1
|
Geng Z, Deng T, Gu B, Qian X, Li R, Duan L, Li J, Han W, Qu L, Wei K. Visible-light-sensitive microrobots using H 2O as fuel for highly efficient capture and precise detection of nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135731. [PMID: 39255664 DOI: 10.1016/j.jhazmat.2024.135731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Nanoplastics, which are small plastic particles resulting from the decomposition of plastic waste, can accumulate and adsorb toxic chemicals in aquatic environments, leading to detrimental effects on the environment and human health. Consequently, there is an urgent demand for the development of an efficient method to accurately quantify and effectively remove nanoplastics. Here, we prepared a novel "cage-like" microrobot for effective dynamic capture and highly sensitive surface-enhanced Raman scattering detection of nanoplastics in situ. The microrobot utilizes water as fuel under visible light and achieves efficient capture of nanoplastics within 2 min on the basis of the stacking structure between layers and electrostatic action. The microrobot could be recovered by an external magnetic field, and the SERS activity was greatly enhanced through the coupling of multilayer hot spots, with a detection limit of 1.27 μg/mL. We built a simple device to demonstrate the feasibility of the microrobot strategy of capturing plastic in real wastewater and further extended this technology to single-use plastic cups in everyday life. Moreover, many different types of plastic spectra can also be quickly distinguished when combined with machine learning. This work provides new ideas for improving the dynamic capture and effective monitoring of nanoplastics.
Collapse
Affiliation(s)
- Zhiqin Geng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China; School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tangtang Deng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Bohan Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinting Qian
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Rui Li
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Linfen Duan
- Shphotonics Technology Co., Ltd. G1-802, Suzhou 21500, China
| | - Junyang Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weiqing Han
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Kajia Wei
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
2
|
Liu J, Osadchy M, Wang Y, Wu Y, Li E, Hu X, Fang Y. Vibrational Spectroscopy Can Be Vulnerable to Adversarial Attacks. Anal Chem 2024; 96:16570-16580. [PMID: 39392227 DOI: 10.1021/acs.analchem.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nondestructive detection methods based on vibrational spectroscopy have been widely used in many critical applications in a variety of fields such as the chemical industry, pharmacy, national defense, security, and so on. As these methods/applications rely on machine learning models for data analysis, studying the threats associated with adversarial examples in vibrational spectroscopy and defenses against them is of great importance. In this paper, we propose a novel adversarial method to attack vibrational spectroscopy, named SynPat, where synthetic peaks produced by a physical model are placed at key locations to form adversarial perturbations. Our new attack generates perturbations that successfully deceive machine learning models for Raman and infrared spectrum analysis while they blend much better into the spectra and hence are unnoticeable to human operators, unlike the existing state-of-the-art adversarial attacking methods, e.g., images and audio. We verified the superiority of the proposed SynPat by an imperceptibility test conducted by human experts and of defense experiments by an AI detector. To the best of our knowledge, this is a first thorough study on the robustness of vibrational spectroscopic techniques against adversarial samples and defense mechanisms. Our extensive experiments show that machine learning models for vibrational spectroscopy, including conventional and deep models for Raman or infrared classification and regression, are all vulnerable to adversarial perturbations and thus may pose serious security threats to our society.
Collapse
Affiliation(s)
- Jinchao Liu
- Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University, Tianjin 300071, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin 300071, China
| | - Margarita Osadchy
- Department of Computer Science, Haifa University, Haifa 3498838, Israel
| | - Yan Wang
- Visionmetric Ltd, Canterbury CT2 7FG, U.K
| | - Yingying Wu
- Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Enyi Li
- Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xiaolin Hu
- State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yongchun Fang
- Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University, Tianjin 300071, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin 300071, China
| |
Collapse
|
3
|
Sitjar J, Liao JD, Lee H, Tsai HP, Wang JR. Innovative and versatile surface-enhanced Raman spectroscopy-inspired approaches for viral detection leading to clinical applications: A review. Anal Chim Acta 2024; 1325:342917. [PMID: 39244310 DOI: 10.1016/j.aca.2024.342917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/09/2024]
Abstract
The evolution of analytical techniques has opened the possibilities of accurate analyte detection through a straightforward method and short acquisition time, leading towards their applicability to identify medical conditions. Surface-enhanced Raman spectroscopy (SERS) has long been proven effective for rapid detection and relies on SERS spectra that are unique to each specific analyte. However, the complexity of viruses poses challenges to SERS and hinders further progress in its practical applications. The principle of SERS revolves around the interaction among substrate, analyte, and Raman laser, but most studies only emphasize the substrate, especially label-free methods, and the synergy among these factors is often ignored. Therefore, issues related to reproducibility and consistency of results, which are crucial for medical diagnosis and are the main highlights of this review, can be understood and largely addressed when considering these interactions. Viruses are composed of multiple surface components and can be detected by label-free SERS, but the presence of non-target molecules in clinical samples interferes with the detection process. Appropriate spectral data processing workflow also plays an important role in the interpretation of results. Furthermore, integrating machine learning into data processing can account for changes brought about by the presence of non-target molecules when analyzing spectral features to accurately group the data, for example, whether the sample corresponds to a positive or negative patient, and whether a virus variant or multiple viruses are present in the sample. Subsequently, advances in interdisciplinary fields can bring SERS closer to practical applications.
Collapse
Affiliation(s)
- Jaya Sitjar
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jiunn-Der Liao
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Han Lee
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jen-Ren Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
4
|
Li D, Yue W, He Q, Gao P, Gong T, Luo Y, Wang C, Luo X. Single-molecule detection of SARS-CoV-2 N protein on multilayered plasmonic nanotraps with surface-enhanced Raman spectroscopy. Talanta 2024; 278:126494. [PMID: 38955100 DOI: 10.1016/j.talanta.2024.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The spread of the SARS-CoV-2 virus has had an unprecedented impact, both by posing a serious risk to human health and by amplifying the burden on the global economy. The rapid identification of the SARS-CoV-2 virus has been crucial to preventing and controlling the spread of SARS-CoV-2 infections. In this study, we propose a multilayered plasmonic nanotrap (MPNT) device for the rapid identification of single particles of SARS-CoV-2 virus in ultra-high sensitivity by surface-enhanced Raman scattering (SERS). The MPNT device is composed of arrays of concentric cylindrical cavities with Ag/SiO2/Ag multilayers deposited on the top and at the bottom. By varying the diameter of the cylinders and the thickness of the multilayers, the resonant optical absorption and local electric field were optimized. The SERS enhancement factors of the proposed device are of the order of 108, which enable the rapid identification of SARS-CoV-2 N protein in concentrations as low as 1.25 × 10-15-12.5 × 10-15 g mL-1 within 1 min. The developed MPNT SERS device provides a label-free and rapid detection platform for SARS-CoV-2 virus. The general nature of the device makes it equally suitable to detect other infectious viruses.
Collapse
Affiliation(s)
- Dongxian Li
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weisheng Yue
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong He
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gao
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China
| | - Tiancheng Gong
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfei Luo
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changtao Wang
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangang Luo
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Wang L, Sun J, Wang X, Lei M, Shi Z, Liu L, Xu C. Visual and quantitative lateral flow immunoassay based on Au@PS SERS tags for multiplex cardiac biomarkers. Talanta 2024; 274:126040. [PMID: 38581853 DOI: 10.1016/j.talanta.2024.126040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Rapid and sensitive detection of multiple biomarkers by lateral flow immunoassay (LFIA) remains challenging for signal amplification for commonly used nanotags. Herein, we report a novel LFIA strip for visual and highly sensitive analysis of two cardiac biomarkers based on functionalized gold nanoparticles @ polystyrene microsphere (Au@PS)microcavity as surface-enhanced Raman scattering (SERS) tags. Antibody-modified Au@PS was designed as a SERS label. The evanescent waves propagating along the surface of the PS microcavity and the localized surface plasmons of the gold nanoparticles were coupled to enhance the light-matter interaction synergistically for Raman signal enhancement. In this strategy, the proposed Au@PS SERS tags-based LFIA was carried out to quantify the content of the heart failure and infarct biomarkers synchronously within 15 min and get the limits of detection of 1 pg/mL and 10 pg/mL for cardiac troponin I (cTnI) and N-terminal natriuretic peptide precursor (NT-proBNP), respectively. The results demonstrated 10-20 folds more sensitivity than that of the standard colloidal gold strip and fluorescent strip for the same biomarkers. This novel quantitative LFIA shows promise as a high-sensitive and visual sensing method for relevant clinical and forensic analysis.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jianli Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxuan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Milan Lei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zengliang Shi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Lei Liu
- Faculty Electronic Information Engineering, Huaiyin Institute of Technology, Huaiyin, 223003, China.
