1
|
Xiao Z, Chen P, Liu G, Lv W, Chen W, Zhang Q, Blaney L. UV-activated calcium peroxide system enables simultaneous organophosphorus degradation, phosphate recovery, and carbon fixation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135582. [PMID: 39173391 DOI: 10.1016/j.jhazmat.2024.135582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Advanced oxidation processes are a desirable technology for treatment of contaminants of emerging concern. Nevertheless, conventional advanced oxidation of organophosphorus compounds releases inorganic phosphate, posing downstream concerns related to eutrophication. For this reason, we evaluated the ultraviolet light-activated calcium peroxide (UV/CaO2) system for effective treatment of organophosphorus compounds and concurrent capture of the mineralization products, phosphate. The degradation mechanisms, reaction kinetics, and mineralizations were assessed to determine the overall efficiency and performance of the UV/CaO2 process. Knowledge gaps related to photocatalysis in the UV/CaO2 system were not only addressed, but also leveraged to identify unique advantages for removal of organophosphorus compounds and their degradation products. Experimental results confirmed that the UV/CaO2 system effectively mineralized organophosphorus compounds and recovered inorganic phosphate; additionally, collaborative carbon fixation performance of the system reveals the potential of carbon utilization. These outcomes were facilitated by the alkaline environment generated by CaO2. The recovered solids contained most of the phosphorus and carbon from the parent compounds. Ultimately, these findings provide transformative, new insights into the development and application of advanced oxidation processes that prevent downstream concerns related to mineralization products, especially inorganic phosphorus and carbon.
Collapse
Affiliation(s)
- Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weirui Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qianxin Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| |
Collapse
|
2
|
He J, Jiang X, Qiu Q, Miruka AC, Xu X, Zhang A, Li X, Gao P, Liu Y. Ionic liquid coupled plasma promotes acetic acid production during anaerobic fermentation of waste activated sludge: Breaking the restrictions of low bioavailable substrates and altering the metabolic activities of anaerobes. WATER RESEARCH 2024; 261:122048. [PMID: 38981353 DOI: 10.1016/j.watres.2024.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
This study explored the potential application of plasma coupling ionic liquid on disintegration of waste activated sludge and enhanced production of short-chain fatty acids (SCFAs) in anaerobic fermentation. Under optimal conditions (dosage of ionic liquid [Emim]OTf = 0.1 g/g VSS (volatile suspended solids) and discharge power of dielectric barrier discharge plasma (DBD) = 75.2 W), the [Emim]OTf/DBD pretreatment increased SCFA production by 302 % and acetic acid ratio by 53 % compared to the control. Mechanistic investigations revealed that the [Emim]OTf/DBD combination motivated the generation of various reactive species (such as H2O2, O3, •OH, 1O2, ONOO-, and •O2-) and enhanced the utilization of physical energies (such as heat). The coupling effects of [Emim]OTf/DBD synergistically improved the disintegration of sludge and biodegradability of dissolved organic matter, promoting the sludge anaerobic fermentation process. Moreover, the [Emim]OTf/DBD pretreatment enriched hydrolysis and SCFAs-forming bacteria while inhibiting SCFAs-consuming bacteria. The net effect was pronounced expression of genes encoding key enzymes (such as alpha-glucosidase, endoglucanase, beta-glucosidase, l-lactate/D-lactate dehydrogenase, and butyrate kinase) involved in the SCFA-producing pathway, enhancing the production of SCFAs from sludge anaerobic fermentation. In addition, [Emim]OTf/DBD pretreatment facilitated sludge dewatering and heavy metal removal. Therefore, [Emim]OTf/DBD pretreatment is a promising approach to advancing sludge reduction, recyclability, and valuable resource recovery.
Collapse
Affiliation(s)
- Jinling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xinyuan Jiang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qi Qiu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Xianbao Xu
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk 80-233, Poland
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China.
