1
|
Shen L, He Y, Hu Q, Yang Y, Ren B, Yang W, Geng C, Jin J, Bai Y. Vertical distribution of Candidatus Methylomirabilis and Methanoperedens in agricultural soils. Appl Microbiol Biotechnol 2024; 108:47. [PMID: 38175239 DOI: 10.1007/s00253-023-12876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
Candidatus Methylomirabilis-related bacteria conduct anaerobic oxidation of methane (AOM) coupling with NO2- reduction, and Candidatus Methanoperedens-related archaea perform AOM coupling with reduction of diverse electron acceptors, including NO3-, Fe (III), Mn (IV) and SO42-. Application of nitrogen fertilization favors the growth of these methanotrophs in agricultural fields. Here, we explored the vertical variations in community structure and abundance of the two groups of methanotrophs in a nitrogen-rich vegetable field via using illumina MiSeq sequencing and quantitative PCR. The retrieved Methylomirabilis-related sequences had 91.12%-97.32% identity to the genomes of known Methylomirabilis species, and Methanoperedens-related sequences showed 85.49%-97.48% identity to the genomes of known Methanoperedens species which are capable of conducting AOM coupling with reduction of NO3- or Fe (III). The Methanoperedens-related archaeal diversity was significantly higher than Methylomirabilis-related bacteria, with totally 74 and 16 operational taxonomic units, respectively. In contrast, no significant difference in abundance between the bacteria (9.19 × 103-3.83 × 105 copies g-1 dry soil) and the archaea (1.55 × 104-3.24 × 105 copies g-1 dry soil) was observed. Furthermore, the abundance of both groups of methanotrophs exhibited a strong vertical variation, which peaked at 30-40 and 20-30 cm layers, respectively. Soil water content and pH were the key factors influencing Methylomirabilis-related bacterial diversity and abundance, respectively. For the Methanoperedens-related archaea, both soil pH and ammonium content contributed significantly to the changes of these archaeal diversity and abundance. Overall, we provide the first insights into the vertical distribution and regulation of Methylomirabilis-related bacteria and Methanoperedens-related archaea in vegetable soils. KEY POINTS: • The archaeal diversity was significantly higher than bacterial. • There was no significant difference in the abundance between bacteria and archaea. • The abundance of bacteria and archaea peaked at 30-40 and 20-30 cm, respectively.
Collapse
Affiliation(s)
- Lidong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Yefan He
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qinan Hu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuling Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bingjie Ren
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wangting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Caiyu Geng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jinghao Jin
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanan Bai
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
2
|
Fan Y, Zhang Z, Yang X, Yang H, Deng P, Zhao Z. Alleviation of volatile fatty acids inhibition in anaerobic digestion of swine manure with nano-bubble water supplementation. BIORESOURCE TECHNOLOGY 2024; 411:131304. [PMID: 39155019 DOI: 10.1016/j.biortech.2024.131304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Nano-bubble water (NBW) was applied to anaerobic digestion (AD) to alleviate volatile fatty acids (VFAs) inhibition, improve the buffering capacity and CH4 production in this work. Results indicated that NBW accelerated the consumption of VFAs and prevented inhibition due to VFAs accumulation. Additionally, NBW facilitated a rapid increase in partial alkalinity (PA) and total alkalinity (TA) as well as a corresponding rapid decrease in intermediate alkalinity (IA)/PA and VFA/TA, thereby improving buffering capacity and alleviating VFAs inhibition. Moreover, CH4 production improved by more than 12.2% by NBW. Similarly, the activities of the extracellular hydrolases and coenzyme F420 increased. Besides, NBW increased the abundance of microbial community and strengthened the metabolic pathways of hydrogenotrophic methanogens, which could be the intrinsic mechanism by which NBW alleviated VFAs inhibition, improved system stability, and increased CH4 production. This study demonstrates that NBW supplementation can be an effective method for mitigating frequent VFAs inhibition.
Collapse
Affiliation(s)
- Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Ziyang Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Haibo Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Peng Deng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Ziwen Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China.
| |
Collapse
|
3
|
Zhao Y, Liu Y, Cao S, Hao Q, Liu C, Li Y. Anaerobic oxidation of methane driven by different electron acceptors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174287. [PMID: 38945238 DOI: 10.1016/j.scitotenv.2024.174287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Methane, the most significant reduced form of carbon on Earth, acts as a crucial fuel and greenhouse gas. Globally, microbial methane sinks encompass both aerobic oxidation of methane (AeOM), conducted by oxygen-utilizing methanotrophs, and anaerobic oxidation of methane (AOM), performed by anaerobic methanotrophs employing various alternative electron acceptors. These electron acceptors involved in AOM include sulfate, nitrate/nitrite, humic substances, and diverse metal oxides. The known anaerobic methanotrophic pathways comprise the internal aerobic oxidation pathway found in NC10 bacteria and the reverse methanogenesis pathway utilized by anaerobic methanotrophic archaea (ANME). Diverse anaerobic methanotrophs can perform AOM independently or in cooperation with symbiotic partners through several extracellular electron transfer (EET) pathways. AOM has been documented in various environments, including seafloor methane seepages, coastal wetlands, freshwater lakes, soils, and even extreme environments like hydrothermal vents. The environmental activities of AOM processes, driven by different electron acceptors, primarily depend on the energy yields, availability of electron acceptors, and environmental adaptability of methanotrophs. It has been suggested that different electron acceptors driving AOM may occur across a wider range of habitats than previously recognized. Additionally, it is proposed that methanotrophs have evolved flexible metabolic strategies to adapt to complex environmental conditions. This review primarily focuses on AOM, driven by different electron acceptors, discussing the associated reaction mechanisms and the habitats where these processes are active. Furthermore, it emphasizes the pivotal role of AOM in mitigating methane emissions.
Collapse
Affiliation(s)
- Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| |
Collapse
|
4
|
Tang C, Yue Q, Liu H, Dang H, Lv W, Li X, Chen Y. Optimizing operation strategy to improve storage of intracellular carbon sources in anaerobic/oxic/anoxic system: Enhanced nitrogen removal by endogenous denitrification. CHEMOSPHERE 2024; 365:143306. [PMID: 39255857 DOI: 10.1016/j.chemosphere.2024.143306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Endogenous denitrification (ED) can make full use of the carbon sources and avoid replenishment of it. However, strengthening the storage of intracellular carbon sources is an important factor in improving ED efficiency. In this study, employed batch experiments using real domestic wastewater in the anaerobic/oxic (A/O) process. The anaerobic and oxic processes were run for 4 h under ambient conditions with the dissolved oxygen (DO) concentrations in the oxic stage controlled at 0.5, 1.0, 1.5, and 3.0 mg/L, respectively. The results showed that the content of poly-β-hydroxyalkanoates (PHA) reached its peak at 60 min (1.25 mmolC/L). And with DO concentrations of 1.5 mg/L, the contents of glycogen (Gly) were 27.74 mmolC/L. Subsequently, the AOA-SBR was established to investigate its effect on the long-term nitrogen removal performance of domestic wastewater by optimizing the anaerobic time and DO concentrations. The results showed that at an anaerobic time of 60 min and DO concentration of 1.5 mg/L, the storage of the intracellular carbon sources was highest and the total nitrogen (TN) removal efficiency increased to 82.12%. In addition, Candidatus Competibacter dominated gradually in the system as the strategy was optimized.
