1
|
Ma J, Niu X, Zhang D, Wang G. Insights into the inhibitory effects of trichloroisocyanuric acid disinfectant on the phototransformation of polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175904. [PMID: 39226956 DOI: 10.1016/j.scitotenv.2024.175904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The chemical components in the natural aquatic environment have the potential to be involved in phototransformation of microplastics (MPs). Little information is available regarding the mediation effects of artificially introduced chemicals on MP phototransformation, especially those used in aquaculture water that are vulnerable to human interference. Herein, this study investigated the phototransformation process and mechanism of polypropylene microplastic (PP MPs) in presence of trichloroisocyanuric acid (TCCA) disinfectant with unique properties unlike the conventional inorganic chlorine disinfectants. The results showed that the presence of TCCA inhibited the surface photooxidation of PP MPs. Analysis of PP MP surface and reaction filtrate indicated that the inhibitory effects were likely derived from TCCA derivatives and the weakening in promoting effect of polypropylene microplastic-derived dissolved organic matter (PP-DOM) as photolytic byproducts, with the more important role of free chlorine in initial period and that of other chlorine species (i.e., the adsorbed chloride ions (Cl-), newly formed carbon-chlorine (CCl) bonds, chlorinated cyanurates, and chlorinated products) in middle and later period. The study highlights for the first time the important role of chlorine species derived from TCCA in phototransformation process of co-existed PP MPs and proposes a previously unrecognized phototransformation pathway, which will provide a new understanding and knowledge for the environmental behavior of MPs in aquaculture environment.
Collapse
Affiliation(s)
- Jinling Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Gang Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
2
|
Luo Z, Yan Y, Spinney R, Dionysiou DD, Villamena FA, Xiao R, Vione D. Environmental implications of superoxide radicals: From natural processes to engineering applications. WATER RESEARCH 2024; 261:122023. [PMID: 38991243 DOI: 10.1016/j.watres.2024.122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
The roles of superoxide radical (O2•-) in the domains of physiological, physical, and material chemistry are becoming increasingly recognized. Although extensive efforts have been directed to understand O2•- functions in diverse aquatic systems, there is a lack of systematic and in-depth review for its kinetics and mechanisms in various environmental scenarios. This review aims to bridge this gap through discussion of O2•- generation pathways under both natural and controlled conditions. The merits and limitations of the generation and detection methods under various conditions are compared, with emphasis on different approaches for the determination of O2•--triggered reaction kinetics. We summarize the reaction rate constants of O2•- with organic contaminants covering a wide diversity of structures and reactivity. The comparison indicates that O2•- exhibits weak reactivity with most contaminants and lacks selectivity towards compounds with different functional groups, except with quinones which exhibit higher reactivity compared to non-quinones. Further, the reaction mechanisms, namely single electron transfer, nucleophilic substitution, hydrogen atom abstraction, and radical-adduct formation, are critically evaluated. Various environmental implications of O2•- are highlighted including maintenance of biogeochemical iron cycle, synthesis of nanoparticles for antibacterial purposes, desorption of contaminants from heterogeneous interfaces, and synergetic degradation of contaminants.
Collapse
Affiliation(s)
- Zonghao Luo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
3
|
Yuan J, Li Y, Chen X, Yi Q, Wang Z. One electron oxidation-induced degradation of brominated flame retardants in electroactive membrane filtration system: Vital role of dichlorine radical-mediated process. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134318. [PMID: 38643582 DOI: 10.1016/j.jhazmat.2024.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Reactive chlorine species (RCS) are inevitably generated in electrochemical oxidation process for treating high-salinity industrial wastewater, thereby resulting in the competition with coexisting hydroxyl radicals (•OH) for oxidizing recalcitrant organic compounds. Due to the low redox potentials compared to •OH, the role of RCS has been often overlooked. In this work, we developed an electroactive membrane filtration (EMF) system that had a high removal efficiency (99.1 ± 0.5 %) for tetrabromobisphenol S (TBBPS) at low energy consumption (1.45 kWh m-3). Electron spin resonance spectroscopy and molecular probing tests indicated the predominance of Cl2•-, of which steady-state concentration (2.2 ×10-10 M) was extremely higher than those of ClO• (6.7 ×10-13 M), •OH (0.95 ×10-13 M), and Cl• (2.39 ×10-15 M). The density functional theory (DFT) and intermediate product analysis highlighted that Cl2•- radicals had a higher electrophilic attack efficacy than •OH radicals for inducing changes in the electron density of the carbon atoms around phenolic hydroxyl groups, thus leading to the generation of transition state intermediates and accelerating the degradation of TBBPS. Our work demonstrates the vital role of Cl2•- radicals for pollutant degradation, highlighting the potential of this technology for cost-effective removal of recalcitrant organic compounds from water and wastewater.
