, Pu J, Wu S, Wang Z, Zhang J, Wang X, Ma Y. A comprehensive conceptual framework for signaling in-lake CO 2 through dissolved organic matter. WATER RESEARCH 2024; 264:122228. [PMID: 39142047 DOI: 10.1016/j.watres.2024.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Organic carbon (C) and CO2 pools are closely interactive in aquatic environments. While there are strong indications linking freshwater CO2 to dissolved organic matter (DOM), the specific mechanisms underlying their common pathways remain unclear. Here, we present an extensive investigation from 20 subtropical lakes in China, establishing a comprehensive conceptual framework for identifying CO2 drivers and retrieving CO2 magnitude through co-trajectories of DOM evolution. Based on this framework, we show that lake CO2 during wet period is constrained by a combination of biogeochemical processes, while photo-mineralization of activated aromatic compounds fuels CO2 during dry period. We clearly determine that biological degradation of DOM governs temporal variations in CO2 rather than terrestrial C inputs within the subtropical lakes. Specifically, our results identify a shared route for the uptake of atmospheric polycyclic aromatic compounds and CO2 by lakes. Using machine learning, in-lake CO2 levels are well modelled through DOM signaling regardless of varying CO2 mechanisms. This study unravels the mechanistic underpinnings of causal links between lake CO2 and DOM, with important implications for understanding obscure aquatic CO2 drivers amidst the ongoing impacts of global climate change.
Collapse
Affiliation(s)
- Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Liu
- School of Geography and Tourism, Chongqing Normal University, University Town, Shapingba District, Chongqing 401331, China; The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China
| | - Weijun Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Junbing Pu
- School of Geography and Tourism, Chongqing Normal University, University Town, Shapingba District, Chongqing 401331, China; Karst Research Team, Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, School of Geography and Tourism, Chongqing Normal University, Chongqing 40133, China
| | - Shengjun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing 400714, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Jing Zhang
- School of Geography and Tourism, Chongqing Normal University, University Town, Shapingba District, Chongqing 401331, China.
| | - Xiaodan Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yongmei Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing 400714, China.
| |
Collapse
|
6
|
Li K, Yang S, Wang H, Wu Z, Liang Y, Gong X, Peng X, Qin P. Molecular spectra and docking simulations investigated the binding mechanisms of tetracycline onto E. coli extracellular polymeric substances. Talanta 2024; 276:126231. [PMID: 38788376 DOI: 10.1016/j.talanta.2024.126231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Extracellular polymeric substances (EPS), which were an important fraction of natural organic matter (NOM), played an important role in various environmental processes. However, the heterogeneity, complexity, and dynamics of EPS make their interactions with antibiotics elusive. Using advanced multispectral technology, this study examined how EPS interacts with different concentrations of tetracycline (TC) in the soil system. Our results demonstrated that protein-like (C1), fulvic-like (C2), and humic-like (C3) fractions were identified from EPS. Two-dimensional synchronous correlation spectroscopy (2D-SF-COS) indicated that the protein-like fraction gave faster responses than the fulvic-like fraction during the TC binding process. The sequence of structural changes in EPS due to TC binding was revealed by two-dimensional Fourier Transformation Infrared correlation spectroscopy (2D-FTIR-COS) as follows: 1550 > 1660 > 1395 > 1240 > 1087 cm-1. It is noteworthy that the sensitivity of the amide group to TC has been preserved, with its intensity gradually increasing to become the primary binding site for TC. The integration of hetero-2DCOS maps with moving window 2D correlation spectroscopy (MW2DCOS) provided a unique insight into understanding the correlation between EPS fractions and functional groups during the TC binding process. Moreover, molecular docking (MD) discovered that the extracellular proteins would provide plenty of binding sites with TC through salt bridges, hydrogen bonds, and π-π base-stacking forces. With these results, systematic investigations of the dynamic changes in EPS components under different concentrations of antibiotic exposure demonstrated the advanced capabilities of multispectral technology in examining intricate interactions with EPS in the soil environment.
Collapse
Affiliation(s)
- Kun Li
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Sipei Yang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Haoyang Wang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Yunshan Liang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Xiaomin Gong
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xin Peng
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Pufeng Qin
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
7
|
Li F, Wei L, Liu Y, Deng H, Cui J, Wang J, Xiao T. Characterization of dissolved organic matter in rivers impacted by acid mine drainage: Components and complexation with metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171960. [PMID: 38547981 DOI: 10.1016/j.scitotenv.2024.171960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/03/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Dissolved organic matter (DOM), a ubiquitous and active ingredient, is extensively involved in the transformation and migration of environmental pollutants in aquatic ecosystems. However, its chemical composition in acid mine drainage (AMD)-impacted rivers remains poorly characterized, hindering our understanding of its role in the biogeochemistry of key elements in contaminated fluvial environments. Here, we investigated the concentration of dissolved organic carbon (DOC) and spectroscopic and molecular characteristics of DOM in a headwater river contaminated with polymetallic mine-derived AMD in southern China. Terrestrial humic-like (C1) and typically groundwater-supplied aromatic protein/tyrosine-like (C2) substances which were partially from AMD, were identified as the predominant fluorescent components in the river water. Notably, tryptophan-like (C3) substances originating from tailings pond spills were only occasionally detected in the river. Although DOM biogeochemical transformations and degradation occurred in the lateral soil-water riparian interface and longitudinal in-stream transport processes, the molecular compositions identified by FT-ICR MS showed a core set of molecular formulae in the lignin/saturated compound/tannin region of the van Krevelen diagram of the water samples across the rivers. The complexation of DOM with typical metals in AMD was investigated using fluorescence quenching experiments. The results showed that the highest binding ability of Fe(III) to C2 followed by C1, with both detected in the experimental water samples. Mg(II) and Ca(II) strengthened the binding of DOM-Fe(III) when the ferric/DOM ratio was low, while Cu(II) weakened the binding of DOM-Fe(III) due to competition. Ca(II) inhibited the binding of Fe(III) to C1 but promoted the binding of the complex to C2 when both Cu(II) and Mg(II) were present. Since DOM-Fe(III) complexation was associated with the cotransport of AMD-derived metals/metalloids in diverse aqueous environments with multiple co-existing ions (typically Ca(II) input for remediation), our study on the composition of DOM and its complexation with metals can contribute to managing and remediating AMD-impacted rivers.
Collapse
Affiliation(s)
- Fangqing Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lezhang Wei
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China.
| | - Yu Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Hongmei Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
8
|
Fan T, Yao X, Sang D, Liu L, Sun Z, Deng H, Zhang Y, Sun X. Composition characteristics and metal binding behavior of macrophyte-derived DOM (MDOM) under microbial combined photodegradation: A state closer to actual macrophytic lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133124. [PMID: 38142658 DOI: 10.1016/j.jhazmat.2023.133124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
In actual lakes, the "unstable components" of macrophyte-derived DOM (MDOM) are always degraded and cannot exist abidingly, but the environmental impact brought by it is ignored. In this study, MDOM from Potamogeton crispus was extracted to carry out microbial combined photodegradation (M-Photodegradation) and fluorescence titration experiments. Then the traits and metal binding reaction of MDOM under M-Photodegradation were analysed and compared with the features of lake-derived DOM (LDOM) from point monitoring of Dongping Lake through EEM-PARAFAC, 2D-SF-COS, and 2D-FTIR-COS. The results showed that the features of MDOM after M-Photodegradation were closer to those of LDOM. The degradation amplitudes were 93.53% ± 0.53% for C4 in microbial degradation and 78.31% ± 0.74% for C3 in photodegradation. Correspondingly, both were hardly detected in LDOM. Protein-like substances and aliphatic C-OH were preferentially selected by Cu2+, while humic-like matter and phenolic hydroxyl O-H responded faster to Pb2+. Although the binding sequences remained unchanged after M-Photodegradation, the LogKCu and LogKPb of components decreased overall, indicating increased environmental risks. This study proves that the refractory MDOM retained after degradation was more consistent with the actual state of macrophytic lakes and provides more information for the treatment of heavy metal pollution in lakes.
Collapse
Affiliation(s)
- Tuantuan Fan
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xin Yao
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China.
| | - Dongling Sang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Li Liu
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Zhaoli Sun
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Huanguang Deng
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Yinghao Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Xiao Sun
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
9
|
Deng P, Zhou Q, Luo J, Hu X, Yu F. Urbanization influences dissolved organic matter characteristics but microbes affect greenhouse gas concentrations in lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169191. [PMID: 38092202 DOI: 10.1016/j.scitotenv.2023.169191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
Recognition and prediction of dissolved organic matter (DOM) properties and greenhouse gas (GHG) emissions is critical to understanding climate change and the fate of carbon in aquatic ecosystems, but related data is challenging to interpret due to covariance in multiple natural and anthropogenic variables with high spatial and temporal heterogeneity. Here, machine learning modeling combined with environmental analysis reveals that urbanization (e.g., population density and artificial surfaces) rather than geography determines DOM composition and properties in lakes. The structure of the bacterial community is the dominant factor determining GHG emissions from lakes. Urbanization increases DOM bioavailability and decreases the DOM degradation index (Ideg), increasing the potential for DOM conversion into inorganic carbon in lakes. The traditional fossil fuel-based path (SSP5) scenario increases carbon emission potential. Land conversion from water bodies into artificial surfaces causes organic carbon burial. It is predicted that increased urbanization will accelerate the carbon cycle in lake ecosystems in the future, which deserves attention in climate models and in the management of global warming.
