1
|
Yusim EJ, Zarecki R, Medina S, Carmi G, Mousa S, Hassanin M, Ronen Z, Wu Z, Jiang J, Baransi-Karkaby K, Avisar D, Sabbah I, Yanuka-Golub K, Freilich S. Integrated use of electrochemical anaerobic reactors and genomic based modeling for characterizing methanogenic activity in microbial communities exposed to BTEX contamination. ENVIRONMENTAL RESEARCH 2024:120691. [PMID: 39746623 DOI: 10.1016/j.envres.2024.120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved. A reactor system, comprising an Anaerobic Bioreactor (AB) and two Microbial Electrolysis Cell (MEC) chambers, designed to represent different spatial zones along the redox gradient, operated for 160 days with intermittent exposure to BTEX. The functional differentiation of each chamber was reflected by the gas emission profiles: 50%, 12% and 84% methane in the AB, anode and cathode chambers, respectively. The taxonomic profiling, assessed using 16S amplicon sequencing, led to the identification chamber-characteristic taxonomic groups. To translate the taxonomic shift into a functional shift, community dynamics was transformed into a simulative platform based on genome scale metabolic models constructed for 21 species that capture both key functionalities and taxonomies. Representatives include BTEX degraders, fermenters, iron reducers acetoclastic and hydrogenotrophic methanogens. Functionality was inferred according to the identification of the functional gene bamA as a biomarker for anaerobic BTEX degradation, taxonomy and literature support. Comparison of the predicted performances of the reactor-specific communities confirmed that the simulation successfully captured the experimentally recorded functional variation. Variations in the predicted exchange profiles between chambers capture reported and novel competitive and cooperative interactions between methanogens and non-methanogens. Examples include the exchange profiles of hypoxanthine (HYXN) and acetate between fermenters and methanogens, suggesting mechanisms underlying the supportive/repressive effect of taxonomic divergence on methanogenesis. Hence, the platform represents a pioneering attempt to capture the full spectrum of community activity in methanogenic hydrocarbon biodegradation while supporting the future design of optimization strategies.
Collapse
Affiliation(s)
- Evgenia Jenny Yusim
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel; The Hydro-chemistry Laboratory, Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Gon Carmi
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Sari Mousa
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Mahdi Hassanin
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer 8499000, Israel
| | - Zhiming Wu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Katie Baransi-Karkaby
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; School of Environmental Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dror Avisar
- The Hydro-chemistry Laboratory, Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Isam Sabbah
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.
| |
Collapse
|
2
|
Meng Y, Li P, Elumalai V. Factors affecting distribution and ecological risk assessment of volatile organic compounds (VOCs) in groundwater of the Huazhou district in northwestern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125243. [PMID: 39505099 DOI: 10.1016/j.envpol.2024.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Volatile organic compounds (VOCs) pollution in groundwater is a significant global concern. In this study, 26 groundwater samples were collected from the unconfined aquifers in Huazhou District, northwestern China, to assess their distribution characteristics, influencing factors, and ecological risks across various geomorphological settings. The findings revealed 35 VOCs in collected groundwater samples, with aromatic hydrocarbons having the highest detection rate (100%), and the VOCs distribution exhibited significant spatial variations, with the highest VOCs concentration near a chemical plant on the inclined pluvial plain. The lithology and groundwater flow influenced the vertical and lateral transport of VOCs, with concentrations decreasing as the aquifer permeability decreases along the groundwater flow from the inclined pluvial plain to the river. The Mantel test was used to analyze the correlation between VOCs and environmental factors, geochemical analyses indicated that nitrate (NO3-) and sulfate (SO42-) served as electron acceptors in the anaerobic biodegradation of organic pollutants, with bicarbonate (HCO3-) levels increasing as a result of this biodegradation. Additionally, the curved streamline searchlight shaped model (CS-SLM) was applied to identify the primary land use types affecting VOCs content, construction land and cropland were primary land use types affecting VOCs distribution. Finally, the ecological risk assessment indicated the highest risk quotient (RQ) for styrene (0.21), suggesting a manageable risk level. The study emphasizes the complexity of VOCs contamination in groundwater, providing a foundation for targeted mitigation strategies.
