1
|
Atallah Al-Asad H, Alex J, Parniske J, Morck T. Simulation-based process optimization of full-scale advanced wastewater treatment systems using powdered activated carbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:3008-3028. [PMID: 39673316 DOI: 10.2166/wst.2024.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024]
Abstract
This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%. Based on model testing, the impact of excess PAC return to the biological stage enhanced OMP removal, reaching up to 15% improvement for benzotriazole, carbamazepine and metoprolol, but no evident improvement of diclofenac removal. Intermittent PAC dosing revealed rapid process response, where organic matter concentration increased within 2 h after PAC cut-off. The simulation-based study demonstrated that during rain events, the overall OMP removal efficiency in the entire wastewater treatment plant was reduced by approximately 50% due to a shift of OMP concentration and a shortened hydraulic retention time in the biological and adsorption stages. Testing of various PAC dosing strategies revealed potential PAC savings of 10-15% compared to inflow-proportional dosing by using predefined OMP removal grades or maximum allowable effluent OMP concentrations as criteria for PAC dosing.
Collapse
Affiliation(s)
- Hana Atallah Al-Asad
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, Kassel 34125, Germany; ifak - Institute for Automation and Communication, Werner-Heisenberg-Str. 1, Magdeburg 39106 Germany
| | - Jens Alex
- ifak - Institute for Automation and Communication, Werner-Heisenberg-Str. 1, Magdeburg 39106 Germany
| | - Janna Parniske
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, Kassel 34125, Germany
| | - Tobias Morck
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, Kassel 34125, Germany E-mail:
| |
Collapse
|
2
|
Wang Q, Du Y, Li W, Wang C, Zhang J, Yang M, Yu J. Treatability of odorous dioxanes/dioxolanes in source water: How does molecular flexibility and pre-oxidation affect odorant adsorption. WATER RESEARCH 2024; 266:122364. [PMID: 39276475 DOI: 10.1016/j.watres.2024.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Odorous dioxanes and dioxolanes, a class of cyclic acetals often produced as byproducts in polyester resin manufacturing, are problematic in drinking water treatment due to their low odor thresholds and resistance to conventional treatment technology. Our research focuses on the removal of ten dioxane/dioxolane compounds through oxidation and adsorption processes, exploring the key molecular properties that govern the treatmentability. We discovered that both chlorination and permanganate oxidation were largely ineffective at degrading cyclic acetals, achieving less than 20% removal even at high applicable doses. Conversely, powdered activated carbon (PAC) adsorption proved to be a more effective method, with a removal of > 90% at a PAC dosage of 10 mg/L for seven out of ten compounds. The presence of natural organic matter (NOM) reduced PAC adsorbability for all odorants, but the deterioration level substantially varied and mostly affected by structural flexibility as indicated by the number of rotatable bonds. The results of both the experimental investigation and molecular simulation corroborated the hypothesis that more rotatable bonds (from one to three here) are indicative of greater structural flexibility, which in consequence determines the susceptibility of cyclic acetals to NOM competitive adsorption. Increased structural flexibility could facilitate greater entry into silt-like micropores or achieve preferential adsorption sites with more compatible morphology against NOM competition. When pre-oxidation (chlorination and permanganate oxidation) and adsorption were applied sequentially, additional low molecular weight NOM components produced by pre-oxidation resulted in intensified NOM competition and decreased odorant adsorbability. If this combination is inevitably required for algae and odorant control, it would be beneficial to utilize a wise screen for oxidants and a reduced oxidant dose (less than 2 mg/L) to mitigate the deterioration of odorant adsorption. This study elucidates the roles of structural flexibility in influencing the treatability of dioxanes and dioxolanes, extending beyond the solely well-established effects of hydrophobicity. It also presents rational practice guidelines for the combination of pre-oxidation and adsorption in addressing odor incidents associated with dioxane and dioxolane compounds.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yuning Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Liu F, Wang Q, Zietzschmann F, Yang F, Nie S, Zhang J, Yang M, Yu J. Competition & UV 254 projection in odorants vs natural organic matter adsorption onto activated carbon surfaces: Is the chemistry right? WATER RESEARCH 2024; 268:122764. [PMID: 39566283 DOI: 10.1016/j.watres.