Collapse
Affiliation(s)
- Jia Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuying Yi
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
4
|
Li G, Liu W, Gao S, Lu H, Fu D, Wang M, Liu X. MXene-based composite aerogels with bifunctional ferrous ions for the efficient degradation of phenol from wastewater. CHEMOSPHERE 2024; 358:142151. [PMID: 38679169 DOI: 10.1016/j.chemosphere.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Herein, MXene-based composite aerogel (MXene-Fe2+ aerogel) are constructed by a one-step freeze-drying method, using Ti3C2Tx MXene layers as substrate material and ferrous ion (Fe2+) as crosslinking agent. With the aid of the Fe2+ induced Fenton reaction, the synthesized aerogels are used as the particle electrodes to remove phenol from wastewater with three-dimensional electrode technology. Combined with the dual roles of Fe2+ and the highly conductive MXene, the obtained particle electrode possesses extremely effective phenol degradation. The effects of experiment parameters such as Fe2+ to MXene ratio, particle electrode dosage, applied voltage, and initial pH of solution on the removal of phenol are discussed. At pH = 2.5, phenol with 50 mg/L of initial concentration can be completely removed within 50 min at 10 V with the particle electrode dosage of 0.56 g/L. Finally, the mechanism of degradation is explored. This work provides an effective way for phenol degradation by MXene-based aerogel, which has great potential for the degradation of other organic pollutants in wastewater.
Collapse
Affiliation(s)
- Gaoyuan Li
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Weifeng Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Shaojun Gao
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Huayu Lu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Dongju Fu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China.
| | - Meiling Wang
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
5
|
McGachy L, Sedlak DL. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17-32. [PMID: 38110187 PMCID: PMC10785823 DOI: 10.1021/acs.est.3c07409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
In situ chemical oxidation (ISCO) using peroxydisulfate has become more popular in the remediation of soils and shallow groundwater contaminated with organic chemicals. Researchers have studied the chemistry of peroxydisulfate and the oxidative species produced upon its decomposition (i.e., sulfate radical and hydroxyl radical) for over five decades, describing reaction kinetics, mechanisms, and product formation in great detail. However, if this information is to be useful to practitioners seeking to optimize the use of peroxydisulfate in the remediation of hazardous waste sites, the relevant conditions of high oxidant concentrations and the presence of minerals and solutes that affect radical chain reactions must be considered. The objectives of this Review are to provide insights into the chemistry of peroxydisulfate-based ISCO that can enable more efficient operation of these systems and to identify research needed to improve understanding of system performance. By gaining a deeper understanding of the underlying chemistry of these complex systems, it may be possible to improve the design and operation of peroxydisulfate-based ISCO remediation systems.
Collapse
Affiliation(s)
- Lenka McGachy
- Department
of Environmental Chemistry, University of
Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech
Republic
| | - David L. Sedlak
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Jwa E, Na OS, Jeung YC, Jeong N, Nam JY, Lee S. Recycling of nutrient medium to improve productivity in large-scale microalgal culture using a hybrid electrochemical water treatment system. WATER RESEARCH 2023; 246:120683. [PMID: 37801985 DOI: 10.1016/j.watres.2023.120683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Recycling and reusing of nutrient media in microalgal cultivation are important strategies to reduce water consumption and nutrient costs. However, these approaches have limitations, e.g., a decrease in biomass production, (because as reused media can inhibit biomass growth). To address these limitations, we applied a novel membrane filtration‒electrolysis‒ultraviolet hybrid water treatment method capable of laboratory-to-large-scale operation to increase biomass productivity and enable nutrient medium disinfection and recycling. In laboratory-scale experiments, electrolysis effectively remove the biological contaminants from the spent nutrient medium, resulting in a high on-site removal efficiency of dissolved organic carbon (DOC; 80.3 ± 5 %) and disinfection (99.5 ± 0.2 %). Compared to the results for the recycling of nutrient medium without water treatment, electrolysis resulted in a 1.5-fold increase in biomass production, which was attributable to the removal of biological inhibitors from electrochemically produced oxidants (mainly OCl-). In scaled-up applications, the hybrid system improved the quality of the recycled nutrient medium, with 85 ± 2 % turbidity removal, 75 ± 3 % DOC removal, and 99.5 ± 2 % disinfection efficiency, which was beneficial for biomass growth by removing biological inhibitors. After applying the hybrid water treatment method, we achieved a Spirulina biomass production of 0.47 ± 0.03 g L-1, similar to that obtained using a fresh medium (0.53 ± 0.02 g L-1). The on-site disinfection process described herein is practical and offers a cost-saving and environmental friendly alternative for nutrient medium recycling and reusing water in mass and sustainable cultivation of microalgae.