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China
| |
Collapse
|
3
|
Hossaini H, Pirsaheb M, Hossini H, Derakhshan AA, Asadi F. Improving the purification of aqueous solutions by controlling the production of reactive oxygen species in non-thermal plasma; a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:199-209. [PMID: 36351327 DOI: 10.1515/reveh-2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Treatment with non-thermal plasma is a reliable technology to oxidize chemical impurities that exist in polluted water, wastewater, and leachate, those degradation-resistant and cannot be removed by conventional treatment methods. In this study, the effective factors affecting in the formation ofreactive oxygen species in non-thermal plasma treatment process, as a new advanced oxidation process method explianed. In this manner, all associated manuscripts existed in the main databases including Google Scholar, Science Direct, PubMed, and Open Access Journal Directory from 1990 until 2022 were explored. The utilized keywords were involved non-thermal plasma, Cold plasma, Measurement, •OH, O3 and UV. Overall, 8,813 articles were gathered and based on the relevance titles and abstracts, 18 paper were selected for further reviewing. In several studies, plasma techniques have been used to treat water, wastewater and leachate, but few studies have evaluated the factors influencing the production of ROS species by non-thermal plasma. The non-thermal plasma destroys pollutants by reactive free radicals spices (hydroxyl, hydrogen atoms, etc.) a combination effect of strong electric fields, energetically charged particles, and ultrasound. Some factors such as water vapor, hydraulic retention time, inter-electrode spacing, discharge power density, and aeration of the effluent as well as use of catalyst have direct effect on the reactive oxygen species formation. If these factors controlled within the best ranges, it will promote the oxidizing radical production and system performance. Also, high-energy electrons and oxidizing species produced in the cold plasma system can well degrade most of pollution in water and wastewater.
Collapse
Affiliation(s)
- Hiwa Hossaini
- Research Center for Environmental Determinants of Health (RCEDH), Department of Environmental Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health (RCEDH), Department of Environmental Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Research Center for Environmental Determinants of Health (RCEDH), Department of Environmental Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Fateme Asadi
- Research Center for Environmental Determinants of Health (RCEDH), Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Wang J, Zhang J, Shangguan Y, Yang G, Liu X. Degradation performance and mechanism of microcystins in aquaculture water using low-temperature plasma technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123744. [PMID: 38462202 DOI: 10.1016/j.envpol.2024.123744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The eutrophication of aquaculture water bodies seriously restricts the healthy development of the aquaculture industry. Among them, microcystins are particularly harmful. Therefore, the development of technologies for degrading microcystins is of great significance for maintaining the healthy development of the aquaculture industry. The feasibility and mechanism of removing microcystins-LR by dielectric barrier discharge (DBD) plasma were studied. DBD discharge power of 49.6 W and a treatment time of 40 min were selected as the more suitable DBD parameters, resulting in microcystin-LR removal efficiency of 90.4%. Meanwhile, the effects of initial microcystin-LR concentration, initial pH value, turbidity, anions on the degradation effect of microcystin-LR were investigated. The removal efficiency of microcystin-LR decreased with the increase of initial microcystin-LR concentration and turbidity. The degradation efficiency of microcystin-LR at pH 4.5 and 6.5 is significantly higher than that at pH 8.5 and 3.5. HCO3- can inhibit the removal efficiency of microcystin-LR. Furthermore, five intermediates products (m/z = 1029.5, 835.3, 829.3, 815.4, 642.1) were identified in this study, and the toxicity analysis of these degradation intermediates indicated that DBD treatment can reduce the toxicity of microcystin-LR. e-aq, •OH, H2O2, and O3 have been shown to play a major role in the degradation of microcystin-LR, and the contribution ranking of these active species is e-aq > •OH > H2O2 > O3. The application of DBD plasma technology in microcystin-LR removal and detoxification has certain development potential.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China.
| | - Jiahua Zhang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guanyi Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Ma M, Duan W, Huang X, Zeng D, Hu L, Gui W, Zhu G, Jiang J. Application of calcium peroxide in promoting resource recovery from municipal sludge: A review. CHEMOSPHERE 2024; 354:141704. [PMID: 38490612 DOI: 10.1016/j.chemosphere.2024.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The harmless disposal, resource recovery, and synergistic efficiency reduction of municipal sludge have been the research focuses for the last few years. Calcium peroxide (CaO2) is a multifunctional and safe peroxide that produces an alkaline oxidation environment to promote the fermentation of municipal sludge to produce hydrogen (H2) and volatile fatty acids (VFAs), thus realizing sludge resource recovery. This review outlines the research achievements of CaO2 in sludge resource recovery, improvement of sludge dewaterability, and removal of pollutants from sludge in recent years. Meanwhile, the mechanism of CaO2 and its influencing factors have also been comprehensively summarized. Finally, the future development direction of the application of CaO2 in municipal sludge is prospected. This review would provide theoretical reference for the potential engineering applications of CaO2 in improving sludge treatment in the future.