| | - Chunxiang Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
6
|
Yang Y, Cui J, Luo D, Murray J, Chen X, Hülck S, Tripp RA, Zhao Y. Rapid Detection of SARS-CoV-2 Variants Using an Angiotensin-Converting Enzyme 2-Based Surface-Enhanced Raman Spectroscopy Sensor Enhanced by CoVari Deep Learning Algorithms. ACS Sens 2024; 9:3158-3169. [PMID: 38843447 PMCID: PMC11217934 DOI: 10.1021/acssensors.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
Collapse
Affiliation(s)
- Yanjun Yang
- Department
of Physics and Astronomy, The University
of Georgia, Athens, Georgia 30602, United States
| | - Jiaheng Cui
- School
of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Dan Luo
- Department
of Statistics, The University of Georgia, Athens, Georgia 30602, United States
| | - Jackelyn Murray
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Xianyan Chen
- Department
of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, Georgia 30602, United States
| | | | - Ralph A. Tripp
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Yiping Zhao
- Department
of Physics and Astronomy, The University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Nuguri SM, Hackshaw KV, Castellvi SDL, Wu Y, Gonzalez CM, Goetzman CM, Schultz ZD, Yu L, Aziz R, Osuna-Diaz MM, Sebastian KR, Brode WM, Giusti MM, Rodriguez-Saona L. Surface-Enhanced Raman Spectroscopy Combined with Multivariate Analysis for Fingerprinting Clinically Similar Fibromyalgia and Long COVID Syndromes. Biomedicines 2024; 12:1447. [PMID: 39062021 PMCID: PMC11275161 DOI: 10.3390/biomedicines12071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Fibromyalgia (FM) is a chronic central sensitivity syndrome characterized by augmented pain processing at diffuse body sites and presents as a multimorbid clinical condition. Long COVID (LC) is a heterogenous clinical syndrome that affects 10-20% of individuals following COVID-19 infection. FM and LC share similarities with regard to the pain and other clinical symptoms experienced, thereby posing a challenge for accurate diagnosis. This research explores the feasibility of using surface-enhanced Raman spectroscopy (SERS) combined with soft independent modelling of class analogies (SIMCAs) to develop classification models differentiating LC and FM. Venous blood samples were collected using two supports, dried bloodspot cards (DBS, n = 48 FM and n = 46 LC) and volumetric absorptive micro-sampling tips (VAMS, n = 39 FM and n = 39 LC). A semi-permeable membrane (10 kDa) was used to extract low molecular fraction (LMF) from the blood samples, and Raman spectra were acquired using SERS with gold nanoparticles (AuNPs). Soft independent modelling of class analogy (SIMCA) models developed with spectral data of blood samples collected in VAMS tips showed superior performance with a validation performance of 100% accuracy, sensitivity, and specificity, achieving an excellent classification accuracy of 0.86 area under the curve (AUC). Amide groups, aromatic and acidic amino acids were responsible for the discrimination patterns among FM and LC syndromes, emphasizing the findings from our previous studies. Overall, our results demonstrate the ability of AuNP SERS to identify unique metabolites that can be potentially used as spectral biomarkers to differentiate FM and LC.
Collapse
Affiliation(s)
- Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA
| | - Silvia de Lamo Castellvi
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Yalan Wu
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Celeste Matos Gonzalez
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Chelsea M. Goetzman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.M.G.); (Z.D.S.)
- Savannah River National Laboratory, Jackson, SC 29831, USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.M.G.); (Z.D.S.)
| | - Lianbo Yu
- Center of Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA; (L.Y.); (W.M.B.)
| | - Rija Aziz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (K.R.S.)
| | - Michelle M. Osuna-Diaz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (K.R.S.)
| | - Katherine R. Sebastian
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (K.R.S.)
| | - W. Michael Brode
- Center of Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA; (L.Y.); (W.M.B.)
| | - Monica M. Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| |
Collapse
|
8
|
Wu Y, Liu J, Wang Y, Gibson S, Osadchy M, Fang Y. Reconstructing Randomly Masked Spectra Helps DNNs Identify Discriminant Wavenumbers. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:3845-3861. [PMID: 38150338 DOI: 10.1109/tpami.2023.3347617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Nondestructive detection methods, based on vibrational spectroscopy, are vitally important in a wide range of applications including industrial chemistry, pharmacy and national defense. Recently, deep learning has been introduced into vibrational spectroscopy showing great potential. Different from images, text, etc. that offer large labeled data sets, vibrational spectroscopic data is very limited, which requires novel concepts beyond transfer and meta learning. To tackle this, we propose a task-enhanced augmentation network (TeaNet). The key component of TeaNet is a reconstruction module that inputs randomly masked spectra and outputs reconstructed samples that are similar to the original ones, but include additional variations learned from the domain. These augmented samples are used to train the classification model. The reconstruction and prediction parts are trained simultaneously, end-to-end with back-propagation. Results on both synthetic and real-world datasets verified the superiority of the proposed method. In the most difficult synthetic scenarios TeaNet outperformed CNN by 17%. We visualized and analysed the neuron responses of TeaNet and CNN, and found that TeaNet's ability to identify discriminant wavenumbers was excellent compared to CNN. Our approach is general and can be easily adapted to other domains, offering a solution to more accurate and interpretable few-shot learning.
Collapse
|
9
|
Yuan S, Huang Y, Xie P, Li P. A Case of Severe Rhabdomyolysis, Acute Myocardial Damage and Multi-Organ Dysfunction Syndrome in a Patient with Novel Coronavirus Pneumonia. Open Access Emerg Med 2024; 16:19-28. [PMID: 38318470 PMCID: PMC10840558 DOI: 10.2147/oaem.s446994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
In recent years, healthcare systems worldwide have faced the challenge of the severe COVID-19 pandemic. However, cases of severe rhabdomyolysis, acute myocardial damage, and multiple organ dysfunction syndrome (MODS) caused by COVID-19 are currently rare. This report presents a case of severe rhabdomyolysis, acute myocardial damage, and MODS caused by COVID-19. The patient was treated at The University of Hong Kong-Shenzhen Hospital. The purpose of this report is to aid clinicians in quickly identifying and treating similar cases, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Shuaishuai Yuan
- Division of Cardiovascular Intensive Care (C-ICU), Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Guangdong, People’s Republic of China
| | - Yuting Huang
- Division of Cardiovascular Intensive Care (C-ICU), Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Guangdong, People’s Republic of China
| | - Pailing Xie
- Division of Cardiovascular Intensive Care (C-ICU), Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Guangdong, People’s Republic of China
| | - Peijun Li
- Division of Cardiovascular Intensive Care (C-ICU), Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Guangdong, People’s Republic of China
| |
Collapse
|
10
|
Huang JD, Wang H, Power U, McLaughlin JA, Nugent C, Rahman E, Barabas J, Maguire P. Detecting Respiratory Viruses Using a Portable NIR Spectrometer-A Preliminary Exploration with a Data Driven Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:308. [PMID: 38203170 PMCID: PMC10781395 DOI: 10.3390/s24010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Respiratory viruses' detection is vitally important in coping with pandemics such as COVID-19. Conventional methods typically require laboratory-based, high-cost equipment. An emerging alternative method is Near-Infrared (NIR) spectroscopy, especially a portable one of the type that has the benefits of low cost, portability, rapidity, ease of use, and mass deployability in both clinical and field settings. One obstacle to its effective application lies in its common limitations, which include relatively low specificity and general quality. Characteristically, the spectra curves show an interweaving feature for the virus-present and virus-absent samples. This then provokes the idea of using machine learning methods to overcome the difficulty. While a subsequent obstacle coincides with the fact that a direct deployment of the machine learning approaches leads to inadequate accuracy of the modelling results. This paper presents a data-driven study on the detection of two common respiratory viruses, the respiratory syncytial virus (RSV) and the Sendai virus (SEV), using a portable NIR spectrometer supported by a machine learning solution enhanced by an algorithm of variable selection via the Variable Importance in Projection (VIP) scores and its Quantile value, along with variable truncation processing, to overcome the obstacles to a certain extent. We conducted extensive experiments with the aid of the specifically developed algorithm of variable selection, using a total of four datasets, achieving classification accuracy of: (1) 0.88, 0.94, and 0.93 for RSV, SEV, and RSV + SEV, respectively, averaged over multiple runs, for the neural network modelling of taking in turn 3 sessions of data for training and the remaining one session of an 'unknown' dataset for testing. (2) the average accuracy of 0.94 (RSV), 0.97 (SEV), and 0.97 (RSV + SEV) for model validation and 0.90 (RSV), 0.93 (SEV), and 0.91 (RSV + SEV) for model testing, using two of the datasets for model training, one for model validation and the other for model testing. These results demonstrate the feasibility of using portable NIR spectroscopy coupled with machine learning to detect respiratory viruses with good accuracy, and the approach could be a viable solution for population screening.
