1
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
2
|
Rodriguez-Otero A, Tisler S, Reinhardt LM, Jørgensen MB, Bouyssiere B, Christensen JH. Charge as a key physicochemical factor in adsorption of organic micropollutants from wastewater effluent by rice husk bio-silica. WATER RESEARCH 2024; 268:122748. [PMID: 39504697 DOI: 10.1016/j.watres.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Wastewater treatment plants (WWTPs) often fail to fully remove organic micro-pollutants (OMPs), necessitating advanced treatment methods. This study examines the potential of an agricultural waste-derived adsorbent, rice husk (RH) - silica, for removing a complex mixture of 20 OMPs in MilliQ water and wastewater effluent. While RH-silica shows potential for OMP removal, its performance with multicomponent mixtures in real wastewater has yet to be investigated. Batch experiments demonstrated the efficacy of RH-silica in removing cationic, neutral, polar, and non-polar OMPs across various pH levels, with no adsorption of anionic OMPs. Column elution studies revealed that only positively charged compounds did not reach a breakthrough after 300 specific bed volumes (BVs), even when the filtration velocity was increased fivefold (3.8 m/h) and lower adsorbent-to-volume ratios (0.5 g/L) were employed. This indicates that electrostatic interactions via deprotonated silanol groups are the primary adsorption mechanism. RH-silica's ability to retain cationic pollutants regardless of their hydrophilicity degree highlights its potential as a novel adsorbent targeting positively charged persistent and mobile organic compounds (PMOCs). Moreover, the adsorption efficiency remained high in experiments with real wastewater effluent. Considering practical applications, a RH-silica column could be used to enhance removal of cationic polar compounds. This approach not only improves pollutant removal efficiency but also contributes to sustainability in WWTPs by using agricultural waste resources. Despite significant operational and end-of-life challenges for large-scale implementation, this study represents a crucial advancement in the investigation of RH-silica as an adsorbent.
Collapse
Affiliation(s)
- Alba Rodriguez-Otero
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark; Universite de Pau et des Pays de l'Adour, E2S UPPA CNRS IPREM UMR5254, Technopôle Hélioparc, 2 Avenue du Président Angot, Pau 64053, France
| | - Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Lisa M Reinhardt
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Mathias B Jørgensen
- BIOFOS A/S, Refshalevej 250, Copenhagen 1432, Denmark; MSCi, Bøgesvinget 8, Skovlunde 2740, Denmark
| | - Brice Bouyssiere
- Universite de Pau et des Pays de l'Adour, E2S UPPA CNRS IPREM UMR5254, Technopôle Hélioparc, 2 Avenue du Président Angot, Pau 64053, France.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| |
Collapse
|
3
|
Malm L, Liigand J, Aalizadeh R, Alygizakis N, Ng K, Fro̷kjær EE, Nanusha MY, Hansen M, Plassmann M, Bieber S, Letzel T, Balest L, Abis PP, Mazzetti M, Kasprzyk-Hordern B, Ceolotto N, Kumari S, Hann S, Kochmann S, Steininger-Mairinger T, Soulier C, Mascolo G, Murgolo S, Garcia-Vara M, López de Alda M, Hollender J, Arturi K, Coppola G, Peruzzo M, Joerss H, van der Neut-Marchand C, Pieke EN, Gago-Ferrero P, Gil-Solsona R, Licul-Kucera V, Roscioli C, Valsecchi S, Luckute A, Christensen JH, Tisler S, Vughs D, Meekel N, Talavera Andújar B, Aurich D, Schymanski EL, Frigerio G, Macherius A, Kunkel U, Bader T, Rostkowski P, Gundersen H, Valdecanas B, Davis WC, Schulze B, Kaserzon S, Pijnappels M, Esperanza M, Fildier A, Vulliet E, Wiest L, Covaci A, Macan Schönleben A, Belova L, Celma A, Bijlsma L, Caupos E, Mebold E, Le Roux J, Troia E, de Rijke E, Helmus R, Leroy G, Haelewyck N, Chrastina D, Verwoert M, Thomaidis NS, Kruve A. Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison. Anal Chem 2024; 96:16215-16226. [PMID: 39353203 PMCID: PMC11483430 DOI: 10.1021/acs.analchem.4c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor-IE and MLR-IE). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor-IE approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.
Collapse
Affiliation(s)
- Louise Malm
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden
| | | | - Reza Aalizadeh
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Department
of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Nikiforos Alygizakis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
| | - Kelsey Ng
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 753/5, Building D29, 62500 Brno, Czech Republic
| | - Emil Egede Fro̷kjær
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Mulatu Yohannes Nanusha
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Martin Hansen
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
| | - Stefan Bieber
- Analytisches
Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Thomas Letzel
- Analytisches
Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Lydia Balest
- Acquedotto
Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario
(DIRLC), 70123 Bari, Italy
| | - Pier Paolo Abis
- Acquedotto
Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario
(DIRLC), 70123 Bari, Italy
| | - Michele Mazzetti
- Agenzia
Regionale per l’Ambiente Toscana, Via G. Marradi 114, 57126 Livorno, Italy
| | - Barbara Kasprzyk-Hordern
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Institute
for Sustainability, Bath BA2 7AY, U.K.
| | - Nicola Ceolotto
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Institute
for Sustainability, Bath BA2 7AY, U.K.
| | - Sangeeta Kumari
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Sven Kochmann
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Coralie Soulier
- BRGM, 3 avenue Claude
Guillemin, BP36009, 45060 Orléans Cedex 2, France
| | - Giuseppe Mascolo
- Water Research
Institute (IRSA), National Research Council
(CNR), Via F. De Blasio,
5, 70132 Bari, Italy
- Research
Institute for Geo-Hydrological Protection (IRPI), National Research Council (CNR), Via Amendola, 122/I, 70126 Bari, Italy
| | - Sapia Murgolo
- Water Research
Institute (IRSA), National Research Council
(CNR), Via F. De Blasio,
5, 70132 Bari, Italy
| | - Manuel Garcia-Vara
- Water,
Environmental and Food Chemistry Unit, Institute
of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Miren López de Alda
- Water,
Environmental and Food Chemistry Unit, Institute
of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Juliane Hollender
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Katarzyna Arturi
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Gianluca Coppola
- White
Lab Srl, Via Mons. Rodolfi
22, 36022 San Giuseppe
de Cassola (VI), Italy
| | - Massimo Peruzzo
- White
Lab Srl, Via Mons. Rodolfi
22, 36022 San Giuseppe
de Cassola (VI), Italy
| | - Hanna Joerss
- Department
for Organic Environmental Chemistry, Helmholtz
Centre Hereon, Max-Planck-Str.