Collapse
Affiliation(s)
- Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Liangshan Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wenjing Gui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaoming Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiahong Jiang
- New York University, New York, NY, 10012, United States
| |
Collapse
|
6
|
Wang J, Zhang J, Cheng G, Shangguan Y, Yang G, Liu X. Feasibility and mechanism of removing Microcystis aeruginosa and degrading microcystin-LR by dielectric barrier discharge plasma. CHEMOSPHERE 2024; 352:141436. [PMID: 38360412 DOI: 10.1016/j.chemosphere.2024.141436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Harmful cyanobacterial bloom is one of the serious environmental problems worldwide. Microcystis aeruginosa is a representative harmful alga in cyanobacteria bloom. It is of great significance to develop new technologies for the removal of Microcystis aeruginosa and microcystins. The feasibility and mechanism of removing microcystis aeruginosa and degrading microcystins by dielectric barrier discharge (DBD) plasma were studied. The suitable DBD parameters obtained in this study are DBD (41.5 W, 40 min) and DBD (41.5 W, 50 min), resulting in algae removal efficiency of 77.4% and 80.4%, respectively; scanning electron microscope and LIVE-DEATH analysis demonstrate that DBD treatment can disrupt cell structure and lead to cell death; analysis of elemental composition and chemical state indicated that there are traces of oxidation of organic nitrogen and organic carbon in microcystis aeruginosa; further intracellular ROS concentration and antioxidant enzyme activity analysis confirm that DBD damage microcystis aeruginosa through oxidation. Meanwhile, DBD can effectively degrade the microcystin-LR released after cell lysis, the extracellular microcystin-LR concentration in the DBD (41.5 W) group decreased by 88.7% at 60 min compared to the highest concentration at 20 min; further toxicity analysis of degradation intermediates indicated that DBD can reduce the toxicity of microcystin-LR. The contribution of active substances to the inactivation of microcystis aeruginosa is eaq- > •OH > H2O2 > O3 > 1O2 > •O2- > ONOO-, while on the degradation of microcystin-LR is eaq- > •OH > H2O2 > O3 > •O2- > 1O2 > ONOO-. The application of DBD plasma technology in microcystis aeruginosa algae removal and detoxification has certain prospects for promotion and application.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| | - Jiahua Zhang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guanyi Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| |
Collapse
|
7
|
Li Z, Xiang L, Pan S, Zhu D, Li S, Guo H. The Degradation of Aqueous Oxytetracycline by an O 3/CaO 2 System in the Presence of HCO3-: Performance, Mechanism, Degradation Pathways, and Toxicity Evaluation. Molecules 2024; 29:659. [PMID: 38338403 PMCID: PMC10856086 DOI: 10.3390/molecules29030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
This research constructed a novel O3/CaO2/HCO3- system to degrade antibiotic oxytetracycline (OTC) in water. The results indicated that CaO2 and HCO3- addition could promote OTC degradation in an O3 system. There is an optimal dosage of CaO2 (0.05 g/L) and HCO3- (2.25 mmol/L) that promotes OTC degradation. After 30 min of treatment, approximately 91.5% of the OTC molecules were eliminated in the O3/CaO2/HCO3- system. A higher O3 concentration, alkaline condition, and lower OTC concentration were conducive to OTC decomposition. Active substances including ·OH, 1O2, ·O2-, and ·HCO3- play certain roles in OTC degradation. The production of ·OH followed the order: O3/CaO2/HCO3- > O3/CaO2 > O3. Compared to the sole O3 system, TOC and COD were easier to remove in the O3/CaO2/HCO3- system. Based on DFT and LC-MS, active species dominant in the degradation pathways of OTC were proposed. Then, an evaluation of the toxic changes in intermediates during OTC degradation was carried out. The feasibility of O3/CaO2/HCO3- for the treatment of other substances, such as bisphenol A, tetracycline, and actual wastewater, was investigated. Finally, the energy efficiency of the O3/CaO2/HCO3- system was calculated and compared with other mainstream processes of OTC degradation. The O3/CaO2/HCO3- system may be considered as an efficient and economical approach for antibiotic destruction.