Collapse
Affiliation(s)
- Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Imtiazy MN, Hunter K, Hudson JJ. In-reservoir transformation of dissolved organic matter as a function of hydrological flow. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120099. [PMID: 38232598 DOI: 10.1016/j.jenvman.2024.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Reservoirs are vital to meet the ever-increasing demands for freshwater in a warming climate. Dissolved organic matter (DOM) represents an important pool of carbon and can be a major concern in drinking water sources. However, insights into DOM dynamics in temperate, semi-arid reservoirs remain limited. Therefore, we investigated the variations in DOM properties in Lake Diefenbaker, a large reservoir on the Canadian Prairies, by analyzing eight years of DOM concentrations and composition through linear mixed effect modeling. Contrary to expectations, reservoir dissolved organic carbon (DOC) concentration showed no correlation with inflow from the South Saskatchewan River (p = 0.12), while dissolved organic nitrogen (DON) increased with decreasing inflow (p = 0.002). DOM optical indices (SUVA254 and E4:E6 ratio) and DOC:DON ratio revealed a pronounced influence of inflow on reservoir DOM composition (p < 0.001), i.e., allochthonous characteristics increased with increasing flow, and autochthonous characteristics increased with declining flow. Travel time corrected comparison of approximately the same water parcel along the reservoir length revealed that increasing water residence time in downstream regions led to a significant transformation in DOM composition, favoring autochthonous characteristics (mean SUVA254 reduced by 0.52 L mg-C-1 m-1, and the E4:E6 and spectral slope ratio increased by 1.6 and 0.06, respectively). Autochthonous DOC inputs likely offset the allochthonous DOC losses, which resulted in a relatively stable DOC concentration throughout the reservoir (mean 3.7 mg L-1). Additionally, the effect of a large aquaculture operation on reservoir DOM properties was investigated, but no effect was detected. The results have significant implications for managing large river-reservoirs. Autochthonous DOM poses challenges to water processing, necessitating monitoring of DOM composition for reservoir drinking water quality. Insights on climate-induced changes in DOM properties will also assist with understanding changes to habitat conditions and contaminant transport.
Collapse
Affiliation(s)
- Md Noim Imtiazy
- Department of Biology, University of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Kristine Hunter
- Department of Biology, University of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Jeff J Hudson
- Department of Biology, University of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| |
Collapse
|
11
|
Talluto L, del Campo R, Estévez E, Altermatt F, Datry T, Singer G. Towards (better) fluvial meta-ecosystem ecology: a research perspective. NPJ BIODIVERSITY 2024; 3:3. [PMID: 39050515 PMCID: PMC11263126 DOI: 10.1038/s44185-023-00036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/22/2023] [Indexed: 07/27/2024]
Abstract
Rivers are an important component of the global carbon cycle and contribute to atmospheric carbon exchange disproportionately to their total surface area. Largely, this is because rivers efficiently mobilize, transport and metabolize terrigenous organic matter (OM). Notably, our knowledge about the magnitude of globally relevant carbon fluxes strongly contrasts with our lack of understanding of the underlying processes that transform OM. Ultimately, OM processing en route to the oceans results from a diverse assemblage of consumers interacting with an equally diverse pool of resources in a spatially complex network of heterogeneous riverine habitats. To understand this interaction between consumers and OM, we must therefore account for spatial configuration, connectivity, and landscape context at scales ranging from local ecosystems to entire networks. Building such a spatially explicit framework of fluvial OM processing across scales may also help us to better predict poorly understood anthropogenic impacts on fluvial carbon cycling, for instance human-induced fragmentation and changes to flow regimes, including intermittence. Moreover, this framework must also account for the current unprecedented human-driven loss of biodiversity. This loss is at least partly due to mechanisms operating across spatial scales, such as interference with migration and habitat homogenization, and comes with largely unknown functional consequences. We advocate here for a comprehensive framework for fluvial networks connecting two spatially aware but disparate lines of research on (i) riverine metacommunities and biodiversity, and (ii) the biogeochemistry of rivers and their contribution to the global carbon cycle. We argue for a research agenda focusing on the regional scale-that is, of the entire river network-to enable a deeper mechanistic understanding of naturally arising biodiversity-ecosystem functioning coupling as a major driver of biogeochemically relevant riverine carbon fluxes.
Collapse
Affiliation(s)
- Lauren Talluto
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Rubén del Campo
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Edurne Estévez
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Thibault Datry
- National Research Institute for Agriculture, Food and Environment (INRAE), 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Gabriel Singer
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Ge Z, Ma Z, Hong W, Liu K, Yan S, Song W, Zhang J. Temporal variations in reactive oxygen species in biofilms of submerged macrophytes: The key role of microbial metabolism mediated by oxygen fluctuations. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132542. [PMID: 37734308 DOI: 10.1016/j.jhazmat.2023.132542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in the biogeochemistry of aquatic environments, yet their occurrence and accumulation in the biofilm of submerged macrophytes have been poorly documented. Herein, we first investigated the light-dark cycling fluctuations of biofilm microenvironment and the temporal variations of a representative ROS (O2•-) during biofilm succession on the macrophyte leaves and subsequently quantified the photochemical processes in biofilms. The sustained production of O2•- exhibited a distinct rhythmic fluctuation from 32.49 ± 0.56 μmol/kg to 72.56 ± 0.92 μmol/kg FW, which simultaneously fluctuated with the dissolved oxygen, redox potential, and pH, all driven by the alternating oxic-anoxic conditions of biofilms. The intensities of O2•- and ROS firstly increased and then decreased throughout biofilm succession. The O2•- concentrations in biofilms from different waters followed the order of rural river water > landscape lake water > aquaculture pond water, and the leaf photosynthesis and microbial community played a key role. ROS production was significantly associated with Actinobacteria, Proteobacteria and Bacteroidetes, with contributions of 44.6%, 32.8%, and 15.2%, respectively. Partial least squares path modeling structural equation analysis showed that ROS production in leaf biofilms was mainly related to the microenvironment and microbial metabolism. These findings will facilitate the development of ecological restoration strategies in aquatic environments.
Collapse
Affiliation(s)
- Zuhan Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wenjie Hong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
13
|
Gu X, Chen B, Liu H, Feng Y, Wang B, He S, Feng M, Pan G, Han S. Photochemical behavior of dissolved organic matter derived from Alternanthera philoxeroides hydrochar: Insights from molecular transformation and photochemically reactive intermediates. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132591. [PMID: 37778307 DOI: 10.1016/j.jhazmat.2023.132591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Hydrochar-derived dissolved organic matter (HDOM) enters aquatic ecosystems through soil leaching and surface runoff following the application of hydrochar. However, the photochemical behavior of HDOM remains unclear. The photo-transformation of HDOM was analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), multiple spectroscopy methods, high-performance liquid chromatography, and combining synchronous fluorescence and Fourier-transform infrared spectroscopy with two-dimensional correlation spectroscopy. The results showed that with the increase of carbonization temperature, amide II in protein-like substances were observed to be preferentially photolyzed, and the protein-like substances were more sensitive to low irradiation time, while the duration time of the photochemical behavior of amide II and aliphatic C-H were more persistent. FT-ICR MS results showed that N and S-containing molecules, including lignins and lipids were more sensitive to ultraviolet irradiation. Furthermore, the photo-transformation of HDOMs was accompanied by the generation of triple excited state dissolved organic matter and singlet oxygen. Our findings will be beneficial for understanding the mechanisms of photo-transformation of HDOM and for predicting the possible behaviors of hydrochar produced at different temperatures before large-scale application.
Collapse
Affiliation(s)
- Xincai Gu
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingfa Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hong Liu
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guojun Pan
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shiqun Han
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
14
|
Ni M, Liu R, Luo W, Pu J, Zhang J, Wang X. Unexpected shifts of dissolved carbon biogeochemistry caused by anthropogenic disturbances in karst rivers. WATER RESEARCH 2023; 247:120744. [PMID: 39492354 DOI: 10.1016/j.watres.2023.120744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2024]
Abstract
Dissolved carbon (C) provides critical feedbacks to regional biogeochemical processes and global C cycling. Yet to date, the specific pathways of fluvial dissolved C turnover, particularly with human-induced shifts involved, are still poorly understood. Here, we examined dissolved inorganic (DIC) and organic C (DOC), as well as human disturbances i.e., river damming and land use in karst rivers. We show that anthropogenic activities caused unexpected shifts to dissolved C biogeochemistry. Specifically, we found that human disturbances accelerated aquatic metabolism, ultimately causing more river CO2 generation than fixation. The extended hydrological retention by damming greatly stimulated biological utilization of dissolved C. River DOC was sourced largely from farmland and forest, while land-use fragmentation increased DOC diversity. Artificial dams and land uses intensified the transformations between DIC and DOC within karst environments. Based on these findings, we provided a process-based conceptual model regarding the rapid cycle of active C in karst waters, revealing the associated trajectories of DIC and DOC biogeochemistry. This study suggests that reducing anthropogenic disturbances essentially decelerates organic C metabolism, and therefore promotes riverine CO2 sequestration in the context of global C neutrality.
Collapse
Affiliation(s)
- Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Liu
- College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China; The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China
| | - Weijun Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Junbing Pu
- College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
| | - Jing Zhang
- College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China; The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China.
| | - Xiaodan Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
15
|
Luo L, Yang C, Jiang X, Guo W, Ngo HH, Wang XC. Impacts of fulvic acid and Cr(VI) on metabolism and chromium removal pathways of green microalgae. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132171. [PMID: 37527591 DOI: 10.1016/j.jhazmat.2023.132171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Green microalgae are highly efficient and cost-effective in the removal of heavy metals from water. However, dissolved organic matter (DOM), such as fulvic acid (FA), can impact their growth and heavy metal accumulation. Nonetheless, the specific mechanisms underlying these effects remain poorly understood. This study investigated the effects of different FA concentrations on the development, metabolism, and chromium (Cr) enrichment of Chlorella vulgaris, a standard green microalga. The findings revealed that low FA concentrations alleviated Cr-induced stress, stimulated microalgal growth, and enhanced energy conservation by suppressing chlorophyll synthesis. The highest chromium enrichment and reduction rates of 38.73% and 57.95% were observed when FA concentration reached 20 mg/L of total organic carbon (TOC). Furthermore, FA facilitated chromium removal by C. vulgaris through extracellular adsorption. Examination of microalgal cell surface functional groups and ultrastructure indicated that FA increased adsorption site electrons by promoting extracellular polymeric substance (EPS) secretion and enhancing the oxygen content of acidic functional groups. As a result, FA contributed to elevated enrichment and reduction rates of Cr in microalgal cells. These findings provide a theoretical basis for the prevention and control of heavy metal pollution in water environments.