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Powdered activated carbon (PAC) adsorption remains an indispensable method for addressing odor problems in drinking water. While natural organic matter (NOM) is ubiquitous and competes strongly in deteriorating odorant adsorption capacity, it can also serve as a promising indicator for predicting odorant adsorption through online measurement. However, the impact of PAC surface chemistry on NOM competition and feasibility of prediction across various adsorbents are not well understood. Here, we examined the role of PAC properties (pore structure and surface chemistry) in the competitive adsorption between odorants and NOM components, aligned with the applicability assessment of using NOM optical properties for odorant adsorption projection across various PAC samples. Chemical oxidation and thermal treatment achieved considerable changes in surface functional group composition, alongside minimal changes in pore structure, of two typical PAC products with microporous/mesoporous pore characteristics. The effect of NOM interference on the reduction of odorant adsorption exhibited a similar level regardless of the PACs with different pore structure (average pore size of 1.7 nm vs. 4.2 nm). Surface modification increased the equilibrium adsorption capacity (qe50) of odorants by 15.1 % to 146.4 % (thermal treatment) or decreased by -81.3 % to -34.1 % (chemical oxidation), respectively, but minimal changes in odorant-NOM selectivity. For various odorants, hydrophobicity (log D) influenced the adsorption capacity while the structural flexibility (reflected by the rotatable bonds) affected the vulnerability of odorant adsorption to NOM competition. It was found for the first time that four-parameter Richards model (RMSE = 2.6 %) is superior to the linear model (RMSE = 12.5 %) or logarithmic model (RMSE = 77.6 %) to describe the S-shape UV254 projection curves associated with odorant adsorption on PAC. Moreover, the feasibility was confirmed to use UV254 projection curves of pristine PAC fitted with the Richards model to predict the odorant adsorption on surface-modified PAC in two different surface waters (RMSE 9.2 % and 7.4 %, respectively). This study provides insight into the role of PAC surface chemistry and pore characteristics in odorant adsorption in NOM-containing waters and enhances the feasibility of the NOM surrogate model for odorant monitor and control during PAC adsorption.
Collapse
Affiliation(s)
- Fang Liu
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | - Fan Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaozhen Nie
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Wang B, Gao X, Liu Y, Sun X, Zhao J, Xing Q, Yang Y. Scallop farming impacts on dissolved organic matter cycling in coastal waters: Regulation of the low molecular weight fraction. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106796. [PMID: 39418968 DOI: 10.1016/j.marenvres.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
To elucidate the impacts of scallop farming on the biogeochemical characteristics of low molecular weight (LMW, <1 kDa) dissolved organic matter (DOM), samples collected from a bay scallop mariculture area (MA) and its surrounding areas were determined for absorption and fluorescence spectroscopy after microfiltration and centrifugal ultrafiltration. The values of absorption coefficient a350 showed a spatial variation trend of inshore area (IA) > MA > non-mariculture area (NMA) for both bulk (<0.7 μm) and LMW fractions. Four fluorescent components, namely two protein-like components (tryptophan-like C1 and tyrosine-like C2) and two humic-like components (microbial humic-like C3 and terrestrial humic-like C4), were identified. Scallop farming influenced DOM transformation by altering phytoplankton abundance and promoting microbial degradation. In July, the net contributions of phytoplankton to the spectroscopy parameters of LMW-DOM in the surface seawater were 11.0% for a350, 4.3% for C1, 0.8% for C2, 0.6% for C3 and 3.0% for C4, respectively; the corresponding values of bulk DOM in the surface seawater were 24.3% for a350, 20.1% for C1, 5.9% for C2, 2.0% for C3, 2.9% for C4, respectively. Compared with NMA, the contributions of microbial degradation to a350 in MA's surface seawater increased by 9.0% for LMW-DOM and 6.9% for bulk DOM in July; however, the effects on different fluorescent components varied. In August, compared with NMA, the contributions of microbial degradation to spectroscopy parameters in the bottom water of MA decreased by 35.7% for a350, 6.3% for C2, 1.3% for C3, and 4.4% for C4 for LMW-DOM fraction; for bulk DOM, the corresponding contribution decreased by 10.8% for C1. These variations indicate that protein-like substances from scallop aquaculture are easily degraded into LMW substances, while humic-like substances degradation diminishes over time.