Collapse
Affiliation(s)
- Chenxin Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Qiong Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wei Lv
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Xiaofan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Lyu L, Wu Y, Chen Y, Li J, Chen Y, Wang L, Mai Z, Zhang S. Synergetic effects of chlorinated paraffins and microplastics on microbial communities and nitrogen cycling in deep-sea cold seep sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135760. [PMID: 39259999 DOI: 10.1016/j.jhazmat.2024.135760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Chlorinated paraffins (CPs) and microplastics (MPs) are commonly found in deep-sea cold seep sediments, where nitrogen cycling processes frequently occur. However, little is known about their combined effects on sedimentary microbial communities and nitrogen cycling in these environments. This study aimed to investigate the synergistic impacts of CPs and MPs on microbial communities and nitrogen cycling in deep-sea cold seep sediments through microcosm experiments. Our results demonstrated that the presence of CPs and MPs induced significant alterations in microbial community composition, promoting the growth of Halomonas. Furthermore, CPs and MPs were found to enhance nitrification, denitrification and anammox processes, which was evidenced by the higher abundance of genes associated with nitrification and denitrification, as well as increased activity of denitrification and anammox in the CPs and MPs-treatment groups compared to the control group. Additionally, the enhanced influence of CPs and MPs on denitrification was expected to promote nitrate-dependent and sulfate-dependent anaerobic oxidation of methane, thereby resulting in less methane released into the environment. These findings shed light on the potential consequences of simultaneous exposure to CPs and MPs on biogeochemical nitrogen cycling in deep-sea cold seep sediments.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Yang Wu
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Guangzhou 511458, China
| | - Yangjun Chen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China.
| |
Collapse
|
6
|
Chen X, Chen S, Chen X, Tang Y, Nie WB, Yang L, Liu Y, Ni BJ. Impact of hydrogen sulfide on anammox and nitrate/nitrite-dependent anaerobic methane oxidation coupled technologies. WATER RESEARCH 2024; 257:121739. [PMID: 38728778 DOI: 10.1016/j.watres.2024.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The coupling between anammox and nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been considered a sustainable technology for nitrogen removal from sidestream wastewater and can be implemented in both membrane biofilm reactor (MBfR) and granular bioreactor. However, the potential influence of the accompanying hydrogen sulfide (H2S) in the anaerobic digestion (AD)-related methane-containing mixture on anammox/n-DAMO remains unknown. To fill this gap, this work first constructed a model incorporating the C/N/S-related bioprocesses and evaluated/calibrated/validated the model using experimental data. The model was then used to explore the impact of H2S on the MBfR and granular bioreactor designed to perform anammox/n-DAMO at practical levels (i.e., 0∼5% (v/v) and 0∼40 g/S m3, respectively). The simulation results indicated that H2S in inflow gas did not significantly affect the total nitrogen (TN) removal of the MBfR under all operational conditions studied in this work, thus lifting the concern about applying AD-produced biogas to power up anammox/n-DAMO in the MBfR. However, the presence of H2S in the influent would either compromise the treatment performance of the granular bioreactor at a relatively high influent NH4+-N/NO2--N ratio (e.g., >1.0) or lead to increased energy demand associated with TN removal at a relatively low influent NH4+-N/NO2--N ratio (e.g., <0.7). Such a negative effect of the influent H2S could not be attenuated by regulating the hydraulic residence time and should therefore be avoided when applying the granular bioreactor to perform anammox/n-DAMO in practice.
Collapse
Affiliation(s)
- Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Siying Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xinyan Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yi Tang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
7
|
Wu H, Nie WB, Tan X, Xie GJ, Qu H, Zhang X, Xian Z, Dai J, Yang C, Chen Y. Different oxygen affinities of methanotrophs and Comammox Nitrospira inform an electrically induced symbiosis for nitrogen loss. WATER RESEARCH 2024; 256:121606. [PMID: 38631236 DOI: 10.1016/j.watres.2024.121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Aerobic methanotrophs establish a symbiotic association with denitrifiers to facilitate the process of aerobic methane oxidation coupled with denitrification (AME-D). However, the symbiosis has been frequently observed in hypoxic conditions continuing to pose an enigma. The present study has firstly characterized an electrically induced symbiosis primarily governed by Methylosarcina and Hyphomicrobium for the AME-D process in a hypoxic niche caused by Comammox Nitrospira. The kinetic analysis revealed that Comammox Nitrospira exhibited a higher apparent oxygen affinity compared to Methylosarcina. While the coexistence of comammox and AME-D resulted in an increase in methane oxidation and nitrogen loss rates, from 0.82 ± 0.10 to 1.72 ± 0.09 mmol CH4 d-1 and from 0.59 ± 0.04 to 1.30 ± 0.15 mmol N2 d-1, respectively. Furthermore, the constructed microbial fuel cells demonstrated a pronounced dependence of the biocurrents on AME-D due to oxygen competition, suggesting the involvement of direct interspecies electron transfer in the AME-D process under hypoxic conditions. Metagenomic and metatranscriptomic analysis revealed that Methylosarcina efficiently oxidized methane to formaldehyde, subsequently generating abundant NAD(P)H for nitrate reduction by Hyphomicrobium through the dissimilatory RuMP pathway, leading to CO2 production. This study challenges the conventional understanding of survival mechanism employed by AME-D symbionts, thereby contributing to the characterization responsible for limiting methane emissions and promoting nitrogen removal in hypoxic regions.
Collapse
Affiliation(s)
- Hao Wu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xin Tan
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Qu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xin Zhang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhihao Xian
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jingyi Dai
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chun Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
8
|
Fang F, Yang J, Chen LL, Xu RZ, Luo JY, Ni BJ, Cao JS. Mixotrophic denitrification of waste activated sludge fermentation liquid as an alternative carbon source for nitrogen removal: Reducing N 2O emissions and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121348. [PMID: 38824891 DOI: 10.1016/j.jenvman.2024.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jie Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ling-Long Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
Li R, Xi B, Wang X, Li Y, Yuan Y, Tan W. Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications. WATER RESEARCH 2024; 255:121498. [PMID: 38522398 DOI: 10.1016/j.watres.2024.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaowei Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
10
|
Li Y, Xu Y, Zhou X, Huang L, Wang G, Liao J, Dai R. From "resistance genes expression" to "horizontal migration" as well as over secretion of Extracellular Polymeric Substances: Sludge microorganism's response to the increasing of long-term disinfectant stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133940. [PMID: 38457979 DOI: 10.1016/j.jhazmat.2024.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Glutaraldehyde-Didecyldimethylammonium bromides (GDs) has been frequently and widely employed in livestock and poultry breeding farms to avoid epidemics such as African swine fever, but its long-term effect on the active sludge microorganisms of the receiving wastewater treatment plant was keep unclear. Four simulation systems were built here to explore the performance of aerobic activated sludge with the long-term exposure of GDs and its mechanism by analyzing water qualities, resistance genes, extracellular polymeric substances and microbial community structure. The results showed that the removal rates of CODCr and ammonia nitrogen decreased with the exposure concentration of GDs increasing. It is worth noting that long-term exposure to GDs can induce the horizontal transfer and coordinated expression of a large number of resistance genes, such as qacE, sul1, tetx, and int1, in drug-resistant microorganisms. Additionally, it promotes the secretion of more extracellular proteins, including arginine, forming a "barrier-like" protection. Therefore, long-term exposure to disinfectants can alter the treatment capacity of activated sludge receiving systems, and the abundance of resistance genes generated through horizontal transfer and coordinated expression by drug-resistant microorganisms does pose a significant threat to ecosystems and health. It is recommended to develop effective pretreatment methods to eliminate disinfectants.