1, 21502 Geesthacht, Germany
| | | | - Eelco N. Pieke
- Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE Haarlem, The Netherlands
| | - Pablo Gago-Ferrero
- Human Exposure
to Organic Pollutants Unit, Institute of
Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Ruben Gil-Solsona
- Human Exposure
to Organic Pollutants Unit, Institute of
Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Viktória Licul-Kucera
- Institute
for Analytical Research, Hochschulen Fresenius gem. Trägergesellschaft mbH, 65510 Idstein, Germany
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WP Amsterdam, Netherlands
| | - Claudio Roscioli
- Water Research
Institute (IRSA), National Research Council
of Italy (CNR), via del
Mulino, 19, 20861 Brugherio, MB, Italy
| | - Sara Valsecchi
- Water Research
Institute (IRSA), National Research Council
of Italy (CNR), via del
Mulino, 19, 20861 Brugherio, MB, Italy
| | - Austeja Luckute
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Jan H. Christensen
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Selina Tisler
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Dennis Vughs
- KWR Water
Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Nienke Meekel
- KWR Water
Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Begoña Talavera Andújar
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Dagny Aurich
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gianfranco Frigerio
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
- Center
for Omics Sciences (COSR), IRCCS San Raffaele
Scientific Institute, 20132 Milan, Italy
| | - André Macherius
- Bavarian
Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Uwe Kunkel
- Bavarian
Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Tobias Bader
- Laboratory
for Operation Control and Research, Zweckverband
Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | | | | | | | - W. Clay Davis
- US National
Institute of Standards and Technology, 331 Fort Johnson Rd, 29412 Charleston, South Carolina, United States
| | - Bastian Schulze
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Sarit Kaserzon
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Martijn Pijnappels
- Ministry
of Infrastructure and Water Management, Rijkswaterstaat Laboratory, Zuiderwagenplein 2, 8224 AD Lelystad, The Netherlands
| | - Mar Esperanza
- SUEZ-CIRSEE, 38 rue
du president Wilson, 78230 Le Pecq, France
| | - Aurélie Fildier
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuelle Vulliet
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Laure Wiest
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adrian Covaci
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Lidia Belova
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alberto Celma
- Environmental
and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Lubertus Bijlsma
- Environmental
and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain
| | - Emilie Caupos
- LEESU, Univ Paris Est Creteil, Ecole des
Ponts, F-94010 Creteil, France
- Univ Paris
Est Creteil, CNRS, OSU-EFLUVE, F-94010 Creteil, France
| | | | - Julien Le Roux
- LEESU, Univ Paris Est Creteil, Ecole des
Ponts, F-94010 Creteil, France
| | - Eugenie Troia
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eva de Rijke
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rick Helmus
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gaëla Leroy
- VEOLIA
Recherche et Innovation, Chemin de la Digue, 78600 Maisons-Laffitte, France
| | - Niels Haelewyck
- Vlaamse
Milieumaatschappij, Raymonde de Larochelaan 1, 9051 Gent, Sint-Denijs-Westerem, Belgium
| | - David Chrastina
- T. G.
Masaryk Water Research Institute, p. r. i., Macharova 5, 70200 Ostrava, Czech Republic
| | - Milan Verwoert
- WLN, Rijksstraatweg
85, 9756 AD Glimmen,
Groningen, The Netherlands
| | - Nikolaos S. Thomaidis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
| |
Collapse
|
4
|
Rath SA, von Gunten U. Achieving realistic ozonation conditions with synthetic water matrices comprising low-molecular-weight scavenger compounds. WATER RESEARCH 2024; 261:121917. [PMID: 39013231 DOI: 10.1016/j.watres.2024.121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024]
Abstract
Ozonation is used worldwide for drinking water disinfection and increasingly also for micropollutant abatement from wastewater. Identification of transformation products formed during the ozonation of micropollutants is challenging due to several factors including (i) the reactions of both oxidants, ozone and hydroxyl radicals with the micropollutants, as well as with intermediate transformation products, (ii) effects of the water matrix on the ozone and hydroxyl radical chemistry and (iii) the generation of oxidation by-products. In this study, a simple approach to achieve realistic ozonation conditions in the absence of dissolved organic matter has been developed. It is based on composing synthetic water matrices with low-molecular-weight scavenger compounds (phenol, methanol, acetate, and carbonate) that mimic the chemical interactions of ozone and hydroxyl radicals with real water matrices. Synthetic waters composed of only four low-molecular-weight compounds successfully replicated two lake waters and two secondary wastewater effluents, matching instantaneous ozone demand, ozone and hydroxyl radical exposures in the initial phase, as well as the ozone evolution in the second phase of the ozonation process. The synthetic water matrices also reproduced the effects of temperature and pH changes observed in real waters. The abatement of two micropollutants, bezafibrate and atrazine, and the formation of the corresponding transformation products during ozonation were in agreement for synthetic and real waters. Furthermore, the kinetics and extent of bromate formation during ozonation in synthetic water were comparable to real lake water and wastewater. This supports the robustness of the proposed approach because bromate formation is very sensitive to the interplay of ozone and hydroxyl radicals. Furthermore, with the novel reaction system, a significant effect of hydroxyl radicals scavenging by carbonate on bromate formation was demonstrated. Overall, the herein-developed approach based on synthetic water matrices allows to perform realistic ozonation studies including both oxidants, ozone and hydroxyl radicals, without the constraints of using dissolved organic matter.
Collapse
Affiliation(s)
- Simon A Rath
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Freeling F, Armbruster D, Nödler K, Kunkel U, Scheurer M, Koschorreck J, Ternes TA. Metabolites are overlooked in environmental risk assessments and monitoring of pharmaceuticals: The case study of pantoprazole. WATER RESEARCH 2024; 256:121596. [PMID: 38685172 DOI: 10.1016/j.watres.2024.121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
The proton-pump inhibitor pantoprazole (PPZ) is one of the most consumed pharmaceuticals worldwide. Despite its high usage, reported PPZ concentrations in environmental water samples are comparatively low, which can be explained by the extensive metabolism of PPZ in the human body. Since most previous studies did not consider human PPZ metabolites it can be assumed that the current environmental exposure associated with the application of PPZ is substantially underestimated. In our study, 4'-O-demethyl-PPZ sulfide (M1) was identified as the predominant PPZ metabolite by analyzing urine of a PPZ consumer as well as the influent and effluent of a wastewater treatment plant (WWTP) using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). M1 was found to be ubiquitously present in WWTP effluents (max. concentration: 3 000 ng/L) and surface waters in Germany. On average, the surface water concentrations of M1 were approximately 30 times higher than those of the parent compound PPZ. Laboratory scale experiments demonstrated that activated carbon can considerably adsorb M1 und thus improve its removal during wastewater and drinking water treatment. Laboratory ozonation experiments showed a fast oxidation of M1, accompanied by the formation of several ozonation products. Certain ozonation products (identities confirmed via synthesized reference standards) were also detected in water samples collected after ozonation in a full-scale WWTP. Overall lower signal intensities were observed in the effluents of a sand filter and biologically active granular activated carbon filter, suggesting that the compounds were significantly removed during these post-ozonation treatment stages.
Collapse
Affiliation(s)
- Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Dominic Armbruster
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Uwe Kunkel
- Bavarian Environment Agency (LfU), Bürgermeister-Ulrich-Straße 160, 86179, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, Karlsruhe 76139, Germany; Landesanstalt für Umwelt Baden-Württemberg (LUBW), Griesbachstr.1-3, Karlsruhe 76185, Germany
| | - Jan Koschorreck
- German Environment Agency, Bismarckplatz 1, Berlin 14193, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, Koblenz 56068, Germany.
| |
Collapse
|
6
|
Schmiemann D, Bicks F, Bartels I, Cordes A, Jäger M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic degradability of diclofenac ozonation products: A mechanistic analysis. CHEMOSPHERE 2024; 358:142112. [PMID: 38677613 DOI: 10.1016/j.chemosphere.2024.142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The treatment of waterborne micropollutants, such as diclofenac, presents a significant challenge to wastewater treatment plants due to their incomplete removal by conventional methods. Ozonation is an effective technique for the degradation of micropollutants. However, incomplete oxidation can lead to the formation of ecotoxic by-products that require a subsequent post-treatment step. In this study, we analyze the susceptibility of micropollutant ozonation products to enzymatic digestion with laccase from Trametes versicolor to evaluate the potential of enzymatic treatment as a post-ozonation step. The omnipresent micropollutant diclofenac is used as an example, and the enzymatic degradation kinetics of all 14 detected ozonation products are analyzed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and tandem mass spectrometry (MS2). The analysis shows that most of the ozonation products are responsive to chemo-enzymatic treatment but show considerable variation in enzymatic degradation kinetics and efficiencies. Mechanistic investigation of representative transformation products reveals that the hydroxylated aromatic nature of the ozonation products matches the substrate spectrum, facilitating their rapid recognition as substrates by laccase. However, after initiation by laccase, the subsequent chemical pathway of the enzymatically formed radicals determines the global degradability observed in the enzymatic process. Substrates capable of forming stable molecular oxidation products inhibit complete detoxification by oligomerization. This emphasizes that it is not the enzymatic uptake of the substrates but the channelling of the reaction of the substrate radicals towards the oligomerization of the substrate radicals that is the key step in the further development of an enzymatic treatment step for wastewater applications.