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Yuwei Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| |
Collapse
|
5
|
Wang Q, Lechtenfeld OJ, Rietveld LC, Schuster J, Ernst M, Hofman-Caris R, Kaesler J, Wang C, Yang M, Yu J, Zietzschmann F. How aromatic dissolved organic matter differs in competitiveness against organic micropollutant adsorption. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100392. [PMID: 38434492 PMCID: PMC10907174 DOI: 10.1016/j.ese.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 03/05/2024]
Abstract
Activated carbon is employed for the adsorption of organic micropollutants (OMPs) from water, typically present in concentrations ranging from ng L-1 to μg L-1. However, the efficacy of OMP removal is considerably deteriorated due to competitive adsorption from background dissolved organic matter (DOM), present at substantially higher concentrations in mg L-1. Interpreting the characteristics of competitive DOM is crucial in predicting OMP adsorption efficiencies across diverse natural waters. Molecular weight (MW), aromaticity, and polarity influence DOM competitiveness. Although the aromaticity-related metrics, such as UV254, of low MW DOM were proposed to correlate with DOM competitiveness, the method suffers from limitations in understanding the interplay of polarity and aromaticity in determining DOM competitiveness. Here, we elucidate the intricate influence of aromaticity and polarity in low MW DOM competition, spanning from a fraction level to a compound level, by employing direct sample injection liquid chromatography coupled with ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Anion exchange resin pre-treatment eliminated 93% of UV254-active DOM, predominantly aromatic and polar DOM, and only minimally alleviated DOM competition. Molecular characterization revealed that nonpolar molecular formulas (constituting 26% PAC-adsorbable DOM) with medium aromaticity contributed more to the DOM competitiveness. Isomer-level analysis indicated that the competitiveness of highly aromatic LMW DOM compounds was strongly counterbalanced by increased polarity. Strong aromaticity-derived π-π interaction cannot facilitate the competitive adsorption of hydrophilic DOM compounds. Our results underscore the constraints of depending solely on aromaticity-based approaches as the exclusive interpretive measure for DOM competitiveness. In a broader context, this study demonstrates an effect-oriented DOM analysis, elucidating counterbalancing interactions of DOM molecular properties from fraction to compound level.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
| | - Oliver J. Lechtenfeld
- Department of Analytical Chemistry, Research Group BioGeoOmics, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- ProVIS−Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Luuk C. Rietveld
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
| | - Jonas Schuster
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Roberta Hofman-Caris
- KWR Watercycle Research Institute, 3433PE, Nieuwegein, the Netherlands
- Wageningen University and Research, Department of Environmental Technology, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Jan Kaesler
- Department of Analytical Chemistry, Research Group BioGeoOmics, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Frederik Zietzschmann
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
- Berliner Wasserbetriebe, Laboratory, Motardstr. 35, 13629, Berlin, Germany
| |
Collapse
|
6
|
Heusser A, Dax A, McArdell CS, Udert KM. Comparing the adsorption of micropollutants on activated carbon from anaerobically stored, organics-depleted, and nitrified urine. WATER RESEARCH 2024; 257:121615. [PMID: 38692253 DOI: 10.1016/j.watres.2024.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
Separate collection and treatment of urine optimizes nutrient recovery and enhances micropollutant removal from municipal wastewater. One typical urine treatment train includes nutrient recovery in three biological processes: anaerobic storage, followed by aerobic organics degradation concurrently with nitrification. These are usually followed by activated carbon adsorption to remove micropollutants. However, removing micropollutants prior to nitrification would protect nitrifiers from potential inhibition by pharmaceuticals. In addition, combining simplified biological treatment with activated carbon adsorption could offer a cheap and robust process for removing micropollutants where nutrient recovery is not the first priority, as a partial loss of ammonia occurs without nitrification. In this study, we investigated whether activated carbon adsorption could also take place between the three