Collapse
Affiliation(s)
- Jian-Dong Huang
- School of Computing, Ulster University, Belfast BT15 1AP, UK
| | - Hui Wang
- School of Computing, Ulster University, Belfast BT15 1AP, UK
| | - Ultan Power
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James A. McLaughlin
- NIBEC Nanotechnology & Integrated Bio-Engineering Centre, School of Engineering, Ulster University, Belfast BT15 1AP, UK
| | - Chris Nugent
- School of Computing, Ulster University, Belfast BT15 1AP, UK
| | - Enayetur Rahman
- NIBEC Nanotechnology & Integrated Bio-Engineering Centre, School of Engineering, Ulster University, Belfast BT15 1AP, UK
| | - Judit Barabas
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Paul Maguire
- NIBEC Nanotechnology & Integrated Bio-Engineering Centre, School of Engineering, Ulster University, Belfast BT15 1AP, UK
| |
Collapse
|
11
|
Liu Y, Qin Z, Jia X, Zhou J, Li H, Wang X, Chen Y, Deng J, Jin Z, Wang G. Directly and ultrasensitivity detecting SARS-CoV-2 spike protein in pharyngeal swab solution by using SERS-based biosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123275. [PMID: 37611522 DOI: 10.1016/j.saa.2023.123275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a great disaster to the economy and human society. Nowadays, SARS-CoV-2 is fading away from people's memory but it still exists around us. PCR plays an important role in detecting SARS-CoV-2 but it requires a long detecting time, equipped laboratory, and professional operators. In comparison with polymerase chain reaction (PCR), surface-enhanced Raman scattering (SERS) is a promising method for detecting SARS-CoV-2 due to its fast, easily operated, and high-sensitivity properties. In this study, the monolayer Ag nanoparticles (MAgNPs) covered with single-layer graphene (SLG) are applied as a SERS substrate. The angiotensin converting enzyme 2 (ACE2) is selected as a bio-probes that can specifically bind to the SARS-CoV-2 S protein. The SERS-based biosensor is formed by ACE2 functionalized SLG/MAgNPs and the LODs of detecting SARS-CoV-2 S protein in phosphate-buffered saline (PBS) and in pharyngeal swabs solution (PSS) are 0.1 fg mL-1 and 10 fg mL-1, respectively. This biosensor provides a way of directly detecting SARS-CoV-2 S protein with high sensitivity and specificity. It illustrates a practical potential in the rapid detection of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China.
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| | - Yating Chen
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| | - Junpeng Deng
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| | - Zhicheng Jin
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City 545006, Guangxi, China
| |
Collapse
|
12
|
Liu M, Mu J, Wang M, Hu C, Ji J, Wen C, Zhang D. Impacts of polypropylene microplastics on lipid profiles of mouse liver uncovered by lipidomics analysis and Raman spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131918. [PMID: 37356177 DOI: 10.1016/j.jhazmat.2023.131918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Microplastics (MPs) are emerging contaminants, and there are only limited studies reporting the impacts of some MPs on liver lipid metabolism in animals. In this study, we investigated the accumulation of polypropylene-MPs in mouse liver and unraveled the change in lipid metabolic profiles by both lipidomics and Raman spectroscopy. Polypropylene-MP exposure did not cause obvious health symptoms, but hematoxylin-eosin staining showed pathological changes that polypropylene-MPs induced lipid droplet accumulation in liver. Lipidomics results showed a significant change in lipid metabolic profiles and the most influenced categories were triglycerides, fatty acids, free fatty acids and lysophosphatidylcholine, implying the effects of polypropylene-MPs on the hemostasis of lipid droplet biogenesis and catabolism. Most altered lipids contained unsaturated bonds and polyunsaturated phospholipids, possibly affecting the fluidity and curvature of membrane surfaces. Raman spectroscopy confirmed that the major spectral alterations of liver tissues were related to lipids, evidencing the altered lipid metabolism and cell membrane components in the presence of polypropylene-MPs. Our findings firstly disclosed the impacts of polypropylene-MPs on lipid metabolisms in mouse liver and hinted at their detrimental disturbance on membrane properties, cellular lipid storage and oxidation regulation, helping our deeper understanding on the toxicities and corresponding risks of polypropylene-MPs to mammals.
Collapse
Affiliation(s)
- Mingying Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ju Mu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Miao Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Changfeng Hu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jinjun Ji
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Chengping Wen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
13
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
14
|
Rusciano G, Capaccio A, Sasso A, Capo A, Almuzara CM, Staiano M, D’Auria S, Varriale A. A Surface-Enhanced Raman Spectroscopy-Based Biosensor for the Detection of Biological Macromolecules: The Case of the Lipopolysaccharide Endotoxin Molecules. Int J Mol Sci 2023; 24:12099. [PMID: 37569474 PMCID: PMC10419157 DOI: 10.3390/ijms241512099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The development of sensitive methods for the detection of endotoxin molecules, such as lipopolysaccharides (LPS), is essential for food safety and health control. Conventional analytical methods used for LPS detection are based on the pyrogen test, plating and culture-based methods, and the limulus amoebocyte lysate method (LAL). Alternatively, the development of reliable biosensors for LPS detection would be highly desirable to solve some critical issues, such as high cost and a long turnaround time. In this work, we present a label-free Surface-Enhanced Raman Spectroscopy (SERS)-based method for LPS detection in its free form. The proposed method combines the benefits of plasmonic enhancement with the selectivity provided by a specific anti-lipid A antibody (Ab). A high-enhancing nanostructured silver substrate was coated with Ab. The presence of LPS was quantitatively monitored by analyzing the changes in the Ab spectra obtained in the absence and presence of LPS. A limit of detection (LOD) and quantification (LOQ) of 12 ng/mL and 41 ng/mL were estimated, respectively. Importantly, the proposed technology could be easily expanded for the determination of other biological macromolecules.
Collapse
Affiliation(s)
- Giulia Rusciano
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (G.R.); (A.C.); (A.S.)
| | - Angela Capaccio
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (G.R.); (A.C.); (A.S.)
- Institute of Food Sciences (ISA), CNR, 83100 Avellino, Italy; (A.C.); (C.M.A.); (M.S.)
| | - Antonio Sasso
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (G.R.); (A.C.); (A.S.)
| | - Alessandro Capo
- Institute of Food Sciences (ISA), CNR, 83100 Avellino, Italy; (A.C.); (C.M.A.); (M.S.)
| | | | - Maria Staiano
- Institute of Food Sciences (ISA), CNR, 83100 Avellino, Italy; (A.C.); (C.M.A.); (M.S.)
| | - Sabato D’Auria
- Department of Biology, Agriculture and Food Sciences, CNR, 00185 Rome, Italy
| | - Antonio Varriale
- Institute of Food Sciences, URT-CNR at Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| |
Collapse
|
15
|
John P, Vasa NJ, Zam A. Optical Biosensors for the Diagnosis of COVID-19 and Other Viruses-A Review. Diagnostics (Basel) 2023; 13:2418. [PMID: 37510162 PMCID: PMC10378272 DOI: 10.3390/diagnostics13142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The sudden outbreak of the COVID-19 pandemic led to a huge concern globally because of the astounding increase in mortality rates worldwide. The medical imaging computed tomography technique, whole-genome sequencing, and electron microscopy are the methods generally used for the screening and identification of the SARS-CoV-2 virus. The main aim of this review is to emphasize the capabilities of various optical techniques to facilitate not only the timely and effective diagnosis of the virus but also to apply its potential toward therapy in the field of virology. This review paper categorizes the potential optical biosensors into the three main categories, spectroscopic-, nanomaterial-, and interferometry-based approaches, used for detecting various types of viruses, including SARS-CoV-2. Various classifications of spectroscopic techniques such as Raman spectroscopy, near-infrared spectroscopy, and fluorescence spectroscopy are discussed in the first part. The second aspect highlights advances related to nanomaterial-based optical biosensors, while the third part describes various optical interferometric biosensors used for the detection of viruses. The tremendous progress made by lab-on-a-chip technology in conjunction with smartphones for improving the point-of-care and portability features of the optical biosensors is also discussed. Finally, the review discusses the emergence of artificial intelligence and its applications in the field of bio-photonics and medical imaging for the diagnosis of COVID-19. The review concludes by providing insights into the future perspectives of optical techniques in the effective diagnosis of viruses.