Collapse
Affiliation(s)
- Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Guan Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingsong Liao
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| | - Ruizhi Dai
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| |
Collapse
|
11
|
Zhang M, Huang W, Zhang L, Feng Z, Zuo Y, Xie Z, Xing W. Nitrite-dependent anaerobic methane oxidation (N-DAMO) in global aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171081. [PMID: 38387583 DOI: 10.1016/j.scitotenv.2024.171081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitrite-dependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments. Therefore, our study aims to fill this knowledge gap by conducting a comprehensive review of the global research trends in N-DAMO processes in various aquatic environments (excluding artificial bioreactors). Our review mainly focused on molecular identification, global study sites, and their interactions with other elemental cycling processes. Furthermore, we performed a data integration analysis to unveil the effects of key environmental factors on the abundance of N-DAMO bacteria and the rate of N-DAMO process. By combining the findings from the literature review and data integration analysis, we proposed future research perspectives on N-DAMO processes in global aquatic environments. Our overarching goal is to advance the understanding of the N-DAMO process and its role in synergistically reducing carbon emissions and removing nitrogen. By doing so, we aim to make a significant contribution to the timely achievement of China's carbon peak and carbon neutrality targets.
Collapse
Affiliation(s)
- Miao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wenmin Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China
| | - Lei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China.
| |
Collapse
|
12
|
Qin R, Dai X, Xian Y, Zhou Y, Su C, Chen Z, Lu X, Ai C, Lu Y. Assessing the effect of sulfate on the anaerobic oxidation of methane coupled with Cr(VI) bioreduction by sludge characteristic and metagenomics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119398. [PMID: 37897905 DOI: 10.1016/j.jenvman.2023.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Methane-driven hexavalent chromium (Cr(VI)) reduction in a microbial fuel cell (MFC) has attracted much attention. However, whether the presence of sulfate (SO42-) affects the reduction of Cr(VI) is still lacking in systematic studies. This study involved constructing a MFC-granular sludge (MFC-GS) coupling system with dissolved methane (CH4) was used as the electron donor to investigate the effect of SO42- on Cr(VI) bioreduction, sludge characteristic, and functional metabolic mechanisms. When the SO42- concentration was 10 mg/L, the average removal rate of Cr(VI) in the anaerobic stage decreased to the lowest value (22.25 ± 2.06%). Adding 10 mg/L SO42- obviously inhibited the electrochemical performance of the system. Increasing SO42- concentration weakened the fluorescence peaks of tryptophan and aromatic proteins in the extracellular polymeric substance of sludge. Under the influence of SO42-, Methanothrix_soehngenii decreased from 14.44% to 5.89%. The relative abundance of methane metabolic was down-regulated from 1.47% to 0.98%, while the sulfur metabolic was up-regulated from 0.09% to 0.21% when SO42- was added. These findings provided some reference for the treatment of wastewater containing Cr(VI) and SO42- complex pollutants in the MFC-GS coupling system.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xiaoyun Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chenbing Ai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
13
|
Fan SQ, Wen WR, Xie GJ, Lu Y, Nie WB, Liu BF, Xing DF, Ma J, Ren NQ. Revisiting the Engineering Roadmap of Nitrate/Nitrite-Dependent Anaerobic Methane Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20975-20991. [PMID: 37931214 DOI: 10.1021/acs.est.3c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nitrate/nitrite-dependent anaerobic oxidation of methane (n-DAMO) is a recently discovered process, which provides a sustainable perspective for simultaneous nitrogen removal and greenhouse gas emission (GHG) mitigation by using methane as an electron donor for denitrification. However, the engineering roadmap of the n-DAMO process is still unclear. This work constitutes a state-of-the-art review on the classical and most recently discovered metabolic mechanisms of the n-DAMO process. The versatile combinations of the n-DAMO process with nitrification, nitritation, and partial nitritation for nitrogen removal are also clearly presented and discussed. Additionally, the recent advances in bioreactor development are systematically reviewed and evaluated comprehensively in terms of methane supply, biomass retention, membrane requirement, startup time, reactor performance, and limitations. The key issues including enrichment and operation strategy for the scaling up of n-DAMO-based processes are also critically addressed. Moreover, the challenges inherent to implementing the n-DAMO process in practical applications, including application scenario recognition, GHG emission mitigation, and operation under realistic conditions, are highlighted. Finally, prospects as well as opportunities for future research are proposed. Overall, this review provides a roadmap for potential applications and further development of the n-DAMO process in the field of wastewater treatment.
Collapse
Affiliation(s)
- Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Ru Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Zhao Q, Lu Y. Anaerobic oxidation of methane in terrestrial wetlands: The rate, identity and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166049. [PMID: 37543312 DOI: 10.1016/j.scitotenv.2023.166049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The recent discovery of anaerobic oxidation of methane (AOM) in freshwater ecosystems has caused a great interest in "cryptic methane cycle" in terrestrial ecosystems. Anaerobic methanotrophs appears widespread in wetland ecosystems, yet, the scope and mechanism of AOM in natural wetlands remain poorly understood. In this paper, we review the recent progress regarding the potential of AOM, the diversity and distribution, and the metabolism of anaerobic methanotrophs in wetland ecosystems. The potential of AOM determined through laboratory incubation or in situ isotopic labeling ranges from 1.4 to 704.0 nmol CH4·g-1 dry soil·d-1. It appears that the availability of electron acceptors is critical in driving different AOM in wetland soils. The environmental temperature and salinity exert a significant influence on AOM activity. Reversal methanogenesis and extracellular electron transfer are likely involved in the AOM process. In addition to anaerobic methanotrophic archaea, the direct involvement of methanogens in AOM is also probable. This review presented an overview of the rate, identity, and metabolisms to unravel the biogeochemical puzzle of AOM in wetland soils.
