1
|
Morales-Figueroa C, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, Castillo-Suárez LA, Garduño-Pineda L. Electro-galvanic alkalization and treatment of rainwater to obtain drinking water. ENVIRONMENTAL TECHNOLOGY 2024; 45:4116-4130. [PMID: 37490626 DOI: 10.1080/09593330.2023.2241618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Rainwater Electro-Galvanic Alkalization (EGA) was performed using copper and magnesium (1:1) electrode. Efficiently removal of pollutants without external energy consumption was carried out, in addition essential ions were dosed for alkalization of rainwater. The optimal system conditions were obtained using response surface methodology (RSM) by considering the following operating variables: flow rate and concentration of the supporting electrolyte (NaCl and CaCl2). Furthermore, the maximum efficiency of nitrate, ammoniacal nitrogen, colour, and turbidity removal was evaluated. The results showed that the response variables were mainly sensitive to the type of supporting electrolyte used and the flow rate. Under experimental conditions of 0.009 M (NaCl) and 20 mL min-1, the removal rate was 74.19%, 72.49%, and 81.43% for nitrates, colour, and turbidity, respectively, and the lowest concentration of ammoniacal nitrogen (0.99 mg L - 1 ) was obtained. The kinetic models for nitrate and colour were fitted to zero-order models with k = 0.33 mg L - 1 mi n - 1 and k = 0.933 Pt - Co , respectively. In addition, turbidity was fitted to a first-order model ( k = 0.1661 mi n - 1 ) , and ammoniacal nitrogen was fitted to a second-order model ( k = 0.0217 L m g - 1 mi n - 1 ) . The concentration increases of minerals such as Ca and Mg, which rises the rainwater alkalinity after treatment (pH shift from 6.1 to 8.91), was determined by inductively coupled plasma (ICP) analysis.
Collapse
Affiliation(s)
- Cristina Morales-Figueroa
- Facultad de Química, Unidad Colón, Toluca de Lerdo, México
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
| | | | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
- Advanced Oxidation Processes Department, Cátedras COMECYT, Toluca, México
| | - Laura Garduño-Pineda
- Analytics Chemistry Department, Tecnológico de Estudios Superiores de Jocotitlán (TESJo), Jocotitlán, México
| |
Collapse
|
2
|
Alexakis K, Baliou S, Ioannou P. Predatory Bacteria in the Treatment of Infectious Diseases and Beyond. Infect Dis Rep 2024; 16:684-698. [PMID: 39195003 DOI: 10.3390/idr16040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, with significant associated morbidity and mortality. Given the slow production of new antimicrobials, non-antimicrobial methods for treating infections with significant AMR are required. This review examines the potential of predatory bacteria to combat infectious diseases, particularly those caused by pathogens with AMR. Predatory bacteria already have well-known applications beyond medicine, such as in the food industry, biocontrol, and wastewater treatment. Regarding their potential for use in treating infections, several in vitro studies have shown their potential in eliminating various pathogens, including those resistant to multiple antibiotics, and they also suggest minimal immune stimulation and cytotoxicity by predatory bacteria. In vivo animal studies have demonstrated safety and efficacy in reducing bacterial burden in various infection models. However, results can be inconsistent, suggesting dependence on factors like the animal model and the infecting bacteria. Until now, no clinical study in humans exists, but as experience with predatory bacteria grows, future studies including clinical studies in humans could be designed to evaluate their efficacy and safety in humans, thus leading to the potential for approval of a novel method for treating infectious diseases by bacteria.
Collapse
Affiliation(s)
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
3
|
Deng R, He Q, Yang D, Chen M, Chen Y. Dielectric barrier discharge plasma promotes disinfection-residual-bacteria inactivation via electric field and reactive species. WATER RESEARCH 2024; 254:121386. [PMID: 38457942 DOI: 10.1016/j.watres.2024.121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Traditional disinfection processes face significant challenges such as health and ecological risks associated with disinfection-residual-bacteria due to their single mechanism of action. Development of new disinfection processes with composite mechanisms is therefore urgently needed. In this study, we employed liquid ground-electrode dielectric barrier discharge (lgDBD) to achieve synergistic sterilization through electric field electroporation and reactive species oxidation. At a voltage of 12 kV, Pseudomonas fluorescens (ultraviolet and ozone-resistant) and Bacillus subtilis (chlorine-resistant) were completely inactivated within 8 and 6 min, respectively, surpassing a 7.0-log reduction. The lgDBD process showed good disinfection performance across a wide range of pH values and different practical water samples. Staining experiments suggest that cellular membrane damage contributes to this inactivation. In addition, we used a two-dimensional parallel streamer solver with kinetics code to fashion a representative model of the basic discharge unit, and discovered the presence of a persistent electric field during the discharge process with a peak value of 2.86 × 106 V/m. Plasma discharge generates excited state species such as O(1D) and N2(C3Πu), and further forms reactive oxygen and nitrogen species at the gas-liquid interface. The physical process, which is driven by electric field-induced cell membrane electroporation, synergizes with the bactericidal effects of reactive oxygen and nitrogen species to provide effective disinfection. Adopting the lgDBD process enhances sterilization efficiency and adaptability, underscoring its potential to revolutionize physicochemical synergistic disinfection practices.