Collapse
Affiliation(s)
- Eunjin Jwa
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea.
| | - Oh Soo Na
- B.ROOT.LAB Limited Company, 10 Sancheondandong-gil, Jeju 63243, Republic of Korea
| | - Yoon-Cheul Jeung
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea
| | - Namjo Jeong
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea
| | - Joo-Youn Nam
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea
| | - Sekyung Lee
- B.ROOT.LAB Limited Company, 10 Sancheondandong-gil, Jeju 63243, Republic of Korea
| |
Collapse
|
7
|
Feng R, Chen L, Li W, Cai T, Jiang C. Activation of persulfate with natural organic acids (ascorbic acid/catechin hydrate) for naproxen degradation in water and soil: Mechanism, pathway, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132152. [PMID: 37544179 DOI: 10.1016/j.jhazmat.2023.132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
In this study, we investigated the effects of different natural organic acids (NOAs), L-ascorbic acid (AA) and (+)-catechin hydrate (CAT), on the activation of persulfate (PDS) for the oxidation of naproxen (NAP) in water and soil. We found that only AA-activated PDS process had a significant degradation efficiency of NAP in water. High AA concentration (500 μM) inhibited the degradation of NAP, whereas high levels of PDS (7.5 mM) and acidic conditions (pH=3-7) were beneficial for NAP degradation. In soil, both CAT and AA promoted PDS activation and NAP degradation. Low soil organic matter and high Fe/Mn-mineral contents were favorable for NAP degradation by AA-activated PDS. Column experiments confirmed that NAP was readily transported and degraded under porous medium conditions using AA-activated PDS. Moreover, we revealed that SO4•- and HO• were the dominant reactive species for NAP degradation by AA-activated PDS. Intermediate products of NAP in the AA-activated PDS process were analyzed and the reactive sites of NAP were predicted. E. coli growth tests verified that the intermediate products in the AA-activated PDS process were less toxic than NAP. Our results highlight the high potential of NOAs-activated PDS process for the remediation of NAP-contaminated water and soil.
Collapse
Affiliation(s)
- Ruonan Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lulu Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanying Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Canlan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Simon S, Suresh BK, Anantha-Singh TS. A sequential aerated electrocoagulation and peroxicoagulation process for the treatment of municipal stabilized landfill leachate by iron and graphite electrodes. CHEMOSPHERE 2023; 339:139692. [PMID: 37543228 DOI: 10.1016/j.chemosphere.2023.139692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Electrochemical treatment has emerged as a viable technology for the treatment of leachate due to its efficient removal of ammonaical nitrogen and other recalcitrant organics. The main technical issues that prevent its practical deployment are restricted performance of a single electrochemical process and the lengthy tertiary treatment time required to achieve the disposal quality standards. This study demonstrates the performance of electrochemical treatments such as peroxicoagulation (PC) and aerated electrocoagulation (A-EC) separately and also sequentially for the treatment of stabilized leachate. In aerated electro coagulation iron is used as both anode and cathode, whereas in peroxicoagulation, iron is used as anode and graphite as cathode. The area of electrode used for treatments was fixed as 12.5 cm2. The initial concentration of NH4-N, TN, COD, and TOC of the leachate was found to be 480 mg/L, 997 mg/L, 40,200 mg/L, and 9850 mg/L respectively. Removal efficiency of aerated electrocoagulation for NH4-N, TN, COD and TOC were 25.6%, 23.67%, 25.6% and 28.7% respectively, current density of 30 mAcm-2, electrolysis time of 60 min and pH 7.3. Meanwhile for peroxicoagulation, the removal efficiency was found to be 37.2%, 43%, 37.3%, and 45.6% for NH4-N, TN, COD, and TOC respectively, at an current density of 30 mAcm-2, electrolysis time of 120 min and a pH of 3. The sequential aerated electrocoagulation - peroxicoagulation process achieves a maximum removal efficiency of 63%, 68%, 78%, and 75% for NH4-N, total nitrogen, COD, and TOC respectively for a reaction time of 180 min. Removal of NH4-N, total nitrogen, COD and TOC from stabilized landfill leachate with a BOD/COD ratio less than 0.1 was very much effective with the sequential aerated electrocoagulation - peroxicoagulaton treatment. The results also indicate that for the treatment of leachate, a significant synergistic index of 1.22 exists between aerated electrocoagulation and peroxicoagulation.