biological treatment steps. We tested the effectiveness of micropollutant removal with activated carbon after each biological treatment step by conducting experiments with anaerobically stored urine, organics-depleted urine, and nitrified urine. The urine solutions were spiked with 19 pharmaceuticals: amisulpride, atenolol, atenolol acid, candesartan, carbamazepine, citalopram, clarithromycin, darunavir, diclofenac, emtricitabine, fexofenadine, hydrochlorothiazide, irbesartan, lidocaine, metoprolol, N4-acetylsulfamethoxazole, sulfamethoxazole, trimethoprim, venlafaxine, and two artificial sweeteners, acesulfame and sucralose. Batch experiments were conducted with powdered activated carbon (PAC) to determine how much activated carbon achieve which degree of micropollutant removal and how organics, pH, and speciation change from ammonium to nitrate influence adsorption. Micropollutant removal was also tested in granular activated carbon (GAC) columns, which is the preferred technology for micropollutant removal from urine. The carbon usage rates (CUR) per person were lower for all urine solutions than for municipal wastewater. The results showed that organics depletion would be needed when micropollutant removal was the sole aim of urine treatment, as the degradation of easily biodegradable organics prevented clogging of GAC columns. However, CUR did hardly improve with organics-depleted urine compared to stored urine. The lowest CUR was achieved with nitrified urine. This resulted from the additional organics removal during nitrification and not the lower pH or the partial conversion of ammonium to nitrate. In addition, we showed that the relative pharmaceutical removal in all solutions was independent of the initial pharmaceutical concentration unless the background organics matrix changed considerably. We conclude that removal of micropollutants in GAC columns from organics-depleted urine can be performed without clogging, but with the drawback of a higher carbon usage compared to removal from nitrified urine.
Collapse
Affiliation(s)
- Aurea Heusser
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Anne Dax
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kai M Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| |
Collapse
|
7
|
Arslan M, Usman M, Gamal El-Din M. Exploring nature's filters: Peat-mineral mix for low and high-strength oilfield produced water reclamation. WATER RESEARCH 2024; 255:121502. [PMID: 38552493 DOI: 10.1016/j.watres.2024.121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Nature-based solutions are encouraged for treating oilfield produced water from oil and gas extraction, a crucial undertaking that aligns with the Canadian oil sands industry's ambitious goal of zero waste, and the globally recognized Sustainable Development Goals (SDGs) pertaining to water conservation and ecosystem preservation. This study explored the use of peat-mineral mix (PMM), a leftover of inevitable oil sands mining, for treating low and high-strength wastewaters during biofiltration, which contained large molecular weight (44.3 kDa), which include alcohols, aliphatics, aromatics, and ketones, and can impart high toxicity to both fauna and flora (MicroTox: 99 %). The breakthrough curve indicated an effective initial adsorption phase driven by advection within the column dynamics. For complete organics removal and mechanistic insights, the wastewater was re-circulated in a continuous mode for up to 42 days. Here, we found that chemical oxygen demand was reduced from ∼85,000 mg/L to ∼965 mg/L). Kinetics investigations along with physicochemical characterization of PMM and wastewater suggested that chemisorption and anaerobic digestion contributed to the overall removal of contaminants. Chemisorption, led by hydrogen bonding and hydrophobic interactions, was the dominant mechanism, with a limited contribution from physical adsorption (surface area: 2.85 m2/g). The microbial community within the PMM bed was rich/diverse (Shannon > 6.0; Chao1 > 600), with ∼ 50 % unclassified phylotypes representing 'microbial dark matter'. High electric conductivity (332.1 μS cm-1) of PMM and the presence of Geobacter, syntrophs, and Methanosaeta suggest that direct interspecies electron transfer was likely occurring during anaerobic digestion. Both low and high-strength wastewaters showed effective removal of dissolved organics (e.g., naphthenic acids, acid extractable fraction, oil and grease content), nutrients, and potentially toxic metals. The successful use of PMM in treating oilfield produced water offers promising avenues for embracing nature-based remediation solutions at oil refining sites.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada.