Collapse
Affiliation(s)
- Ruoyu Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
4
|
Zhang L, Guo L, Cui Z, Ju F. Exploiting predatory bacteria as biocontrol agents across ecosystems. Trends Microbiol 2024; 32:398-409. [PMID: 37951768 DOI: 10.1016/j.tim.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Predatory bacteria have been increasingly known for their ubiquity in environments and great functional potentials in controlling unwanted microorganisms. Fundamental understanding of the predation mechanisms, population dynamics, and interaction patterns underlying bacterial predation is required for wise exploitation of predatory bacteria for enhancing ecoenvironmental, animal, and human health. Here, we review the recent achievements on applying predatory bacteria in different systems as biocontrol agents and living antibiotics as well as new findings in their phylogenetic diversity and predation mechanisms. We finally propose critical issues that deserve priority research and highlight the necessity to combine classic culture-based and advanced culture-independent approaches to push research frontiers of bacterial predation across ecosystems for promising biocontrol and therapy strategies towards a sustainable ecoenvironment and health.
Collapse
Affiliation(s)
- Lu Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Lingyun Guo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Feng Ju
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Zheng L, Deng Y. Advancing rainwater treatment technologies for irrigation of urban agriculture: A pathway toward innovation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170087. [PMID: 38232849 DOI: 10.1016/j.scitotenv.2024.170087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Urban agriculture (UA) has emerged for local food security since the 1960s. However, the access to sufficient and safe irrigation water remains a significant constraint. Municipal water supply, though commonly used in UA practices, proves unsustainable due to high costs, intensive energy consumption, and limited availability in many vacant urban spaces. In contrast, rainwater harvesting (RWH) exhibits a potential as a non-traditional water supply for urban farming. This article aims to provide insights into the advantages and challenges associated with RWH for UA irrigation, analyze existing low-cost RWH treatment technologies, and identify a visionary way toward innovative, new-generation RWH treatment processes in UA practices. Despite a promising water source, harvested rainwater is challenged for crop irrigation owing to the presence of various contaminants (e.g., waterborne pathogens, potentially toxic metals and metalloids, and synthetic organic chemicals). While established RWH treatment processes (e.g., first flush diversion, sedimentation, solar disinfection, chlorination, UV irradiation, granular filtration, and bio-sand filtration) can remove certain pollutants, they cannot offer viable treatment solutions for UA irrigation due to different technical, economic, and social restrictions. Particularly, their capacity to reliably remove contaminants of emerging concern in runoff remains limited or uncertain. Consequently, it is essential to develop next-generation RWH treatment technologies tailored specifically for UA irrigation. To this end, three fundamental principles are recommended. First, the focus should be on technically viable, low-cost, simple-operation, and easy-maintenance treatment technologies capable of simultaneously addressing traditional and emerging runoff contaminants, while minimizing the production of undesirable treatment byproducts. Second, advancing the understanding of the water, soil, and crop interactions enables the development of "right" RWH treatment processes for irrigation of "right" crops at a "right" place. Last, crop nutrients, if possible, are retained in rainwater to reduce the nutrient demand for crop production. The insights and perspectives have far-reaching implications for water conservation, stormwater management, and the integration of water, food, and energy systems within the urban environment.