Collapse
Affiliation(s)
- Qingzhou Zhao
- College of Urban and Environmental Science, Peking University, Beijing 100871, PR China
| | - Yahai Lu
- College of Urban and Environmental Science, Peking University, Beijing 100871, PR China.
| |
Collapse
|
15
|
Fu K, Bian Y, Yang F, Xu J, Qiu F. Achieving partial nitrification: A strategy for washing NOB out under high DO condition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119186. [PMID: 37797517 DOI: 10.1016/j.jenvman.2023.119186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
This study investigated the effect of high DO concentrations on PN. The experimental setup involved operating at high DO concentrations (1.5-2.5 mg/L) and environmental temperatures (15-20 °C) over a period of 180 days. Through a sludge enrichment process, the kinetic parameters of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were determined. Surprisingly, contrary to conventional reports, it was observed that NOB exhibited a stronger affinity for DO compared to AOB. As a result, high DO concentrations were necessary to provide favorable conditions for the growth of AOB. In order to establish PN, strategies including intermittent aeration, free ammonia (FA), and controlled sludge retention time (SRT) were employed. The successful PN was achieved with a specific ammonia oxidation rate of 24 mg N/g MLVSS/h and a specific nitrite oxidation rate below 0.10 mg N/g MLVSS/h. The nitrite accumulation rate (NAR) was maintained at 100% during stable operation. The abundance of Nitrosomonas, a typical genus of AOB, was found to be 68.62%, which surpasses previous studies in similar research. A slightly higher DO concentrations may increase energy consumption, but achieve higher efficiency and stability in PN. This study provided new insights into the application of PN in wastewater treatment.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yihao Bian
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fan Yang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jian Xu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fuguo Qiu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
16
|
Yu L, Zhang E, Yang L, Liu S, Rensing C, Zhou S. Combining biological denitrification and electricity generation in methane-powered microbial fuel cells. J Environ Sci (China) 2023; 130:212-222. [PMID: 37032037 DOI: 10.1016/j.jes.2022.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/19/2023]
Abstract
Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells (MFCs) and denitrifying anaerobic methane oxidation (DAMO). However, these two processes were evaluated separately in previous studies and it has remained unknown whether methane is able to simultaneously drive these processes. Here we investigated the co-occurrence and performance of these two processes in the anodic chamber of MFCs. The results showed that methane successfully fueled both electrogenesis and denitrification. Importantly, the maximum nitrate removal rate was significantly enhanced from (1.4 ± 0.8) to (18.4 ± 1.2) mg N/(L·day) by an electrogenic process. In the presence of DAMO, the MFCs achieved a maximum voltage of 610 mV and a maximum power density of 143 ± 12 mW/m2. Electrochemical analyses demonstrated that some redox substances (e.g. riboflavin) were likely involved in electrogenesis and also in the denitrification process. High-throughput sequencing indicated that the methanogen Methanobacterium, a close relative of Methanobacterium espanolae, catalyzed methane oxidation and cooperated with both exoelectrogens and denitrifiers (e.g., Azoarcus). This work provides an effective strategy for improving DAMO in methane-powered MFCs, and suggests that methanogens and denitrifiers may jointly be able to provide an alternative to archaeal DAMO for methane-dependent denitrification.
Collapse
Affiliation(s)
- Linpeng Yu
- Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Eryi Zhang
- Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Yang
- Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiqi Liu
- Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
17
|
Wu KK, Zhao L, Zheng XC, Sun ZF, Wang ZH, Chen C, Xing DF, Yang SS, Ren NQ. Recovery of methane and acetate during ex-situ biogas upgrading via novel dual-membrane aerated biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 382:129181. [PMID: 37210035 DOI: 10.1016/j.biortech.2023.129181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Biological biogas upgrading has been well-proven to be a promising approach for renewable bioenergy recovery, but hydrogen (H2)-assisted ex-situ biogas upgrading is hindered by a large solubility discrepancy between H2 and carbon dioxide (CO2). This study established a new dual-membrane aerated biofilm reactor (dMBfR) to improve the upgrading efficiency. Results showed that dMBfR operated at 1.25 atm H2 partial pressure, 1.5 atm biogas partial pressure, and 1.0 d hydraulic retention time could significantly improve the efficiency. The maximum methane purity of 97.6%, acetate production rate of 34.5 mmol L-1d-1, and H2 and CO2 utilization ratios of 96.5% and 96.3% were achieved. Further analysis showed that the improved performances of biogas upgrading and acetate recovery were positively correlated with the total abundances of functional microorganisms. Taken together, these results suggest that the dMBfR, which facilitates the precise CO2 and H2 supply, is an ideal approach for efficient biological biogas upgrading.
Collapse
Affiliation(s)
- Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiao-Chuan Zheng
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
18
|
Su C, Xian Y, Qin R, Zhou Y, Lu M, Wan X, Chen Z, Chen M. Fe(III) enhances Cr(VI) bioreduction in a MFC-granular sludge coupling system: Experimental evidence and metagenomics analysis. WATER RESEARCH 2023; 235:119863. [PMID: 36933314 DOI: 10.1016/j.watres.2023.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The influence of Fe(III) on the bioreduction efficiency of Cr(VI) in a microbial fuel cell (MFC)-granular sludge coupling system using dissolved methane as an electron donor and carbon source was explored, and the mechanism of Fe(III) mediating enhancement in the bioreduction process of Cr(VI) in the coupling system was also investigated. Results showed that the presence of Fe(III) enhanced the ability of the coupling system to reduce Cr(VI). The average removal efficiencies of Cr(VI) in the anaerobic zone in response to 0, 5, and 20 mg/L of Fe(III) were 16.53±2.12%, 24.17±2.10%, and 46.33±4.41%, respectively. Fe(III) improved the reducing ability and output power of the system. In addition, Fe(III) enhanced the electron transport systems activity of the sludge, the polysaccharide and protein content in the anaerobic sludge. Meanwhile, X-ray photoelectron spectrometer (XPS) spectra demonstrated that Cr(VI) was reduced to Cr(III), while Fe2p participated in reducing Cr(VI) in the form of Fe(III) and Fe(II). Proteobacteria, Chloroflexi, and Bacteroidetes were the dominant phylum in the Fe(III)-enhanced MFC-granular sludge coupling system, accounting for 49.7%-81.83% of the microbial community. The relative abundance of Syntrophobacter and Geobacter increased after adding Fe(III), indicating that Fe(III) contributed to the microbial mediated anaerobic oxidation of methane (AOM) and bioreduction of Cr(VI). The genes mcr, hdr, and mtr were highly expressed in the coupling system after the Fe(III) concentration increased. Meanwhile, the relative abundances of coo and aacs genes were up-regulated by 0.014% and 0.075%, respectively. Overall, these findings deepen understanding of the mechanism of the Cr(VI) bioreduction in the MFC-granular sludge coupling system driven by methane under the influence of Fe(III).
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Meixiu Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xingling Wan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
19
|
Xie Z, Jin Z, Zhang S, Chen L. Biogas utilization without desulfurization pretreatment in a bioelectrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162239. [PMID: 36796222 DOI: 10.1016/j.scitotenv.2023.162239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Utilizing biogas as a fuel for heating and power generation usually requires desulfurization pretreatment. In this study, the biogas utilization without desulfurization pretreatment in a bioelectrochemical system (BES) was explored. The results showed that the biogas-fueled BES was successfully started up within 36 d and the presence of hydrogen sulfide promoted both methane consumption and electricity generation. The optimal performance (i.e., a methane consumption of 0.523 ± 0.004 mmol/d, a peak voltage of 577 ± 1 mV, a coulomb production of 37.86 ± 0.43C/d, a coulombic efficiency of 9.37 ± 0.06 % and the maximum power density of 2.070 W/m3) was obtained under bicarbonate buffer solution and 40 °C conditions. The addition of 1 mg/L sulfide and 5 mg/L L-cysteine facilitated methane consumption and electricity generation. In the anode biofilm, the dominant bacteria were Sulfurivermis, unclassified_o__Ignavibacteriales and Lentimicrobium, while Methanobacterium, Methanosarcina and Methanothrix were the predominant archaea. Besides, the metagenomics profiles reveal that anaerobic methane oxidation and electricity generation were closely related to sulfur metabolism. These findings provide a novel approach for utilizing biogas without desulfurization pretreatment.