Collapse
Affiliation(s)
- Dorothee Schmiemann
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany; Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Florian Bicks
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Indra Bartels
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany; Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19c, 38302, Wolfenbüttel, Germany
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Jochen Stefan Gutmann
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798, Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
7
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
8
|
Zahn D, Arp HPH, Fenner K, Georgi A, Hafner J, Hale SE, Hollender J, Letzel T, Schymanski EL, Sigmund G, Reemtsma T. Should Transformation Products Change the Way We Manage Chemicals? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7710-7718. [PMID: 38656189 PMCID: PMC11080041 DOI: 10.1021/acs.est.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
When chemical pollutants enter the environment, they can undergo diverse transformation processes, forming a wide range of transformation products (TPs), some of them benign and others more harmful than their precursors. To date, the majority of TPs remain largely unrecognized and unregulated, particularly as TPs are generally not part of routine chemical risk or hazard assessment. Since many TPs formed from oxidative processes are more polar than their precursors, they may be especially relevant in the context of persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, which are two new hazard classes that have recently been established on a European level. We highlight herein that as a result, TPs deserve more attention in research, chemicals regulation, and chemicals management. This perspective summarizes the main challenges preventing a better integration of TPs in these areas: (1) the lack of reliable high-throughput TP identification methods, (2) uncertainties in TP prediction, (3) inadequately considered TP formation during (advanced) water treatment, and (4) insufficient integration and harmonization of TPs in most regulatory frameworks. A way forward to tackle these challenges and integrate TPs into chemical management is proposed.
Collapse
Affiliation(s)
- Daniel Zahn
- Helmholtz
Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, 0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), N-7491 Trondheim, Norway
| | - Kathrin Fenner
- Swiss
Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
- Department
of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Anett Georgi
- Helmholtz
Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jasmin Hafner
- Swiss
Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
- Department
of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Sarah E. Hale
- TZW: DVGW
Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Juliane Hollender
- Swiss
Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
- ETH
Zurich, Institute of Biogeochemistry and
Pollutant Dynamics, Zürich 8092, Switzerland
| | - Thomas Letzel
- AFIN-TS
GmbH (Analytisches Forschungsinstitut für Non-Target Screening), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gabriel Sigmund
- Environmental
Technology, Wageningen University &
Research, 6700 AA Wageningen, The Netherlands
| | - Thorsten Reemtsma
- Helmholtz
Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| |
Collapse
|
9
|
von Gunten U. Oxidation processes and me. WATER RESEARCH 2024; 253:121148. [PMID: 38387263 DOI: 10.1016/j.watres.2024.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/24/2024]
Abstract
This publication summarizes my journey in the field of chemical oxidation processes for water treatment over the last 30+ years. Initially, the efficiency of the application of chemical oxidants for micropollutant abatement was assessed by the abatement of the target compounds only. This is controlled by reaction kinetics and therefore, second-order rate constant for these reactions are the pre-requisite to assess the efficiency and feasibility of such processes. Due to the tremendous efforts in this area, we currently have a good experimental data base for second-order rate constants for many chemical oxidants, including radicals. Based on this, predictions can be made for compounds without experimental data with Quantitative Structure Activity Relationships with Hammet/Taft constants or energies of highest occupied molecular orbitals from quantum chemical computations. Chemical oxidation in water treatment has to be economically feasible and therefore, the extent of transformation of micropollutants is often limited and mineralization of target compounds cannot be achieved under realistic conditions. The formation of transformation products from the reactions of the target compounds with chemical oxidants is inherent to oxidation processes and the following questions have evolved over the years: Are the formed transformation products biologically less active than the target compounds? Is there a new toxicity associated with transformation products? Are transformation products more biodegradable than the corresponding target compounds? In addition to the positive effects on water quality related to abatement of micropollutants, chemical oxidants react mainly with water matrix components such as the dissolved organic matter (DOM), bromide and iodide. As a matter of fact, the fraction of oxidants consumed by the DOM is typically > 99%, which makes such processes inherently inefficient. The consequences are loss of oxidation capacity and the formation of organic and inorganic disinfection byproducts also involving bromide and iodide, which can be oxidized to reactive bromine and iodine with their ensuing reactions with DOM. Overall, it has turned out in the last three decades, that chemical oxidation processes are complex to understand and to manage. However, the tremendous research efforts have led to a good understanding of the underlying processes and allow a widespread and optimized application of such processes in water treatment practice such as drinking water, municipal and industrial wastewater and water reuse systems.
Collapse
Affiliation(s)
- Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland; ENAC, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale, CH-1000, Lausanne, Switzerland.
| |
Collapse
|
10
|
Altamirano JC, Yin S, Belova L, Poma G, Covaci A. Exploring the hidden chemical landscape: Non-target and suspect screening analysis for investigating solid waste-associated environments. ENVIRONMENTAL RESEARCH 2024; 245:118006. [PMID: 38154568 DOI: 10.1016/j.envres.2023.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Solid waste is an inevitable consequence of urbanization. It can be safely managed in municipal landfills and processing plants for volume reduction or material reuse, including organic solid waste. However, solid waste can also be discarded in (un-)authorized dumping sites or inadvertently released into the environment. Legacy and emerging contaminants have the potential to leach from solid waste, making it a significant pathway to the environment. Non-target screening (NTS) and suspect screening analysis (SSA) have become helpful tools in environmental science for the simultaneous analysis of a wide range of chemical compounds. However, the application of these analytical approaches to environmental samples related to Raw or Processed Solid Waste (RPSW) has been largely neglected so far. This perspective review examines the potential and policy relevance of NTS and SSA applied to waste-related samples (liquid, gaseous and solid). It addresses the hurdles associated with the chemical safety of solid waste accumulation, processing, and reuse, and the need for landfill traceability, as well as effectiveness of leachate treatments. We reviewed the current applications of NTS and SSA to environmental samples of RPSW, as well as the potential adaptation of NTS and SSA techniques from related fields, such as oilfield and metabolomics, to the solid waste domain. Despite the ongoing technical challenges, this review highlights the significant potential for the implementation of NTS and SSA approaches in solid waste management and related scientific fields and provides support and guidance to the regulatory authorities.