Collapse
Affiliation(s)
- Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province 310023, China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
6
|
Sun Y, O'Connell DW. Application of visible light active photocatalysis for water contaminants: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10781. [PMID: 36195318 PMCID: PMC9828070 DOI: 10.1002/wer.10781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Organic water pollutants are ubiquitous in the natural environment arising from domestic products as well as current and legacy industrial processes. Many of these organic water pollutants are recalcitrant and only partially degraded using conventional water and wastewater treatment processes. In recent decades, visible light active photocatalyst has gained attention as a non-conventional alternative for the removal of organic pollutants during water treatment, including industrial wastewater and drinking water treatment. This paper reviews the current state of research on the use of visible light active photocatalysts, their modified methods, efficacy, and pilot-scale applications for the degradation of organic pollutants in water supplies and waste streams. Initially, the general mechanism of the visible light active photocatalyst is evaluated, followed by an overview of the major synthesis techniques. Because few of these photocatalysts are commercialized, particular attention was given to summarizing the different types of visible light active photocatalysts developed to the pilot-scale stage for practical application and commercialization. The organic pollutant degradation ability of these visible light active photocatalysts was found to be considerable and in many cases comparable with existing and commercially available advanced oxidation processes. Finally, this review concludes with a summary of current achievements and challenges as well as possible directions for further research. PRACTITIONER POINTS: Visible light active photocatalysis is a promising advanced oxidation process (AOP) for the reduction of organic water pollutants. Various mechanisms of photocatalysis using visible light active materials are identified and discussed. Many recent photocatalysts are synthesized from renewable materials that are more sustainable for applications in the 21st century. Only a small number of pilot-scale applications exist and these are outlined in this review.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| | - David W. O'Connell
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| |
Collapse
|
7
|
Silerio-Vázquez F, Proal Nájera JB, Bundschuh J, Alarcon-Herrera MT. Photocatalysis for arsenic removal from water: considerations for solar photocatalytic reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61594-61607. [PMID: 34533752 DOI: 10.1007/s11356-021-16507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The following work provides a perspective on the potential application of solar heterogeneous photocatalysis, which is a nonselective advanced oxidation process considered as a sustainable technology, to assist in arsenic removal from water, which is a global threat to human health. Heterogeneous photocatalysis can oxidize trivalent arsenic to pentavalent arsenic, decreasing its toxicity and easing its removal with other technologies, such as chemical precipitation and adsorption. Several lab-scale arsenic photocatalytic oxidation and diverse solar heterogeneous photocatalytic operations carried out in different reactor designs are analyzed. It was found out that this technology has not been translated to operational pilot plant scale prototypes. General research on reactors is scarce, comprising a small percentage of the photocatalysis related scientific literature. It was possible to elucidate some operational parameters that a reactor must comply to operate efficiently. Reports on small-scale application shed light that in areas where other water purification technologies are economically and/or technically not suitable, and the solar energy is available, shed light on the fact that solar heterogeneous photocatalysis is highly promissory within a water purification process for removal of arsenic from water.
Collapse
Affiliation(s)
- Felipe Silerio-Vázquez
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P, 34147, Durango, México
| | - José B Proal Nájera
- Instituto Politécnico Nacional, CIIDIR-Durango, Calle Sigma 119, Fraccionamiento 20 de Noviembre II, C. P, 34220, Durango, México
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, and School of Civil Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia
| | - María T Alarcon-Herrera
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P, 34147, Durango, México.
| |
Collapse
|
8
|
Interaction of Bdellovibrio bacteriovorus with Gram-Negative and Gram-Positive Bacteria in Dual Species and Polymicrobial Communities. Microorganisms 2022; 10:microorganisms10040793. [PMID: 35456843 PMCID: PMC9025206 DOI: 10.3390/microorganisms10040793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
The interaction of Bdellovibrio bacteriovorus PF13 with mixed bacterial communities, consisting of Gram-negative (Pseudomonas fluorescens and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Enterococcus faecium) bacteria, was investigated to determine if this wild-type predator preferentially preys on certain bacteria and whether the presence of Gram-positive organisms influences its predation efficiency. In co-culture with P. fluorescens and K. pneumoniae, the cell counts (PFU/mL) of PF13 increased by 5.79 and 5.17 logs (48 h), respectively, while in the dual species assay (P. fluorescens, K. pneumoniae and PF13), the cell counts of PF13 increased by 1.95 logs (24 h). Using ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR), the concentration of PF13 increased by 1.25 to 3.62 logs in the co-culture experiments, by 1.41 to 5.05 logs in dual species cultures and by 2.65 logs in a polymicrobial culture. However, PF13 preferentially preyed on K. pneumoniae in the dual species and polymicrobial cultures, highlighting that the presence of Gram-positive bacteria did not affect the predation efficiency of PF13. This is significant as it implies that the predator can be applied in mixed microbial communities to target Gram-negative pathogens which may pose a health risk to patients, consumers or for the treatment of contaminated water.