Collapse
Affiliation(s)
- Zedian Li
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China; (Z.L.); (D.Z.)
| | - Liangrui Xiang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (L.X.); (S.P.)
| | - Shijia Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (L.X.); (S.P.)
| | - Dahai Zhu
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China; (Z.L.); (D.Z.)
| | - Shen Li
- Anhui Jiuwu Tianhong Environmental Protection Technology Co., Ltd., Hefei 230011, China;
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (L.X.); (S.P.)
| |
Collapse
|
8
|
Bilea F, Bradu C, Cicirma M, Medvedovici AV, Magureanu M. Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168524. [PMID: 37972787 DOI: 10.1016/j.scitotenv.2023.168524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
Collapse
Affiliation(s)
- Florin Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania; Faculty of Chemistry, University of Bucharest, Regina Elisabeta Bd. 4-12, 030018 Bucharest, Romania.
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, Splaiul Independenței Str. 91-95, 050095 Bucharest, Romania
| | - Marius Cicirma
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
| | | | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania.
| |
Collapse
|
9
|
Xie Y, Chen W, Li H, Zeng Q, Yu X, Feng M. Promoted micropollutant degradation and structural evolution of natural organic matter by a novel S(IV)-based water treatment strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132801. [PMID: 37871437 DOI: 10.1016/j.jhazmat.2023.132801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
The ubiquity of various organic micropollutants in global water and wastewater has raised considerable concern about their cost-efficient elimination. This study reported that the novel UV365/FeTiOX/S(IV) system could accomplish superior abatement of different micropollutants (e.g., carbamazepine, CMZ) in 30-45 min with excellent reusability and stability of FeTiOX. In addition, this system functioned effectively to remove roxarsone and As(III)/As(V) by catalytic oxidation and adsorption, respectively. Mechanistic investigations suggested the dual roles of S(IV) in enhancing pollutant oxidation, i.e., promoted Fe(II)/Fe(III) cycle and photocatalysis. These processes facilitated the continuous generation of multiple oxidizing intermediates (e.g., hydroxyl radicals, sulfate radicals, and singlet oxygen), in which the last one was first proposed as the main contributor in iron-mediated S(IV)-based oxidation processes. Based on the product identification, the transformation pathways of four different micropollutants were tentatively unraveled. The in silico prediction suggested the lower environmental risks of the final reaction products than the precursors. Particularly, the structural alteration of humic acid was analyzed, indicating an increased O/C ratio after oxidative treatment. Overall, this study has implications for developing an efficient oxidation technique for removing multiple micropollutants in water and facilitating the mechanistic reactivity modulation of the S(IV)-based oxidation strategies in water treatment.
Collapse
Affiliation(s)
- Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Haoran Li
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Qi Zeng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China.
| |
Collapse
|
10
|
Jiang N, Zhang A, Miruka AC, Wang L, Li X, Xue G, Liu Y. Synergistic effects and mechanisms of plasma coupled with peracetic acid in enhancing short-chain fatty acid production from sludge: Motivation of reactive species and metabolic tuning of microbial communities. BIORESOURCE TECHNOLOGY 2023; 387:129618. [PMID: 37544535 DOI: 10.1016/j.biortech.2023.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Suitable waste activated sludge (WAS) pretreatments that boost short-chain fatty acid (SCFA) production from anaerobic fermentation are essential for carbon emission reduction and sludge resource utilization. This study established an efficient WAS pretreatment process combining atmospheric pressure plasma jet (APPJ) with peracetic acid (PAA). The maximum SCFA production (6.5-fold that of the control) largely increased under the optimal conditions (PAA dosage = 25 mg/g VSS (volatile suspended solids), energy consumption = 20.9 kWh/m3). APPJ/PAA pretreatment enhanced the production of multiple reactive species (including OH, CH3C(O)O, 1O2, ONOO-, O2-, and eaq-) and strengthened the effects of H2O2, heat, and light. This synergistically solubilized WAS and released organic substrates for SCFA-producing microbes. In addition, the enrichment of SCFA-producing bacteria and the decrease in SCFA-consuming bacteria favored SCFA accumulation. The key genes encoding for the main substrate metabolism and SCFA production in the metabolic pathway of fermentation were also enhanced.