| |
Collapse
|
8
|
Heusser A, Dax A, McArdell CS, Udert KM. High content of low molecular weight organics does not always affect pharmaceutical adsorption on activated carbon: The case of acetate, propionate and ethanol in source-separated urine. WATER RESEARCH X 2023; 21:100199. [PMID: 38098878 PMCID: PMC10719575 DOI: 10.1016/j.wroa.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 12/17/2023]
Abstract
Adsorption on activated carbon is a common process to remove pharmaceuticals in wastewater treatment. Activated carbon adsorption is usually applied to wastewater with a low content of biological degradable organics, i.e. after biological treatment. Especially low molecular weight (LMW) compounds are known to compete with pharmaceuticals for adsorption sites. The goal of this study was to test the hypothesis that biological treatment is necessary for efficient pharmaceutical removal. Source-separated urine after anaerobic storage (anaerobically stored urine) and after aerobic biological removal of organics without nitrification (organics-depleted urine) were used in this study. In anaerobically stored urine 60% of the organic compounds were LMW organics, of which about 40% were acetate and propionate. 74% of the DOC and 100% of acetate and propionate were removed during aerobic biological treatment. To investigate the effect of the organic compounds on pharmaceutical removal, sorption experiments with 19 spiked pharmaceuticals and one artificial sweetener were conducted with powdered activated carbon. Ethanol, another LMW organic, was included in the study, as it is regularly used for pharmaceutical spiking thereby strongly increasing the DOC content. The experiments showed that the adsorption of the pharmaceuticals and the sweetener were hardly affected by the easily biodegradable LMW organics or ethanol. Therefore, it was concluded that biological pre-treatment is not necessary for efficient pharmaceutical adsorption. Since acetate, propionate and ethanol contribute substantially to the DOC content but do not absorb UV light, the latter is recommended as indicator for pharmaceutical removal in solutions with high contents of biodegradable LMW organics.
Collapse
Affiliation(s)
- Aurea Heusser
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Anne Dax
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Christa S. McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kai M. Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Shahi NK, Kim JY, Dockko S. Process analysis of microplastic aging during the photochemical oxidation process and its effect on the adsorption behavior of dissolved organic matter. CHEMOSPHERE 2023; 341:139980. [PMID: 37648171 DOI: 10.1016/j.chemosphere.2023.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Information on microplastics (MPs) interactions with dissolved organic matter (DOM) is essential for understanding their environmental impacts. However, research is scarce regarding the adsorption behavior of DOM with different characteristics onto pristine and aged MPs. This research thus investigates MPs aging behavior accelerated by UV/Persulfate and UV/chlorine oxidation processes and the adsorption behavior of organic matter with low-specific ultraviolet absorbance (L-SUVA) and high-SUVA (H-SUVA) characteristics. MPs were degraded by UV/Cl and UV/Persulfate for 30 days. Changes in thermal properties, surface morphology, and chemistry were studied using different analytical techniques. The adsorption behavior was assessed by adsorption kinetic and isotherm study. After oxidation, the surface of the MPs showed a significant increase in the oxygen-containing functional groups, contact angle, surface roughness, and surface energy, and a decrease in crystallinity. The oxidation effect follows the order of UV/Cl > UV/Persulfate. The kinetic and equilibrium data of H-SUVA adsorption on pristine and aged MPs well-fitted the pseudo-second-order and Langmuir model. In contrast, L-SUVA well-fitted the pseudo-first-order and Freundlich model. The adsorption capacity (qm) increased in the following orders: 8.11 > 5.87>4.29 mg g-1 for H-SUVA and 19.81 > 6.662>5.315 mg g-1 for L-SUVA by MPs aged with UV/Cl, UV/Persulfate and pristine MPs, respectively. The larger the surface damage of MPs, the greater the adsorption affinity of DOM. The result was attributed to the physical adsorption process, hydrophobic interactions, electrostatic, hydrogen, and halogen bonding. These findings are beneficial to provide new insights involving the adsorption behavior and interaction mechanisms of DOM onto MPs for the environmental risk assessment.