Collapse
Affiliation(s)
- Yueyue Meng
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Vetrimurugan Elumalai
- Department of Hydrology, University of Zululand, Kwa-Dlangezwa, Richards Bay, 3886, Durban, South Africa
| |
Collapse
|
3
|
Lei J, Zhao C, Zhang S, Zhang W, Han Y, Zhou W. New insight in the biotreatment of produced water: Pre-oxidation paves a rapid pathway for substrate selection in microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136483. [PMID: 39541887 DOI: 10.1016/j.jhazmat.2024.136483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/09/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The deep treatment of produced water (PW) had emerged as a formidable challenge due to the coexistence of hydrocarbons, surfactants, ammonium nitrogen, and other refractory organics. On the basis of the pre-oxidation coupled heterotrophic ammonia assimilation (PHAA) system constructed in previous research, this work refined the catalyst selection and reduced the hydraulic retention time. The stable running PHAA system removed 96.2 % of total organic carbon (TOC). The study simulated the effects of organic loading fluctuations on the system and dissected the mechanism of pre-oxidation process and its contribution to microbial community. Pre-oxidation significantly improved the ability of microbial community to handle loading shocks and improved organic degradation efficiency in PW during long-term reactor operation. The PHAA process effectively removed medium to long chain alkanes above C24 in PW and proposed potential degradation pathways and direction. The determination of hydrocarbon enzymes activity showed that pre-oxidation changed the substrate selection, making more aldehydes available as auxiliary carbon sources for microorganisms. Pre-oxidation also enriched and preserved microbial diversity, facilitating the accumulation of functional microorganisms in the PHAA process.
Collapse
Affiliation(s)
- Jianhua Lei
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Wenchao Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China, 266000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000.
| |
Collapse
|
4
|
Gao H, Chen J, Wang C, Wang P, Wang R, Feng B. Long-term contamination of decabromodiphenyl ether reduces sediment multifunctionality: Insights from nutrient cycling, microbial ecological clusters, and microbial co-occurrence patterns. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135792. [PMID: 39265393 DOI: 10.1016/j.jhazmat.2024.135792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Despite the widespread detection of polybrominated diphenyl ethers in aquatic ecosystems, their long-term effects on sediment multifunctionality remain unclear. Herein, a 360-day microcosm experiment was conducted to investigate how decabromodiphenyl ether (BDE-209) contamination at different levels (0.2, 2, and 20 mg/kg dry weight) affects sediment multifunctionality, focusing on carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling. Results showed that BDE-209 significantly increased sediment total organic carbon, nitrate, ammonium, available phosphorus, and sulfide concentrations, but decreased sulfate. Additionally, BDE-209 significantly altered key enzyme activities related to nutrient cycling. Bacterial community dissimilarity was positively correlated with nutrient variability. Long-term BDE-209 exposure inhibited C degradation, P transport and regulation, and most N metabolic pathways, but enhanced C fixation, methanogenesis, organic P mineralization, inorganic P solubilization, and dissimilatory sulfate reduction pathways. These changes were mainly regulated by microbial ecological clusters and keystone taxa. Overall, sediment multifunctionality declined under BDE-209 stress, primarily related to microbial co-occurrence network complexity and ecological cluster diversity. Interestingly, sediment C and N cycling had greater impacts on multifunctionality than P and S cycling. This study provides crucial insights into the key factors altering multifunctionality in contaminated sediments, which will aid pollution control and mitigation in aquatic ecosystems.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
5
|
Song Y, Shi X, Revil A, Deng Y. Influence of dissolved and non-aqueous phase toluene on spectral induced polarization signatures of soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135973. [PMID: 39342856 DOI: 10.1016/j.jhazmat.2024.135973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Fifty-two laboratory experiments are undertaken to analyze the sensitivity of spectral induced polarization (SIP) to the presence of toluene in soils. Among these experiments, four experiments are conducted to collect SIP responses of soils containing dissolved phase toluene within the pore water using columns. The results demonstrate that SIP is not sensitive to the presence of dissolved phase toluene in soils. The remaining forty-eight experiments are undertaken with four types of soils mixed with non-aqueous phase toluene. The experimental results prove that SIP is sensitive to toluene saturation under varying salinity conditions. These observations are well-explained by a published petrophysical model accounting for the effects of water saturation on complex conductivity. The water saturation exponent n and quadrature conductivity exponent p in this model are obtained by fitting complex conductivity data versus saturation at different saturation levels. The petrophysical model is tested where in-phase and quadrature conductivity responses are predicted from water saturation, soil cation exchange capacity (CEC), and pore water conductivity. The petrophysical model provides satisfactory predictions for non-aqueous phase toluene saturation. Overall, this study contributes to our understanding of SIP as a non-intrusive tool for characterizing toluene contamination in soils with applications to the field.