Collapse
Affiliation(s)
- Li Luo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, Shaanxi, China.
| | - Chao Yang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, Shaanxi, China
| | - Xu Jiang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, Shaanxi, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, Shaanxi, China; Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
16
|
Song Q, Yang B, Liu M, Song S, Graham N, Yu W. Floc aging: Crystallization and improving low molecular weight organic removal in re-coagulation. WATER RESEARCH 2023; 243:120328. [PMID: 37459797 DOI: 10.1016/j.watres.2023.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 09/07/2023]
Abstract
Iron coagulants have been used extensively in drinking water treatment. This typically produces substantial quantities of insoluble iron hydrolysis products which interact with natural and anthropogenic organic substances during the coagulation process. Previous studies have shown that the removal of low molecular weight (MW) organics is relatively poor by coagulation, which leads to their presence during disinfection, with the formation of halogenated byproducts, and in treated water supplies as potentially biodegradable material. Currently, there is little knowledge about the changes that occur in the nature of coagulant flocs as they age with time and how such changes affect interactions with organic matter, especially low MW organics. To improve this deficiency, this study has investigated the variation of aged flocs obtained from two commonly used iron salts and their impact on representative organic contaminants, natural organic matter (NOM) and tetracycline antibiotic (TC), in a real surface water. It was found that aging resulted in increasing crystallization of the flocs, which can play a beneficial role in activating persulfate oxidant to remove the representative organics. Furthermore, acidification was also found to further improve the removal of low MW natural organics and tetracycline. In addition, the results showed that the low MW fractions of NOM (<1 K Dalton) were substantially removed by the aging flocs. These results are in marked contrast to the poor removal of low MW organic substances by conventional coagulation, with or without added oxidants, and show that aged flocs have a high potential of reuse for re-coagulation and activation of oxidants to reduce low MW organics, and enhance drinking water quality.
Collapse
Affiliation(s)
- Qingyun Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqian Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shian Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
17
|
Wu R, Guo W, Li Y, Deng S, Chang J. Land use regulates the spectroscopic properties and sources of dissolved organic matter in the inflowing rivers of a large plateau lake in southwestern China: implication for organic pollution control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94623-94638. [PMID: 37535281 DOI: 10.1007/s11356-023-29037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Dissolved organic matter (DOM) transported by inflowing rivers can considerably contribute to the organic loadings of lakes. The current study characterized the DOM properties and source apportionment in the inflowing rivers of Dianchi Lake, the sixth largest freshwater lake in China suffering from organic pollution, during the rainy season by using spectroscopic and carbon stable isotope techniques, and the regulation role of land use was assessed. The results showed that land use (urbanized, agricultural, or mixed) largely affected DOM properties. Greater concentrations and fluorescence intensities of DOM with low aromaticity and dominant autochthonous sources were observed in the urban rivers than in the agricultural rivers. The proportion of humic-like substances increased, while that of tryptophan-like matter decreased from upstream to downstream of two main urban rivers. DOM in the agricultural rivers was characterized by more amounts of aromatic humic-like substances with dominant allochthonous sources compared to that in the urban rivers. Stable isotope analysis showed that the decomposition of macrophytes and input of terrestrial sources from C3 plant-dominated soil and sewage were the major DOM origins in the rivers. The positive linear relationship between the chemical oxygen demand (COD) concentration and fluorescence intensities of terrigenous DOM components implied the necessity of controlling exogenous inputs to alleviate organic pollution in the Dianchi Lake.
Collapse
Affiliation(s)
- Rong Wu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Weijie Guo
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Yutong Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
18
|
Liu C, Shen Q, Gu X, Zhang L, Han C, Wang Z. Burial or mineralization: Origins and fates of organic matter in the water-suspended particulate matter-sediment of macrophyte- and algae-dominated areas in Lake Taihu. WATER RESEARCH 2023; 243:120414. [PMID: 37516078 DOI: 10.1016/j.watres.2023.120414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Increased algal blooms and loss of aquatic vegetation are critical environmental issues associated with shallow lakes worldwide. The increase in organic matter (OM) in both macrophyte-dominated areas (MDAs) and algae-dominated areas (ADAs) has exacerbated these problems. Most OM in water is concentrated as suspended particulate matter (SPM), which eventually migrates to the sediment. However, the detailed origins and fates of OM in water-SPM-sediment systems with coexisting MDAs and ADAs remain unclear. Therefore, in this study, we conducted monthly field investigations in Lake Taihu, focusing on OM-migration patterns in an MDA and an ADA. The C/N mass ratios, δ13C contents, and OM compositions of the water, SPM, and sediment were analyzed. Our findings revealed that autochthonous sources of OM prevailed in water, whereas terrestrial sources prevailed in SPM and sediment. Rapid decomposition processes of microbial- and algae-derived dissolved OM were discovered along the water-SPM-sediment pathways in both areas. A trend towards a shift from macrophytes to algae in the MDA was also discovered. Overall, the entire lake underwent a burial process of OM in both types of areas, with mineralization mostly occurring during the algal-bloom seasons and more strongly in the ADA. Furthermore, we deduced that a decrease in the OM-burial rate, but an increase in the mineralization rate, might occur after a complete shift from a macrophyte- to an algae-dominated status. Such a shift might change the carbon-cycle process in eutrophic shallow lakes and should be given more attention in future research.
Collapse
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaozhi Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaode Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
19
|
Ren H, Wang G, Ding W, Li H, Shen X, Shen D, Jiang X, Qadeer A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116185. [PMID: 37207736 DOI: 10.1016/j.envres.2023.116185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microorganisms play a crucial role in the biogeochemical processes of Dissolved Organic Matter (DOM), and the properties of DOM also significantly influence changes in microbial community characteristics. This interdependent relationship is vital for the flow of matter and energy within aquatic ecosystems. The presence, growth state, and community characteristics of submerged macrophytes determine the susceptibility of lakes to eutrophication, and restoring a healthy submerged macrophyte community is an effective way to address this issue. However, the transition from eutrophic lakes dominated by planktic algae to medium or low trophic lakes dominated by submerged macrophytes involves significant changes. Changes in aquatic vegetation have greatly affected the source, composition, and bioavailability of DOM. The adsorption and fixation functions of submerged macrophytes determine the migration and storage of DOM and other substances from water to sediment. Submerged macrophytes regulate the characteristics and distribution of microbial communities by controlling the distribution of carbon sources and nutrients in the lake. They further affect the characteristics of the microbial community in the lake environment through their unique epiphytic microorganisms. The unique process of submerged macrophyte recession or restoration can alter the DOM-microbial interaction pattern in lakes through its dual effects on DOM and microbial commu-----nities, ultimately changing the stability of carbon and mineralization pathways in lakes, such as the release of methane and other greenhouse gases. This review provides a fresh perspective on the dynamic changes of DOM and the role of the microbiome in the future of lake ecosystems.
Collapse
Affiliation(s)
- Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guoxi Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanchang Ding
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He Li
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongbo Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Abdul Qadeer
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
20
|
Yao S, Ni N, Li X, Wang N, Bian Y, Jiang X, Song Y, Bolan NS, Zhang Q, Tsang DCW. Interactions between white and black carbon in water: A case study of concurrent aging of microplastics and biochar. WATER RESEARCH 2023; 238:120006. [PMID: 37121197 DOI: 10.1016/j.watres.2023.120006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Microplastics and biochar, as particulate matter that is prevalent in the water environment, will inevitably encounter and interact with each other during environmental aging. The potential interaction of microplastics and biochar, and the associated impact on their environmental behavior remains largely unknown. In this study, we exposed microplastics and biochar concurrently to ultraviolet light to mimic the aging process, investigated the release and fluorescence characteristics of dissolved organic matter (DOM) in water, and analyzed the effects of co-existing microplastics and biochar on their sorption of organic contaminants. We demonstrate that early-stage interactions of microplastics and biochar could entangle to promote the release of DOM from biochar, while their long-term interactions after light irradiation resulted in the sorption of hydrophobic and small molecules of microbial byproduct-like DOM. Simultaneously, early-stage interactions of microplastics and biochar showed a promotion for sorption of organic contaminants with an increase of 5.3-17.7%. After aging, however, long-term interactions between microplastics and biochar made it no longer promote the sorption of organic contaminants due to the influence of heterogeneous aggregation. Our results provide new insights into the time-dependent interactions between microplastics and biochar and highlight the need to incorporate their interactions into future environmental risk assessments for microplastics in the water environment.
Collapse
Affiliation(s)
- Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Xiaona Li
- School of Environmental Science and Engineering, Jiangnan University, Wuxi 225127, PR China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Nedland, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Nedland, WA 6009, Australia
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
21
|
Jin X, Chen X, Gao L, Chen X, Ge J, Wei F, Lu H, Wu Y, Cui J, Yuan M. A self-organizing map approach to the analysis of lake DOM fluorescence for differentiation of organic matter sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27860-y. [PMID: 37231130 DOI: 10.1007/s11356-023-27860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The sources and properties of dissolved organic matter (DOM) in two lakes with different non-point source inputs were investigated by combining conventional three-dimensional fluorescence spectroscopy methods with a self-organizing map (SOM). To assess the DOM humification level, the representative neurons 1, 11, 25, and 36 were assessed. The SOM model showed that the DOM humification level of the Gaotang Lake (GT) which has a mainly agricultural non-point source input was significantly higher than that of the Yaogao Reservoir (YG) which has a mainly terrestrial source input (P < 0.01). The GT DOM mainly came from factors such as agricultural-related farm compost and decaying plants, while the YG DOM originated from human activities around the lake. The source characteristics of the YG DOM are obvious, with a high level of biological activity. Five representative areas in the fluorescence regional integral (FRI) were compared. The comparison showed that during the flat water period, the GT water column showed more terrestrial characteristics, even though the humus-like fractions in the DOM of both lakes were derived from microbial decomposition. Principal component analysis (PCA) showed that the agricultural lake water DOM (GT) was dominated by humus components, while the urban lake water DOM (YG) was dominated by authigenic sources.
Collapse
Affiliation(s)
- Xincheng Jin
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xiaoqing Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Liangmin Gao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xudong Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Juan Ge
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Feiyan Wei
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Hansong Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yufan Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jiahui Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Menghang Yuan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
22
|
Wang RQ, Geng Y, Song JN, Yu HD, Bao K, Wang YR, Croué JP, Miyatake H, Ito Y, Liu YR, Chen YM. Biogenic Solution Map Based on the Definition of the Metabolic Correlation Distance between 4-Dimensional Fingerprints. Anal Chem 2023; 95:7503-7511. [PMID: 37130068 DOI: 10.1021/acs.analchem.2c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Accurate discrimination and classification of unknown species are the basis to predict its characteristics or applications to make correct decisions. However, for biogenic solutions that are ubiquitous in nature and our daily lives, direct determination of their similarities and disparities by their molecular compositions remains a scientific challenge. Here, we explore a standard and visualizable ontology, termed "biogenic solution map", that organizes multifarious classes of biogenic solutions into a map of hierarchical structures. To build the map, a novel 4-dimensional (4D) fingerprinting method based on data-independent acquisition data sets of untargeted metabolomics is developed, enabling accurate characterization of complex biogenic solutions. A generic parameter of metabolic correlation distance, calculated based on averaged similarities between 4D fingerprints of sample groups, is able to define "species", "genus", and "family" of each solution in the map. With the help of the "biogenic solution map", species of unknown biogenic solutions can be explicitly defined. Simultaneously, intrinsic correlations and subtle variations among biogenic solutions in the map are accurately illustrated. Moreover, it is worth mentioning that samples of the same analyte but prepared by alternative protocols may have significantly different metabolic compositions and could be classified into different "genera".