Collapse
Affiliation(s)
- Zexiang Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhixin Jin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Long Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
20
|
Chen L, Zheng X, Zhang K, Wu B, Pei X, Chen W, Wei X, Luo Z, Li Y, Zhang Z. Sustained-release nitrate combined with microbial fuel cell: A novel strategy for PAHs and odor removal from sediment. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131610. [PMID: 37201276 DOI: 10.1016/j.jhazmat.2023.131610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Nitrate addition is a biostimulation technique that can improve both the oxidation of acid volatile sulfide (AVS) through autotrophic denitrification and the biodegradation of polycyclic aromatic hydrocarbons (PAHs) via heterotrophic denitrification. However, during the remediation, parts of the dissolved nitrate in the sediment migrates from the sediment to the overlying water, leading to the loss of effective electron acceptor. To overcome this limitation, a combined approached was proposed, which involved nitrocellulose addition and a microbial fuel cell (MFC). Results indicated the nitrate could be slowly released and maintained at a higher concentration over long term. In the combined system, the removal efficiencies of PAHs and AVS were 71.56% and 89.76%, respectively. Furthermore, the voltage attained for the MFC-nitrocellulose treatment was maintained at 146.1 mV on Day 70, which was 5.37 times higher than that of the MFC-calcium nitrate treatment. Sediments with nitrocellulose resulted in lower levels of nitrate and ammonium in the overlying water. Metagenomic results revealed that the combined technology improved the expression of nitrogen-cycling genes. The introduction of MFC inhibited sulfide regeneration during incubation by suppressing the enzyme activity like EC4.4.1.2. The enhanced biostimulation provided potential for in-situ bioremediation utilizing MFC coupled with slow-released nitrate (i.e., nitrocellulose) treatment.
Collapse
Affiliation(s)
- Lili Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiangjian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kun Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baile Wu
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Xu Pei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weisong Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zifeng Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Nie WB, Xie GJ, Tan X, Ding J, Lu Y, Chen Y, Yang C, He Q, Liu BF, Xing D, Ren N. Microbial Niche Differentiation during Nitrite-Dependent Anaerobic Methane Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7029-7040. [PMID: 37041123 DOI: 10.1021/acs.est.2c08094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-DAMO) has been demonstrated to play important roles in the global methane and nitrogen cycle. However, despite diverse n-DAMO bacteria widely detected in environments, little is known about their physiology for microbial niche differentiation. Here, we show the microbial niche differentiation of n-DAMO bacteria through long-term reactor operations combining genome-centered omics and kinetic analysis. With the same inoculum dominated by both species "Candidatus Methylomirabilis oxyfera" and "Candidatus Methylomirabilis sinica", n-DAMO bacterial population was shifted to "Ca. M. oxyfera" in a reactor fed with low-strength nitrite, but shifted to "Ca. M. sinica" with high-strength nitrite. Metatranscriptomic analysis showed that "Ca. M. oxyfera" harbored more complete function in cell chemotaxis, flagellar assembly, and two-component system for better uptake of nitrite, while "Ca. M. sinica" had a more active ion transport and stress response system, and more redundant function in nitrite reduction to mitigate nitrite inhibition. Importantly, the half-saturation constant of nitrite (0.057 mM vs 0.334 mM NO2-) and inhibition thresholds (0.932 mM vs 2.450 mM NO2-) for "Ca. M. oxyfera" vs "Ca. M. sinica", respectively, were highly consistent with genomic results. Integrating these findings demonstrated biochemical characteristics, especially the kinetics of nitrite affinity and inhibition determine niche differentiation of n-DAMO bacteria.
Collapse
Affiliation(s)
- Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chun Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qiang He
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|
22
|
Yun H, Liang B, He Z, Li M, Zong S, Wang Z, Ge B, Zhang P, Li X, Wang A. Insights into methanogenesis of mesophilic-psychrophilic varied anaerobic digestion of municipal sludge with antibiotic stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117278. [PMID: 36634423 DOI: 10.1016/j.jenvman.2023.117278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Methane production through anaerobic digestion (AD) of municipal sludge is economic and eco-friendly, which is commonly affected by temperature and pollutants residues. However, little is known about methanogenesis in psychrophilic AD (PAD) with temperature variations that simulating seasonal variations and with antibiotic stress. Here, two groups of AD systems with oxytetracycline (OTC) were operated with temperature maintained at 35 °C and 15 °C or variation to explore the influence to methanogenesis. The acetic acid was noticeably accumulated in OTC groups initially (P < 0.001). Methane production was noticeably inhibited initially in PAD with OTC, but had been stimulated later at 35 °C. The dominant acetoclastic methanogens Methanosaeta gradually decreased to 15.48% and was replaced by methylotrophic Methanomethylovorans (73.43%) in PAD with OTC. Correspondingly, the abundances of functional genes related to methylotrophic methanogenesis were also higher in these groups. Besides, genes involving in methane oxidation had over 50 times higher abundances in PAD with OTC groups in the second phase. Further investigation is essential to understand the main dynamics of methanogenesis in PAD and to clear the related molecular mechanism for future methane production regulation in sludge systems.
Collapse
Affiliation(s)
- Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zhangwei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Minghan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bin Ge
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
23
|
Wang J, Zhao Y, Zhou M, Hu J, Hu B. Aerobic and denitrifying methanotrophs: Dual wheels driving soil methane emission reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161437. [PMID: 36623660 DOI: 10.1016/j.scitotenv.2023.161437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The greenhouse gas methane in soils has been considered to be consumed mainly by aerobic methane-oxidizing bacteria for a long time. In the last decades, the discovery of anaerobic methanotrophs greatly complemented the methane cycle, but their contribution rates and ecological significance in soils remain undescribed. In this work, the soil samples from forest, grassland and cropland in four different climatic regions were collected to investigate these conventional and novel methanotrophs. A dual-core microbial methane sink, responsible for over 80 % of soil methane emission reduction, was unveiled. The aerobic core was performed by aerobic methanotrophic bacteria in topsoil, who played important roles in stabilizing bacterial communities. The anaerobic core was denitrifying methanotrophs in anoxic soils, including denitrifying methanotrophic bacteria from NC10 phylum and denitrifying methanotrophic archaea from ANME-2d clade. They were ubiquitous in terrestrial soils and potentially led to around 50 % of the total methane removal. Human activities such as livestock farming and rice cultivation further promoted the contribution rates of these denitrifying methanotrophs. This work elucidated the emission reduction contribution of different methanotrophs in the continental setting, which would help to reduce uncertainties in the estimations of the soil methane emission.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
24
|
Yang WT, Shen LD, Bai YN. Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems. ENVIRONMENTAL RESEARCH 2023; 219:115174. [PMID: 36584837 DOI: 10.1016/j.envres.2022.115174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands are recognized as important sources of atmospheric methane (CH4). Currently, increasing evidence shows the potential importance of the anaerobic oxidation of methane (AOM) mediated by NC10 bacteria and a novel cluster of anaerobic methanotrophic archaea (ANME)-ANME-2d in mitigating CH4 emissions from different ecosystems. To better understand the role of NC10 bacteria and ANME-2d archaea in CH4 emission reduction, the current review systematically summarizes different AOM processes and the functional microorganisms involved in freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands. NC10 bacteria are widely present in these ecosystems, and the nitrite-dependent AOM is identified as an important CH4 sink and induces nitrogen loss. Nitrite- and nitrate-dependent AOM co-occur in the environment, and they are mainly affected by soil/sediment inorganic nitrogen and organic carbon contents. Furthermore, salinity is another key factor regulating the two AOM processes in coastal wetlands. In addition, ANME-2d archaea have the great potential to couple AOM to the reduction of iron (III), manganese (IV), sulfate, and even humics in different ecosystems. However, the study on the environmental distribution of ANME-2d archaea and their role in CH4 mitigation in environments is insufficient. In this study, we propose several directions for future research on the different AOM processes and respective functional microorganisms.