Collapse
Affiliation(s)
- Yalin Song
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - André Revil
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, UMR CNRS 5204, EDYTEM, Le Bourget-du-Lac, France.
| | - Yaping Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Sharma S, Shaikh S, Mohana S, Desai C, Madamwar D. Current trends in bioremediation and bio-integrated treatment of petroleum hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57397-57416. [PMID: 37861831 DOI: 10.1007/s11356-023-30479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Petroleum hydrocarbons and their derivatives constitute the leading group of environmental pollutants worldwide. In the present global scenario, petroleum and natural gas production, exploration, petroleum refining, and other anthropogenic activities produce huge amounts of hazardous petroleum wastes that accumulate in the terrestrial and marine environment. Due to their carcinogenic, neurotoxic, and mutagenic characteristics, petroleum pollutants pose severe risks to human health and exert ecotoxicological effects on the ecosystems. To mitigate petroleum hydrocarbons (PHs) contamination, implementing "green technologies" for effective cleanup and restoration of an affected environment is considered as a pragmatic approach. This review provides a comprehensive outline of newly emerging bioremediation technologies, for instance; nanobioremediation, electrokinetic bioremediation, vermiremediation, multifunctional and sustainably implemented on-site applied biotechnologies such as; natural attenuation, biostimulation, bioaugmentation, bioventing, phytoremediation and multi-process hybrid technologies. Additionally, the scope of the effectiveness and limitations of individual technologies in treating the petroleum hydrocarbon polluted sites are also evaluated.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India
| | - Shabnam Shaikh
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India
| | - Sarayu Mohana
- Department of Microbiology, Mount Carmel College (Autonomous), Palace Road, Bengaluru, Karnataka, 560052, India
| | - Chirayu Desai
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tech (GIFT) - City, Gandhinagar, Gujarat, 382355, India
| | - Datta Madamwar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
7
|
Irianni-Renno M, Rico JL, Key TA, De Long SK. Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135059. [PMID: 39053064 DOI: 10.1016/j.jhazmat.2024.135059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
To optimally employ Natural Source Zone Depletion (NSZD) and Enhanced Source Zone Depletion (ESZD) at sites impacted by light non-aqueous phase liquids (LNAPL), monitoring strategies are required. Emerging use of subsurface oxidation-reduction potential (ORP) sensors shows promise for tracking redox evolution, which reflects ongoing biogeochemical processes. However, further understanding of how soil redox dynamics relate to subsurface microbial activity and LNAPL degradation pathways is needed. In this work, soil ORP sensors and DNA and RNA sequencing-based microbiome analysis were combined to elucidate NSZD and ESZD (biostimulation via periodic sulfate addition and biosparging) processes in columns containing LNAPL-impacted soils from a former petroleum refinery. Results show expected relationships between continuous soil redox and active microbial communities. Continuous data revealed spatial and temporal detail that informed interpretation of the hydrocarbon biodegradation data. Redox increases were transient for sulfate addition, and sequencing revealed how hydrocarbon concentration and composition impacted microbiome structure and naphthalene degradation. Periodic biosparging did not result in fully aerobic conditions suggesting observed biodegradation improvements could be explained by alternative anaerobic metabolisms (e.g., iron reduction due to air oxidizing reduced iron). Collectively, data suggest combining continuous redox sensing with microbiome analysis provides insights beyond those possible with either monitoring tool alone.