Collapse
Affiliation(s)
- Ren-Qi Wang
- School of Food and Biological Engineering, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Ye Geng
- School of Food and Biological Engineering, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Juan-Na Song
- School of Food and Biological Engineering, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Huai-Dong Yu
- Gezhu Bio Co., Ltd, Beijing 100037, People's Republic of China
| | - Kai Bao
- SINTEF Digital, Oslo N-0314, Norway
| | - Yu-Ru Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, Poitiers 86000, France
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yan-Ru Liu
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, People's Republic of China
| | - Yong-Mei Chen
- School of Food and Biological Engineering, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| |
Collapse
|
23
|
Fu Y, Li W, Liu T, Zhang Z, Li H, Xu J, Huang M. CFSA-AGD: An accurate crosstalk fluorescence spectroscopic decomposition method for identifying and quantifying FDOMs in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:160950. [PMID: 36565886 DOI: 10.1016/j.scitotenv.2022.160950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Fluorescent substances exist in various aquatic environments and other environmental media. It is a critical task to identify the components accurately and quantify their contents precisely. Based on the Crosstalk Fluorescence Spectroscopy Analysis (CFSA) model, a fluorescence spectroscopic decomposition using the Alternating Gradient Descent (AGD) algorithm is developed. By reducing the residual error of the model through alternating iterations, the CFSA-AGD method achieves unsupervised model training and automatic spectroscopic decomposition without extra experimental operations such as dilution or absorbance measurement, exempting from tedious modeling process. The objectives of this work are to validate that the CFSA-AGD method can comprehensively address the decomposition of fluorescence spectral crosstalk. Furthermore, the novel method is applied to the spectroscopic decomposition of natural FDOMs in aquatic environments as a standard tool. The spectral data analyzing the performance of this method is verified and compared with the conventional methods through the experiment on standard samples. The results indicate that CFSA-AGD has higher spectroscopic decomposition accuracy and gives more abundant information on the characteristic spectra with less residual error than parallel factor analysis. This means that the fluorescence spectra of natural FDOMs can be decomposed into the characteristic fluorescence emission spectra of single components with higher accuracy and the characteristic fluorescence absorption spectra that cannot be obtained by the conventional methods. Meanwhile, it improves the analytical precision of the contents (from R2 ≥ 0.9778 to R2 ≥ 0.9920) and reduces the ultimate residual error by two orders of magnitude (from 1.42 × 10-1 to 4.68 × 10-3) when the method is used to estimate the measured fluorescence spectra.
Collapse
Affiliation(s)
- Yuchao Fu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanxiang Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianyuan Liu
- Department of Electrical Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhen Zhang
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haochen Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingran Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meizhen Huang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Characterizing the effects of stormwater runoff on dissolved organic matter in an urban river (Jiujiang, Jiangxi province, China) using spectral analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50649-50660. [PMID: 36800085 DOI: 10.1007/s11356-023-25933-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
The effect of stormwater runoff on dissolved organic matter (DOM) in rivers is one of the central topics in water environment research. Jiujiang is one of the first cities established in the green development demonstration zone of the Yangtze River Economic Belt (Jiangxi Province, China). Three-dimensional excitation-emission matrix fluorescence with parallel factor analysis (3DEEM-PARAFAC) and ultraviolet-visible (UV-Vis) spectroscopy were used to explore the effects of runoff on organic matter in Shili River (Jiujiang, Jiangxi Province, China). The results show that the runoff led to an increase of some critical pollutants and DOM concentrations, especially in the middle reaches of the river. The concentration and relative molecular weight of DOM in water increased as a result of runoff. Three humic-like (C1-C3) and two protein-like (C4 and C5) components of DOM were identified using the PARAFAC model. The sources of the three humic-like components (C1, C2, C3) were consistent, unlike those of the protein-like component C4. Compared with the pre-rainfall period, the content of humus compounds flowing into the river through the early rainwater runoff was lower, which caused the relative content and proportion of humic substances little change and protein-like species increasing. The DOM mainly derived from autochthonous sources, and runoff had limited effect on its characteristics. Jiujiang is a key demonstration city for Yangtze River conservation. Rainwater runoff is one of the pollution sources of urban rivers, which leads to the deterioration of water quality and influences the distribution characteristics of DOM in water bodies. The PARAFAC components could adequately represent different indicators and sources of DOM in urban rivers, providing an important reference for urban river management.
Collapse
|
25
|
Liu F, Zhao Q, Ding J, Li L, Wang K, Zhou H, Jiang M, Wei J. Sources, characteristics, and in situ degradation of dissolved organic matters: A case study of a drinking water reservoir located in a cold-temperate forest. ENVIRONMENTAL RESEARCH 2023; 217:114857. [PMID: 36427638 DOI: 10.1016/j.envres.2022.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in the biogeochemical cycles of elements and the regulation of forest ecosystem functions. However, studies on the regional and seasonal characteristics of DOM in cold-temperate montane forests are still not comprehensive. In this study, samples of water, soil, and sediment from different sites in the forest drainage basin were collected, and their DOM was characterized by an excitation-emission matrix and parallel factor analysis (EEM-PARAFAC). The results showed that terrestrial-sourced humic-like substances were the dominant DOM in the studied reservoir and inflowing rivers. The quality and quantity of DOM exhibited spatiotemporal variations with the influence of terrain and monsoonal precipitation. The average concentration of dissolved organic carbon (DOC) in the wet season was 11.62 mg/L, which was higher than that in the dry season (8.18 mg/L). Higher humification index (HIX) values were observed in the wet season and upstream water than in the dry season and reservoir water. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was used to further develop a molecular-level understanding of the in situ degradation process of DOM. The results indicated that photodegradation rather than biodegradation may play a dominant role in the in situ degradation of terrestrial-sourced humic-like substances under natural conditions. The biodegradability of DOM was enhanced after the in situ degradation process. Additionally, a significant decrease in the precursors of disinfectant byproducts in DOM was observed after in situ degradation. To our knowledge, this is the first study of the sources, characteristics, and in situ degradation of DOM in a reservoir in a cold-temperate forest. These findings help better understand the quality, quantity, and biogeochemical process of DOM in the studied reservoir and may contribute to the selection of drinking water treatment technologies for water supply.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jian Wei
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
26
|
Lv Z, Wang P, Yan C, Nie M, Xiong X, Ding M. Spectral characteristic of the waters with different sizes of particles: impact of water quality and land-use type. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9543-9557. [PMID: 36057063 DOI: 10.1007/s11356-022-22757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Natural colloids (NCs) are heterogeneous mixtures of particles in the aquatic environments that are strongly influenced by land use and water quality between terrestrial and aquatic environments. However, the relevant study paid little attention to the difference among the waters with different sizes of particles (e.g., suspended particulate matter (SPM), NCs, and the truly soluble substances). In this study, the spectral properties of these different waters were investigated from different land-use types in the Yuan River basin, China. Results of the UV-visible absorption spectral showed that with the particle size increased, the aromaticity, chromophoric dissolved organic matter, and humification degree of organic matter increased, while the condensation degree decreased. Data analysis from the fluorescence indices indicated that the source and the autochthonous feature of the truly soluble substances differed from that of NCs and SPM, whereas the protein-like component was mainly combined with the relatively larger size of particles (i.e., SPM and NCs), especially the downstream. Although the spectral characteristics of the water samples were strongly influenced by the water quality (> 45%), the land-use type might be the real potential impactor. Furthermore, the influence of land-use type on the spectral properties differed between the large and small scale of the buffer strips and between the mainstream and the tributaries. And this effect was more significant on the fluorescence properties in the mainstream and the spectral properties for NCs than for SPM. The study helps to understand the biogeochemical effects of the waters with different particle sizes.
Collapse
Affiliation(s)
- Zelan Lv
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Peng Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resource, Beijing, 100037, China
| | - Xiaoying Xiong
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| |
Collapse
|
27
|
Fan T, Yao X, Ren H, Liu L, Deng H, Shao K. Regional-scale investigation of the molecular weight distribution and metal-binding behavior of dissolved organic matter from a shallow macrophytic lake using multispectral techniques. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129532. [PMID: 35850067 DOI: 10.1016/j.jhazmat.2022.129532] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/18/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, based on excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-FARAFAC) and two-dimensional correlation analysis of synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy, and combination of two spectra (2D-SF-COS, 2D-FTIR-COS, and Hetero-2D-COS), the characteristics and metal-binding behaviors of DOM in Dongping Lake were explored for molecular weight (MW), fluorescence components, and functional groups. The results showed that the entire lake was governed by protein-like materials with low MW(< 1 kDa). The complexation occurred preferentially in protein-like materials for bulk DOM after adding copper (Cu2+) and lead (Pb2+), which were changed by fractionation for MW. The active points were aliphatic C-OH for DOM-Cu and phenol -OH or polysaccharide for DOM-Pb from 2D-FTIR-COS. The protein-like components possessed higher LogK than humic-like component during binding to Cu2+ or Pb2+. Moreover, the complexing affinities of DOM-Cu (LogKCu: 3.26 ± 0.87-4.04 ± 0.49) were higher than those of DOM-Pb (LogKPb: 2.66 ± 0.52-3.78 ± 0.36). On a spatial scale, high LogKCu and LogKPb were found in the center and entrance of the lake, respectively. Humic-like component C2 in the LMW fraction possessed a stronger binding capacity with Cu2+. This study affords new insights into the migration and conversion of HMs in lakes.