Collapse
|
9
|
Zhu H, Cai S, Zhou J, Li S, Wang D, Zhu J, Wu Y, Huang Y, Yuan S, Jin S, Xia F. Integration of water collection and purification on cactus- and beetle-inspired eco-friendly superwettable materials. WATER RESEARCH 2021; 206:117759. [PMID: 34715525 DOI: 10.1016/j.watres.2021.117759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Freshwater shortage has been a terrible threat for the sustainable progress and development of human society in 21st century. Inspired from natural creatures, harvesting water from atmosphere has been a feasible and effective method to alleviate water shortage crisis. However, the recent works related to water collection just focuses on how to optimize fog-harvesting manners and efficiencies, the safety and availability of collected water are always ignored. In this paper, we proposed a new strategy accessed to freshwater resources through combining water collection and purification together on eco-friendly superwettable material inspired by cactus spines and desert beetles. Six superhydrophilic wedge-shaped patterns prepared by P25 TiO2 nanoparticles (NPs) were constructed on candle soot@polydimethylsiloxane (CS@PDMS) superhydrophobic coating. The special superhydrophilic regions not only effectively captured water from foggy environment but generated Laplace pressure gradient to faster drive water away. The bioinspired material exhibited an efficient water collection rate (WCR) of 14.9 ± 0.2 mg min-1 cm-2, which was 5.3 and 2.5 times larger than that on uniformed superhydrophilic and superhydrophobic surfaces, respectively. Because of the existence of photocatalytic P25 NPs in wetting areas, the harvested wastewater containing nine kinds of pesticides (0.5 mg/L) could be purified in low concentrations (< 5%) under UV light (365 nm, 5.0 ± 0.6 mW cm-2). Ten zebrafishes were still alive in such purified water for 72 h, as a contrast, the same number of fishes would almost die in untreated harvested wastewater in just 7 h. This work indeed opens up a new sight to freshwater accessibility, aiming to a promising project for alleviating water shortage around the world.
Collapse
Affiliation(s)
- Hai Zhu
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Si Cai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jia Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Siqi Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Juan Zhu
- Xianning ecological environment monitoring center of Hubei ecological environment department, Xianning, China
| | - Yaqin Wu
- Xianning ecological environment monitoring center of Hubei ecological environment department, Xianning, China
| | - Yu Huang
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Songhu Yuan
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Fan Xia
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| |
Collapse
|
10
|
Lin Y, Liu X, Liu Z, Xu Y. Visible-Light-Driven Photocatalysis-Enhanced Nanozyme of TiO 2 Nanotubes@MoS 2 Nanoflowers for Efficient Wound Healing Infected with Multidrug-Resistant Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103348. [PMID: 34418285 DOI: 10.1002/smll.202103348] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 06/13/2023]
Abstract
To enhance the catalytic activity of the nanozymes for efficient wound healing infected with multidrug-resistant bacteria, photo-based motivations have been suggested, but attention is mainly focused on the external stimulus of near-infrared light, while the inexhaustible visible one is promising but lack of study. Herein, an efficient visible light-stimulated peroxidase-like nanozyme system, TiO2 nanotubes coated with MoS2 nanoflowers (TiO2 NTs@MoS2 ), is discovered for efficient bacterial treatment. Based on the synergetic effects between the two components, the bandgap of the TiO2 NTs can be narrowed from 3.2 to 2.97 eV due to the MoS2 loading, which extended the light response of TiO2 to visible-light range and enhanced the photocatalytic activity accordingly. Meanwhile, the peroxidase-like activity of MoS2 can be significantly enhanced due to the combination with TiO2 NTs in return. Especially, the peroxidase-like activity of the TiO2 NTs@MoS2 nanocomposite can be further improved under the sunlight irradiation, rendering much more hydroxyl radical (•OH) generation. Accordingly, the as-obtained TiO2 NTs@MoS2 shows an outstanding antibacterial effect against drug-resistance extended spectrum β-lactamases producing Escherichia coli and methicillin-resistant Staphylococcus aureus under the visible light. In vivo wound healing test further confirms the high antimicrobial efficiency and good biocompatibility of the synergistic antimicrobial system.
Collapse
Affiliation(s)
- Yu Lin
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xiangyong Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zengxu Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
11
|
Cavallo FM, Jordana L, Friedrich AW, Glasner C, van Dijl JM. Bdellovibrio bacteriovorus: a potential 'living antibiotic' to control bacterial pathogens. Crit Rev Microbiol 2021; 47:630-646. [PMID: 33934682 DOI: 10.1080/1040841x.2021.1908956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bdellovibrio bacteriovorus is a small Deltaproteobacterium which, since its discovery, has distinguished itself for the unique ability to prey on other Gram-negative bacteria. The studies on this particular "predatory bacterium", have gained momentum in response to the rising problem of antibiotic resistance, because it could be applied as a potential probiotic and antibiotic agent. Hereby, we present recent advances in the study of B. bacteriovorus, comprehending fundamental aspects of its biology, obligatory intracellular life cycle, predation resistance, and potential applications. Furthermore, we discuss studies that pave the road towards the use of B. bacteriovorus as a "living antibiotic" in human therapy, focussing on its interaction with biofilms, the host immune response, predation susceptibility and in vivo application models. The available data imply that it will be possible to upgrade this predator bacterium from a predominantly academic interest to an instrument that could confront antibiotic resistant infections.