Collapse
Affiliation(s)
- Maria Irianni-Renno
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jorge L Rico
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Trent A Key
- ExxonMobil Environmental and Property Solutions Company, 22777 Springwoods Village Pkwy, Spring, TX 77389, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
8
|
Feng F, Yang Y, Liu Q, Wu S, Yun Z, Xu X, Jiang Y. Insights into the characteristics of changes in dissolved organic matter fluorescence components on the natural attenuation process of toluene. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134952. [PMID: 38944985 DOI: 10.1016/j.jhazmat.2024.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Natural attenuation (NA) is of great significance for the remediation of contaminated groundwater, and how to identify NA patterns of toluene in aquifers more quickly and effectively poses an urgent challenge. In this study, the NA of toluene in two typical soils was conducted by means of soil column experiment. Based on column experiments, dissolved organic matter (DOM) was rapidly identified using fluorescence spectroscopy, and the relationship between DOM and the NA of toluene was established through structural equation modeling analysis. The adsorption rates of toluene in clay and sandy soil were 39 % and 26 %, respectively. The adsorption capacity and total NA capacity of silty clay were large. The occurrence of fluorescence peaks of protein-like components and specific products indicated the occurrence of biodegradation. Arenimonas, Acidovorax and Brevundimonas were the main degrading bacteria identified in Column A, while Pseudomonas, Azotobacter and Mycobacterium were the main ones identified in Column B. The pH, ORP, and Fe(II) were the most important factors affecting the composition of microbial communities, which in turn affected the NA of toluene. These results provide a new way to quickly identify NA of toluene.
Collapse
Affiliation(s)
- Fan Feng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuxuan Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhichao Yun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
9
|
Wu Z, Ji Y, Liu G, Yu X, Shi K, Liang B, Freilich S, Jiang J. Electro-stimulation modulates syntrophic interactions in methanogenic toluene-degrading microbiota for enhanced functionality. WATER RESEARCH 2024; 260:121898. [PMID: 38865893 DOI: 10.1016/j.watres.2024.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Syntrophy achieved via microbial cooperation is vital for anaerobic hydrocarbon degradation and methanogenesis. However, limited understanding of the metabolic division of labor and electronic interactions in electro-stimulated microbiota has impeded the development of enhanced biotechnologies for degrading hydrocarbons to methane. Here, compared to the non-electro-stimulated methanogenic toluene-degrading microbiota, electro-stimulation at 800 mV promoted toluene degradation and methane production efficiencies by 11.49 %-14.76 % and 75.58 %-290.11 %, respectively. Hydrocarbon-degrading gene bamA amplification and metagenomic sequencing analyses revealed that f_Syntrophobacteraceae MAG116 may act as a toluene degrader in the non-electro-stimulated microbiota, which was proposed to establish electron syntrophy with the acetoclastic methanogen Methanosarcina spp. (or Methanothrix sp.) through e-pili or shared acetate. In the electro-stimulated microbiota, 37.22 ± 4.33 % of Desulfoprunum sp. (affiliated f_Desulfurivibrionaceae MAG10) and 58.82 ± 3.74 % of the hydrogenotrophic methanogen Methanobacterium sp. MAG74 were specifically recruited to the anode and cathode, respectively. The potential electrogen f_Desulfurivibrionaceae MAG10 engaged in interspecies electron transfer with both syntroph f_Syntrophobacteraceae MAG116 and the anode, which might be facilitated by c-type cytochromes (e.g., ImcH, OmcT, and PilZ). Moreover, upon capturing electrons from the external circuit, the hydrogen-producing electrotroph Aminidesulfovibrio sp. MAG60 could share electrons and hydrogen with the methanogen Methanobacterium sp. MAG74, which uniquely harbored hydrogenase genes ehaA-R and ehbA-P. This study elucidates the microbial interaction mechanisms underlying the enhanced metabolic efficiency of the electro-stimulated methanogenic toluene-degrading microbiota, and emphasizes the significance of metabolic and electron syntrophic interactions in maintaining the stability of microbial community functionality.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiri Freilich