Collapse
Affiliation(s)
- Tuantuan Fan
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Xin Yao
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China.
| | - Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Liu
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Huanguang Deng
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
28
|
Liu C, Du Y, Zhong J, Zhang L, Huang W, Han C, Chen K, Gu X. From macrophyte to algae: Differentiated dominant processes for internal phosphorus release induced by suspended particulate matter deposition. WATER RESEARCH 2022; 224:119067. [PMID: 36108397 DOI: 10.1016/j.watres.2022.119067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 05/06/2023]
Abstract
In shallow lakes, eutrophication leads to a shift of the macrophyte-dominated clear state towards an algae-dominated turbid state. Phosphorus (P) is a crucial element during this shift and is usually concentrated in the suspended particulate matter (SPM) in water. However, the dominant processes controlling internal P release in the algae- (ADA) and macrophyte-dominated (MDA) areas under the influence of P-concentrated SPM remains unclear. In this study, we conducted monthly field observations of P exchange across the sediment-water interface (SWI) with the deposition of SPM in the ADA and MDA of Lake Taihu. Results revealed that both algae- and macrophyte-originated SPM led to the depletion of oxygen across the SWI during summer and autumn. Redox-sensitive P (Fe-P) and organic P (Org-P) were the dominant mobile P fractions in both areas. High fluxes of P across the SWI were observed in both areas during the summer and autumn. However, the processes controlling P release were quite different. In MDA, P release was mostly controlled by a traditional Fe-P dissolution process influenced by the coupled cycling of iron, sulfur, and P. In the ADA, Org-P control was intensified with the deterioration of algal bloom status, accompanied with the dissolution of Fe-P. Evidence from the current study revealed that the dominant process controlling the internal P release might gradually shift from Fe-P to a coupled process of Fe-P and Org-P with the shift of the macrophyte- to an algae-dominated state in shallow eutrophic lakes. The differentiated processes in the MDA and ADA should be given more attention during future research and management of internal P loadings in eutrophic lakes.
Collapse
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China.
| | - Yiheng Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China
| | - Wei Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China
| | - Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China
| | - Kaining Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China
| | - Xiaozhi Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China
| |
Collapse
|
29
|
Begum MS, Lee MH, Park TJ, Lee SY, Shin KH, Shin HS, Chen M, Hur J. Source tracking of dissolved organic nitrogen at the molecular level during storm events in an agricultural watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152183. [PMID: 34896496 DOI: 10.1016/j.scitotenv.2021.152183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Accelerated export of nitrogen-containing dissolved organic matter (DOM) or dissolved organic nitrogen (DON) to streams and rivers from agricultural watersheds has been reported worldwide. However, few studies have examined the dynamics of DOM molecular composition with the attention paid to the relative contributions of DON from various sources altered with flow conditions. In this study, end-member mixing analysis (EMMA) was conducted with the optical properties of DOM to quantify the relative contributions of several major organic matter sources (litter, reed, field soil, and manure) in two rivers of a small agricultural watershed. DOC and DON concentration increased during the storm events with an input of allochthonous DOM as indicated by an increase in specific ultraviolet absorbance at 254 nm (SUVA254) and a decrease in biological index (BIX), fluorescence index (FI), and protein-like component (%C3) at high discharge. EMMA results based on a Bayesian mixing model using stable isotope analysis in R (SIAR) were more accurate in source tracking than those using the traditional IsoSource program. Manure (>30%) and field soil (also termed as "manure-impacted field soil") (>23%) end-members revealed their predominant contributions to the riverine DOM in SIAR model, which was enhanced during the storm event (up to 56% and 38%, respectively). The molecular composition of the riverine DOM exhibited a distinct footprint from the manure and manure-impacted field soil, with a larger number of CHON formulas and abundant polyphenols and condensed aromatics in peak flow samples in the studied rivers. The riverine DOM during peak flow contained many unique molecular formulas in both rivers (4980 and 2082) of which >60% originated from manure and manure-impacted field soil. Combining the EMMA with DOM molecular composition clearly demonstrated the effect of manure fertilizer on the riverine DOM of the watershed with intensive agriculture. This study provides insights into the source tracking and regulation of DON leaching from anthropogenically altered river systems worldwide.
Collapse
Affiliation(s)
- Most Shirina Begum
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Mi-Hee Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Tae Jun Park
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Seung Yoon Lee
- K-water Institute, 200 Sintanjin-Ro, Daedeok-Gu, Daejeon 34350, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University ERICA Campus, Ansan 15588, South Korea
| | - Hyun-Sang Shin
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Meilian Chen
- Environmental Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
30
|
Yang X, Zhang Y, Liu Q, Guo J, Zhou Q. Progress in the interaction of dissolved organic matter and microbes (1991-2020): a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16817-16829. [PMID: 34997929 DOI: 10.1007/s11356-022-18540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) and microbes are key in the planetary carbon cycle, and research on them can lead to a better understanding of the global carbon cycle and an improved ability to cope with environmental challenges. Several papers have reviewed one or several aspects of the interaction of DOM and microbes, but no overall review has been performed. Here, we bibliometrically analyzed all publications from the Web of Science on DOM and microbes (1991-2020). The results showed that studies on DOM and microbes grew exponentially during this period; the USA contributed the most to the total publications, and China has had the fastest increasing rate since 2010. Moreover, we used the Latent Dirichlet Allocation model to identify topics and determine their (cold or hot) trends by analyzing the abstracts of 9851 publications related to DOM and microbes. A total of 96 topics were extracted, and these topics that are related to the source, composition, and removal path of DOM and the temporal-spatial patterns of DOM and microbes consistently rose from 1991 to 2020. Most studies have used accurate and rapid methods combined with microbiological genetic approaches to study the interaction of DOM and microbes in terrestrial and aquatic ecosystems. The results also showed that the impacts of climate change and land use on the interaction of DOM and microbes, and topics related to human health have received considerable attention. In the future, the interaction mechanism of DOM and microbes and its response to environmental change should be further elucidated.
Collapse
Affiliation(s)
- Xuan Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China.
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-Environmental Sciences, Kunming, 650034, China.
| |
Collapse
|
31
|
Gong C, Jiao R, Yan W, Yu Q, Li Q, Zhang P, Li Y, Wang D. Enhanced chemodiversity, distinctive molecular signature and diurnal dynamics of dissolved organic matter in streams of two headwater catchments, Southeastern China. WATER RESEARCH 2022; 211:118052. [PMID: 35065339 DOI: 10.1016/j.watres.2022.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) is a complicated assembly of organic molecules, including thousands of molecules with various structures and properties. However, how the stream DOM sources respond to carbon compositions and the transformation processes remains unclear. In this study, the chemical characteristics and spectral and mass spectrometry (FT-ICR MS) of DOM were analyzed. Six sampling points of headwater stream (HWSs) were sampled, and an effluent polluted stream (WSR) and a main stream of the Changjiang River (DT) were also sampled for comparison. In situ degradation experiments and FT-ICR MS analysis were also performed to observe the dynamic processes of DOM in HWS. The results showed that the anthropogenic markers of sewage (i.e. sulfur (S) compounds and marker from antibiotics and estrogen) in HWS were higher than those in DT. The molecular weight decreased while the degradation products (S-containing compounds and unsaturated compounds (HU)) increased after in situ degradation due to the influence of both the photodegradation and biodegradation process. In addition, the KMD plots showed that the DOM homologue intensities in range 400-600 Da changed significantly after demethylation by biodegradation. The components of highly refractory substances and the degradation degree of DOM in DT was higher than that in HWS. We extracted the refractory DOM pool in HWS, which was mainly small molecular with molecular weights < 600 Da. These molecular will be difficult to remove in traditional drinking water treatment processes and easily produced disinfection byproducts (DBPs). This study emphasized the necessity of identifying the sources and transformation processes of DOM in HWS and clarified the types and characteristics of DOM that should be considered in future drinking water treatment.
Collapse
Affiliation(s)
- Chen Gong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu city, Zhejiang Province, 322000, China
| | - Weijin Yan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qibiao Yu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqian Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peipei Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanqiang Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu city, Zhejiang Province, 322000, China.
| |
Collapse
|
32
|
Hu B, Wang P, Wang C, Bao T. Photogeochemistry of particulate organic matter in aquatic systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150467. [PMID: 34592285 DOI: 10.1016/j.scitotenv.2021.150467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Photochemical transformation of natural organic matter in aquatic environments strongly impacts the environmental behaviors of carbon, nutrients, and pollutants by affecting their solubility, toxicity, bioavailability, and mobility. However, the role of particulate organic matter (POM) in environmental photogeochemistry has received much less attention than that of dissolved organic matter (DOM). In this study, a systematic overview was conducted to summarize the photodissolution and photoflocculation of POM in aquatic systems. The photodissolution of various POM, such as resuspended sediments and algal detritus, could be a potential and important source of DOM in the overlying waters, and these photoreleased DOM were dominated by humic-like components. The photogeochemistry of POM is thought to proceed via direct photochemical reactions and reactive radical-dominated indirect processes. Photodissolution can modify the bioavailability of organic matter and influence the biogeochemical cycling of nutrients, heavy metals, and organic pollutants. In addition, the photo-induced flocculation of DOM to POM could also influence the transport and transformation of organic matter and its associated pollutants. The photochemistry of POM can be significantly influenced by several environmental factors, including irradiation wavelength and intensity, organic matter properties, and radical oxygen species. POM photogeochemistry is one of the most important components of the global cycling of natural organic matter. Further studies regarding photogeochemistry should be conducted to overcome the potential problems arising from the concurrent photodegradation of organic matter and to further develop more filed investigations and analytical methods.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tianli Bao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
33
|
Feng L, Zhang J, Fan J, Wei L, He S, Wu H. Tracing dissolved organic matter in inflowing rivers of Nansi Lake as a storage reservoir: Implications for water-quality control. CHEMOSPHERE 2022; 286:131624. [PMID: 34315070 DOI: 10.1016/j.chemosphere.2021.131624] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Quantitative characterization of dissolved organic matter (DOM) in various aquatic ecosystems has become of increasing importance as its transformation plays a key role in inland water carbon, yet few studies have quantified water DOM inputs to storage lakes for water quality control and safety assurance. This study assessed the quantity and quality of DOM in 21 inflow rivers of Nansi Lake as the important storage lake of large-scale water transfer projects by using excitation-emission matrix spectroscopy coupled with parallel factor analysis (EEM-PARAFAC) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that DOM contents varied significantly with an average value of 5.8 mg L-1 in different inflow rivers, and three fluorescence substances (including UVC humic-like, UVA humic-like and tyrosine-like components) were identified by EEM-PARAFAC. The distribution of the DOM components was distinctively different among sampling sites, and UVA humic-like component mainly dominated in Nansi Lake. Meanwhile, DOM components with higher aromaticity and molecular weight were found in the west side of lake. Fluorescence spectral indexes manifested that the source of DOM was mainly from allochthonous or terrestrial input. Moreover, significant correlations between water quality and DOM characteristics were observed in Nansi Lake. These findings would be beneficial to understand the biogeochemical role and impact of DOM in inflowing rivers in the water-quality monitoring and control of storage lakes.