Collapse
Affiliation(s)
- Wang-Ting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Li-Dong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Ya-Nan Bai
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
25
|
Shen LD, Geng CY, Ren BJ, Jin JH, Huang HC, Liu X, Yang WT, Yang YL, Liu JQ, Tian MH. Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils. MICROBIAL ECOLOGY 2023; 85:441-453. [PMID: 35098330 DOI: 10.1007/s00248-022-01968-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g-1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.
Collapse
Affiliation(s)
- Li-Dong Shen
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Cai-Yu Geng
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bing-Jie Ren
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jing-Hao Jin
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He-Chen Huang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xin Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wang-Ting Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mao-Hui Tian
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
26
|
He L, He X, Fan X, Shi S, Yang T, Li H, Zhou J. Accelerating denitrification and mitigating nitrite accumulation by multiple electron transfer pathways between Shewanella oneidensis MR-1 and denitrifying microbial community. BIORESOURCE TECHNOLOGY 2023; 368:128336. [PMID: 36403912 DOI: 10.1016/j.biortech.2022.128336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The bio-denitrification was usually retarded by the unbalance of electron generation and consumption. In this study, mixing S. oneidensis MR-1 with denitrifying microbial community increased the nitrogen removal rate by 74.74 % via the interspecies electron transfer (IET), and reduced the accumulated nitrite from 9.90 ± 0.81 to 0.02 ± 0.03 mg/L. Enhanced denitrification still appeared but relatively decreased, when S. oneidensis MR-1 was separated by a dialysis bag (MW < 3000), indicating mediated interspecies electron transfer (MIET) counted in IET. The results of electron transfer activity and sludge conductivity suggested DIET and MIET jointly transfer electrons from MR-1 to electroactive denitrifying bacteria (EDB), improving denitrifying reductase activities. Electron distribution among denitrifying reductases was found to be associated with the IET rate. Microbial insights showed the total abundance of EDB was increased, and denitrifying genes were correspondingly enriched. Pseudomonas was found to cooperate with exoelectrogens in a complicated microbial community.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Tao Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hongyuan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
27
|
Guo X, Lai CY, Hartmann EM, Zhao HP. Heterotrophic denitrification: An overlooked factor that contributes to nitrogen removal in n-DAMO mixed culture. ENVIRONMENTAL RESEARCH 2023; 216:114802. [PMID: 36375502 DOI: 10.1016/j.envres.2022.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been recognized as a sustainable process for simultaneous removal of nitrogen and methane. The metabolisms of denitrifying anaerobic methanotrophs, including Candidatus Methanoperedens and Candidatus Methylomirabilis, have been well studied. However, potential roles of heterotrophs co-existing with these anaerobic methanotrophs are generally overlooked. In this study, we pulse-fed methane and nitrate into an anaerobic laboratory sequencing batch bioreactor and enriched a mixed culture with stable nitrate removal rate (NRR) of ∼28 mg NO3--N L-1 d-1. Microbial community analysis indicates abundant heterotrophs, e.g., Arenimonas (5.3%-18.9%) and Fimbriimonadales ATM1 (6.4%), were enriched together with denitrifying anaerobic methanotrophs Ca. Methanoperedens (10.8%-13.2%) and Ca. Methylomirabilis (27.4%-34.3%). The results of metagenomics and batch tests suggested that the denitrifying anaerobic methanotrophs were capable of generating methane-derived intermediates (i.e., formate and acetate), which were employed by non-methanotrophic heterotrophs for denitrification and biomass growth. These findings offer new insights into the roles of heterotrophs in n-DAMO mixed culture, which may help to optimize n-DAMO process for nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Xu Guo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, IL, 60208, USA
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Dhar V, Singh R. Biohydrogen production potential with sulfate and nitrate removal by heat-pretreated enriched sulfate-reducing microorganisms-based bioelectrochemical system. Arch Microbiol 2022; 205:7. [PMID: 36454386 DOI: 10.1007/s00203-022-03352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In this study, heat-pretreated sulfate-reducing bacteria (SRBs) were evaluated for simultaneous sulfate and nitrate removal in a bioelectrochemical system (BES). The effect of the applied potential of 20 mV to SRBs was evaluated at a sulfate concentration of 3 g/L and/or nitrate concentration of 0.5 g/L supplemented before heat pretreatment for sulfate and nitrate removal. The highest H2 production of 2.24 ± 0.04 mM/L in heat-pretreated culture was observed in the presence of sulfate at an applied potential of 20 mV (BHE-S). Simultaneous reduction of sulfate and nitrate was significant in BESs supplemented with either sulfate or nitrate during heat-shock pretreatment of the culture. The highest SO42- removal of 88.91 ± 0.8% was found in culture heat pretreated with NO3- and applied with 20 mV potential (BHE-N). The kinetics of heat-pretreated culture showed higher R2 and ultimate potential for H2 on the continuous application of 20 mV potential.