Collapse
Affiliation(s)
- Nan Jiang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China.
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Lin Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China
| |
Collapse
|
11
|
Xu Z, Ze S, Chen X, Song X, Wang Y. Mutual influence mechanism of nitrate and sulfamethoxazole on their biotransformation in poly (3-hydroxybutyrate-3-hydroxyvalerate) supported denitrification biofilter for a long-term operation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118897. [PMID: 37683386 DOI: 10.1016/j.jenvman.2023.118897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Nitrate and SMX both play a critical role in their biotransformation in biodegradable polymer-supported denitrification biofilters. However, the mutual influences of nitrate and SMX on their biotransformation for long-term operation remained obscure. Results showed SMX and nitrate had divergent effects on SMX removal. SMX removal rates was positively related with its loading rates, whereas they were negatively related to NLRs. The most abundant metabolite C10H14O3N3S (the reduced form of SMX moiety) from the N-O bond cleavage pathway by UHPLC-LTQ-Orbitrap-MS/MS and effluent TOC variations confirmed the presence of electron donor competition between nitrate and SMX. SMX less than 1000 μg/L had a negligible influence on denitrification performance. Denitrifiers such as Azospira and Denitratisoma were still enriched after chronic exposure, and nosZ/narG positively correlated with sul1/sul2 resistance genes, which were both responsible for the negligible influence of SMX. This work could guide the operational management of denitrification biofilters for simultaneous nitrate and antibiotics removal.
Collapse
Affiliation(s)
- Zhongshuo Xu
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Siwen Ze
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Xinshan Song
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Yuhui Wang
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China.
| |
Collapse
|
12
|
Wang J, Cheng G, Zhang J, Shangguan Y, Lu M, Liu X. Feasibility and mechanism of recycling carbon resources from waste cyanobacteria and reducing microcystin toxicity by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132333. [PMID: 37634378 DOI: 10.1016/j.jhazmat.2023.132333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Recycling carbon resources from discarded cyanobacteria is a worthwhile research topic. This study focuses on the use of dielectric barrier discharge (DBD) plasma technology as a pretreatment for anaerobic fermentation of cyanobacteria. The DBD group (58.5 W, 45 min) accumulated the most short chain fatty acids (SCFAs) along with acetate, which were 3.0 and 3.3 times higher than the control. The DBD oxidation system can effectively collapse cyanobacteria extracellular polymer substances and cellular structure, improve the biodegradability of dissolved organic matter, enrich microorganisms produced by hydrolysis and SCFAs, reduce the abundance of SCFAs consumers, thereby promoting the accumulation of SCFAs and accelerating the fermentation process. The microcystin-LR removal rate of 39.8% was obtained in DBD group (58.5 W, 45 min) on day 6 of anaerobic fermentation. The toxicity analysis using the ECOSAR program showed that compared to microcystin-LR, the toxicity of degradation intermediates was reduced. The contribution order of functional active substances to cyanobacteria cracking was obtained as eaq- > •OH > 1O2 > •O2- > ONOO-, while the contribution order to microcystin-LR degradation was eaq- > •OH > •O2- > 1O2 > ONOO-. DBD has the potential to be a revolutionary pretreatment method for cyanobacteria anaerobic fermentation.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Jiahua Zhang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ming Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China.
| |
Collapse
|
13
|
Cai Y, Zhou H, Li W, Yao C, Wang J, Zhao Y. A chemiluminescence method induced by microplasma jet for nitrites detection and the miniature detection system using smartphone. Anal Chim Acta 2023; 1267:341339. [PMID: 37257970 DOI: 10.1016/j.aca.2023.341339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
A method of luminol-diazonium chemiluminescence (CL) induced by microplasma for hazardous substance detection is proposed. The luminol-diazonium CL is caused by microplasma jet, rather than hydrogen peroxide reagent or other oxidizing agents. The CL intensity is increased by the concentration of nitrites. Based on the process of microplasma generation and CL mechanism, the optimal work conditions of the method are obtained. The linear range for nitrites detection is 0.03-1 mmol L-1 with the limit of detection (LOD) of 0.01 mmol L-1. Furthermore, a miniature system using test paper and smartphone is designed for nitrites detection in emergency. The detection system is confined in the custom-tailored shell which is only 28 cm in length, 18 cm in width and 10 cm in height. After microplasma jet treatment, the color of the test paper changes with the NO2- concentration. The photographs of the test paper are taken by the built-in camera of smartphone and analyzed by visiting the website via smartphone. The LOD is 1 mmol L-1 obtained by the CL miniature detection system based on test paper and smartphone. The accuracy, reliability and practicability of the proposed method is verified in this paper.