- Newe-Ya'ar Research Center, Agricultural Research Organization, Ministry of Agriculture, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Ma J, Liu H, Chen H, Xiong H, Tong L, Guo G. Is redox zonation an appropriate method for determining the stage of natural remediation in deep contaminated groundwater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172224. [PMID: 38599415 DOI: 10.1016/j.scitotenv.2024.172224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Groundwater contamination resulting from petroleum development poses a significant threat to drinking water sources, especially in developing countries. In situ natural remediation methods, including microbiological processes, have gained popularity for the reduction of groundwater contaminants. However, assessing the stage of remediation in deep contaminated groundwater is challenging and costly due to the complexity of diverse geological conditions and unknown initial concentrations of contaminants. This research proposes that redox zonation may be a more convenient and comprehensive indicator than the concentration of contaminants for determining the stage of natural remediation in deep groundwater. The combination of sequencing microbial composition using the high-throughput 16S rRNA gene and function predicted by FAPROTAX is a useful approach to determining the redox conditions of different contaminated groundwater. The sulfate-reducing environment, represented by Desulfobacteraceae, Peptococcaceae, Desulfovibrionaceae, and Desulfohalobiaceae could be used as characteristic early stages of remediation for produced water contamination in wells with high concentrations of SO42-, benzene, and salinity. The nitrate-reducing environment, enriched with microorganisms related to denitrification, sulfur-oxidizing, and methanophilic microorganisms could be indicative of the mid stages of in situ bioremediation. The oxygen reduction environment, enriched with oligotrophic and pathogenic Sphingomonadaceae, Caulobacteraceae, Syntrophaceae, Legionellales, Moraxellaceae, and Coxiellaceae, could be indicative of the late stages of remediation. This comprehensive approach could provide valuable insights into the process of natural remediation and facilitate improved environmental management in areas of deep contaminated groundwater.
Collapse
Affiliation(s)
- Jie Ma
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Huihui Chen
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Huanhuan Xiong
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Lei Tong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Wu S, Yang Y, Ma Z, Feng F, Xu X, Deng S, Han X, Xi B, Jiang Y. Co-migration behavior of toluene coupled with trichloroethylene and the response of the pristine groundwater ecosystems - A mesoscale indoor experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134248. [PMID: 38636237 DOI: 10.1016/j.jhazmat.2024.134248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Experimental scale and sampling precision are the main factors limiting the accuracy of migration and transformation assessments of complex petroleum-based contaminants in groundwater. In this study, a mesoscale indoor aquifer device with high environmental fidelity and monitoring accuracy was constructed, in which dissolved toluene and trichloroethylene were used as typical contaminants in a 1.5-year contaminant migration experiment. The process was divided into five stages, namely, pristine, injection, accumulation, decrease, and recovery, and characteristics such as differences in contaminant migration, the responsiveness of environmental factors, and changes in microbial communities were investigated. The results demonstrated that the mutual dissolution properties of the contaminants increased the spread of the plume and confirmed that toluene possessed greater mobility and natural attenuation than trichloroethylene. Attenuation of the contaminant plume proceeded through aerobic degradation, nitrate reduction, and sulfate reduction phases, accompanied by negative feedback from characteristic ion concentrations, dissolved oxygen content, the oxidation-reduction potential and microbial community structure of the groundwater. This research evaluated the migration and transformation characteristics of typical petroleum-based pollutants, revealed the response mechanism of the ecosystem to pollutant, provided a theoretical basis for predicting pollutant migration and formulating control strategies.