Collapse
Affiliation(s)
- Jorgelina Cecilia Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, 5500, Mendoza, Argentina; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
11
|
Trognon J, Albasi C, Choubert JM. A critical review on the pathways of carbamazepine transformation products in oxidative wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169040. [PMID: 38061647 DOI: 10.1016/j.scitotenv.2023.169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug, released in domestic and hospital wastewater, and one of the drugs most commonly detected in surface water. Conventional secondary processes do a very poor job of removing it (<25 %), but its concentrations are significantly reduced by polishing oxidation processes. However, there are still many unknowns regarding the transformation products generated and their fate. This review first presents the journey of CBZ and its transformation products (TPs) in wastewater, from human consumption to discharge in water bodies. It then goes on to detail the diversity of mechanisms responsible for CBZ degradation and the generation of multiple TPs, laying the emphasis on the different types of advanced oxidation processes (AOP). 135 TPs were reported and a map describing their formation/degradation pathways was drawn up. This work highlights the wide range of physicochemical properties and toxicity effects of TPs on aquatic organisms and provides information about TPs of interest for future research. Finally, this review concludes on the importance of quantifying TPs and of determining kinetic characteristics to produce more accurate reaction schemes and computer-based fate predictions.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | |
Collapse
|
12
|
Bilea F, Bradu C, Cicirma M, Medvedovici AV, Magureanu M. Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168524. [PMID: 37972787 DOI: 10.1016/j.scitotenv.2023.168524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
Collapse
Affiliation(s)
- Florin Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania; Faculty of Chemistry, University of Bucharest, Regina Elisabeta Bd. 4-12, 030018 Bucharest, Romania.
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, Splaiul Independenței Str. 91-95, 050095 Bucharest, Romania
| | - Marius Cicirma
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
| | | | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania.
| |
Collapse
|
13
|
Spilsbury F, Kisielius V, Bester K, Backhaus T. Ecotoxicological mixture risk assessment of 35 pharmaceuticals in wastewater effluents following post-treatment with ozone and/or granulated activated carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167440. [PMID: 37774874 DOI: 10.1016/j.scitotenv.2023.167440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Reducing the risk posed by mixtures of pharmaceuticals is a goal of current initiatives such as the European Green Deal to reduce anthropological environmental impacts. Wastewater effluent typically contains large numbers of active pharmaceutical ingredients (APIs). For some APIs, existing technology such as conventional activated sludge (CAS) wastewater treatment plants (WWTPs) have removal rates below 20 %, thus the WWTP discharges are adding to the toxic burden of receiving waters. We present an environmental risk assessment of mixtures of 35 APIs in effluent samples from 82 Northern European WWTPs using the concentration addition model, and identify the respective risk-driving APIs. This is then compared to a corresponding mixture risk assessment of effluent samples from the Danish Hillerød WWTP subjected to post-treatment with varying specific ozone doses (0.15-1.05 mgO3/mgDOC) and/or granulated activated carbon (GAC). All 82 WWTP effluent samples exceeded risk thresholds by at least a factor of 30, with a median RQSUM of 92.9, highlighting the need for effluent post-treatment and/or a substantial dilution in the recipient waters. Antibiotics, analgesics and anti-depressants were among the top risk drivers with 99 % of the average mixture risk attributable to azithromycin, diclofenac, venlafaxine, clarithromycin and mycophenolic acid. Effluent mixture risk was reduced by ozonation in a concentration-dependent manner, decreasing below threshold levels to a median RQSUM of 0.83 following treatment with 0.65 mgO3/mg DOC. Fresh GAC was also effective at reducing the mixture risk both alone and with ozone treatment, with median RQSUM of 0.04 and 0.07 respectively. To our knowledge, this is the first study to present a risk assessment of pharmaceutical mixtures in effluent comparing "conventional" WWTP processes with additional post-treatment with ozone and/or GAC for reducing the joint risks of pharmaceutical mixtures for recipient waters. We demonstrate the need for additional WWTP treatment technologies, and the efficacy of GAC and ozonation in decreasing the risk to the aquatic environment from pharmaceutical mixtures to below acceptable threshold limits.
Collapse
Affiliation(s)
- Francis Spilsbury
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden.
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| |
Collapse
|
14
|
Morrison C, Hogard S, Pearce R, Mohan A, Pisarenko AN, Dickenson ERV, von Gunten U, Wert EC. Critical Review on Bromate Formation during Ozonation and Control Options for Its Minimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18393-18409. [PMID: 37363871 PMCID: PMC10690720 DOI: 10.1021/acs.est.3c00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Ozone is a commonly applied disinfectant and oxidant in drinking water and has more recently been implemented for enhanced municipal wastewater treatment for potable reuse and ecosystem protection. One drawback is the potential formation of bromate, a possible human carcinogen with a strict drinking water standard of 10 μg/L. The formation of bromate from bromide during ozonation is complex and involves reactions with both ozone and secondary oxidants formed from ozone decomposition, i.e., hydroxyl radical. The underlying mechanism has been elucidated over the past several decades, and the extent of many parallel reactions occurring with either ozone or hydroxyl radicals depends strongly on the concentration, type of dissolved organic matter (DOM), and carbonate. On the basis of mechanistic considerations, several approaches minimizing bromate formation during ozonation can be applied. Removal of bromate after ozonation is less feasible. We recommend that bromate control strategies be prioritized in the following order: (1) control bromide discharge at the source and ensure optimal ozone mass-transfer design to minimize bromate formation, (2) minimize bromate formation during ozonation by chemical control strategies, such as ammonium with or without chlorine addition or hydrogen peroxide addition, which interfere with specific bromate formation steps and/or mask bromide, (3) implement a pretreatment strategy to reduce bromide and/or DOM prior to ozonation, and (4) assess the suitability of ozonation altogether or utilize a downstream treatment process that may already be in place, such as reverse osmosis, for post-ozone bromate abatement. A one-size-fits-all approach to bromate control does not exist, and treatment objectives, such as disinfection and micropollutant abatement, must also be considered.
Collapse
Affiliation(s)
- Christina
M. Morrison
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Samantha Hogard
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert Pearce
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Aarthi Mohan
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Aleksey N. Pisarenko
- Trussell
Technologies, Inc., 380
Stevens Avenue, Suite 212, Solana Beach, California 92075, United States
| | - Eric R. V. Dickenson
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Urs von Gunten
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dubendorf, Switzerland
- School of
Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne
(EPFL), 1015 Lausanne, Switzerland
| | - Eric C. Wert
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| |
Collapse
|
15
|
Minakata D, von Gunten U. Predicting Transformation Products during Aqueous Oxidation Processes: Current State and Outlook. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18410-18419. [PMID: 37824098 PMCID: PMC10691424 DOI: 10.1021/acs.est.3c04086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 10/13/2023]
Abstract
Water quality and its impacts on human and ecosystem health presents tremendous global challenges. While oxidative water treatment can solve many of these problems related to hygiene and micropollutants, identifying and predicting transformation products from a large variety of micropollutants induced by dosed chemical oxidants and in situ formed radicals is still a major challenge. To this end, a better understanding of the formed transformation products and their potential toxicity is needed. Currently, no theoretical tools alone can predict oxidatively induced transformation products in aqueous systems. Coupling experimental and theoretical studies has advanced the understanding of reaction kinetics and mechanisms significantly. This perspective article highlights the key progress made concerning experimental and computational approaches to predict transformation products. Knowledge gaps are identified, and the research required to advance the predictive capability is discussed.