Collapse
Affiliation(s)
- Varsha Dhar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, India
| | - Rajesh Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
29
|
Ma D, Wang J, Li H, Che J, Yue Z. Simultaneous removal of COD and NH 4+-N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120213. [PMID: 36150618 DOI: 10.1016/j.envpol.2022.120213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In recent years, Feammox has made it possible to remove NH4+-N under anaerobic conditions; however, its application in practical wastewater treatment processes has not been extensively reported. In this study, an up-flow anaerobic biological filter based on limonite (Lim-UAF) was developed to facilitate long-term and stable treatment of domestic sewage. Lim-UAF achieved the highest removal efficiency of chemical oxygen demand (COD) and NH4+-N at a hydraulic retention time (HRT) of 24 h (Stage II). Specifically, the COD and NH4+-N content decreased from 240.8 and 30.0 mg/L to about 7.5 and 0.35 mg/L, respectively. To analyze the potential nitrogen removal mechanism, the Lim-UAF was divided into three layers according to the height of the reactor. The results showed that COD and NH4+-N removal had remarkable characteristics in Lim-UAF. More than 55.0% of influent COD was removed in the lower layer (0-30 cm) of Lim-UAF, while 60.2% of NH4+-N was removed in the middle layer (30-60 cm). Microbial community analysis showed that the community structure in the middle and upper layers (60-90 cm) was relatively similar, but quite different from that of the lower layer. Heterotrophic bacteria were dominant in the lower layer, whereas iron-reducing and iron-oxidizing bacteria were enriched in the upper and middle layers. The formation of secondary minerals (siderite and Fe(OH)3) indicated that the Fe(III)/Fe(II) redox cycle occurred in Lim-UAF, which was triggered by the Feammox and NDFO processes. In summary, limonite was used to develop a single-stage wastewater treatment process for simultaneously removing organic matter and NH4+-N, which has excellent application prospects in domestic sewage treatment.
Collapse
Affiliation(s)
- Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hao Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jian Che
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
30
|
Zheng S, Liu X, Yang X, Zhou H, Fang J, Gong S, Yang J, Chen J, Lu T, Zeng M, Qin Y. The nitrogen removal performance and microbial community on mixotrophic denitrification process. BIORESOURCE TECHNOLOGY 2022; 363:127901. [PMID: 36075349 DOI: 10.1016/j.biortech.2022.127901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Sulfur autotrophic denitrifiers and heterotrophic denitrifiers widely exist in aquatic ecosystem, however, the response of sulfide to the microbial community structure in mixotrophic denitrification ecosystem is unknown yet. In this study, the denitrification performance and microbial community were explored by changing the molar ratio of influent C/N/S. From the level of genus, the joint action of Thauera, Pacacoccus, Fusibacter Pseudoxanthomonas, Thiobacillus, Sulfurovum and Sulfurimonas brought about the efficient denitrification performance in the mixotrophic system. Thauera increased from from 0.97% to more than 13%, and the relative abundances of Thiobacillus and Sulfurimonas were about 4.14% and 3.89% separately after adding S2-. The results of this study showed that the denitrification performance could be indeed intensified in the mixotrophic system, among which provided a theoretical basis for establishing an efficient biological nitrogen removal system.
Collapse
Affiliation(s)
- Shaohong Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiangyin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiangjing Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Hongen Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jin Fang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Siyuan Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Ming Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
31
|
Guo H, He T, Chang JS, Liu P, Lee DJ. Nitrogen removal from low C/N wastewater in a novel Sharon&DSR (denitrifying sulfide removal) reactor. BIORESOURCE TECHNOLOGY 2022; 362:127789. [PMID: 35985461 DOI: 10.1016/j.biortech.2022.127789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Denitrification reactions commonly remove nitrate and other reactive nitrogen (Nr) from wastewater. The C/N ratio indicates the sufficiency of organic carbons to drive heterotrophic denitrification; a low C/N ratio frequently leads to poor denitrification performance in wastewater treatment. This study proposed and tested a novel Sharon&DSR (denitrifying sulfide removal) process, with nitrite generated by the Sharon reactions and sulfide from sulfur-reducing reactions for promoting the following nitrite-based denitrification and denitrifying sulfide removal (DSR) process. The present reactor can remove nitrate at an efficiency of 97.7 %-93.5 % at an influent C/N ratio of 0.646-0.737 over a 96-d continuous-flow test. The microbial community study reveals the functional strains corresponding to individual groups of critical reactions. The stoichiometry analysis reveals the potential to apply the nitrite-based DSR process for Nr removal from ultra-low C/N (<0.64) wastewaters, experimentally demonstrated in the present study with a C/N ratio of 0.16-0.39.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Tongyuan He
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Peng Liu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
32
|
Qian D, Liu H, Hu F, Song S, Chen Y. Extracellular electron transfer-dependent Cr(VI)/sulfate reduction mediated by iron sulfide nanoparticles. J Biosci Bioeng 2022; 134:153-161. [PMID: 35690565 DOI: 10.1016/j.jbiosc.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/18/2023]
Abstract
The slow electron transfer rate is a bottleneck to the biological wastewater treatment. This study evaluated the concomitant biotransformation and nonenzymatic reduction of Cr(VI) mediated by sulfate reducing bacteria (SRB), especially for the reinforcing Cr(VI) reduction via accelerating the electron transfer by the in-situ biosynthesized iron sulfide nanoparticles (FeS NPs). The kinetic results showed that 10 mg/L Cr(VI) was completely removed by pre-cultured FeS NPs within 7 h with kCr(VI) of 2.6 × 10-4 s-1, one magnitude higher than that without FeS NPs. Despite its competing electron to postpone sulfate reduction, the reduction of Cr(VI) was markedly improved via nonenzymatic reactions by the sulfide, the product of sulfate reduction. In the reinforcing system (bio-FeS NP@SRB), the bio-FeS NPs served as an electronic bypass conduit for CoQ could significantly amplify the electron flux, and switch the Cr(VI) reduction from intracellular space to extracellular environment, which had a great detoxification effect on the microorganisms, eventually markedly promoted electron transfer extracellularly and the reduction of Cr(VI). After the long-term acclimatization, Desulfovibrio became the dominant bacteria at the genus level and accounted for the relative abundance of 32%. This study provides an alternative to use biogenic FeS NPs for Cr(VI) remediation.
Collapse
Affiliation(s)
- Danshi Qian
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Huimin Liu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fan Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Song Song
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
33
|
Dalcin Martins P, Echeveste Medrano MJ, Arshad A, Kurth JM, Ouboter HT, Op den Camp HJM, Jetten MSM, Welte CU. Unraveling Nitrogen, Sulfur, and Carbon Metabolic Pathways and Microbial Community Transcriptional Responses to Substrate Deprivation and Toxicity Stresses in a Bioreactor Mimicking Anoxic Brackish Coastal Sediment Conditions. Front Microbiol 2022; 13:798906. [PMID: 35283857 PMCID: PMC8906906 DOI: 10.3389/fmicb.2022.798906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Microbial communities are key drivers of carbon, sulfur, and nitrogen cycling in coastal ecosystems, where they are subjected to dynamic shifts in substrate availability and exposure to toxic compounds. However, how these shifts affect microbial interactions and function is poorly understood. Unraveling such microbial community responses is key to understand their environmental distribution and resilience under current and future disturbances. Here, we used metagenomics and metatranscriptomics to investigate microbial community structure and transcriptional responses to prolonged ammonium deprivation, and sulfide and nitric oxide toxicity stresses in a controlled bioreactor system mimicking coastal sediment conditions. Ca. Nitrobium versatile, identified in this study as a sulfide-oxidizing denitrifier, became a rare community member upon ammonium removal. The ANaerobic Methanotroph (ANME) Ca. Methanoperedens nitroreducens showed remarkable resilience to both experimental conditions, dominating transcriptional activity of dissimilatory nitrate reduction to ammonium (DNRA). During the ammonium removal experiment, increased DNRA was unable to sustain anaerobic ammonium oxidation (anammox) activity. After ammonium was reintroduced, a novel anaerobic bacterial methanotroph species that we have named Ca. Methylomirabilis tolerans outcompeted Ca. Methylomirabilis lanthanidiphila, while the anammox Ca. Kuenenia stuttgartiensis outcompeted Ca. Scalindua rubra. At the end of the sulfide and nitric oxide experiment, a gammaproteobacterium affiliated to the family Thiohalobacteraceae was enriched and dominated transcriptional activity of sulfide:quinone oxidoreductases. Our results indicate that some community members could be more resilient to the tested experimental conditions than others, and that some community functions such as methane and sulfur oxidation coupled to denitrification can remain stable despite large shifts in microbial community structure. Further studies on complex bioreactor enrichments are required to elucidate coastal ecosystem responses to future disturbances.