Collapse
Affiliation(s)
- Likui Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jinlin Fan
- Department of Science and Technology Management, Shandong University, Jinan, 250061, PR China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
34
|
Badetti E, Brunelli A, Basei G, Gallego-Urrea JA, Stoll S, Walch H, Praetorius A, von der Kammer F, Marcomini A. Novel multimethod approach for the determination of the colloidal stability of nanomaterials in complex environmental mixtures using a global stability index: TiO 2 as case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149607. [PMID: 34425449 DOI: 10.1016/j.scitotenv.2021.149607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
A systematic study on the colloidal behavior of uncoated and polyvinylpyrrolidone (PVP) coated TiO2 engineered nanomaterials (ENMs) in simulated aqueous media is herein reported, in which conditions representative for natural waters (pH, presence of divalent electrolytes (i.e. Ca2+/Mg2+ and SO42-), of natural organic matter (NOM) and of suspended particulate matter (SPM)) were systematically varied. The colloidal stability of the different dispersions was investigated by means of Dynamic and Electrophoretic Light Scattering (DLS and ELS) and Centrifugal Separation Analysis (CSA), and a global stability index based on these three techniques was developed. The index allows to quantitatively classify the nano-based dispersions according to their colloidal stability affected by the different parameters studied. This multimethod approach clearly identifies inorganic SPM followed by divalent electrolytes as the main natural components destabilizing TiO2 ENMs upon entering in simulated natural waters, while it highlights a moderate stabilization induced by NOM, depending mainly on pH. Moreover, the PVP coating was found to attenuate the influence of these parameters on the colloidal stability. The obtained results show how the global stability index developed is influenced by the complexity of the system, suggesting the importance of combining the information gathered from all the techniques employed to better elucidate the fate and behavior of ENMs in natural surface waters.
Collapse
Affiliation(s)
- Elena Badetti
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy.
| | - Andrea Brunelli
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Gianpietro Basei
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy; GreenDecision Srl, Via delle industrie 21/8, 30175 Venice, Italy
| | - Julián A Gallego-Urrea
- Department of Marine Sciences, Kristineberg Marine Research Station, University of Gothenburg, Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden.
| | - Serge Stoll
- Group of Environmental Physical Chemistry, Department F.-A. Forel for Environmental and Aquatic Sciences, Institute of Environmental Science, University of Geneva, Uni Carl Vogt, 66 boulevard Carl-Vogt, Geneva CH-1211, Switzerland
| | - Helene Walch
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr, 14, UZA II, 1090 Vienna, Austria
| | - Antonia Praetorius
- Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Frank von der Kammer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr, 14, UZA II, 1090 Vienna, Austria
| | - Antonio Marcomini
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| |
Collapse
|
35
|
Zhou S, Liao Z, Zhang B, Hou R, Wang Y, Zhou S, Zhang Y, Ren ZJ, Yuan Y. Photochemical Behavior of Microbial Extracellular Polymeric Substances in the Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15090-15099. [PMID: 34521203 DOI: 10.1021/acs.est.1c02286] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbially derived extracellular polymeric substances (EPSs) occupy a large portion of dissolved organic matter (DOM) in surface waters, but the understanding of the photochemical behaviors of EPS is still very limited. In this study, the photochemical characteristics of EPS from different microbial sources (Shewanella oneidensis, Escherichia coli, and sewage sludge flocs) were investigated in terms of the production of reactive species (RS), such as triplet intermediates (3EPS*), hydroxyl radicals (•OH), and singlet oxygen (1O2). The steady-state concentrations of •OH, 3EPS*, and 1O2 varied in the ranges of 2.55-8.73 × 10-17, 3.01-4.56 × 10-15, and 2.08-2.66 × 10-13 M, respectively, which were within the range reported for DOM from other sources. The steady-state concentrations of RS varied among different EPS isolates due to the diversity of their composition. A strong photochemical degradation of the protein-like components in EPS isolates was identified by excitation emission matrix fluorescence with parallel factor analysis, but relatively, humic-like components remained stable. Fourier-transform ion cyclotron resonance mass spectrometry further revealed that the aliphatic portion of EPS was resistant to irradiation, while other portions with lower H/C ratios and higher O/C ratios were more susceptible to photolysis, leading to the phototransformation of EPS to higher saturation and lower aromaticity. With the phototransformation of EPS, the RS derived from EPS could effectively promote the degradation of antibiotic tetracycline. The findings of this study provide new insights into the photoinduced self-evolution of EPS and the interrelated photochemical fate of contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China
| | - Zhiyang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Beiping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Agostino A, Rao NRH, Paul S, Zhang Z, Leslie G, Le-Clech P, Henderson R. Polymer leachates emulate naturally derived fluorescent dissolved organic matter: Understanding and managing sample container interferences. WATER RESEARCH 2021; 204:117614. [PMID: 34492363 DOI: 10.1016/j.watres.2021.117614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Fluorescence spectroscopy has become a fundamental tool for the qualitative and quantitative fingerprinting of dissolved organic matter. Due to the inherent sensitivity of the technique, a strict sampling protocol should be followed to ensure sample integrity. A literature survey conducted as part of this research determined that 27% of fluorescence sampling has been conducted in polymeric containers, while 52% did not report. Given the potential for fluorescence leachates to arise from plastics commonly used in sampling bottles, a systematic laboratory investigation was undertaken to assess the likelihood of leachate contamination and consequent interferences. It was observed that characteristic fluorescent dissolved organic matter (FDOM) leachates from standard polypropylene sampling containers were produced at environmentally relevant peaks, Peak T (λEx/λEm: 250/349 nm) and B (λEx/λEm: 250/306 nm), commonly attributed to tryptophan-like and tyrosine-like molecular origins. Leachate fluorescence and concentration generally increased with elevated storage temperatures (>4 °C), sample acidification, container steam sterilisation and in new containers, with variability across different manufactured batches. For example, at ambient storage temperatures, the highest observed leachate intensity could contribute an error equivalent to as much as 98% (Peak T) and 2062% (Peak B) for highly treated water or 28% (Peak T) and 398% (Peak B) for surface water. For leachates formed under typical conditions, i.e., 3-day fridge storage, this reduced to 9% (Peak T) and 15% (Peak B) or 3% (Peak T/B) for the same water samples. In addition, PP was found to be typically unsuitable for DOC measurements, except under strict conditions (well-aged containers in short term cold storage). Consequently, we demonstrate the need for container material reporting, refrigerated storage, steam sterilisation avoidance, and the importance of glass usage for low FDOM samples. Future research should investigate the potential for polymer-based pollution as a potential origin of environmentally sampled FDOM.
Collapse
Affiliation(s)
- Anthony Agostino
- Algae & Organic Matter Laboratory, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Narasinga Rao Hanumanth Rao
- Algae & Organic Matter Laboratory, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sean Paul
- Algae & Organic Matter Laboratory, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Zijun Zhang
- Algae & Organic Matter Laboratory, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Greg Leslie
- UNESCO Centre for Membrane Science & Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science & Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Rita Henderson
- Algae & Organic Matter Laboratory, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
37
|
Zhang H, Zheng Y, Wang XC, Wang Y, Dzakpasu M. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113041. [PMID: 34126535 DOI: 10.1016/j.jenvman.2021.113041] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is viewed as one of the most chemically active organic substances on earth. It plays vital roles in the fate, bioavailability and toxicity of aquatic exogenous chemical species (e.g., heavy metals, organic pollutants, and nanomaterials). The characteristics of DOM such low concentrations, salt interference and complexity in aquatic environments and limitations of pretreatment for sample preparation and application of characterization techniques severely limit understanding of its nature and environmental roles. This review provides a characterization continuum of aquatic DOM, and demonstrate its biogeochemical implications, enabling in-depth insight into its nature and environmental roles. A synthesis of the effective DOM pretreatment strategies, comprising extraction and fractionation methods, and characterization techniques is presented. Additionally, the biogeochemical dynamics of aquatic DOM and its environmental implications are discussed. The findings indicate the collection of representative DOM samples from water as the first and critical step for characterizing its properties, dynamics, and environmental implications. However, various pretreatment procedures may alter DOM composition and structure, producing highly variable recoveries and even influencing its subsequent characterization. Therefore, complimentary use of various characterization techniques is highly recommended to obtain as much information on DOM as possible, as each characterization technique exhibits various advantages and limitations. Moreover, DOM could markedly change the physical and chemical properties of exogenous chemical species, influencing their transformation and mobility, and finally altering their potential bioavailability and toxicity. Several research gaps to be addressed include the impact of pretreatment on the composition and structure of aquatic DOM, molecular-level structural elucidation for DOM, and assessment of the effects of DOM dynamics on the fate, bioavailability and toxicity of exogenous chemical species.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yongkun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
38
|
Zheng X, Khan MT, Cao X, Croue JP. Importance of origin and characteristics of biopolymers in reversible and irreversible fouling of ultrafiltration membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147157. [PMID: 34088054 DOI: 10.1016/j.scitotenv.2021.147157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
The present work compares the chemical properties of isolated biopolymers of different origins and their fouling potential during ultrafiltration (UF). The biopolymers were extracted from secondary wastewater effluent as effluent organic matter (EfOM) and from surface water as natural organic matter (NOM). Multiple analytical techniques were used to characterize the isolates. The characterization results revealed that EfOM biopolymers were more enriched in protein-type structures compared to the NOM organics, and they presented significant differences in the reversibility of membrane fouling. Dissolved in pure water, EfOM biopolymers led to more irreversible fouling than that caused by NOM isolates. Dosing divalent cations (e.g., Ca2+) into the solutions increased the irreversibility of both types of fouling, while aggravating NOM fouling more significantly. Further investigation was conducted to understand the interaction between EfOM and NOM biopolymers during formation of the fouling layer. The results showed that the interaction between these two types of organics was negligible in the absence of salts. These findings highlight the importance of a comprehensive understanding of biopolymers from different origins, considering their chemical properties and water chemistry, which have valuable implications for selecting suitable membrane fouling control strategies for treating water from different origins.