Collapse
Affiliation(s)
- Pauline John
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Nilesh J Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Azhar Zam
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
- Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
16
|
Liu Y, Qin Z, Zhou J, Jia X, Li H, Wang X, Chen Y, Sun Z, He X, Li H, Wang G, Chang H. Nano-biosensor for SARS-CoV-2/COVID-19 detection: methods, mechanism and interface design. RSC Adv 2023; 13:17883-17906. [PMID: 37323463 PMCID: PMC10262965 DOI: 10.1039/d3ra02560h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) was a huge disaster to human society. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to COVID-19, has resulted in a large number of deaths. Even though the reverse transcription-polymerase chain reaction (RT-PCR) is the most efficient method for the detection of SARS-CoV-2, the disadvantages (such as long detection time, professional operators, expensive instruments, and laboratory equipment) limit its application. In this review, the different kinds of nano-biosensors based on surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), field-effect transistor (FET), fluorescence methods, and electrochemical methods are summarized, starting with a concise description of their sensing mechanism. The different bioprobes (such as ACE2, S protein-antibody, IgG antibody, IgM antibody, and SARS-CoV-2 DNA probes) with different bio-principles are introduced. The key structural components of the biosensors are briefly introduced to give readers an understanding of the principles behind the testing methods. In particular, SARS-CoV-2-related RNA mutation detection and its challenges are also briefly described. We hope that this review will encourage readers with different research backgrounds to design SARS-CoV-2 nano-biosensors with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Yating Chen
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Zijun Sun
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiong He
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongda Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| |
Collapse
|
17
|
Berus SM, Nowicka AB, Wieruszewska J, Niciński K, Kowalska AA, Szymborski TR, Dróżdż I, Borowiec M, Waluk J, Kamińska A. SERS Signature of SARS-CoV-2 in Saliva and Nasopharyngeal Swabs: Towards Perspective COVID-19 Point-of-Care Diagnostics. Int J Mol Sci 2023; 24:ijms24119706. [PMID: 37298658 DOI: 10.3390/ijms24119706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, the intrinsic surface-enhanced Raman spectroscopy (SERS)-based approach coupled with chemometric analysis was adopted to establish the biochemical fingerprint of SARS-CoV-2 infected human fluids: saliva and nasopharyngeal swabs. The numerical methods, partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC), facilitated the spectroscopic identification of the viral-specific molecules, molecular changes, and distinct physiological signatures of pathetically altered fluids. Next, we developed the reliable classification model for fast identification and differentiation of negative CoV(-) and positive CoV(+) groups. The PLS-DA calibration model was described by a great statistical value-RMSEC and RMSECV below 0.3 and R2cal at the level of ~0.7 for both type of body fluids. The calculated diagnostic parameters for SVMC and PLS-DA at the stage of preparation of calibration model and classification of external samples simulating real diagnostic conditions evinced high accuracy, sensitivity, and specificity for saliva specimens. Here, we outlined the significant role of neopterin as the biomarker in the prediction of COVID-19 infection from nasopharyngeal swab. We also observed the increased content of nucleic acids of DNA/RNA and proteins such as ferritin as well as specific immunoglobulins. The developed SERS for SARS-CoV-2 approach allows: (i) fast, simple and non-invasive collection of analyzed specimens; (ii) fast response with the time of analysis below 15 min, and (iii) sensitive and reliable SERS-based screening of COVID-19 disease.
Collapse
Affiliation(s)
- Sylwia M Berus
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ariadna B Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Wieruszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta A Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz R Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, Huang Z, Shi J, Yang Y. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnology 2023; 21:149. [PMID: 37149605 PMCID: PMC10163864 DOI: 10.1186/s12951-023-01890-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.
Collapse
Affiliation(s)
- Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingxia Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
19
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
20
|
Lukose J, Barik AK, George SD, Murukeshan VM, Chidangil S. Raman spectroscopy for viral diagnostics. Biophys Rev 2023; 15:199-221. [PMID: 37113565 PMCID: PMC10088700 DOI: 10.1007/s12551-023-01059-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Raman spectroscopy offers the potential for fingerprinting biological molecules at ultra-low concentration and therefore has potential for the detection of viruses. Here we review various Raman techniques employed for the investigation of viruses. Different Raman techniques are discussed including conventional Raman spectroscopy, surface-enhanced Raman spectroscopy, Raman tweezer, tip-enhanced Raman Spectroscopy, and coherent anti-Stokes Raman scattering. Surface-enhanced Raman scattering can play an essential role in viral detection by multiplexing nanotechnology, microfluidics, and machine learning for ensuring spectral reproducibility and efficient workflow in sample processing and detection. The application of these techniques to diagnose the SARS-CoV-2 virus is also reviewed. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01059-4.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Sajan D. George
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - V. M. Murukeshan
- Centre for Optical and Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| |
Collapse
|
21
|
Yang CW, Zhang X, Yuan L, Wang YK, Sheng GP. Deciphering the microheterogeneous repartition effect of environmental matrix on surface-enhanced Raman spectroscopy (SERS) analysis for pollutants in natural waters. WATER RESEARCH 2023; 232:119668. [PMID: 36731205 DOI: 10.1016/j.watres.2023.119668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Although surface-enhanced Raman spectroscopy (SERS) offers a promising technology for sensitive detection of environmental pollutants in natural waters, its performance can be greatly affected by the environmental matrix. The lack of identification of the origin and the underlying mechanism of matrix effect hinders the application of SERS in practical environmental analysis. Herein, with silver nanoparticles (AgNPs) as a solution-based SERS substrate, the matrix effect from environmental waters on SERS analysis and the underlying mechanisms were investigated. It was found that natural water matrix could deteriorate SERS performance and cause artefacts in SERS spectra. Among various aqueous components, natural organic matter (NOM), including humic substances and proteins, mainly contributed to the matrix effect on SERS detection, while polysaccharides or inorganic ions had minor influence. The matrix effect from NOM was found to be prevalent for different analytes and SERS substrates. The mechanism of the matrix effect from NOM in the ternary system of analyte, NOM, and nanoparticles was investigated through three mutual interactions. The microheterogeneous repartition of analytes by NOM, other than the formation of NOM-corona or competitive adsorption between NOM and analytes on nanoparticles, was found to play the dominating role in interfering with SERS detection. This work illuminates the origin and underlying mechanisms of the matrix effect, which will promote the practical application of SERS technology in environmental analysis.
Collapse
Affiliation(s)
- Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Yun-Kun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
22
|
Yang Y, Li Y. Perspective Chapter: Novel Diagnostics Methods for SARS-CoV-2. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence has given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests such as PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the various novel diagnostics methods including SERS, SPR, electrochemical, magnetic detection of SARS-CoV-2. All sensing and biosensing methods based on nanotechnology developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system.
Collapse
|
23
|
Jin X, Xue L, Ye S, Cheng W, Hou JJ, Hou L, Marsh JH, Sun M, Liu X, Xiong J, Ni B. Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing. BIOMEDICAL OPTICS EXPRESS 2023; 14:1216-1227. [PMID: 36950230 PMCID: PMC10026587 DOI: 10.1364/boe.483831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Quantitative detection of virus-like particles under a low concentration is of vital importance for early infection diagnosis and water pollution analysis. In this paper, a novel virus detection method is proposed using indirect polarization parametric imaging method combined with a plasmonic split-ring nanocavity array coated with an Au film and a quantitative algorithm is implemented based on the extended Laplace operator. The attachment of viruses to the split-ring cavity breaks the structural symmetry, and such asymmetry can be enhanced by depositing a thin gold film on the sample, which allows an asymmetrical plasmon mode with a large shift of resonance peak generated under transverse polarization. Correspondingly, the far-field scattering state distribution encoded by the attached virus exhibits a specific asymmetric pattern that is highly correlated to the structural feature of the virus. By utilizing the parametric image sinδ to collect information on the spatial photon state distribution and far-field asymmetry with a sub-wavelength resolution, the appearance of viruses can be detected. To further reduce the background noise and enhance the asymmetric signals, an extended Laplace operator method which divides the detection area into topological units and then calculates the asymmetric parameter is applied, enabling easier determination of virus appearance. Experimental results show that the developed method can provide a detection limit as low as 56 vp/150µL on a large scale, which has great potential in early virus screening and other applications.
Collapse
Affiliation(s)
- Xiao Jin
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-first authors
| | - Lu Xue
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-first authors
| | - Shengwei Ye
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Weiqing Cheng
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jamie Jiangmin Hou
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lianping Hou
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John H. Marsh
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ming Sun
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jichuan Xiong
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-last authors
| | - Bin Ni
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-last authors
| |
Collapse
|
24
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
25
|
Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2023; 18:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.
Collapse
Affiliation(s)
- Yunfan Chen
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Kaixuan Teng
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of, Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guangtao Li
- Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
27
|
Yuan Y, Bi S, Zhang F, Wang Y, Yang B, Ren Z, Li X. Rapid determination of isepamicin by using SERS based on BSA-protected AgNPs modified by α-Fe 2O 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121942. [PMID: 36209715 DOI: 10.1016/j.saa.2022.121942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
A surface-enhanced Raman spectroscopy (SERS) method for the determination of isepamicin (ISE) using silver nanoparticles (AgNPs) protected by bovine serum albumin (BSA) and modified by α-Fe2O3 as an efficient substrate was established. The synthesized substrate was characterized and verified by transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-vis), and fourier transform infrared spectroscopy (FT-IR). The conditions affecting the Raman signal of ISE were optimized by single factor and response surface experiments. Under optimized conditions, a standard curve ISERS = 43.08c + 63598.69 (c: nmol/L) with a linear relationship (r = 0.9976) was established between the SERS intensity and ISE concentration in the range of 20.00 - 2000.00 nmol/L. The limit of detection (LOD) for ISE was 16.58 nmol/L (S/N = 3). The recovery of ISE in the samples was 96.29 % - 104.12 %, with relative standard deviation (RSD) was 1.53 % - 3.43 % (n = 5). The SERS method was reliable and satisfactory for the quantitative analysis of ISE at low concentration.