Collapse
Affiliation(s)
- Yi Cai
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Han Zhou
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Wei Li
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Cheng Yao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yong Zhao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
14
|
Zhang A, Jiang X, Ding Y, Jiang N, Ping Q, Wang L, Liu Y. Simultaneous removal of antibiotics and antibiotic resistance genes in wastewater by a novel nonthermal plasma/peracetic acid combination system: Synergistic performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131357. [PMID: 37027926 DOI: 10.1016/j.jhazmat.2023.131357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
In this study, a novel and green method combining plasma with peracetic acid (plasma/PAA) was developed to simultaneously remove antibiotics and antibiotic resistance genes (ARGs) in wastewater, which achieves significant synergistic effects in the removal efficiencies and energy yield. At a plasma current of 2.6 A and PAA dosage of 10 mg/L, the removal efficiencies of most detected antibiotics in real wastewater exceeded 90 % in 2 min, with the ARG removal efficiencies ranging from 6.3 % to 75.2 %. The synergistic effects of plasma and PAA could be associated with the motivated production of reactive species (including •OH, •CH3, 1O2, ONOO-, •O2- and NO•), which decomposed antibiotics, killed host bacteria, and inhibited ARG conjugative transfer. In addition, plasma/PAA also changed the contributions and abundances of ARG host bacteria and downregulated the corresponding genes of two-component regulatory systems, thus reducing ARG propagation. Moreover, the weak correlations between the removal of antibiotics and ARGs highlights the commendable performance of plasma/PAA in the simultaneous removal of antibiotics and ARGs. Therefore, this study affords an innovative and effective avenue to remove antibiotics and ARGs, which relies on the synergistic mechanisms of plasma and PAA and the simultaneous removal mechanisms of antibiotics and ARGs in wastewater.
Collapse
Affiliation(s)
- Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China
| | - Xinyuan Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongqiang Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ping
- Shanghai institute of pollution control and ecological security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Kay Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lin Wang
- Shanghai institute of pollution control and ecological security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Kay Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China
| |
Collapse
|
15
|
Lou J, An J, Wang X, Yang X, Lu G, Wang L, Zhao Z. Enhanced degradation of oxytetracycline in aqueous solution by DBD plasma-coupled vacuum ultraviolet/ultraviolet (VUV/UVC) system. CHEMOSPHERE 2023:139021. [PMID: 37247680 DOI: 10.1016/j.chemosphere.2023.139021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
A systematic investigation of coupling dielectric barrier discharge (DBD) plasma and different ultraviolet bands (UVA, UVB, UVC, and VUV) was constructed for antibiotic-contaminant wastewater treatment. Compared with DBD, UV, or other combined DBD/UV systems, the DBD/VUV/UVC system exhibited excellent degradation and mineralization efficiencies for oxytetracycline (OTC), achieving 93.2% removal rate (reaction rate constant 1.05 min-1) and higher decarbonization efficiency (mineralization rate 0.47 mg C min-1) within 2.5 min treatment. The radical quenching tests revealed that HO⋅, [Formula: see text] , and 1O2 were all involved in the decomposition of OTC in the DBD/VUV/UVC system, among which [Formula: see text] played a dominant role. Possible degradation pathways of OTC in the DBD/VUV/UVC process were proposed using density functional theory and detected intermediates. Four indexes were used to assess the toxicity of OTC and its degraded intermediates. The inorganic anions and HA slightly reduced the degradation efficiency of the DBD/VUV/UVC system. This research provides new ideas to broaden the application of plasma and alleviate the water environment crisis.