Collapse
Affiliation(s)
- Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China.
| | | | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Jean-Philippe Croue
- Institut de Chimie des Milieux et des Matériaux, UMR 7285, CNRS, Université de Poitiers, France.
| |
Collapse
|
39
|
Li X, Ma W, Huang T, Wang A, Guo Q, Zou L, Ding C. Spectroscopic fingerprinting of dissolved organic matter in a constructed wetland-reservoir ecosystem for source water improvement-a case study in Yanlong project, eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144791. [PMID: 33736401 DOI: 10.1016/j.scitotenv.2020.144791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The coupling between constructed wetlands and reservoir (CWs-R) afforded a novel ecosystem to improve the water quality and increase the emergency storage capacity of micro-polluted river drinking water source. In this study, spectroscopic characteristics of DOM in YL CWs-R ecosystem were first systematic studied based on a three-year field monitoring to investigate the chemical composition, sources and track the involved biogeochemical processes in the ecosystem. Three humic-like components (C1, C2, and C4, em >380 nm) and one protein-like component (C3, em < 380 nm) were identified by PARAFAC model. Significant spatiotemporal variations in concentration and composition of FDOM were observed in YL CWs-R ecosystem. The improved water transparency (SD) and, the increased hydraulic retention time (HRT) along YL CWs-R ecosystem enhance photochemical processes, leading to significant decreases in the intensities of humic-like components in effluent (P < 0.05) with lower degrees of aromaticity, molecular weights, and humification (decrease in HIX and increases in SR and BIX). In contrast, no significant spatial difference was observed for protein-like component (P > 0.05), which implies that the biodegradation and production of protein-like component may balance each other in the CWs-R ecosystem. The ecological pond unit plays a major role in the removal and transformation of DOM, especially in summer, while wetland purification unit contributes little to DOM reduction. In addition, the decay of aquatic macrophytes in wetland purification unit and the risk of algal bloom in the ecological pond unit might become important autochthonous sources of DOM, especially in summer and autumn. These findings are critical for further understanding the transformation processes of DOM in large-scale CWs-R ecosystems, and could provide important implications to improve sustainable safety of drinking water sources.
Collapse
Affiliation(s)
- Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Weixing Ma
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingyuan Guo
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Lihang Zou
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Cheng Ding
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| |
Collapse
|
40
|
Yi Y, Zhong J, Bao H, Mostofa KMG, Xu S, Xiao HY, Li SL. The impacts of reservoirs on the sources and transport of riverine organic carbon in the karst area: A multi-tracer study. WATER RESEARCH 2021; 194:116933. [PMID: 33618106 DOI: 10.1016/j.watres.2021.116933] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Reservoirs have been constructed as clean energy sources in recent decades with various environmental impacts. Karst rivers typically exhibit high dissolved inorganic carbon (DIC) concentrations, whether and how reservoirs affect carbon cycling, especially organic carbon (OC)-related biogeochemical processes in karst rivers, are unclear. To fill this knowledge gap, multiple tracer methods (including fluorescence excitation-emission matrix (EEM), ultraviolet (UV) absorption, and stable carbon (δ13C) and radiocarbon (Δ14C) isotopes) were utilized to track composition and property changes of both particulate OC (POC) and dissolved OC (DOC) along river-transition-reservoir transects in the Southwest China karst area. The changes in chemical properties indicated that from the river to the reservoir, terrestrial POC is largely replaced by phytoplankton-derived OC, while gradual coloured dissolved organic matter (CDOM) removal and addition of phytoplankton-derived OC to the DOC pool occurred as water flowed to the reservoir. Higher primary production in the transition area than that in the reservoir area was observed, which may be caused by nutrient released from suspended particles. Within the reservoir, the production surpassed degradation in the upper 5 m, resulting in a net DIC transformation into DOC and POC and terrestrial DOM degradation. The primary production was then gradually weakened and microbial degradation became more important down the profile. It is estimated that ~3.1-6.3 mg L-1 (~15.5-31.5 mg-C m-2 (~10-21%)) DIC was integrated into the OC pool through the biological carbon pump (BCP) process in the upper 5 m in the transition and reservoir areas. Our results emphasize the reservoir impact on riverine OC transport, and due to their characteristics, karst areas exhibit a higher BCP potential which is sensitive to human activities (more nutrient are provided) than non-karst areas.
Collapse
Affiliation(s)
- Yuanbi Yi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jun Zhong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hongyan Bao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hua-Yun Xiao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
41
|
Zhang Y, Lu Z, Zhang Z, Shi B, Hu C, Lyu L, Zuo P, Metz J, Wang H. Heterogeneous Fenton-like reaction followed by GAC filtration improved removal efficiency of NOM and DBPs without adjusting pH. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Abdul Zali M, Juahir H, Ismail A, Retnam A, Idris AN, Sefie A, Tawnie I, Saadudin SB, Ali MM. Tracing sewage contamination based on sterols and stanols markers within the mainland aquatic ecosystem: a case study of Linggi catchment, Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20717-20736. [PMID: 33405159 DOI: 10.1007/s11356-020-11680-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Sewage contamination is a principal concern in water quality management as pathogens in sewage can cause diseases and lead to detrimental health effects in humans. This study examines the distribution of seven sterol compounds, namely coprostanol, epi-coprostanol, cholesterol, cholestanol, stigmasterol, campesterol, and β-sitosterol in filtered and particulate phases of sewage treatment plants (STPs), groundwater, and river water. For filtered samples, solid-phase extraction (SPE) was employed while for particulate samples were sonicated. Quantification was done by using gas chromatography-mass spectrometer (GC-MS). Faecal stanols (coprostanol and epi-coprostanol) and β-sitosterol were dominant in most STP samples. Groundwater samples were influenced by natural/biogenic sterol, while river water samples were characterized by a mixture of sources. Factor loadings from principal component analysis (PCA) defined fresh input of biogenic sterol and vascular plants (positive varimax factor (VF)1), aged/treated sewage sources (negative VF1), fresh- and less-treated sewage and domestic sources (positive VF2), biological sewage effluents (negative VF2), and fresh-treated sewage sources (VF3) in the samples. Association of VF loadings and factor score values illustrated the correlation of STP effluents and the input of biogenic and plant sterol sources in river and groundwater samples of Linggi. This study focuses on sterol distribution and its potential sources; these findings will aid in sewage assessment in the aquatic environment.
Collapse
Affiliation(s)
- Munirah Abdul Zali
- Centre of Analysis of Drinking Water, Food and Environmental Safety, Department of Chemistry, Jalan Sultan, 46661, Petaling Jaya, Selangor, Malaysia
- East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, 21300, Gong Badak Campus, Kuala Nerus, Terengganu, Malaysia
| | - Hafizan Juahir
- East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, 21300, Gong Badak Campus, Kuala Nerus, Terengganu, Malaysia.
| | - Azimah Ismail
- East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, 21300, Gong Badak Campus, Kuala Nerus, Terengganu, Malaysia
| | - Ananthy Retnam
- Centre of Analysis of Drinking Water, Food and Environmental Safety, Department of Chemistry, Jalan Sultan, 46661, Petaling Jaya, Selangor, Malaysia
| | - Azrul Normi Idris
- National Hydraulic Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Anuar Sefie
- National Hydraulic Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Ismail Tawnie
- National Hydraulic Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Syaiful Bahren Saadudin
- National Hydraulic Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Masni Mohd Ali
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
43
|
Xie YD, Zhang QH, Dzakpasu M, Zheng YC, Tian Y, Jin PK, Yang SJ, Wang XC. Towards the formulation of rural sewage discharge standards in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143533. [PMID: 33243509 DOI: 10.1016/j.scitotenv.2020.143533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
In China, most rural areas lack specific sewage discharge standards. Even though China governments proposed a series of local standards, the most of the existing China's rural sewage discharge standards are still similar to urban discharge standards. This research analyses comprehensively the data of rural sewage discharge standards in the 31 provinces and cities in China in terms of grade and indicator, and forms a structural framework for the formulation and revised standards in rural areas of China. In the formulation, we use 2 components, end-use and environmental capacity, to reflect local characteristics of the grades and indicators, and also propose the methods of combining discharge standards with relevant water quality standards to save energy. And we also use the mathematical model to illustrate environmental capacity in different regions. The paper shows the great potential in guiding the design of discharge standards formulation and revision for rural wastewater treatment in China and other developing countries as well.
Collapse
Affiliation(s)
- Y D Xie
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Q H Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - M Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Y C Zheng
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Y Tian
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - P K Jin
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - S J Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - X C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
44
|
Alfonso-Muniozguren P, Ferreiro C, Richard E, Bussemaker M, Lombraña JI, Lee J. Analysis of ultrasonic pre-treatment for the ozonation of humic acids. ULTRASONICS SONOCHEMISTRY 2021; 71:105359. [PMID: 33291062 PMCID: PMC7786617 DOI: 10.1016/j.ultsonch.2020.105359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
This paper presents an intensification study of an ozonation process through an ultrasonic pre-treatment for the elimination of humic substances in water and thus, improve the quality of water treatment systems for human consumption. Humic acids were used as representative of natural organic matter in real waters which present low biodegradability and a high potential for trihalomethane formation. Ultrasonic frequency (98 kHz, 300 kHz and 1 MHz), power (10-40 W) and sonicated volume (150-400 mL) was varied to assess the efficiency of the ultrasonic pre-treatment in the subsequent ozonation process. A direct link between hydroxyl radical (HO) formation and fluorescence reduction was observed during sonication pre-treatment, peaking at 300 kHz and maximum power density. Ultrasound, however, did not reduce total organic carbon (TOC). Injected ozone (O3) dose and reaction time were also evaluated during the ozonation treatment. With 300 kHz and 40 W ultrasonic pre-treatment and the subsequent ozonation step (7.4 mg O3/Lgas), TOC was reduced from 21 mg/L to 13.5 mg/L (36% reduction). HO attack seems to be the main degradation mechanism during ozonation. A strong reduction in colour (85%) and SUVA254 (70%) was also measured. Moreover, changes in the chemical structure of the macromolecule were observed that led to the formation of oxidation by-products of lower molecular weight.