Collapse
Affiliation(s)
- Yue Yuan
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Fengming Zhang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yuting Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Bin Yang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhixin Ren
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xu Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
28
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
29
|
Zhang F, Wang X, Zhang T, Zhang Z, Gao X, Li Y. Rapid Detection of SARS-CoV-2 Spike RBD Protein in Body Fluid: Based on Special Calcium Ion-Mediated Gold Nanoparticles Modified by Bromide Ions. J Phys Chem Lett 2023; 14:88-94. [PMID: 36573843 PMCID: PMC9843627 DOI: 10.1021/acs.jpclett.2c03069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The receptor-binding domain of the SARS-CoV-2 spike mediates the key to binding the virus to the host receptor, but capturing the molecular signal of this spike RBD remains a formidable challenge. Here, we report a new surface-enhanced Raman spectroscopy (SERS) approach, which used gold nanoparticles prepared by low-speed constant-temperature centrifugation by bromine and calcium ions in two cleaning steps as the enhanced substrate to rapidly and accurately detect spike RBD large protein molecules in body fluids. The detection signal was extremely stable, and the orientation of the spike RBD on the enhanced substrate surface was also determined. This approach was specific in distinguishing different SARS-CoV-2 variants of spike RBD, including Delta, Beta, Gamma, and Omicron. Additionally, the enhanced substrate can identify biologically active or inactive spike RBD. This two-step cleaning enhanced substrate opens up opportunities not only for early diagnostics of SARS-CoV-2 virus but also for developing targeted drugs against viruses.
Collapse
Affiliation(s)
- Fenghai Zhang
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Xiaotong Wang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Ting Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Zhe Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Xin Gao
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Yang Li
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| |
Collapse
|
30
|
Wang D, Chen Y, Xiang S, Hu H, Zhan Y, Yu Y, Zhang J, Wu P, Liu FY, Kai T, Ding P. Recent advances in immunoassay technologies for the detection of human coronavirus infections. Front Cell Infect Microbiol 2023; 12:1040248. [PMID: 36683684 PMCID: PMC9845787 DOI: 10.3389/fcimb.2022.1040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the seventh coronavirus (CoV) that has spread in humans and has become a global pandemic since late 2019. Efficient and accurate laboratory diagnostic methods are one of the crucial means to control the development of the current pandemic and to prevent potential future outbreaks. Although real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the preferred laboratory method recommended by the World Health Organization (WHO) for diagnosing and screening SARS-CoV-2 infection, the versatile immunoassays still play an important role for pandemic control. They can be used not only as supplemental tools to identify cases missed by rRT-PCR, but also for first-line screening tests in areas with limited medical resources. Moreover, they are also indispensable tools for retrospective epidemiological surveys and the evaluation of the effectiveness of vaccination. In this review, we summarize the mainstream immunoassay methods for human coronaviruses (HCoVs) and address their benefits, limitations, and applications. Then, technical strategies based on bioinformatics and advanced biosensors were proposed to improve the performance of these methods. Finally, future suggestions and possibilities that can lead to higher sensitivity and specificity are provided for further research.
Collapse
Affiliation(s)
- Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yuejun Chen
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Huiting Hu
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yue Liu
- Department of Economics and Management, ChangSha University, Changsha, Hunan, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Guan PC, Zhang H, Li ZY, Xu SS, Sun M, Tian XM, Ma Z, Lin JS, Gu MM, Wen H, Zhang FL, Zhang YJ, Yu GJ, Yang C, Wang ZX, Song Y, Li JF. Rapid Point-of-Care Assay by SERS Detection of SARS-CoV-2 Virus and Its Variants. Anal Chem 2022; 94:17795-17802. [PMID: 36511436 PMCID: PMC9762416 DOI: 10.1021/acs.analchem.2c03437] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Addressing the spread of coronavirus disease 2019 (COVID-19) has highlighted the need for rapid, accurate, and low-cost diagnostic methods that detect specific antigens for SARS-CoV-2 infection. Tests for COVID-19 are based on reverse transcription PCR (RT-PCR), which requires laboratory services and is time-consuming. Here, by targeting the SARS-CoV-2 spike protein, we present a point-of-care SERS detection platform that specifically detects SARS-CoV-2 antigen in one step by captureing substrates and detection probes based on aptamer-specific recognition. Using the pseudovirus, without any pretreatment, the SARS-CoV-2 virus and its variants were detected by a handheld Raman spectrometer within 5 min. The limit of detection (LoD) for the pseudovirus was 124 TU μL-1 (18 fM spike protein), with a linear range of 250-10,000 TU μL-1. Moreover, this assay can specifically recognize the SARS-CoV-2 antigen without cross reacting with specific antigens of other coronaviruses or influenza A. Therefore, the platform has great potential for application in rapid point-of-care diagnostic assays for SARS-CoV-2.
Collapse
Affiliation(s)
- Peng-Cheng Guan
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Zhi-Yong Li
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Xu
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Xian-Min Tian
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Zhan Ma
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Jia-Sheng Lin
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Man-Man Gu
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| | - Huan Wen
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Fan-Li Zhang
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| | - Yue-Jiao Zhang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Guang-Jun Yu
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Chaoyong Yang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, China
| | - Zhan-Xiang Wang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, China
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| |
Collapse
|
32
|
Contributions of vibrational spectroscopy to virology: A review. CLINICAL SPECTROSCOPY 2022; 4:100022. [PMCID: PMC9093054 DOI: 10.1016/j.clispe.2022.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/17/2023]
Abstract
Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970 s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review considers the history of the application of vibrational spectroscopic techniques to the characterisation of the morphology and chemical compositions of viruses, their attachment to, uptake by and replication in cells, and their potential for the detection of viruses in population screening, and in infection response monitoring applications. Particular consideration is devoted to recent efforts in the detection of severe acute respiratory syndrome coronavirus 2, and monitoring COVID-19.
Collapse
|
33
|
Tian C, Zhao L, Qi G, Zhu J, Zhang S. One-pot and rapid detection of SARS-CoV-2 viral particles in environment using SERS aptasensor based on a locking amplifier. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 371:132445. [PMID: 35919746 PMCID: PMC9335397 DOI: 10.1016/j.snb.2022.132445] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 05/07/2023]
Abstract
With the frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dwellings and wastewater, the risk of transmission of environmental contaminants is of great concern. Fast, simple and sensitive sensors are essential for timely detecting infection and controlling transmission through environment fomites. Herein, we developed a Surface Enhanced Raman Scattering (SERS) aptasensor, which can realize ultrasensitive and rapid assay of SARS-CoV-2 viral particles. In this strategy, we designed a novel locking amplifier which is activated only in the presence of virus by aptamer recognition. The reaction process was carried out though one-pot method at 37 °C, which can save time and resources. In addition, magnetic beads used in reaction system can simplify operation, as well as provide ideas for developing biosensing robots via magnetic field. This SERS aptasensor can detect SARS-CoV-2 virus with a LOD of 260 TU/µL within 40 min in the linear range of 625-10,000 TU/µL. Therefore, this convenience, speediness, sensitivity, and selectivity of detection has great prospects in analyzing SARS-CoV-2 viral particles or other viruses in environment as well as monitoring of environmental virus sources.
Collapse
Affiliation(s)
- Cheng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Lei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Guoliang Qi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| |
Collapse
|
34
|
Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not? GEOSCIENCE FRONTIERS 2022; 13. [PMID: 37521131 PMCID: PMC8730742 DOI: 10.1016/j.gsf.2021.101346] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The global outbreak of coronavirus infectious disease-2019 (COVID-19) draws attentions in the transport and spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in aerosols, wastewater, surface water and solid wastes. As pathogens eventually enter the subsurface system, e.g., soils in the vadose zone and groundwater in the aquifers, they might survive for a prolonged period of time owing to the uniqueness of subsurface environment. In addition, pathogens can transport in groundwater and contaminate surrounding drinking water sources, possessing long-term and concealed risks to human society. This work critically reviews the influential factors of pathogen migration, unravelling the impacts of pathogenic characteristics, vadose zone physiochemical properties and hydrological variables on the migration of typical pathogens in subsurface system. An assessment algorithm and two rating/weighting schemes are proposed to evaluate the migration abilities and risks of pathogens in subsurface environment. As there is still no evidence about the presence and distribution of SARS-CoV-2 in the vadose zones and aquifers, this study also discusses the migration potential and behavior of SARS-CoV-2 viruses in subsurface environment, offering prospective clues and suggestions for its potential risks in drinking water and effective prevention and control from hydrogeological points of view.