Collapse
Affiliation(s)
- Jing Lou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiutao An
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| | - Xiaonan Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Guanglu Lu
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Liang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zitong Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
16
|
Chen Y, Sun X, Zheng L, Liu Y, Zhao Y, Huang S, Li S. Synergistic catalysis induced by a multi-component system constructed by DBD plasma combined with α-Fe 2O 3/FeVO 4/HCP and peroxymonosulfate for gatifloxacin removal. CHEMOSPHERE 2023; 332:138838. [PMID: 37150453 DOI: 10.1016/j.chemosphere.2023.138838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
The dielectric barrier discharge (DBD) multi-component system containing plasma, α-Fe2O3/FeVO4, and peroxymonosulfate (PMS) with high catalytic activity was successfully constructed. Thereinto, α-Fe2O3/FeVO4 was loaded on the honeycomb ceramic plate (HCP) surface (α-Fe2O3/FeVO4/HCP) and placed under the water surface below the discharge area. The catalytic activity was evaluated by the removal rate of gatifloxacin (GAT), and the DBD+α-Fe2O3/FeVO4+PMS system exhibited the optimal catalytic activity. The enhanced catalytic activity can be attributed to the fact that the occurrence of synergistic catalysis that simultaneously includes plasma oxidation, photocatalysis, PMS oxidation, O3 catalysis, and Fenton reaction. The effect of various initial degradation parameters including input power, PMS dosage, pH, etc. On GAT removal was investigated. DBD+α-Fe2O3/FeVO4+PMS system has a significant increase in the concentration of H2O2 and O3, and the role played in the multi-component system was analyzed. The identification and analysis of organic matters during GAT degradation were visualized with the help of 3D EEMs. HPLC-MS and theoretical calculations identified the major intermediates and further deduced the possible GAT degradation pathways. Additionally, the acute toxicity of the major intermediates was predicted by the QSAR model. Finally, the possible mechanisms of synergistic catalysis to enhance catalytic activity were discussed based on the characteristics of several advanced oxidation processes (AOPs) and the results of experimental and characterization. This work provides a feasible technical route and theoretical basis for wastewater treatment by plasma combined with other AOPs.
Collapse
Affiliation(s)
- Yongyang Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Lijiao Zheng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yuan Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yimo Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shimeng Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shanping Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
17
|
Dong CD, Cheng JW, Chen CW, Huang CP, Hung CM. Activation of calcium peroxide by nitrogen and sulfur co-doped metal-free lignin biochar for enhancing the removal of emerging organic contaminants from waste activated sludge. BIORESOURCE TECHNOLOGY 2023; 374:128768. [PMID: 36828219 DOI: 10.1016/j.biortech.2023.128768] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The accumulation of emerging organic contaminants (EOCs) in waste activated sludge (WAS) is a global concern. In this study, a multi-heteroatom nitrogen and sulfur was successfully embedded into lignin-based biochar (N-S-LGBC) and used it to activate calcium peroxide (CP) for the degradation of 4-nonylphenol (4-NP) in WAS. N-S-LGBC/CP was effective in degrading 85 % of 4-NP within 12 h through the activation of CP owing to hydroxyl radicals and singlet oxygen species generated from the synergism among pyrrolic-N, thiophenic-S, and lattice oxygen, i.e., active sites responsible for 4-NP degradation. These results highlight substrate biodegradability for subsequent bioprocesses that improves WAS treatment in EOC degradation by the N-S-LGBC/CP-mediated process. There was abundance of distinct Aggregatilinea genus within the phylum Chloroflexi during N-S-LGBC/CP treatment, indicating high 4-NP pretreatment efficiency in WAS. This work provides a new understanding of N-S-co-doped carbocatalysts in green and sustainable hydroxyl radical-driven carbon advanced oxidation (HR-CAOP) platforms for WAS remediation.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Jia-Wei Cheng
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
18
|
Zeng W, Zhang H, Wu R, Liu L, Li G, Liang H. Environment-friendly and efficient electrochemical degradation of sulfamethoxazole using reduced TiO 2 nanotube arrays-based Ti membrane coated with Sb-SnO 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130642. [PMID: 36580775 DOI: 10.1016/j.jhazmat.2022.130642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
This study focused on the preparation, characterization, and sulfamethoxazole (SMX) removal performance of the SnO2-coated reactive electrochemical membrane (REM). This REM was fabricated by loading SnO2 on the reduced TiO2 nanotube arrays (RTNA)-based Ti membrane (TM). Regarding the dopant for SnO2, Sb was more effective in boosting the electrocatalytic activity than Bi, and the energy consumption for Sb-SnO2-coated REM (TM/RTNA/ATO) was lower than Bi-SnO2-coated REM (TM/RTNA/BTO). As for the internal layer, RTNA provided TM/RTNA/ATO with more electroactive surface areas and prolonged the service lifetime. Compared with batch mode, the SMX removal efficiency in flow-through mode was increased up to 8.4-fold. The SMX degradation performances were also affected by fluid velocity, current density, initial SMX concentration, and electrolyte concentration. The synergistic effects of •OH oxidation and direct electron transfer were responsible for the effective removal of SMX. TM/RTNA/ATO was proved to be stable and durable by multi-cycle and accelerated lifetime tests. Its extensive applicability was verified with high removal efficiencies of SMX in the surface water and wastewater effluent. These results demonstrate the promise of TM/RTNA/ATO for water treatment applications.