Collapse
Affiliation(s)
- Saji Simon
- Department of Civil Engineering, National Institute of Technology Calicut, India.
| | - Bibin K Suresh
- Department of Civil Engineering, National Institute of Technology Calicut, India.
| | - T S Anantha-Singh
- Department of Civil Engineering, National Institute of Technology Calicut, India.
| |
Collapse
|
9
|
Ni X, Hou X, Ma D, Li Q, Li L, Gao B, Wang Y. Simultaneous removal of antibiotics and antibiotic resistant genes using a CeO 2@CNT electrochemical membrane-NaClO system. CHEMOSPHERE 2023; 338:139457. [PMID: 37429382 DOI: 10.1016/j.chemosphere.2023.139457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
The simultaneous removal of antibiotic and antibiotic resistance genes (ARGs) are important to inhibit the spread of antibiotic resistance. In this study, a coupled treatment system was developed using a CeO2 modified carbon nanotube electrochemical membrane and NaClO (denoted as CeO2@CNT-NaClO) to treat simulated water samples containing antibiotics and antibiotic-resistant bacteria (ARB). As the mass ratio of CeO2 to CNT was 5:7 and the current density was 2.0 mA/cm2, the CeO2@CNT-NaClO system removed 99% of sulfamethoxazole, 4.6 log sul1 genes, and 4.7 log intI1 genes from the sulfonamide-resistance water samples, and removed 98% of tetracycline, 2.0 log tetA genes, and 2.6 log intI1 genes of the tetracycline-resistance water samples. The outstanding performance of the CeO2@CNT-NaClO system for simultaneously removing antibiotic and ARGs was mainly ascribed to the generation of multiple reactive species, including •OH, •ClO, •O2- and 1O2. Antibiotics can undergo efficient degradation by •OH. However, the reaction between •OH and antibiotics reduces the availability of •OH to permeate into the cells and react with DNA. Nevertheless, the presence of •OH enhancd the effects of •ClO, •O2-, and 1O on ARG degradation. Through the coupled action of •OH, •ClO, •O2-, and 1O2, the cell membranes of ARB experience severe damage, resulting in an increase in intracellular reactive oxygen species (ROS) and a decrease in superoxide dismutase (SOD) activity. Consequently, this coordinated mechanism leads to superior removal of ARGs.
Collapse
Affiliation(s)
- Xiaoyu Ni
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Xuan Hou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Defang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Ling Li
- State Key Lab of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China; The Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Shenyang, PR China.
| |
Collapse
|
10
|
Jia X, Wang F, Xu X, Liu C, Zhang L, Jiao S, Zhu G, Wang X, Yu G. Highly Efficient Photocatalytic Degradation of Tetracycline by Modifying UiO-66 via Different Regulation Strategies. ACS OMEGA 2023; 8:27375-27385. [PMID: 37546643 PMCID: PMC10399158 DOI: 10.1021/acsomega.3c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Wastewater containing organic pollutants cause potential harm to the environment and human health. A series of zirconium-organic frameworks (UiO-66) and their composites were synthesized by solvothermal methods, including band gap adjustment, heterojunction construction, and metal ion doping. For the model pollutant tetracycline (TC), all of the prepared catalysts could achieve effective degradation of it. Therein, the degradation efficiency of tetracycline could reach 95% under the UV irradiation with the aid of the catalyst, in which the UiO-66-NDC was modified with P-C3N4. The free radical capture experiments demonstrated that the superoxide radical (•O2-) was the main oxidizing species for the photodegradation of tetracycline. Hence, the improvement strategy of the catalyst would provide some enlightenment for the development of more efficient photocatalysts for the degradation of organic dyes in wastewater.