Collapse
Affiliation(s)
- Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Fan Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Gao M, Li X, Zhang Q, Li S, Wu S, Wang Y, Sun H. Spatial distribution of volatile organic compounds in contaminated soil and distinct microbial effect driven by aerobic and anaerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172256. [PMID: 38583613 DOI: 10.1016/j.scitotenv.2024.172256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuelin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
Zahed MA, Salehi S, Khoei MA, Esmaeili P, Mohajeri L. Risk assessment of Benzene, Toluene, Ethyl benzene, and Xylene (BTEX) in the atmospheric air around the world: A review. Toxicol In Vitro 2024; 98:105825. [PMID: 38615724 DOI: 10.1016/j.tiv.2024.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Volatile organic compounds, such as BTEX, have been the subject of numerous debates due to their detrimental effects on the environment and human health. Human beings have had a significant role in the emergence of this situation. Even though US EPA, WHO, and other health-related organizations have set standard limits as unhazardous levels, it has been observed that within or even below these limits, constant exposure to these toxic chemicals results in negative consequences as well. According to these facts, various studies have been carried out all over the world - 160 of which are collected within this review article, so that experts and governors may come up with effective solutions to manage and control these toxic chemicals. The outcome of this study will serve the society to evaluate and handle the risks of being exposed to BTEX. In this review article, the attempt was to collect the most accessible studies relevant to risk assessment of BTEX in the atmosphere, and for the article to contain least bias, it was reviewed and re-evaluated by all authors, who are from different institutions and backgrounds, so that the insights of the article remain unbiased. There may be some limitations to consistency or precision in some points due to the original sources, however the attempt was to minimize them as much as possible.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Mahtab Akbarzadeh Khoei
- Department of Fiber and Particle Engineering, Faculty of Technology, Oulu University, Oulu, Finland
| | - Pedram Esmaeili
- Department of Fiber and Particle Engineering, Faculty of Technology, Oulu University, Oulu, Finland
| | - Leila Mohajeri
- Department of HSE, Ostovan Kish Drilling Company (OKDC), No. 148, Dastgerdi Street (Zafar), Tehran, Iran
| |
Collapse
|
14
|
Qiao F, Wang J, Chen Z, Zheng S, Kwaw AK, Zhao Y, Huang J. Experimental research on the transport-transformation of organic contaminants under the influence of multi-field coupling at a site scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134222. [PMID: 38583199 DOI: 10.1016/j.jhazmat.2024.134222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Organic-contaminated shallow aquifers have become a global concern of groundwater contamination, yet little is known about the coupled effects of hydrodynamic-thermal-chemical-microbial (HTCM) multi-field on organic contaminant transport and transformation over a short time in aquifers. Therefore, this study proposed a quick and efficient field experimental method for the transport-transformation of contaminants under multi-field coupling to explore the relationship between organic contaminants (total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX) and phthalates acid esters (PAEs)) and multi-field factors. The results showed that hydrodynamics (affecting pH, p < 0.001) and temperature (affecting dissolved oxygen, pH and HCO3-, p < 0.05) mainly affected the organic contaminants indirectly by influencing the hydrochemistry to regulate redox conditions in the aquifer. The main degradation reactions of the petroleum hydrocarbons (TPH, PAHs and BTEX) and PAEs in the aquifer were sulfate reduction and nitrate reduction, respectively. Furthermore, the organic contamination was directly influenced by microbial communities, whose spatial patterns were shaped by the combined effects of the spatial pattern of hydrochemistry (induced by the organic contamination pressure) and other multi-field factors. Overall, our findings imply that the spatiotemporal patterns of organic contaminants are synergistically regulated by HTCM, with distinct mechanisms for petroleum hydrocarbons and PAEs.
Collapse
Affiliation(s)
- Fei Qiao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Zhou Chen
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Shiyu Zheng
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Albert Kwame Kwaw
- Department of Geological Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yongsheng Zhao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jintao Huang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| |
Collapse
|
15
|
Su J, Zhan Y, Chang Y, Chang S, Luo Y, Chen P, Tao X, Chen Y, Yang L, Xu T, Qiao Y, Li J, Wei Y. Phosphate additives promote humic acid carbon and nitrogen skeleton formation by regulating precursors and composting bacterial communities. BIORESOURCE TECHNOLOGY 2024; 399:130617. [PMID: 38513923 DOI: 10.1016/j.biortech.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.