Collapse
Affiliation(s)
- Daisuke Minakata
- Civil,
Environmental, and Geospatial Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Urs von Gunten
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstraße 133, CH-8600 Dübendorf, Switzerland
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
16
|
Reverbel S, Dévier MH, Dupraz V, Geneste E, Budzinski H. Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants. TOXICS 2023; 11:713. [PMID: 37624218 PMCID: PMC10457822 DOI: 10.3390/toxics11080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Aquatic environments are the final receptors of human emissions and are therefore contaminated by molecules, such as pharmaceuticals. After use, these compounds and their metabolites are discharged to wastewater treatment plants (WWTPs). During wastewater treatment, compounds may be eliminated or degraded into transformation products (TPs) or may be persistent. The aim of this study was to develop an analytical method based on high resolution mass spectrometry (HRMS) for the identification of six psychotropic drugs that are widely consumed in France and present in WWTPs, as well as their potential associated metabolites and TPs. Four out of six psychotropic drugs and between twenty-five and thirty-seven potential TPs were detected in wastewater, although this was based on full scan data. TPs not reported in the literature and specific to the study sites and therefore to the wastewater treatment processes were tentatively identified. For the selected drugs, most known and present TPs were identified, such as desmethylvenlafaxine or norcitalopram. Moreover, the short fragmentation study led rather to the identification of several TPs of carbamazepine as ubiquitous persistent TPs.
Collapse
Affiliation(s)
- Solenne Reverbel
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Marie-Hélène Dévier
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Valentin Dupraz
- Régie de l’Eau Bordeaux Métropole, Direction de la Recherche, de l’Innovation et de la Transition Ecologique, F-33081 Bordeaux, France
| | - Emmanuel Geneste
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Hélène Budzinski
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| |
Collapse
|
17
|
Trostel L, Coll C, Fenner K, Hafner J. Combining predictive and analytical methods to elucidate pharmaceutical biotransformation in activated sludge. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1322-1336. [PMID: 37539453 DOI: 10.1039/d3em00161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
While man-made chemicals in the environment are ubiquitous and a potential threat to human health and ecosystem integrity, the environmental fate of chemical contaminants such as pharmaceuticals is often poorly understood. Biodegradation processes driven by microbial communities convert chemicals into transformation products (TPs) that may themselves have adverse ecological effects. The detection of TPs formed during biodegradation has been continuously improved thanks to the development of TP prediction algorithms and analytical workflows. Here, we contribute to this advance by (i) reviewing past applications of TP identification workflows, (ii) applying an updated workflow for TP prediction to 42 pharmaceuticals in biodegradation experiments with activated sludge, and (iii) benchmarking 5 different pathway prediction models, comprising 4 prediction models trained on different datasets provided by enviPath, and the state-of-the-art EAWAG pathway prediction system. Using the updated workflow, we could tentatively identify 79 transformation products for 31 pharmaceutical compounds. Compared to previous works, we have further automatized several steps that were previously performed by hand. By benchmarking the enviPath prediction system on experimental data, we demonstrate the usefulness of the pathway prediction tool to generate suspect lists for screening, and we propose new avenues to improve their accuracy. Moreover, we provide a well-documented workflow that can be (i) readily applied to detect transformation products in activated sludge and (ii) potentially extended to other environmental studies.
Collapse
Affiliation(s)
- Leo Trostel
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
| | - Claudia Coll
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Jasmin Hafner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
van Gijn K, van Dam MRHP, de Wilt HA, de Wilde V, Rijnaarts HHM, Langenhoff AAM. Removal of micropollutants and ecotoxicity during combined biological activated carbon and ozone (BO 3) treatment. WATER RESEARCH 2023; 242:120179. [PMID: 37302178 DOI: 10.1016/j.watres.2023.120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Ozonation is a viable option to improve the removal of micropollutants (MPs) in wastewater treatment plants (WWTPs). Nevertheless, the application of ozonation is hindered by its high energy requirements and by the uncertainties regarding the formation of toxic transformation products in the process. Energy requirements of ozonation can be reduced with a pre-ozone treatment, such as a biological activated carbon (BAC) filter, that removes part of the effluent organic matter before ozonation. This study investigated a combination of BAC filtration followed by ozonation (the BO3 process) to remove MPs at low ozone doses and low energy input, and focused on the formation of toxic organic and inorganic products during ozonation. Effluent from a WWTP was collected, spiked with MPs (approximately 1 µg/L) and treated with the BO3 process. Different flowrates (0.25-4 L/h) and specific ozone doses (0.2-0.6 g O3/g TOC) were tested and MPs, ecotoxicity and bromate were analyzed. For ecotoxicity assessment, three in vivo (daphnia, algae and bacteria) and six in vitro CALUX assays (Era, GR, PAH, P53, PR, andNrf2 CALUX) were used. Results show that the combination of BAC filtration and ozonation has higher MP removal and higher ecotoxicity removal than only BAC filtration and only ozonation. The in vivo assays show a low ecotoxicity in the initial WWTP effluent samples and no clear trend with increasing ozone doses, while most of the in vitro assays show a decrease in ecotoxicity with increasing ozone dose. This suggests that for the tested bioassays, feed water and ozone doses, the overall ecotoxicity of the formed transformation products during ozonation was lower than the overall ecotoxicity of the parent compounds. In the experiments with bromide spiking, relevant formation of bromate was observed above specific ozone doses of approximately 0.4 O3/g TOC and more bromate was formed for the samples with BAC pre-treatment. This indirectly indicates the effectivity of the pre-treatment in removing organic matter and making ozone more available to react with other compounds (such as MPs, but also bromide), but also underlines the importance of controlling the ozone dose to be below the threshold to avoid formation of bromate. It was concluded that treatment of the tested WWTP effluent in the BO3 process at a specific ozone dose of 0.2 g O3/g TOC, results in high MP removal at limited energy input while no increase in ecotoxicity, nor formation of bromate was observed under this condition. This indicates that the hybrid BO3 process can be implemented to remove MPs and improve the ecological quality of this WWTP effluent with a lower energy demand than conventional MP removal processes such as standalone ozonation.
Collapse
Affiliation(s)
- K van Gijn
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - M R H P van Dam
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - H A de Wilt
- Royal HaskoningDHV, 3800 BC Amersfoort, the Netherlands
| | - V de Wilde
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - H H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - A A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
19
|
Guo Y, Yu G, von Gunten U, Wang Y. Evaluation of the role of superoxide radical as chain carrier for the formation of hydroxyl radical during ozonation. WATER RESEARCH 2023; 242:120158. [PMID: 37329717 DOI: 10.1016/j.watres.2023.120158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Superoxide radicals (O2•-) have been suggested as an important chain carrier in the radical chain reaction that promotes ozone (O3) decomposition to hydroxyl radicals (•OH) during ozonation. However, due to the difficulty in measuring transient O2•- concentrations, this hypothesis has not been verified under realistic ozonation conditions during water treatment. In this study, a probe compound was used in combination with kinetic modeling to evaluate the role of O2•- for O3 decomposition during ozonation of synthetic solutions with model promotors and inhibitors (methanol and acetate or tert-butanol) and natural waters (one groundwater and two surface waters). By measurement of the abatement of spiked tetrachloromethane (as a O2•- probe), the O2•- exposure during ozonation was determined. Based on the measured O2•- exposures, the relative contribution of O2•- to O3 decomposition, in comparison to OH-, •OH, and dissolved organic matter (DOM), was quantitatively evaluated using kinetic modeling. The results show that water compositions (e.g., the concentration of promotors and inhibitors, and the O3 reactivity of DOM) have a considerable effect on the extent of the O2•--promoted radical chain reaction during ozonation. In general, the reaction with O2•- accounted for ∼59‒70% and ∼45‒52% of the overall O3 decomposition during ozonation of the selected synthetic solutions and natural waters, respectively. This confirms that O2•- plays a critical role in promoting O3 decomposition to •OH. Overall, this study provides new insights on the controlling factors for ozone stability during ozonation processes.