Collapse
Affiliation(s)
- Xu Jia
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| | - Fuying Wang
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| | - Xuetong Xu
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| | - Cong Liu
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| | - Liuxue Zhang
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| | - Shuyan Jiao
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| | - Genxing Zhu
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| | - Xiulian Wang
- School
of Energy and Environment, Zhongyuan University
of Technology, Zhengzhou 450007, PR China
| | - Guomin Yu
- School
of Materials and Chemical Engineering, Zhongyuan
University of Technology, Zhengzhou 450007, PR China
| |
Collapse
|
11
|
Ma Q, Chu Y, Ni X, Zhang J, Chen H, Xu F, Wang Y. CeO 2 modified carbon nanotube electrified membrane for the removal of antibiotics. CHEMOSPHERE 2023; 310:136771. [PMID: 36241109 DOI: 10.1016/j.chemosphere.2022.136771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Electrified carbon nanotube membranes (ECM) are used as electroactive porous materials for the degradation of micropollutants. It integrated design of both electrochemical processes and filtration functions. In this study, CeO2 modified carbon nanotube electrified membrane (CeO2@CNT membrane) was prepared and activate NaClO towards degradation of antibiotics. As CeO2 with face-centered cubic (Fcc) fluorite structure was loaded onto the CNT sidewalls, the CeO2@CNT membrane showed a higher over potential and a smaller equivalent polarization resistance compared to ECM. More reactive oxygen species (ROS) and reactive chlorine species (RCS) were generated by CeO2@CNT membrane due to faster electron transfer at the solid-liquid interface. Thus, the removal efficiencies of DCF, SMX, CIP, TC and CBZ were more than 91.2%, 91.3%, 94.4%, 99.3% and 89.4% by the CeO2@CNT membrane with NaClO, respetively. And the apparent reaction rate constant (k) of the CeO2@CNT membrane was 2.9 times of that of ECM. The selective capping experiments and density functional theory (DFT) calculation showed that the oxygen vacancies of CeO2 contributed to the generation of ‧OH, and the generation of ClO‧ and ‧O2- would mainly occur on Lewis acid sites of CeO2. In addition, the CeO2@CNT membrane showed a reasonable stability to treat actual water samples and reduced disinfection byproducts (DBPs) formation, suggesting that it can potentially be combined with the conventional chlorine disinfection to degrade antibiotics in water.
Collapse
Affiliation(s)
- Qingfeng Ma
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yongbao Chu
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiaoyu Ni
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jingyi Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haoze Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
12
|
Wu L, Patton SD, Liu H. Mechanisms of oxidative removal of 1,4-dioxane via free chlorine rapidly mixing into monochloramine: Implications on water treatment and reuse. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129760. [PMID: 35969953 DOI: 10.1016/j.jhazmat.2022.129760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Free chlorine (HOCl) and monochloramine (NH2Cl) are two of the most commonly used water disinfectants in water treatment; however, the capability of rapid mixing of HOCl into NH2Cl to induce oxidative reactions for efficient removal of contaminants remains largely unknown. In this study, 1,4-dioxane (1,4-D) removal was quantified during the rapid mixing of HOCl into NH2Cl, to evaluate the effects of solution pH and HOCl-to-NH2Cl ratio, and to identify mechanisms by which reactive species are generated in the system. Results showed that the highest 1,4-D removal was observed at the near-neutral pH of 6 with the HOCl-to-NH2Cl molar ratio of 1. Hydroxyl radical (HO•) contributed to 60-70 % of 1,4-D degradation and its generation was initiated by the hydrolytic decay of NH2Cl and NHCl2 upon HOCl addition to NH2Cl with rapid mixing, and subsequent transformation of peroxynitrite (ONOO-) and peroxynitrous acid (ONOOH). The results also confirmed that the presence of dissolved oxygen was required to form ONOO-/ONOOH, and ONOO- was a crucial precursor for reactive radical generation. These findings provide insight into the reaction mechanism associated with the system of rapidly mixed HOCl into NH2Cl with the potential optimization and application for efficient trace organics removal in water treatment and reuse.