Collapse
Affiliation(s)
- Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jae-Yup Kim
- Department of Chemical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
10
|
Taylor JH, Masoudi Soltani S. Carbonaceous adsorbents in the removal of aquaculture pollutants: A technical review of methods and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115552. [PMID: 37813076 DOI: 10.1016/j.ecoenv.2023.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Carbonaceous adsorbents (CAs) are becoming increasingly popular owing to their low-cost, ease of preparation, and versatility. Meanwhile, aquaculture is becoming a fundamental food industry, globally, due to a wide range of advantages such as economic and nutritional benefits, whilst protecting the depletion of natural resources. However, as with any farming, the technique is known to introduce a plethora of chemicals into the surrounding environment, including antibiotics, nutrients, fertilisers and more. Therefore, the treatment of aquaculture effluent is gaining traction to ensure the sustainable growth of the industry. Although the existing mitigation techniques are somewhat effective, they suffer from degradation of the water quality or harm to local environments/organisms. This article aims to identify the sources and impacts of various aquaculture pollutants. After which the authors will provide an environmentally friendly and novel approach to the treatment of aquaculture effluent using carbonaceous adsorbents. The article will detail discussions about the product life span, including, synthesis, activation, modification, applications in aqueous media, regeneration and End-of-Life (EoL) approaches, with a particular focus on the impacts of competitive adsorption between pollutants and environmental matrices. Some research gaps were also highlighted, such as the lack of literature applying real-world samples, the effects of competitive adsorption and the EoL applications and management for CAs.
Collapse
Affiliation(s)
- Jessica H Taylor
- Department of Chemical Engineering, Brunel University London, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
11
|
Schumann P, Muschket M, Dittmann D, Rabe L, Reemtsma T, Jekel M, Ruhl AS. Is adsorption onto activated carbon a feasible drinking water treatment option for persistent and mobile substances? WATER RESEARCH 2023; 235:119861. [PMID: 36958222 DOI: 10.1016/j.watres.2023.119861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Persistent and mobile (PM) substances among the organic micropollutants have gained increasing interest since their inherent properties enable them to enrich in water cycles. This study set out to investigate the potential of adsorption onto activated carbon as a drinking water treatment option for 19 PM candidates in batch experiments in a drinking water matrix using a microporous and a mesoporous activated carbon. Overall, adsorption of PM candidates proved to be very variable and the extent of removal could not be directly related to molecular properties. At an activated carbon dose of 10 mg/L and 48 h contact time, five (out of 19) substances were readily removed (≥ 80%), among them N-(3-(dimethylamino)-propyl)methacrylamide, which was investigated for the first time. For five other substances, no or negligible removal (< 20%) was observed, including 2-methyl-2-propene-1-sulfonic acid and 4‑hydroxy-1-(2-hydroxyethyl)-2,2,6,6,-tetramethylpiperidine. For the former, current state of the art adsorption processes may pose a sufficient barrier. Additionally, substance specific surrogate correlations between removals and UVA254 abatements were established to provide a cheap and fast estimate for PM candidate elimination. Adsorption onto activated carbon could contribute significantly to PM substance elimination as part of multi barrier approaches, but assessments for individual substances still require clarification, as demonstrated for the investigated PM candidates.