Collapse
Affiliation(s)
- Weichen Zeng
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Zhang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Wu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
| | - Luming Liu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
| | - Guibai Li
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
19
|
Lin C, Liu Z, Zhao Y, Song C, Meng F, Song B, Zuo G, Qi Q, Wang Y, Yu L, Song M. Oxygen-mediated dielectric barrier discharge plasma for enhanced degradation of chlorinated aromatic compounds. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
20
|
Yusuf A, Amusa HK, Eniola JO, Giwa A, Pikuda O, Dindi A, Bilad MR. Hazardous and emerging contaminants removal from water by plasma-based treatment: a review of recent advances. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Huang J, Puyang C, Wang Y, Zhang J, Guo H. Hydroxylamine activated by discharge plasma for synergetic degradation of tetracycline in water: Insight into performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Zheng M, Gao B, Zhang J, El-Din MG, Snyder SA, Wu M, Tang L. In-situ chemical attenuation of pharmaceutically active compounds using CaO 2: Influencing factors, mechanistic modeling, and cooperative inactivation of water-borne microbial pathogens. ENVIRONMENTAL RESEARCH 2022; 212:113531. [PMID: 35613632 DOI: 10.1016/j.envres.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Water polluted by pharmaceutically active compounds (PhACs) and water-borne pathogens urgently need to develop eco-friendly and advanced water treatment techniques. This paper evaluates the potential of using calcium peroxide (CaO2), a safe and biocompatible oxidant both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. This paper evaluates the potential of using calcium peroxide (CaO2) as a safe and biocompatible oxidant to remove both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. The increased CaO2 dosage increased efficiencies of PhACs attenuation and pathogens inactivation, and both exhibited pseudo-first-order degradation kinetics (R2 > 0.90). PhACs attenuation were mainly via oxidization (H2O2, •OH/O•-, and O2•-) and alkaline hydrolysis (OH-) from CaO2. Moreover, concentrations of these reactive species and their contributions to PhACs attenuation were quantified, and mechanistic model was established and validated. Besides, possible transformation pathways of target PhACs except primidone were proposed. As for pathogen indicators, the suitable inactivation dosage of CaO2 was 0.1 g L-1. The oxidability (18-64%) and alkalinity (82-36%) generated from CaO2 played vital roles in pathogen inactivation. In addition, CaO2 at 0.01-0.1 g L-1 can be applied in remediation of SW contaminated by PhACs and pathogenic bacteria, which can degrade target PhACs with efficiencies of 21-100% under 0.01 g L-1 CaO2, and inactivate 100% of test bacteria under 0.1 g L-1 CaO2. In short, capability of CaO2 to remove target PhACs and microbial pathogens reveals its potential to be used as a representative technology for the advanced treatment of waters contaminated by organic compounds and microbial pathogens.
Collapse
Affiliation(s)
- Ming Zheng
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; Shunde Graduate School of University of Science and Technology Beijing, Foshan City, Guangdong, 528399, China.
| | - Bing Gao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007, China.
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
23
|
Gu X, Huang D, Chen J, Li X, Zhou Y, Huang M, Liu Y, Yu P. Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8920-8931. [PMID: 35438974 DOI: 10.1021/acs.est.2c01516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda-) [E. coli (λ-)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2-) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our "inside-out" strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.
Collapse
Affiliation(s)
- Xia Gu
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Dan Huang
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061-0131, United States
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Yongquan Zhou
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Pingfeng Yu
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|