Collapse
Affiliation(s)
- Yang Guo
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China.
| |
Collapse
|
20
|
Hofman‐Caris R, Dingemans M, Reus A, Shaikh SM, Muñoz Sierra J, Karges U, der Beek TA, Nogueiro E, Lythgo C, Parra Morte JM, Bastaki M, Serafimova R, Friel A, Court Marques D, Uphoff A, Bielska L, Putzu C, Ruggeri L, Papadaki P. Guidance document on the impact of water treatment processes on residues of active substances or their metabolites in water abstracted for the production of drinking water. EFSA J 2023; 21:e08194. [PMID: 37644961 PMCID: PMC10461463 DOI: 10.2903/j.efsa.2023.8194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.
Collapse
|
21
|
Alderete LS, Sauvêtre A, Chiron S, Tadić Đ. Investigating the Transformation Products of Selected Antibiotics and 17 α-Ethinylestradiol under Three In Vitro Biotransformation Models for Anticipating Their Relevance in Bioaugmented Constructed Wetlands. TOXICS 2023; 11:508. [PMID: 37368608 DOI: 10.3390/toxics11060508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The degradation of three antibiotics (sulfamethoxazole, trimethoprim, and ofloxacin) and one synthetic hormone (17 α-ethinylestradiol) was investigated in three in-vitro biotransformation models (i.e., pure enzymes, hairy root, and Trichoderma asperellum cultures) for anticipating the relevance of the formation of transformation products (TPs) in constructed wetlands (CWs) bioaugmented with T. asperellum fungus. The identification of TPs was carried out employing high-resolution mass spectrometry, using databases, or by interpreting MS/MS spectra. An enzymatic reaction with β-glucosidase was also used to confirm the presence of glycosyl-conjugates. The results showed synergies in the transformation mechanisms between these three models. Phase II conjugation reactions and overall glycosylation reactions predominated in hairy root cultures, while phase I metabolization reactions (e.g., hydroxylation and N-dealkylation) predominated in T. asperellum cultures. Following their accumulation/degradation kinetic profiles helped in determining the most relevant TPs. Identified TPs contributed to the overall residual antimicrobial activity because phase I metabolites can be more reactive and glucose-conjugated TPs can be transformed back into parent compounds. Similar to other biological treatments, the formation of TPs in CWs is of concern and deserves to be investigated with simple in vitro models to avoid the complexity of field-scale studies. This paper brings new findings on the emerging pollutants metabolic pathways established between T. asperellum and model plants, including extracellular enzymes.
Collapse
Affiliation(s)
- Lucas Sosa Alderete
- Institute of Environmental Biotechnology and Health, INBIAS-CONICET, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina
| | - Andrés Sauvêtre
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France
- HSM, University Montpellier, IMT Mines Ales, CNRS, IRD, 30100 Ales, France
| | - Serge Chiron
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France
| | - Đorđe Tadić
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France
| |
Collapse
|
22
|
Schumann P, Müller D, Eckardt P, Muschket M, Dittmann D, Rabe L, Kerst K, Lerch A, Reemtsma T, Jekel M, Ruhl AS. Pilot-scale removal of persistent and mobile organic substances in granular activated carbon filters and experimental predictability at lab-scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163738. [PMID: 37116805 DOI: 10.1016/j.scitotenv.2023.163738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Present knowledge about the fate of persistent and mobile (PM) substances in drinking water treatment is limited. Hence, this study assesses the potential of fixed-bed granular activated carbon (GAC) filters to fill the treatment gap for PM substances and the elimination predictability from lab-scale experiments. Two parallel pilot filters (GAC bed height 2 m, diameter 15 cm) with different GAC were operated for 1.5 years (ca. 47,000 BV throughput) alongside rapid small-scale column tests (RSSCT) designed based on the proportional diffusivity (PD) and the constant diffusivity (CD) approaches. Background dissolved organic matter (DOM) and a set of 17 target substances were investigated, among them 2-acrylamido-2-methylpropane sulfonate (AAMPS), adamantan-1-amine (ATA), melamine (MEL) and trifluoromethanesulfonic acid (TFMSA). Nine substances were predominantly present in the drinking water used as pilot filter influent (frequencies of detection above 80 %, median concentrations 0.003-1.868 μg/L) and their breakthrough behaviors could be observed: TFMSA was not retained at all, four substances including AAMPS and ATA reached complete breakthrough below 20,000 BV, three compounds were partially retained until the end of operation and oxypurinol was retained completely. The comparable PM candidate and DOM removal performances of both GAC aligns with their very similar surface characteristics and elemental compositions. The agreement of results between RSSCT with the pilot-scale filters were substance specific and no superior RSSCT design could be identified. However, CD-RSSCT provide a conservative removal prediction for most studied compounds. MEL adsorption was significantly underestimated by both RSSCT designs. Using the criterion of a carbon usage rate (with respect to 50 % breakthrough) below 25 mgGAC/Lwater for an economic retention by fixed-bed GAC filters, five (out of nine) substances met the requirement.
Collapse
Affiliation(s)
- Pia Schumann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Dario Müller
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany; Kommunale Wasserwerke Leipzig, Johannisgasse 7/9, 04103 Leipzig, Germany
| | - Paulina Eckardt
- Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel Dittmann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Luisa Rabe
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Kristin Kerst
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany
| | - André Lerch
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Jekel
- Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
23
|
Pharmaceutical Transformation Products Formed by Ozonation-Does Degradation Occur? Molecules 2023; 28:molecules28031227. [PMID: 36770894 PMCID: PMC9919501 DOI: 10.3390/molecules28031227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The efficiency of an advanced oxidation process (AOP) using direct and indirect ozonation for the removal of pharmaceutical residues from deliberately spiked deionized water was examined. Both direct and indirect ozonation demonstrated 34% to 100% removal of the parent compounds. However, based on the products' chemical structure and toxicity, we suggest that despite using accepted and affordable ozone and radical concentrations, the six parent compounds were not fully degraded, but merely transformed into 25 new intermediate products. The transformation products (TPs) differed slightly in structure but were mostly similar to their parent compounds in their persistence, stability and toxicity; a few of the TPs were found to be even more toxic than their parent compounds. Therefore, an additional treatment is required to improve and upgrade the traditional AOP toward degradation and removal of both parent compounds and their TPs for safer release into the environment.
Collapse
|
24
|
Full-Scale O3/Micro-Nano Bubbles System Based Advanced Oxidation as Alternative Tertiary Treatment in WWTP Effluents. Catalysts 2023. [DOI: 10.3390/catal13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Wastewater treatment plant effluents can be an important source of contamination in agricultural reuse practices, as pharmaceuticals are poorly degraded by conventional treatments and can enter crops, thereby becoming a toxicological risk. Therefore, advanced tertiary treatments are required. Ozone (O3) is a promising alternative due to its capacity to degrade pharmaceutical compounds, together with its disinfecting power. However, mass transfer from the gas to the liquid phase can be a limiting step. A novel alternative for increased ozone efficiency is the combination of micro-nano bubbles (MNBs). However, this is still a fairly unknown method, and there are also many uncertainties regarding their implementation in large-scale systems. In this work, a combined O3/MNBs full-scale system was installed in a WWTP to evaluate the removal efficiency of 12 pharmaceuticals, including COVID-19-related compounds. The results clearly showed that the use of MNBs had a significantly positive contribution to the effects of ozone, reducing energy costs with respect to conventional O3 processes. Workflow and ozone production were key factors for optimizing the system, with the highest efficiencies achieved at 2000 L/h and 15.9 gO3/h, resulting in high agronomic water quality effluents. A first estimation of the transformation products generated was described, jointly with the energy costs required.