Collapse
Affiliation(s)
- Francis M Cavallo
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lorea Jordana
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Abstract
The photoexcitation of suitable semiconducting materials in aqueous environments can lead to the production of reactive oxygen species (ROS). ROS can inactivate microorganisms and degrade a range of chemical compounds. In the case of heterogeneous photocatalysis, semiconducting materials may suffer from fast recombination of electron–hole pairs and require post-treatment to separate the photocatalyst when a suspension system is used. To reduce recombination and improve the rate of degradation, an externally applied electrical bias can be used where the semiconducting material is immobilised onto an electrically conducive support and connected to a counter electrode. These electrochemically assisted photocatalytic systems have been termed “photoelectrocatalytic” (PEC). This review will explain the fundamental mechanism of PECs, photoelectrodes, the different types of PEC reactors reported in the literature, the (photo)electrodes used, the contaminants degraded, the key findings and prospects in the research area.
Collapse
|
13
|
Waso M, Reyneke B, Havenga B, Khan S, Khan W. Insights into Bdellovibrio spp. mechanisms of action and potential applications. World J Microbiol Biotechnol 2021; 37:85. [PMID: 33860852 DOI: 10.1007/s11274-021-03054-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Recent studies investigating Bdellovibrio spp. have found that although this predator predominantly preys on Gram-negative organisms, under certain conditions (nutrient/prey limitation), it will adapt to survive and grow axenically (without prey) or in the presence of Gram-positive bacterial prey. These advances in the understanding of predatory bacteria have stimulated a renewed interest in these organisms and the potential applications of Bdellovibrio spp. to the benefit of society. Early studies primarily focused on the application of predatory bacteria as "live antibiotics" in the medical field, probiotics in aquaculture and veterinary medicine and their use in agriculture. Additionally, studies have investigated their prevalence in wastewater and environmental sources. However, comprehending that Bdellovibrio spp. may also prey on and target Gram-positive organisms, implies that these predators could specifically be applied for the bioremediation or removal of mixed bacterial communities. Recent studies have also indicated that Bdellovibrio spp. may be useful in controlling food spoilage organisms and subsequently decrease our reliance on food additives. This review will thus highlight recent developments in understanding Bdellovibrio spp. predation strategies and focus on potential new applications of these organisms for water treatment, food preservation, enhancement of industrial processes, and in combination therapies with bacteriophages and/or antibiotics to combat multi-drug resistant organisms.
Collapse
Affiliation(s)
- Monique Waso
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
14
|
Construction of Bi2WO6/MoSe2/Bi12O17ClxBr2−x heterostructures for the production of hydrogen energy and degradation of methylene blue. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01640-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Solar Photocatalysis for Emerging Micro-Pollutants Abatement and Water Disinfection: A Mini-Review. SUSTAINABILITY 2020. [DOI: 10.3390/su122310047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This mini-review article discusses the critical factors that are likely to affect the performance of solar photocatalysis for environmental applications and, in particular, for the simultaneous degradation of emerging micro-pollutants and the inactivation of microbial pathogens in aqueous matrices. Special emphasis is placed on the control of specific operating factors like the type and the form of catalysts used throughout those processes, the intriguing role of the water matrix, and the composition of the microbial load of the sample in each case. The interplay among the visible responsive catalyst, the target pollutants/pathogens, including various types of microorganisms and the non-target water matrix species, dictates performance in an unpredictable and case-specific way. Case studies referring to lab and pilot-scale applications are presented to highlight such peculiarities. Moreover, current trends regarding the elimination of antibiotic-resistant bacteria and resistance genes by means of solar photocatalysis are discussed. The antibiotic resistance dispersion into the aquatic environment and how advanced photocatalytic processes can eliminate antibiotic resistance genes in microbial populations are documented, with a view to investigate the prospect of using those purification methods for the control-resistant microbial populations found in the environment. Understanding the interactions of the various water components (both inherent and target species) is key to the successful operation of a treatment process and its scaling up.
Collapse
|