Collapse
|
35
|
Xu M, Li Y, Lin C, Peng Y, Zhao S, Yang X, Yang Y. Recent Advances of Representative Optical Biosensors for Rapid and Sensitive Diagnostics of SARS-CoV-2. BIOSENSORS 2022; 12:862. [PMID: 36291001 PMCID: PMC9599922 DOI: 10.3390/bios12100862] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 05/04/2023]
Abstract
The outbreak of Corona Virus Disease 2019 (COVID-19) has again emphasized the significance of developing rapid and highly sensitive testing tools for quickly identifying infected patients. Although the current reverse transcription polymerase chain reaction (RT-PCR) diagnostic techniques can satisfy the required sensitivity and specificity, the inherent disadvantages with time-consuming, sophisticated equipment and professional operators limit its application scopes. Compared with traditional detection techniques, optical biosensors based on nanomaterials/nanostructures have received much interest in the detection of SARS-CoV-2 due to the high sensitivity, high accuracy, and fast response. In this review, the research progress on optical biosensors in SARS-CoV-2 diagnosis, including fluorescence biosensors, colorimetric biosensors, Surface Enhancement Raman Scattering (SERS) biosensors, and Surface Plasmon Resonance (SPR) biosensors, was comprehensively summarized. Further, promising strategies to improve optical biosensors are also explained. Optical biosensors can not only realize the rapid detection of SARS-CoV-2 but also be applied to judge the infectiousness of the virus and guide the choice of SARS-CoV-2 vaccines, showing enormous potential to become point-of-care detection tools for the timely control of the pandemic.
Collapse
Affiliation(s)
- Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Castro GB, Bernegossi AC, Sousa BJDO, De Lima E Silva MR, Silva FRD, Freitas BLS, Ogura AP, Corbi JJ. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2160-2199. [PMID: 34310248 DOI: 10.1080/09603123.2021.1949437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This paper includes a systematic review of the SARS-CoV-2 occurrence in environmental aquatic matrices and a critical sanitation analysis. We discussed the interconnection of sanitation services (wastewater, water supply, solid waste, and stormwater drainage) functioning as an important network for controlling the spread of SARS-CoV-2 in waters. We collected 98 studies containing data of the SARS-CoV-2 occurrence in aquatic matrices around the world, of which 40% were from developing countries. Alongside a significant number of people infected by the virus, developing countries face socioeconomic deficiencies and insufficient public investment in infrastructure. Therefore, our study focused on highlighting solutions to provide sanitation in developing countries, considering the virus control in waters by disinfection techniques and sanitary measures, including alternatives for the vulnerable communities. The need for multilateral efforts to improve the universal coverage of sanitation services demands urgent attention in a pandemic scenario.
Collapse
Affiliation(s)
- Gleyson B Castro
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno José de O Sousa
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Fernando R Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Luíza S Freitas
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- PPG-SEA and CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Juliano J Corbi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
37
|
Yue W, Xia Z, Zeng Z, Chen Z, Qiao L, Li P, He Y, Luo X. In Situ Surface-Enhanced Raman Scattering Detection of a SARS-CoV-2 Biomarker Using Flexible and Transparent Polydimethylsiloxane Films with Embedded Au Nanoplates. ACS APPLIED NANO MATERIALS 2022; 5:12897-12906. [PMID: 37552747 PMCID: PMC9438477 DOI: 10.1021/acsanm.2c02750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 05/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19) remains an ongoing issue worldwide and continues to disrupt daily life. Transmission of infection primarily occurs through secretions when in contact with infected individuals, but more recent evidence has shown that fomites are also a source of virus transmission, especially in cold-chain logistics. Traditional nucleic acid testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contamination in cold-chain logistics is time-consuming and inaccurate because of the multiplex sampling sites. Surface-enhanced Raman spectroscopy (SERS) provides a rapid, sensitive, and label-free detection route for various molecules, including viruses, through the identification of the characteristic peaks of their outer membrane proteins. In this study, we embedded arbitrarily orientated gold nanoplates (Au NPLs) in polydimethylsiloxane (PDMS) elastomer and used it as biosensor for the ultrasensitive detection of the SARS-CoV-2 spike protein in cold-chain logistics. This transparent and flexible substrate can be wrapped onto arbitrary surfaces and permits light penetration into the underlying contact surface, enabling in situ and point-of-care SERS diagnostics. The developed assay displayed high reproducibility (8.7%) and a low detection limit of 6.8 × 10-9 g mL-1, indicating its potential to serve as a promising approach with increased accuracy and sensitivity for the detection of the S protein.
Collapse
Affiliation(s)
- Weiling Yue
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Zhichao Xia
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Zhiyou Zeng
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Zhinan Chen
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Ling Qiao
- Division of Chemistry and Biological Chemistry, School
of Physical & Mathematical Sciences, Nanyang Technological
University, Singapore637371, Singapore
| | - Panjie Li
- School of Chemistry and Chemical Engineering, School
of Environmental and Biological Engineering, Nanjing University of Science
and Technology, Nanjing210094, China
| | - Yi He
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Xiaojun Luo
- School of Science, Xihua
University, Chengdu610039, P. R. China
| |
Collapse
|
38
|
Zhang K, Wang Z, Liu H, Perea-López N, Ranasinghe JC, Bepete G, Minns AM, Rossi RM, Lindner SE, Huang SX, Terrones M, Huang S. Understanding the Excitation Wavelength Dependence and Thermal Stability of the SARS-CoV-2 Receptor-Binding Domain Using Surface-Enhanced Raman Scattering and Machine Learning. ACS PHOTONICS 2022; 9:2963-2972. [PMID: 37552735 PMCID: PMC9438456 DOI: 10.1021/acsphotonics.2c00456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 05/28/2023]
Abstract
COVID-19 has cost millions of lives worldwide. The constant mutation of SARS-CoV-2 calls for thorough research to facilitate the development of variant surveillance. In this work, we studied the fundamental properties related to the optical identification of the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, a key component of viral infection. The Raman modes of the SARS-CoV-2 RBD were captured by surface-enhanced Raman spectroscopy (SERS) using gold nanoparticles (AuNPs). The observed Raman enhancement strongly depends on the excitation wavelength as a result of the aggregation of AuNPs. The characteristic Raman spectra of RBDs from SARS-CoV-2 and MERS-CoV were analyzed by principal component analysis that reveals the role of secondary structures in the SERS process, which is corroborated with the thermal stability under laser heating. We can easily distinguish the Raman spectra of two RBDs using machine learning algorithms with accuracy, precision, recall, and F1 scores all over 95%. Our work provides an in-depth understanding of the SARS-CoV-2 RBD and paves the way toward rapid analysis and discrimination of complex proteins of infectious viruses and other biomolecules.
Collapse
Affiliation(s)
- Kunyan Zhang
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Ziyang Wang
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
- Department of Electrical and Computer Engineering,
Rice University, Houston, Texas77005, United
States
| | - He Liu
- Department of Chemistry, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
| | - Néstor Perea-López
- Department of Physics, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Center for 2-Dimensional and Layered Materials,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
| | - Jeewan C. Ranasinghe
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
- Department of Electrical and Computer Engineering,
Rice University, Houston, Texas77005, United
States
| | - George Bepete
- Department of Chemistry, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Department of Physics, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Center for 2-Dimensional and Layered Materials,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
| | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, Center for
Infectious Disease Dynamics, The Pennsylvania State University,
University Park, Pennsylvania16802, United States
- Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Randall M. Rossi
- Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Center for
Infectious Disease Dynamics, The Pennsylvania State University,
University Park, Pennsylvania16802, United States
- Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Sharon X. Huang
- College of Information Sciences and Technology,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
| | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Department of Physics, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Center for 2-Dimensional and Layered Materials,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
- Department of Materials Science and Engineering,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
- Research Initiative for Supra Materials,
Shinshu University, 4-17-1 Wakasato, Nagano380-8553,
Japan
| | - Shengxi Huang
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
- Department of Electrical and Computer Engineering,
Rice University, Houston, Texas77005, United
States
| |
Collapse
|
39
|
Samodelova MV, Kapitanova OO, Meshcheryakova NF, Novikov SM, Yarenkov NR, Streletskii OA, Yakubovsky DI, Grabovenko FI, Zhdanov GA, Arsenin AV, Volkov VS, Zavyalova EG, Veselova IA, Zvereva MI. Model of the SARS-CoV-2 Virus for Development of a DNA-Modified, Surface-Enhanced Raman Spectroscopy Sensor with a Novel Hybrid Plasmonic Platform in Sandwich Mode. BIOSENSORS 2022; 12:bios12090768. [PMID: 36140152 PMCID: PMC9497064 DOI: 10.3390/bios12090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed a great challenge for the development of ultra-fast methods for virus identification based on sensor principles. We created a structure modeling surface and size of the SARS-CoV-2 virus and used it in comparison with the standard antigen SARS-CoV-2—the receptor-binding domain (RBD) of the S-protein of the envelope of the SARS-CoV-2 virus from the Wuhan strain—for the development of detection of coronaviruses using a DNA-modified, surface-enhanced Raman scattering (SERS)-based aptasensor in sandwich mode: a primary aptamer attached to the plasmonic surface—RBD-covered Ag nanoparticle—the Cy3-labeled secondary aptamer. Fabricated novel hybrid plasmonic structures based on “Ag mirror-SiO2-nanostructured Ag” demonstrate sensitivity for the detection of investigated analytes due to the combination of localized surface plasmons in nanostructured silver surface and the gap surface plasmons in a thin dielectric layer of SiO2 between silver layers. A specific SERS signal has been obtained from SERS-active compounds with RBD-specific DNA aptamers that selectively bind to the S protein of synthetic virion (dissociation constants of DNA-aptamer complexes with protein in the range of 10 nM). The purpose of the study is to systematically analyze the combination of components in an aptamer-based sandwich system. A developed virus size simulating silver particles adsorbed on an aptamer-coated sensor provided a signal different from free RBD. The data obtained are consistent with the theory of signal amplification depending on the distance of the active compound from the amplifying surface and the nature of such a compound. The ability to detect the target virus due to specific interaction with such DNA is quantitatively controlled by the degree of the quenching SERS signal from the labeled compound. Developed indicator sandwich-type systems demonstrate high stability. Such a platform does not require special permissions to work with viruses. Therefore, our approach creates the promising basis for fostering the practical application of ultra-fast, amplification-free methods for detecting coronaviruses based on SARS-CoV-2.