Collapse
|
25
|
Pistocchi A, Andersen HR, Bertanza G, Brander A, Choubert JM, Cimbritz M, Drewes JE, Koehler C, Krampe J, Launay M, Nielsen PH, Obermaier N, Stanev S, Thornberg D. Treatment of micropollutants in wastewater: Balancing effectiveness, costs and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157593. [PMID: 35914591 DOI: 10.1016/j.scitotenv.2022.157593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this contribution, we analyse scenarios of advanced wastewater treatment for the removal of micropollutants. By this we refer to current mainstream, broad spectrum processes including ozonation and sorption onto activated carbon. We argue that advanced treatment requires properly implemented tertiary (nutrient removal) treatment in order to be effective. We review the critical aspects of the main advanced treatment options, their advantages and disadvantages. We propose a quantification of the costs of implementing advanced treatment, as well as upgrading plants from secondary to tertiary treatment when needed, and we illustrate what drives the costs of advanced treatment for a set of standard configurations. We propose a cost function to represent the total costs (investment, operation and maintenance) of advanced treatment. We quantify the implications of advanced treatment in terms of greenhouse gas emissions. Based on the indicators of total toxic discharge, toxicity at the discharge points and toxicity across the stream network discussed in Pistocchi et al. (2022), we compare costs and effectiveness of different scenarios of advanced treatment. In principle the total toxic load and toxicity at the points of discharge could be reduced by about 75 % if advanced treatment processes were implemented virtually at all wastewater treatment plants, but this would entail costs of about 4 billion euro/year for the European Union as a whole. We consider a "compromise" scenario where advanced treatment is required at plants of 100 thousand population equivalents (PE) or larger, or at plants between 10 and 100 thousand PE if the dilution ratio at the discharge point is 10 or less. Under this scenario, the length of the stream network exposed to high toxicity would not increase significantly compared to the previous scenario, and the other indicators would not deteriorate significantly, while the costs would remain at about 1.5 billion Euro/year. Arguably, costs could be further reduced, without a worsening of water quality, if we replace a local risk assessment to generic criteria of plant capacity and dilution in order to determine if a WWTP requires advanced treatment.
Collapse
Affiliation(s)
- A Pistocchi
- European Commission, Joint Research Centre, Ispra, Italy.
| | - H R Andersen
- Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | - J Krampe
- TU Wien, Institute for Water Quality and Resource Management, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
26
|
Semiconductors Application Forms and Doping Benefits to Wastewater Treatment: A Comparison of TiO2, WO3, and g-C3N4. Catalysts 2022. [DOI: 10.3390/catal12101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysis has been vastly applied for the removal of contaminants of emerging concern (CECs) and other micropollutants, with the aim of future water reclamation. As a process based upon photon irradiation, materials that may be activated through natural light sources are highly pursued, to facilitate their application and reduce costs. TiO2 is a reference material, and it has been greatly optimized. However, in its typical configuration, it is known to be mainly active under ultraviolet radiation. Thus, multiple alternative visible light driven (VLD) materials have been intensively studied recently. WO3 and g-C3N4 are currently attractive VLD catalysts, with WO3 possessing similarities with TiO2 as a metal oxide, allowing correlations between the knowledge regarding the reference catalyst, and g-C3N4 having an interesting and distinct non-metallic polymeric structure with the benefit of easy production. In this review, recent developments towards CECs degradation in TiO2 based photocatalysis are discussed, as reference catalyst, alongside the selected alternative materials, WO3 and g-C3N4. The aim here is to evaluate the different techniques more commonly explored to enhance catalyst photo-activity, specifically doping with multiple elements and the formation of composite materials. Moreover, the possible combination of photocatalysis and ozonation is also explored, as a promising route to potentialize their individual efficiencies and overcome typical drawbacks.
Collapse
|
27
|
Betsholtz A, Juárez R, Svahn O, Davidsson Å, Cimbritz M, Falås P. Ozonation of 14C-labeled micropollutants - mineralization of labeled moieties and adsorption of transformation products to activated carbon. WATER RESEARCH 2022; 221:118738. [PMID: 35738061 DOI: 10.1016/j.watres.2022.118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Ozonation transformation products (OTPs) are largely unknown compounds that are formed during the ozonation of micropollutants, and it is uncertain to which extent these compounds can be removed by subsequent adsorption to activated carbon. Thus, 14C-labeled micropollutants were ozonated to generate 14C-labeled OTPs, for which the adsorption of the sum of all 14C-labeled OTPs to activated carbon could be determined, based on the adsorption of the labeled carbon. Further, 14CO2 traps were used to examine the mineralization of 14C-labeled moieties during ozonation. 14CO2-formation revealed a partial mineralization of the 14C-labeled moieties in all compounds except for propyl-labeled bisphenol A and O-methyl-labeled naproxen. A similar degree of mineralization was noted for different compounds labeled at the same moiety, including the carboxylic carbon in diclofenac and ibuprofen (∼40% at 1 g O3/g DOC) and the aniline ring in sulfamethoxazole and sulfadiazine (∼30% at 1 g O3/g DOC). Aromatic ring cleavage was also confirmed for bisphenol A, sulfamethoxazole, and sulfadiazine through the formation of 14CO2. The adsorption experiments demonstrated increased adsorption of micropollutants to powdered activated carbon after ozonation, which was connected to a decreased adsorption of dissolved organic matter (DOM). Conversely, the OTPs showed a substantial and successive decline in adsorption at increased ozone doses for all compounds, likely due to decreased hydrophobicity and aromaticity of the OTPs. These findings indicate that adsorption to activated carbon alone is not a viable removal method for a wide range of ozonation transformation products.
Collapse
Affiliation(s)
- Alexander Betsholtz
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden.
| | - Rubén Juárez
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden; Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, Lund SE-223 70, Sweden
| | - Ola Svahn
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad SE-291 88, Sweden
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden
| | - Per Falås
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
28
|
Fauzi BOA, Kondo M, Elzagheid MI, Rhyman L, Ramasami P. Functionalization of Two-Dimensional Coordination Polymer in Small Organic Matter Removal from Organic Wastewater. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Lim S, Shi JL, von Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. WATER RESEARCH 2022; 213:118053. [PMID: 35196612 DOI: 10.1016/j.watres.2022.118053] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, β-diketones) and antibiotic resistance genes.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Jiaming Lily Shi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
30
|
Kienle C, Werner I, Fischer S, Lüthi C, Schifferli A, Besselink H, Langer M, McArdell CS, Vermeirssen ELM. Evaluation of a full-scale wastewater treatment plant with ozonation and different post-treatments using a broad range of in vitro and in vivo bioassays. WATER RESEARCH 2022; 212:118084. [PMID: 35114528 DOI: 10.1016/j.watres.2022.118084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Micropollutants present in the effluent of wastewater treatment plants (WWTPs) after biological treatment are largely eliminated by effective advanced technologies such as ozonation. Discharge of contaminants into freshwater ecosystems can thus be minimized, while simultaneously protecting drinking water resources. However, ozonation can lead to reactive and potentially toxic transformation products. To remove these, the Swiss Federal Office for the Environment recommends additional "post-treatment" of ozonated WWTP effluent using sand filtration, but other treatments may be similarly effective. In this study, 48 h composite wastewater samples were collected before and after full-scale ozonation, and after post-treatments (full-scale sand filtration, pilot-scale fresh and pre-loaded granular activated carbon, and fixed and moving beds). Ecotoxicological tests were performed to quantify the changes in water quality following different treatment steps. These included standard in vitro bioassays for the detection of endocrine, genotoxic and mutagenic effects, as well as toxicity to green algae and bacteria, and flow-through in vivo bioassays using oligochaetes and early life stages of rainbow trout. Results show that ozonation reduced a number of ecotoxicological effects of biologically treated wastewater by 66 - 93%: It improved growth and photosynthesis of green algae, decreased toxicity to luminescent bacteria, reduced concentrations of hormonally active contaminants and significantly changed expression of biomarker genes in rainbow trout liver. Bioassay results showed that ozonation did not produce problematic levels of reaction products overall. Small increases in toxicity observed in a few samples were reduced or eliminated by post-treatments. However, only relatively fresh granular activated carbon (analyzed at 13,000 - 20,000 bed volumes) significantly reduced effects additionally (by up to 66%) compared to ozonation alone. Inhibition of algal photosynthesis, rainbow trout liver histopathology and biomarker gene expression proved to be sufficiently sensitive endpoints to detect the change in water quality achieved by post-treatment.