Collapse
Affiliation(s)
- Pia Schumann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel Dittmann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Luisa Rabe
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Jekel
- Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Schumann P, Müller D, Eckardt P, Muschket M, Dittmann D, Rabe L, Kerst K, Lerch A, Reemtsma T, Jekel M, Ruhl AS. Pilot-scale removal of persistent and mobile organic substances in granular activated carbon filters and experimental predictability at lab-scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163738. [PMID: 37116805 DOI: 10.1016/j.scitotenv.2023.163738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Present knowledge about the fate of persistent and mobile (PM) substances in drinking water treatment is limited. Hence, this study assesses the potential of fixed-bed granular activated carbon (GAC) filters to fill the treatment gap for PM substances and the elimination predictability from lab-scale experiments. Two parallel pilot filters (GAC bed height 2 m, diameter 15 cm) with different GAC were operated for 1.5 years (ca. 47,000 BV throughput) alongside rapid small-scale column tests (RSSCT) designed based on the proportional diffusivity (PD) and the constant diffusivity (CD) approaches. Background dissolved organic matter (DOM) and a set of 17 target substances were investigated, among them 2-acrylamido-2-methylpropane sulfonate (AAMPS), adamantan-1-amine (ATA), melamine (MEL) and trifluoromethanesulfonic acid (TFMSA). Nine substances were predominantly present in the drinking water used as pilot filter influent (frequencies of detection above 80 %, median concentrations 0.003-1.868 μg/L) and their breakthrough behaviors could be observed: TFMSA was not retained at all, four substances including AAMPS and ATA reached complete breakthrough below 20,000 BV, three compounds were partially retained until the end of operation and oxypurinol was retained completely. The comparable PM candidate and DOM removal performances of both GAC aligns with their very similar surface characteristics and elemental compositions. The agreement of results between RSSCT with the pilot-scale filters were substance specific and no superior RSSCT design could be identified. However, CD-RSSCT provide a conservative removal prediction for most studied compounds. MEL adsorption was significantly underestimated by both RSSCT designs. Using the criterion of a carbon usage rate (with respect to 50 % breakthrough) below 25 mgGAC/Lwater for an economic retention by fixed-bed GAC filters, five (out of nine) substances met the requirement.
Collapse
Affiliation(s)
- Pia Schumann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Dario Müller
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany; Kommunale Wasserwerke Leipzig, Johannisgasse 7/9, 04103 Leipzig, Germany
| | - Paulina Eckardt
- Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel Dittmann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Luisa Rabe
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Kristin Kerst
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany
| | - André Lerch
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Jekel
- Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
13
|
Hou Z, An X, Zhu K, Tang Q, Lan H, Liu H, Qu J. Revealing the Pore Size-Dependent Sorption Mechanism of Toluene and Cetane in Porous Carbon by Nuclear Magnetic Resonance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5003-5012. [PMID: 36931868 DOI: 10.1021/acs.est.2c07086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The adsorption of contaminants by porous carbon has been extensively studied by conventional isotherm and kinetic methods. However, the co-adsorption behavior and sorption sites of multiple contaminants in different-sized pores remain unclear. Herein, the nuclear magnetic resonance (NMR) approach is performed to investigate the adsorption mechanism of toluene and cetane in the confined space of carbon at the molecular level. The ring current effect induces the variation in the NMR chemical shifts of in-pore adsorbed toluene and cetane, realizing the identification of pore-dependent adsorption sites for contaminant removal. Cetane has a slower adsorption kinetic but a higher binding energy than toluene, which could squeeze toluene from micropores to larger pores with increasing adsorption quantity. This leads to a stronger competitive adsorption effect in small micropores than in mesopores. Accordingly, hierarchical porous carbons are determined to be the most effective adsorbents for the adsorption of coexisting contaminants. This study not only provides an effective NMR method to reveal the adsorption mechanism in the confined space of porous carbon at the molecular level but also offers new insights into the pore size-dependent adsorption of activated carbon for petroleum contaminant treatment.