Collapse
Affiliation(s)
- Mariia V. Samodelova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Olesya O. Kapitanova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Correspondence:
| | | | - Sergey. M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Nikita R. Yarenkov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Oleg A. Streletskii
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Fedor I. Grabovenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Gleb A. Zhdanov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Aleksey V. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Elena G. Zavyalova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Irina A. Veselova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Maria I. Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
40
|
Li Y, Lin C, Peng Y, He J, Yang Y. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 365:131974. [PMID: 35505925 PMCID: PMC9047405 DOI: 10.1016/j.snb.2022.131974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 05/20/2023]
Abstract
The outbreak of COVID-19 caused by SARS-CoV-2 urges the development of rapidly and accurately diagnostic methods. Here, one high-sensitivity and point-of-care detection method based on magnetic SERS biosensor composed of Fe3O4-Au nanocomposite and Au nanoneedles array was developed to detect SARS-CoV-2 directly. Among, the magnetic Fe3O4-Au nanocomposite is applied to capture and separate virus from nasal and throat swabs and enhance the Raman signals of SARS-CoV-2. The magnetic SERS biosensor possessed high sensitivity by optimizing the Fe3O4-Au nanocomposite. More significantly, the on-site detection of inactivated SARS-CoV-2 virus was achieved based on the magnetic SERS biosensor with ultra-low limit of detection of 100 copies/mL during 15 mins. Furthermore, the contaminated nasal and throat swabs samples were identified by support vector machine, and the diagnostic accuracy of 100% was obtained. The magnetic SERS biosensor combined with support vector machine provides giant potential as the point-of-care detection tool for SARS-CoV-2.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei 12560, Anhui, People's Republic of China
- Public Health Research Institute of Anhui Province, Hefei 12560, Anhui, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Ali A, Nettey-Oppong EE, Effah E, Yu CY, Muhammad R, Soomro TA, Byun KM, Choi SH. Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses. BIOSENSORS 2022; 12:bios12080590. [PMID: 36004986 PMCID: PMC9405795 DOI: 10.3390/bios12080590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/12/2023]
Abstract
As surface-enhanced Raman scattering (SERS) has been used to diagnose several respiratory viruses (e.g., influenza A virus subtypes such as H1N1 and the new coronavirus SARS-CoV-2), SERS is gaining popularity as a method for diagnosing viruses at the point-of-care. Although the prior and quick diagnosis of respiratory viruses is critical in the outbreak of infectious disease, ELISA, PCR, and RT-PCR have been used to detect respiratory viruses for pandemic control that are limited for point-of-care testing. SERS provides quantitative data with high specificity and sensitivity in a real-time, label-free, and multiplex manner recognizing molecular fingerprints. Recently, the design of Raman spectroscopy system was simplified from a complicated design to a small and easily accessible form that enables point-of-care testing. We review the optical design (e.g., laser wavelength/power and detectors) of commercialized and customized handheld Raman instruments. As respiratory viruses have prominent risk on the pandemic, we review the applications of handheld Raman devices for detecting respiratory viruses. By instrumentation and commercialization advancements, the advent of the portable SERS device creates a fast, accurate, practical, and cost-effective analytical method for virus detection, and would continue to attract more attention in point-of-care testing.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan;
| | - Ezekiel Edward Nettey-Oppong
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Elijah Effah
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Chan Yeong Yu
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Riaz Muhammad
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Toufique Ahmed Soomro
- Department of Electronic Engineering, Quid-e-Awam University of Engineering, Science and Technology, Larkana 77150, Pakistan;
| | - Kyung Min Byun
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Korea
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Seung Ho Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
- Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Seoul 06229, Korea
| |
Collapse
|
42
|
Wang W, Rahman A, Huang Q, Vikesland PJ. Surface-enhanced Raman spectroscopy enabled evaluation of bacterial inactivation. WATER RESEARCH 2022; 220:118668. [PMID: 35689895 DOI: 10.1016/j.watres.2022.118668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
An improved understanding of bacterial inactivation mechanisms will provide useful insights for infectious disease control and prevention. We evaluated bacterial response to several inactivation methods using surface-enhanced Raman spectroscopy (SERS). The results indicate that changes in the SERS signal are highly related to cellular disruption and that cellular changes arising after cell inactivation cannot be ignored. The membrane integrity of heat and the combination of UV254 and free chlorine (UV254/chlorine) treated Pseudomonas syringae (P. syringae) cells were severely disrupted, leading to significantly increased peak intensities. Conversely, ethanol treated bacteria exhibited intact cell morphologies and the SERS spectra remained virtually unchanged. On the basis of time dependent SERS signals, we extracted dominant SERS patterns. Peaks related to nucleic acids accounted for the main changes observed during heat, UV254, and UV254/chlorine treatment, likely due to their outward diffusion from the cell cytoplasm. For free chlorine treated P. syringae, carbohydrates and proteins on the cell membrane were denatured or lost, resulting in a decrease in related peak intensities. The nucleobases were likely oxidized when treated with UV254 and chlorine, thus leading to shifts in the related peaks. The generality of the method was verified using two additional bacterial strains: Escherichia coli and Bacillus subtilis as well as in different water matrices. The results suggest that SERS spectral analysis is a promising means to examine bacterial stress response at the molecular level and has applicability in diverse environmental implementations.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Qishen Huang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA.
| |
Collapse
|
43
|
Wang X, Wu T, Oliveira LFS, Zhang D. Sheet, Surveillance, Strategy, Salvage and Shield in global biodefense system to protect the public health and tackle the incoming pandemics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153469. [PMID: 35093353 PMCID: PMC8799268 DOI: 10.1016/j.scitotenv.2022.153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The pandemic of COVID-19 challenges the global health system and raises our concerns on the next waves of other emerging infectious diseases. Considering the lessons from the failure of world's pandemic warning system against COVID-19, many scientists and politicians have mentioned different strategies to improve global biodefense system, among which Sheet, Surveillance, Strategy, Salvage and Shield (5S) are frequently discussed. Nevertheless, the current focus is mainly on the optimization and management of individual strategy, and there are limited attempts to combine the five strategies as an integral global biodefense system. Sheet represents the biosafety datasheet for biohazards in natural environment and human society, which helps our deeper understanding on the geographical pattern, transmission routes and infection mechanism of pathogens. Online surveillance and prognostication network is an environmental Surveillance tool for monitoring the outbreak of pandemic diseases and alarming the risks to take emergency actions, targeting aerosols, waters, soils and animals. Strategy is policies and legislations for social distancing, lockdown and personal protective equipment to block the spread of infectious diseases in communities. Clinical measures are Salvage on patients by innovating appropriate medicines and therapies. The ultimate defensive Shield is vaccine development to protect healthy crowds from infection. Fighting against COVID-19 and other emerging infectious diseases is a long rocky journey, requiring the common endeavors of scientists and politicians from all countries around the world. 5S in global biodefense system bring a ray of light to the current darkest and future road from environmental and geographical perspectives.