Collapse
Affiliation(s)
- Pello Alfonso-Muniozguren
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom; Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Cristian Ferreiro
- Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Elodie Richard
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom; Department of Chemistry, IUT Besançon-Vesoul, University of Franche-Comté, 25000 Besançon, France
| | - Madeleine Bussemaker
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom
| | - José Ignacio Lombraña
- Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
| | - Judy Lee
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom.
| |
Collapse
|
45
|
Chen W, Yu HQ. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. WATER RESEARCH 2021; 190:116759. [PMID: 33360618 DOI: 10.1016/j.watres.2020.116759] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is ubiquitous in environment and plays a fundamental role in the geochemical cycling of elements. It is involved in a wide range of environmental processes and can significantly affect the environmental fates of exogenous contaminants. Understanding the properties and environmental behaviors of NOM is critical to advance water treatment technologies and environmental remediation strategies. NOM is composed of characteristic light-absorbing/emitting functional groups, which are the "identification card" of NOM and susceptive to ambient physiochemical changes. These groups and their variations can be captured through optical sensing. Therefore, spectroscopic techniques are elegant tools to track the sources, features, and environmental behaviors of NOM. In this work, the most recent advances in molecular spectroscopic techniques, including UV-Vis, fluorescence, infrared, and Raman spectroscopy, for the characterization, measurement, and monitoring of NOM are reviewed, and the state-of-the-art innovations are highlighted. Furthermore, the limitations of current spectroscopic approaches for the exploration of NOM-related environmental processesand how these weaknesses/drawbacks can be addressed are explored. Finally, suggestions and directions are proposed to advance the development of spectroscopic methods in analyzing and elucidating the properties and behaviors of NOM in natural and engineered environments.
Collapse
Affiliation(s)
- Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha410083, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China.
| |
Collapse
|
46
|
Current trends and advances in analytical techniques for the characterization and quantification of biologically recalcitrant organic species in sludge and wastewater: A review. Anal Chim Acta 2021; 1152:338284. [PMID: 33648641 DOI: 10.1016/j.aca.2021.338284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
The study of organic matter in wastewater is a major regulatory and environmental issue and requires new developments to identify non-biodegradable refractory compounds, produced mainly by thermal treatments. Recent advances linking physicochemical properties to spectroscopic analyzes (UV, Fluorescence, IR) have shown that the refractory property is favored by several physicochemical parameters: weight, hydrophobicity, aromaticity and chemical functions. Currently, the most effective developments for the quantification of refractory compounds are obtained with hyphenated methods, based on steric separation of the macromolecular species by steric exclusion chromatography (SEC)/PDA/Fluorescence systems. Hyphenated techniques using High Resolution Mass Spectrometry (HRMS), ultra-high-resolution mass spectrometry with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and NMR have been developed to analyze macromolecules in wastewater with minor sample preparation procedures. A particular class has been identified, the melanoidins, generated by Maillard reactions between sugars, amino acids, peptides and proteins present in wastewater and sludge, but low molecular weight compounds formed as intermediates, such as ketones, aldehydes, pyrazines, pyridines or furans, are also recalcitrant and are complex to identify in the complex matrices. The lack of available standards for the study of these compounds requires the use of specific techniques and data processing. Advances in chemometrics are obtained in the development of molecular or physicochemical indices resulting from the data generated by the analytical detectors, such as aromaticity calculated by SUVA254 and determined by UV, fluorescence, molar mass, H/C ratio or structural studies (measuring the amount of unsaturated carbon) given by hyphenated techniques with SEC. It is clear that nitrogen compounds are widely involved in refractoriness. New trends in nitrogen containing compounds characterization follow two axes: through SEC/PDA/Fluorescence and HRMS/NMR techniques with or without separation. Other techniques widely used in food or marine science are also being imported to this study, as it can be seen in the use of "omics" methods, high-performance thin layer chromatography (HPTLC) and chromatography at the critical condition, rounding out the important developments around SEC. While improving the performance of stationary phases is one of the challenges, it results in a fundamental understanding of the retention mechanisms that today provide us with more information on the structures identified. The main objective of this review is to present the spectroscopic and physicochemical techniques used to qualify and characterize refractoriness with a specific focus on chemometric approaches.
Collapse
|
47
|
He Y, Song K, Yang C, He W, Li Y, Xu F. Geographical location and water depth are important driving factors for the differences of suspended particulate organic matter (SPOM) in lake environment across nationwide scale: Evidences from n-alkane fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142948. [PMID: 33109370 DOI: 10.1016/j.scitotenv.2020.142948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Suspended particulate organic matter (SPOM) plays a connective role in global biogeochemical carbon cycles and energy flows in aquatic ecosystems. However, little is known about the occurrence and source of SPOM in lake environment and their driving factors across nationwide scale. Here, we utilize the molecular markers of n-alkanes and their fingerprints in 46 typical lakes and reservoirs with different water depths across China from both sides of the Hu Line to study this issue. Σ29n-alkanes, Σ biogenic n-alkanes and Σ anthropogenic n-alkanes ranged from 104.8 to 10332 ng·L-1, from 88.5 to 4843 ng·L-1, and from 16.2 to 5488 ng·L-1, respectively. Their occurrences were only associated with water depth. Then, we compared the differences of carbon-chain distribution of both biogenic and anthropogenic n-alkanes and related proxies in different lake groups. The profiles of different biogenic and anthropogenic n-alkanes posed large differences in different lake groups. Finally, linear discriminant analysis (LDA) was applied to test the possible effects of geographical location and water depth on the holistic differences of SPOM in different lakes and reservoirs across China. The results illustrated that both geographical location and water depth were important driving factors for the holistic differences of SPOM in different lakes and reservoirs across China. Intensive anthropogenic activities narrowed the differences between shallow and deep lakes in eastern China. In conclusion, this study provided new insights into the driving factor analysis of SPOM in lakes and reservoirs on large scale.
Collapse
Affiliation(s)
- Yong He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kai Song
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chen Yang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yilong Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
He X, O'Shea KE. Selective oxidation of H 1-antihistamines by unactivated peroxymonosulfate (PMS): Influence of inorganic anions and organic compounds. WATER RESEARCH 2020; 186:116401. [PMID: 32932094 DOI: 10.1016/j.watres.2020.116401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
The rapid and selective peroxymonosulfate (PMS) induced transformation of H1-antihistamines cetirizine (CET) and diphenhydramine (DPH) can be influenced by the presence of common organic and inorganic water constituents. Presence of HCO3- and/or CO32-, which often exhibit powerful inhibition on the advanced oxidation processes (AOPs), can enhance the PMS mediated transformation of CET/DPH. The observed promotion is demonstrated by the changed solution pH through detailed kinetic studies. The impact of halide ions is remarkable, with I- inhibiting the process through consumption of PMS, while Cl- increases slightly the transformation kinetics through the formation and subsequent reactions of HOCl. The CET/DPH degradation in the Br-/PMS system is influenced by the generation of reactive species such as HOBr which leads to different reaction pathways as compared to PMS alone. The results demonstrated the performance of PMS can be tailored through varying the experimental parameters. In addition, the presence of model organic constituents found in water, e.g., humic acid, phenol, pyridine or sorbate, has a minimal effect on the PMS mediated oxidation processes, highlighting the strong application potential of PMS in water treatment.
Collapse
Affiliation(s)
- Xuexiang He
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199, USA.
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199, USA.
| |
Collapse
|
49
|
Wang J, Zhang S, He C, She Z, Pan X, Li Y, Shao R, Shi Q, Yue Z. Source identification and component characterization of dissolved organic matter in an acid mine drainage reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139732. [PMID: 32544673 DOI: 10.1016/j.scitotenv.2020.139732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) is one of the most serious environmental problems and extreme environments on the earth, with high concentrations of sulphate and dissolved metals. A comprehensive description of dissolved organic matter (DOM) in these reservoirs is lacking, and it can play an important role in AMD pollution treatment and ecosystem. Thus, the source, composition and property of DOM in an AMD reservoir in Ma'an shan, China were studied using Fourier transform ion cyclotron resonance mass spectrometry and three-dimension excitation emission matrix fluorescence spectroscopy. The results suggested that the autochthonous algal metabolites significantly contributed to the DOM pool in the AMD reservoir. Bioavailable substances with lower oxidation, unsaturation and aromaticity such as lipids and carbohydrates were lacking in the AMD reservoir especially in the deeper layers. In addition, the proportion of sulfur compounds was significantly higher than that in other waters, suggesting the potential formation of organic matter with sulfur atom in a sulfur-rich environment. These findings underscore that the investigation of DOM in AMD reservoirs may offer references for the AMD treatment with addition of organic matter and broaden the understanding of special carbon cycling in the extreme environment of AMD.
Collapse
Affiliation(s)
- Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Siyu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunyun Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Rui Shao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
50
|
Sathasivan A, Kastl G, Korotta-Gamage S, Gunasekera V. Trihalomethane species model for drinking water supply systems. WATER RESEARCH 2020; 184:116189. [PMID: 32717495 DOI: 10.1016/j.watres.2020.116189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Despite the existence of significant knowedge on complex mechanisms of THM formation, a simple kinetic model to predict THM species concentration is not available, hindering application of knowlwdge for regulatory, monitoring and operational control. The parallel second order reaction (2R) model containing fast and slow reactants has been well established to describe the chlorine decay kinetics under distribution conditions. The proposed THM species model expands the 2R model by systematically incorporating the initial unproductive (not forming THM) chlorine consumption and assuming each THM species is formed at a fixed yield (µg-THM species/mg- productive chlorine consumption). The model concept is tested on 15 water samples that contain a wide range of dissolved organic carbon, specific UV absorbence, and bromide concentrations collected from Australia and US. In all samples, the model describes the THM species concentrations well (error < 3 µg/L in 84% of model estimates) as long as the chlorine profile is described accurately (R2 > 0.984). The model formulated from the minimum data (initial and two other data points of Cl2 and THM species) predicts the rest of concentrations of THM species from only chlorine measurements. To fully optimise the system or adopt in regulatory monitoring, the effect of changes due to bulk water quality, operational conditions and wall (and biofilm) effects on THM formation kinetics should be established. A similar concept could be extended to other DBP, but rigorous testing is needed.
Collapse
Affiliation(s)
- Arumugam Sathasivan
- School of Engineering, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia.
| | - George Kastl
- School of Engineering, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia.
| | - Shashika Korotta-Gamage
- School of Engineering, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia.
| | - Varuni Gunasekera
- School of Engineering, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia.
| |
Collapse
|