Collapse
Affiliation(s)
- Zhiang Hou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Wang Q, Zietzschmann F, Hofman-Caris R, Jiang N, Schuster J, Wang Z, Yu J, Yang M, Rietveld LC. Unraveling competition versus adsorbability of dissolved organic matter against organic micropollutants onto activated carbon. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Aung MT, Shimabuku KK, Soares-Quinete N, Kearns JP. Leveraging DOM UV absorbance and fluorescence to accurately predict and monitor short-chain PFAS removal by fixed-bed carbon adsorbers. WATER RESEARCH 2022; 213:118146. [PMID: 35167965 DOI: 10.1016/j.watres.2022.118146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/08/2022] [Accepted: 01/30/2022] [Indexed: 05/27/2023]
Abstract
Carbon adsorbent fouling by dissolved organic matter (DOM) inhibits the ability of the widely-used rapid small-scale column test (RSSCT) to accurately predict the removal of organic micropollutants (OMP) from water by full-scale carbon adsorbers. Here, the adsorption of 11 short-chain per-/poly-fluoroalkyl substances (PFAS) from groundwater, surface water, and wastewater was examined in pilot columns as well as RSSCTs using constant diffusivity (CD) and proportional diffusivity (PD) designs. Neither the CD- or PD-RSSCT accurately predicted pilot adsorber breakthrough of PFAS using standard diffusional mass transfer models. However, PFAS breakthrough relative to optical property (e.g., peak C, UV absorbance at 254 nm) breakthrough remained constant between pilot column, CD-RSSCT, and PD-RSSCT designs. This finding permitted accurate breakthrough predictions for the sum of PFAS and for 9 of the 11 PFAS on an individual basis in pilot columns using RSSCTs. Multiple linear regressions incorporating influent and treated water optical parameters enabled the modeling approach to be applied to water sources with heterogeneous DOM characteristics. It is hypothesized that this methodology was successful because (i) optical parameters adequately quantified the competitive nature of DOM and their adsorption behaved similar to OMP and (ii) competitive adsorption by low-molecular weight DOM was the predominant fouling mechanism. An OMP monitoring approach was developed for waters containing DOM with heterogenous characteristics that also relied on raw and treated water optical properties. UVA254 and fluorescence monitoring could therefore enable water treatment to remove PFAS in a variety of scenarios that face inhibitory cost and analytical limitations, such as decentralized and low-resource settings.
Collapse
|
16
|
Yuan J, Passeport E, Hofmann R. Understanding adsorption and biodegradation in granular activated carbon for drinking water treatment: A critical review. WATER RESEARCH 2022; 210:118026. [PMID: 34996013 DOI: 10.1016/j.watres.2021.118026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Drinking water treatment plants use granular activated carbon (GAC) to adsorb and remove trace organics, but the GAC has a limited lifetime in terms of adsorptive capacity and needs to be replaced before it is exhausted. Biological degradation of target contaminants can also occur in GAC filters, which might allow the GAC to remain in service longer than expected. However, GAC biofiltration remains poorly understood and unpredictable. To increase the understanding of adsorption and biodegradation in GAC, previous studies have conducted parallel column tests that use one column of GAC (potentially biologically active) to assess overall removal via both adsorption and biodegradation, and one column with either sterilized GAC or biological non-adsorbing media to assess adsorption or biodegradation alone. Mathematical models have also been established to give insight into the adsorption and biodegradation processes in GAC. In this review, the experimental and modeling approaches and results used to distinguish between the role of adsorption and biodegradation were summarized and critically discussed. We identified several limitations: (1) using biological non-adsorbing media in column tests might lead to non-representative extents of biodegradation; (2) sterilization methods may not effectively inhibit biological activity and may affect adsorption; (3) using virgin GAC coated with biofilm could overestimate adsorption; (4) potential biofilm detachment during column experiments could lead to biased results; (5) the parallel column test approach itself is not universally applicable; (6) competitive adsorption was neglected by previous models; (7) model formulations were based on virgin GAC only. To overcome these limitations, we proposed four new approaches: the use of gamma irradiation for sterilization, a novel minicolumn test, compound-specific isotope analysis to decipher the role of adsorption and biodegradation in situ, and a new model to simulate trace organic adsorption and biodegradation in a GAC filter .
Collapse
Affiliation(s)
- Jie Yuan
- Department of Civil & Mineral Engineering, University of Toronto, 35St George Street, Toronto, ON, M5S 1A4 Canada.
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35St George Street, Toronto, ON, M5S 1A4 Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5 Canada
| | - Ron Hofmann
- Department of Civil & Mineral Engineering, University of Toronto, 35St George Street, Toronto, ON, M5S 1A4 Canada
| |
Collapse
|