Collapse
Affiliation(s)
- Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland.
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Stephan Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Christina Lüthi
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Harrie Besselink
- BioDetection Systems B.V. (BDS), Amsterdam, 1098 XH, Netherlands
| | - Miriam Langer
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | | |
Collapse
|
31
|
Gulde R, Clerc B, Rutsch M, Helbing J, Salhi E, McArdell CS, von Gunten U. Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. WATER RESEARCH 2021; 207:117812. [PMID: 34839057 DOI: 10.1016/j.watres.2021.117812] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Micropollutants (MP) with varying ozone-reactive moieties were spiked to lake water in the influent of a drinking water pilot plant consisting of an ozonation followed by a biological sand filtration. During ozonation, 227 transformation products (OTPs) from 39 of the spiked 51 MPs were detected after solid phase extraction by liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS). Based on the MS/MS data, tentative molecular structures are proposed. Reaction mechanisms for the formation of a large number of OTPs are suggested by combination of the kinetics of formation and abatement and state-of-the-art knowledge on ozone and hydroxyl radical chemistry. OTPs forming as primary or higher generation products from the oxidation of MPs could be differentiated. However, some expected products from the reactions of ozone with activated aromatic compounds and olefins were not detected with the applied analytical procedure. 187 OTPs were present in the sand filtration in sufficiently high concentrations to elucidate their fate in this treatment step. 35 of these OTPs (19%) were abated in the sand filtration step, most likely due to biodegradation. Only 24 (13%) of the OTPs were abated more efficiently than the parent compounds, with a dependency on the functional group of the parent MPs and OTPs. Overall, this study provides evidence, that the common assumption that OTPs are easily abated in biological post-treatment is not generally valid. Nevertheless, it is unknown how the OTPs, which escaped detection, would have behaved in the biological post-treatment.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Baptiste Clerc
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Moreno Rutsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | | | - Elisabeth Salhi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015 Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, CH-8092, Switzerland.
| |
Collapse
|
32
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
33
|
Juárez R, Karlsson S, Falås P, Davidsson Å, Bester K, Cimbritz M. Integrating dissolved and particulate matter into a prediction tool for ozonation of organic micropollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148711. [PMID: 34243008 DOI: 10.1016/j.scitotenv.2021.148711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is an established technique used to reduce the discharge of organic micropollutants into the aquatic environment, but the possibility of predicting the ozone demand for different wastewater matrices is still limited, especially in the presence of suspended solids (SS). A new tool for the prediction of the removal of organic micropollutants with ozone, based on dissolved and particulate matter in activated sludge effluents, was therefore developed. The removal of 25 organic micropollutants was determined on laboratory scale in the presence and absence of suspended solids. The linear trajectories of the dose-response curves enabled the determination of a new set of removal constants, based on dissolved chemical oxygen demand (COD) and SS. The presence of SS had a more negative effect on the removal of slow-reacting micropollutants (removal constant <3.5 mg CODCr,diss·mg O3-1) with ozone than on the fast-reacting micropollutants (removal constant >3.5 mg CODCr,diss·mg O3-1). However, the decreased removal of the organic micropollutants was generally small, <10%, at typical SS concentrations, <25 mg SS·L-1. Integration of the new removal constants based on COD and SS enabled the removal in an ozone pilot plant to be modelled with an average deviation of <10% for several organic micropollutants. The use of the frequently measured parameters, COD and SS, as input parameters could facilitate the future use of the tool to predict the removal of micropollutants during ozonation.
Collapse
Affiliation(s)
- Rubén Juárez
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden; Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden.
| | - Stina Karlsson
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden; Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| |
Collapse
|
34
|
Schollée JE, Hollender J, McArdell CS. Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment. WATER RESEARCH 2021; 200:117209. [PMID: 34102384 DOI: 10.1016/j.watres.2021.117209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Advanced treatment is increasingly being applied to improve abatement of micropollutants in wastewater effluent and reduce their load to surface waters. In this study, non-target screening of high-resolution mass spectrometry (HRMS) data, collected at three Swiss wastewater treatment plants (WWTPs), was used to evaluate different advanced wastewater treatment setups, including (1) granular activated carbon (GAC) filtration alone, (2) pre-ozonation followed by GAC filtration, and (3) pre-ozonation followed by powdered activated carbon (PAC) dosed onto a sand filter. Samples were collected at each treatment step of the WWTP and analyzed with reverse-phase liquid chromatography coupled to HRMS. Each WWTP received a portion of industrial wastewater and a prioritization method was applied to select non-target features potentially resulting from industrial activities. Approximately 37,000 non-target features were found in the influents of the WWTPs. A number of non-target features (1207) were prioritized as likely of industrial origin and 54 were identified through database spectral matching. The fates of all detected non-target features were assessed through a novel automated trend assignment method. A trend was assigned to each non-target feature based on the normalized intensity profile for each sampling date. Results showed that 73±4% of influent non-target features and the majority of industrial features (89%) were well-removed (i.e., >80% intensity reduction) during biological treatment in all three WWTPs. Advanced treatment removed, on average, an additional 11% of influent non-target features, with no significant differences observed among the different advanced treatment settings. In contrast, when considering a subset of 66 known micropollutants, advanced treatment was necessary to adequately abate these compounds and higher abatement was observed in fresh GAC (7,000-8,000 bed volumes (BVs)) compared to older GAC (18,000-48,000 BVs) (80% vs 56% of micropollutants were well-removed, respectively). Approximately half of the features detected in the WWTP effluents were features newly formed during the various treatment steps. In ozonation, between 1108-3579 features were classified as potential non-target ozonation transformation products (OTPs). No difference could be observed for their removal in GAC filters at the BVs investigated (70% of OTPs were well-removed on average). Similar amounts (67%) was observed with PAC (7.7-13.6 mg/L) dosed onto a sand filter, demonstrating that a post-treatment with activated carbon is efficient for the removal of OTPs.
Collapse
Affiliation(s)
- Jennifer E Schollée
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 8600, Switzerland.
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 8600, Switzerland; ETH Zurich, Institute of Biopollutant Dynamics, Zurich 8092, Switzerland
| | - Christa S McArdell
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 8600, Switzerland
| |
Collapse
|