Collapse
Affiliation(s)
- Liang Wu
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Samuel D Patton
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Haizhou Liu
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Qin Y, Yang B, Li H, Ma J. Immobilized BiOCl 0.75I 0.25/g-C 3N 4 nanocomposites for photocatalytic degradation of bisphenol A in the presence of effluent organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156828. [PMID: 35760181 DOI: 10.1016/j.scitotenv.2022.156828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The BiOCl0.75I0.25/g-C3N4 nanosheet (BCI-CN) was successfully immobilized on polyolefin polyester fiber (PPF) through the hydrothermal method. The novel immobilized BiOCl0.75I0.25/g-C3N4 nanocomposites (BCI-CN-PPF) were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy EDS, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) to confirm that BCI-CN was successfully immobilized on PPF with abundant oxygen vacancies reserved. Under simulated solar light irradiation, 100 % of bisphenol A (BPA) with an initial concentration of 10 mg·L-1 was degraded by BCI-CN-PPF (0.2 g·L-1 of BCI-CN immobilized) after 60 min. A similar photocatalytic efficiency of BPA was obtained in the presence of effluent organic matter (EfOM). The photocatalytic degradation of BPA was not affected by EfOM <5 mg-C/L. In comparison, the photocatalytic performance was considerably inhibited by EfOM with a concentration of 10 mg-C/L. Furthermore, photogenerated holes and superoxide radicals predominated in the photocatalytic degradation processes of BPA. The total organic carbon (TOC) removal efficiencies of BPA and EfOM were 75.2 % and 50 % in the BCI-CN-PPF catalytic system. The BPA removal efficiency of 94.9 % was still achieved in the eighth cycle of repeated use. This study provides a promising immobilized nanocomposite with high photocatalytic activity and excellent recyclability and reusability for practical application in wastewater treatment.
Collapse
Affiliation(s)
- Yuyang Qin
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Biqi Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Hongjing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Huang M, Fang G, Chen N, Zhou D. Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128380. [PMID: 35121297 DOI: 10.1016/j.jhazmat.2022.128380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The heterogeneous Fenton-like process using pyrite (FeS2) is increasingly recognized as a promising advanced oxidation process for removal of organic contaminants. However, the slow regeneration of Fe(II) limits the generation of reactive oxygen species for environment implication. To overcome this drawback, hydroxylamine was applied to enhance the reactivity of FeS2 to degrade organic contaminants under oxic conditions. Results showed that hydroxylamine facilitated the regeneration of Fe(II) on FeS2 surface to promote reactive oxygen species generation, thereby efficiently degrading different organic contaminants. The underlying mechanism was further elucidated that the presence of hydroxylamine enhanced electron transfer from FeS2 to O2 to produce superoxide radicals (O2•-), hydrogen peroxide (H2O2) and hydroxyl radical (HO•) via Fenton-like pathways, which induced the rapid degradation of organic contaminants (e.g., sulfamethoxazole (SMX)). The reactivity of FeS2 for organic contaminant degradation changed negligibly after seven cycles in the presence of hydroxylamine. The effects of pH and inorganic anions on SMX degradation were also clarified in details. The finding of this study would provide a novel strategy to enhance the contaminants degradation by FeS2-based advanced oxidation technologies for environmental remediation.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
15
|
Zhang HC, Liu YL, Wang L, Li ZY, Lu XH, Yang T, Ma J. Enhanced Radical Generation in an Ultraviolet/Chlorine System through the Addition of TiO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11612-11623. [PMID: 34415770 DOI: 10.1021/acs.est.0c08785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV)/chlorine draws increasing attention for the abatement of recalcitrant organic pollutants. Herein, it was found that TiO2 would significantly promote the degradation of dimethyl phthalate (DMP) in the UV/chlorine system (from 19 to 84%). Hydroxyl radicals (HO•) and chlorine radicals (Cl•) were the dominant reactive species for DMP degradation in the UV/chlorine/TiO2 system. Chlorine decayed much faster in UV/chlorine/TiO2 compared with UV/chlorine, which is possibly because photogenerated electrons (ecb-) and superoxide radicals (O2•-) have high reactivity with chlorine. As a result, the recombination of photogenerated holes (hvb+) and ecb- was inhibited and the accumulation of HO• and Cl• was facilitated. A kinetic model was established to simulate the reaction process, and it was found that the concentrations of HO• and Cl• were several times to dozens of times higher in UV/chlorine/TiO2 than that in UV/chlorine. The contributions of HO• and Cl• to DMP degradation were 70.3 and 29.7% by model simulation, respectively, and were close to the probe experiment result. In the UV/chlorine/TiO2 system, the degradation of DMP did not follow pseudo-first-order kinetics but the degradation of benzoate fitted well with pseudo-first-order kinetics. This phenomenon was elucidated by the structure of the pollutant and TiO2 and further tested by calculating the adsorption energy (Eads)/binding energy (Eb) with density functional theory. Due to faster decay of chlorine, lower amounts of disinfection byproducts formed in UV/chlorine/TiO2 compared with UV/chlorine. Adding TiO2 into the UV/chlorine system can promote the degradation of recalcitrant organic pollutants in an aqueous environment.
Collapse
Affiliation(s)
- Hao-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuo-Yu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Hui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|