Collapse
Affiliation(s)
- Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tianyun Wu
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, PR China
| | - Luis F S Oliveira
- Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco 1503, Peru; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
44
|
Abstract
In the last decade, there has been a rapid increase in the number of surface-enhanced Raman scattering (SERS) spectroscopy applications in medical research. In this article we review some recent, and in our opinion, most interesting and promising applications of SERS spectroscopy in medical diagnostics, including those that permit multiplexing within the range important for clinical samples. We focus on the SERS-based detection of markers of various diseases (or those whose presence significantly increases the chance of developing a given disease), and on drug monitoring. We present selected examples of the SERS detection of particular fragments of DNA or RNA, or of bacteria, viruses, and disease-related proteins. We also describe a very promising and elegant ‘lab-on-chip’ approach used to carry out practical SERS measurements via a pad whose action is similar to that of a pregnancy test. The fundamental theoretical background of SERS spectroscopy, which should allow a better understanding of the operation of the sensors described, is also briefly outlined. We hope that this review article will be useful for researchers planning to enter this fascinating field.
Collapse
|
45
|
Ultrafast Detection of SARS-CoV-2 Spike Protein (S) and Receptor-Binding Domain (RBD) in Saliva Using Surface-Enhanced Raman Spectroscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Controlling contagious diseases necessitates using diagnostic techniques that can detect infection in the early stages. Although different diagnostic tools exist, there are still challenges related to accuracy, rapidity, cost-effectiveness, and ease of use. Surface-enhanced Raman spectroscopy (SERS) is a rapid, simple, less expensive, and accurate method. We continue our previous work published on SERS detection of the SARS-CoV-2 receptor-binding domain (RBD) in water. In this work, we replace water with saliva to detect SARS-CoV-2 proteins at very low concentrations and during a very short time. We prepared a very low concentration of 10−9 M SARS-CoV-2 spike protein (S) and SARS-CoV-2 receptor-binding domain (RBD) in saliva to mimic a real case scenario. Then, we drop them on a SERS substrate. Using modified SERS measurements on the control and the sample containing the biomolecules, confirmed the sensitivity of the target identification. This technique provides different diagnostic solutions that are fast, simple, non-destructive and ultrasensitive. Simulation of the real-world of silicon wire covered with silver and gold, were performed using an effective and accurate tool, COMSOL Multiphysics software, for the enhancement properties study.
Collapse
|
46
|
Paria D, Kwok KS, Raj P, Zheng P, Gracias DH, Barman I. Label-Free Spectroscopic SARS-CoV-2 Detection on Versatile Nanoimprinted Substrates. NANO LETTERS 2022; 22:3620-3627. [PMID: 35348344 PMCID: PMC8982738 DOI: 10.1021/acs.nanolett.1c04722] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/17/2022] [Indexed: 05/08/2023]
Abstract
Widespread testing and isolation of infected patients is a cornerstone of viral outbreak management, as underscored during the ongoing COVID-19 pandemic. Here, we report a large-area and label-free testing platform that combines surface-enhanced Raman spectroscopy and machine learning for the rapid and accurate detection of SARS-CoV-2. Spectroscopic signatures acquired from virus samples on metal-insulator-metal nanostructures, fabricated using nanoimprint lithography and transfer printing, can provide test results within 25 min. Not only can our technique accurately distinguish between different respiratory and nonrespiratory viruses, but it can also detect virus signatures in physiologically relevant matrices such as human saliva without any additional sample preparation. Furthermore, our large area nanopatterning approach allows sensors to be fabricated on flexible surfaces allowing them to be mounted on any surface or used as wearables. We envision that our versatile and portable label-free spectroscopic platform will offer an important tool for virus detection and future outbreak preparedness.
Collapse
Affiliation(s)
- Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Kam Sang Kwok
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, MD, USA
| | - David H. Gracias
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore 21218, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University 21218, Baltimore, MD, USA
- Department of Chemistry, Johns Hopkins University, Baltimore 21218, MD, USA
- Laboratory for Computational Sensing and Robotics (LCSR). Johns Hopkins University, Baltimore 21218, MD, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
47
|
Eskandari V, Sahbafar H, Zeinalizad L, Hadi A. A review of applications of surface-enhanced raman spectroscopy laser for detection of biomaterials and a quick glance into its advances for COVID-19 investigations. ISSS JOURNAL OF MICRO AND SMART SYSTEMS 2022; 11:363-382. [PMID: 35540110 PMCID: PMC9070975 DOI: 10.1007/s41683-022-00103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is one of the most sensitive analytical tools. In some cases, it is possible to record a high-quality SERS spectrum in which even a single molecule is involved. Therefore, SERS is considered a significantly promising option as an alternative to routine analytical techniques used in food, environmental, biochemical, and medical analyzes. In this review, the definitive applications of SERS developed to identify biochemically important species (especially medical and biological) from the simplest to the most complex are briefly discussed. Moreover, the potential capability of SERS for being used as an alternative to routine methods in diagnostic and clinical cases is demonstrated. In addition, this article describes how SERS-based sensors work, addresses its advancements in the last 20 years, discusses its applications for detecting Coronavirus Disease 2019 (COVID-19), and finally describes future works. The authors hope that this article will be useful for researchers who want to enter this amazing field of research.
Collapse
Affiliation(s)
- Vahid Eskandari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sahbafar
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Leila Zeinalizad
- Faculty of Biomedical Engineering, Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
48
|
Sarychev AK, Sukhanova A, Ivanov AV, Bykov IV, Bakholdin NV, Vasina DV, Gushchin VA, Tkachuk AP, Nifontova G, Samokhvalov PS, Karaulov A, Nabiev I. Label-Free Detection of the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein at Physiologically Relevant Concentrations Using Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2022; 12:300. [PMID: 35624601 PMCID: PMC9138710 DOI: 10.3390/bios12050300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal-dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants.
Collapse
Affiliation(s)
- Andrey K. Sarychev
- Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.K.S.); (A.V.I.); (I.V.B.)
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (A.S.); (G.N.)
| | - Andrey V. Ivanov
- Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.K.S.); (A.V.I.); (I.V.B.)
| | - Igor V. Bykov
- Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.K.S.); (A.V.I.); (I.V.B.)
| | - Nikita V. Bakholdin
- Moscow Power Engineering Institute, National Research University, 111250 Moscow, Russia;
| | - Daria V. Vasina
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.V.V.); (V.A.G.); (A.P.T.)
| | - Vladimir A. Gushchin
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.V.V.); (V.A.G.); (A.P.T.)
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem P. Tkachuk
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.V.V.); (V.A.G.); (A.P.T.)
| | - Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (A.S.); (G.N.)
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia;
| | - Pavel S. Samokhvalov
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia;
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (A.S.); (G.N.)
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia;
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| |
Collapse
|
49
|
Gutiérrez Rodelo C, Salinas RA, Armenta JaimeArmenta E, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Nirmala Grace A, Aguilar-Salinas CA, Gutiérrez Rodelo J, Christie G, Alsanie WF, Santana G, Thakur VK, Dutt A. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 2022; 457:214402. [PMID: 35095109 PMCID: PMC8788306 DOI: 10.1016/j.ccr.2021.214402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges.
Collapse
Affiliation(s)
- Citlaly Gutiérrez Rodelo
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Rafael A Salinas
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Tlaxcala 72197, Mexico
| | - Erika Armenta JaimeArmenta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Silvia Armenta
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Andrés Galdámez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Silvia E Castillo-Blum
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Horacio Astudillo-de la Vega
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamil Nadu 632 014, India
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Juliana Gutiérrez Rodelo
- Instituto Méxicano del Seguro Social, Hospital General de SubZona No. 4, C.P. 80370, Navolato, Sinaloa, México
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Guillermo Santana
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| |
Collapse
|
50
|
Cha H, Kim H, Joung Y, Kang H, Moon J, Jang H, Park S, Kwon HJ, Lee IC, Kim S, Yong D, Yoon SW, Park SG, Guk K, Lim EK, Park HG, Choo J, Jung J, Kang T. Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosens Bioelectron 2022; 202:114008. [PMID: 35086030 PMCID: PMC8770391 DOI: 10.1016/j.bios.2022.114008] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected humans worldwide for over a year now. Although various tests have been developed for the detection of SARS-CoV-2, advanced sensing methods are required for the diagnosis, screening, and surveillance of coronavirus disease 2019 (COVID-19). Here, we report a surface-enhanced Raman scattering (SERS)-based immunoassay involving an antibody pair, SERS-active hollow Au nanoparticles (NPs), and magnetic beads for the detection of SARS-CoV-2. The selected antibody pair against the SARS-CoV-2 antigen, along with the magnetic beads, facilitates the accurate direct detection of the virus. The hollow Au NPs exhibit strong, reproducible SERS signals, allowing sensitive quantitative detection of SARS-CoV-2. This assay had detection limits of 2.56 fg/mL for the SARS-CoV-2 antigen and 3.4 plaque-forming units/mL for the SARS-CoV-2 lysates. Furthermore, it facilitated the identification of SARS-CoV-2 in human nasopharyngeal aspirates and diagnosis of COVID-19 within 30 min using a portable Raman device. Thus, this assay can be potentially used for the diagnosis and prevention of COVID-19.
Collapse
Affiliation(s)
- Hyunjung Cha
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, 52828, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sun-Woo Yoon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|