Collapse
Affiliation(s)
| | | | - Arslan Arshad
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Julia M Kurth
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Heleen T Ouboter
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Cornelia U Welte
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
34
|
Lin Z, Zhou J, He L, He X, Pan Z, Wang Y, He Q. High-temperature biofilm system based on heterotrophic nitrification and aerobic denitrification treating high-strength ammonia wastewater: Nitrogen removal performances and temperature-regulated metabolic pathways. BIORESOURCE TECHNOLOGY 2022; 344:126184. [PMID: 34710604 DOI: 10.1016/j.biortech.2021.126184] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Conventional autotrophic nitrification process is difficult to treat high-temperature wastewater with high-strength ammonia. In this study, a high-temperature (50 °C) biofilm system based on heterotrophic nitrification and aerobic denitrification (HNAD) was established. The results showed that the HNAD process was high temperature resistant, and the nitrogen removal performance, pathway and microbial mechanism varied remarkably at different temperatures. The high-temperature system showed excellent nitrogen and COD removal capacities at 50 °C. Ammonia oxidation was mainly undertaken by heterotrophic nitrification, while anoxic and aerobic pathways worked in concert for denitrification. High-throughput sequencing indicated that heterotrophic nitrifying bacteria (8.58%) and denitrifying bacteria (52.88%) were dominant at 50 °C. Metagenomic analysis further suggested that the carbon metabolism was up-regulated in response to the increasing temperature, so more energy was generated, thereby promoting the HNAD-related nitrogen removal pathways. The study revealed the microbial mechanism of HNAD at high temperature and provided new insights into high-temperature biological nitrogen removal.
Collapse
Affiliation(s)
- Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhanglei Pan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
35
|
Fan SQ, Xie GJ, Lu Y, Zhao ZC, Liu BF, Xing DF, Ding J, Han HJ, Ren NQ. Mainstream Nitrogen and Dissolved Methane Removal through Coupling n-DAMO with Anammox in Granular Sludge at Low Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16586-16596. [PMID: 34723492 DOI: 10.1021/acs.est.1c01952] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mainstream anaerobic wastewater treatment has received increasing attention for the recovery of methane-rich biogas from biodegradable organics, but subsequent mainstream nitrogen and dissolved methane removal at low temperatures remains a critical challenge in practical applications. In this study, granular sludge coupling n-DAMO with Anammox was employed for mainstream nitrogen removal, and the dissolved methane removal potential of granular sludge at low temperatures was investigated. A stable nitrogen removal rate (0.94 kg N m-3 d-1 at 20 °C) was achieved with a high-level effluent quality (<3.0 mg TN L-1) in a lab-scale membrane granular sludge reactor (MGSR). With decreasing temperature, the nitrogen removal rate dropped to 0.55 kg N m-3 d-1 at 10 °C, while the effluent concentration remained <1.0 mg TN L-1. The granular sludge with an average diameter of 1.8 mm proved to retain sufficient biomass (27 g VSS L-1), which enabled n-DAMO and Anammox activity at a hydraulic retention time as low as 2.16 h even at 10 °C. 16S rRNA gene sequencing and scanning electron microscopy revealed a stable community composition and compact structure of granular sludge during long-term operation. Energy recovery could be maximized by recovering most of the dissolved methane in mainstream anaerobic effluent, as only a small amount of dissolved methane was capable of supporting denitrifying methanotrophs in granular sludge, which enabled high-level nitrogen removal.
Collapse
Affiliation(s)
- Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Zhi-Cheng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Jun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
36
|
Zhang X, Yuan Z, Hu S. Anaerobic oxidation of methane mediated by microbial extracellular respiration. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:790-804. [PMID: 34523810 DOI: 10.1111/1758-2229.13008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic oxidation of methane (AOM) can be microbially mediated by the reduction of different terminal electron acceptors. AOM coupled to reduction of sulfate, manganese/iron oxides, humic substances, selenate, arsenic and other artificial extracellular electron acceptors are recognized as processes associated with microbial extracellular respiration. In these processes, methane-oxidizing archaea transfer electrons to external electron acceptors or to interdependent microbial species, which are mechanistically dependent on versatile extracellular electron transfer (EET) pathways. This review compiles recent progress in the research of electromicrobiology of AOM based on the catalogue of different electron acceptors. Naturally distributed and artificially constructed EET-mediated AOM is summarized, with the discussion of their environmental importance and application potentials. The diversity of responsible microorganisms involved in EET-mediated AOM is discussed with both methane-oxidizing archaea and their putative bacterial partners. More importantly, the review highlights progress and deficiencies in our understanding of EET pathways in EET-mediated AOM, raising open research questions for future research.
Collapse
Affiliation(s)
- Xueqin Zhang
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
37
|
Mai W, Chen J, Liu H, Liang J, Tang J, Wei Y. Advances in Studies on Microbiota Involved in Nitrogen Removal Processes and Their Applications in Wastewater Treatment. Front Microbiol 2021; 12:746293. [PMID: 34733260 PMCID: PMC8560000 DOI: 10.3389/fmicb.2021.746293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The discharge of excess nitrogenous pollutants in rivers or other water bodies often leads to serious ecological problems and results in the collapse of aquatic ecosystems. Nitrogenous pollutants are often derived from the inefficient treatment of industrial wastewater. The biological treatment of industrial wastewater for the removal of nitrogen pollution is a green and efficient strategy. In the initial stage of the nitrogen removal process, the nitrogenous pollutants are converted to ammonia. Traditionally, nitrification and denitrification processes have been used for nitrogen removal in industrial wastewater; while currently, more efficient processes, such as simultaneous nitrification-denitrification, partial nitrification-anammox, and partial denitrification-anammox processes, are used. The microorganisms participating in nitrogen pollutant removal processes are diverse, but information about them is limited. In this review, we summarize the microbiota participating in nitrogen removal processes, their pathways, and associated functional genes. We have also discussed the design of efficient industrial wastewater treatment processes for the removal of nitrogenous pollutants and the application of microbiome engineering technology and synthetic biology strategies in the modulation of the nitrogen removal process. This review thus provides insights that would help in improving the efficiency of nitrogen pollutant removal from industrial wastewater.
Collapse
Affiliation(s)
- Wenning Mai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiamin Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.,Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Hai Liu
- Henan Public Security Bureau, Zhengzhou, China
| | - Jiawei Liang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinfeng Tang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|