Collapse
Affiliation(s)
- Jing Su
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yan Luo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xingling Tao
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Li Yang
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
16
|
Ling H, Lv Y, Zhang Y, Zhou NY, Xu Y. Widespread and active piezotolerant microorganisms mediate phenolic compound degradation under high hydrostatic pressure in hadal trenches. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:331-348. [PMID: 38827128 PMCID: PMC11136905 DOI: 10.1007/s42995-024-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024]
Abstract
Phenolic compounds, as well as other aromatic compounds, have been reported to be abundant in hadal trenches. Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds, direct microbiological, genetic and biochemical evidence under in situ pressures remain absent. Here, a microbial consortium and a pure culture of Pseudomonas, newly isolated from Mariana Trench sediments, efficiently degraded phenol under pressures up to 70 and 60 MPa, respectively, with concomitant increase in biomass. By analyzing a high-pressure (70 MPa) culture metatranscriptome, not only was the entire range of metabolic processes under high pressure generated, but also genes encoding complete phenol degradation via ortho- and meta-cleavage pathways were revealed. The isolate of Pseudomonas also contained genes encoding the complete degradation pathway. Six transcribed genes (dmpKLMNOPsed) were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression. In addition, key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes. At microbiological, genetic, bioinformatics, and biochemical levels, this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures. This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00224-2.
Collapse
Affiliation(s)
- Hao Ling
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yongxin Lv
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key of Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key of Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
17
|
Wang M, Jiang D, Yang L, Wei J, Kong L, Xie W, Ding D, Fan T, Deng S. Natural attenuation of BTEX and chlorobenzenes in a formerly contaminated pesticide site in China: Examining kinetics, mechanisms, and isotopes analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170506. [PMID: 38307285 DOI: 10.1016/j.scitotenv.2024.170506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Groundwater contamination from abandoned pesticide sites is a prevalent issue in China. To address this problem, natural attenuation (NA) of pollutants has been increasingly employed as a management strategy for abandoned pesticide sites. However, limited studies have focused on the long-term NA process of co-existing organic pollutants in abandoned pesticide sites by an integrated approach. In this study, the NA of benzene, toluene, ethylbenzene, and xylene (BTEX), and chlorobenzenes (CBs) in groundwater of a retired industry in China was systematically investigated during the monitoring period from June 2016 to December 2021. The findings revealed that concentrations of BTEX and CBs were effectively reduced, and their NA followed first-order kinetics with different rate constants. The sulfate-reducing bacteria, nitrate-reducing bacteria, fermenting bacteria, aromatic hydrocarbon metabolizing bacteria, and reductive dechlorinating bacteria were detected in groundwater. It was observed that distinct environmental parameters played a role in shaping both overall and key bacterial communities. ORP (14.72%) and BTEX (12.89%) were the main drivers for variations of the whole and key functional microbial community, respectively. Moreover, BTEX accelerated reductive dechlorination. Furthermore, BTEX and CBs exhibited significant enrichment of 13C, ranging from +2.9 to +27.3‰, demonstrating their significance in situ biodegradation. This study provides a scientific basis for site management.
Collapse
Affiliation(s)
- Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lingya Kong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Wenyi Xie
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| |
Collapse
|
18
|
Zhang H, Han X, Wang G, Zhou L, Huang D, Chen X, Zhang F. Hydrogeochemical and isotopic evidences of the underlying produced water intrusion into shallow groundwater in an oil production area, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170242. [PMID: 38278275 DOI: 10.1016/j.scitotenv.2024.170242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The extensive use of fossil fuels (e.g., oil) poses a hidden danger to groundwater quality. However, inorganic pollution has received limited attention compared to organic pollution. In this study, the potential contaminant sources to shallow groundwater were investigated using hydrochemical (e.g., major and trace elements) and isotopic (δ2H and δ18O) methods at an oil field, northwest China, with emphasis on the identification of produced water (PW; oil production-related water) intrusion. The results showed that the groundwater samples can be chemically and isotopically classified into two groups: Group A (severely polluted) and B (slightly or non- polluted). The hydrochemical characteristics of Group A were similar to that of PW, with a comparable Na+/Cl- ratio and elevated levels of Na+, Ca2+, Cl-, Br-, Sr, Ba, Li, B and total volatile organic compounds (TVOCs; volatile and semi-volatile) concentration, but lower HCO3- and SO42- contents, and depleted δ2H and δ18O, which was not suitable for drinking. Groundwater salinity sources involve mineral dissolution (silicate, carbonate and evaporite), cation exchange and anaerobic microbial degradation, as well as deep PW intrusion (especially in Group A). The Cl mixing model showed that PW contributed 13.63-27.78 % to Group A, supported by the results of the isotope mixing model based on δ2H and δ18O (24.43-33.29 %). An overall pollution conceptual model involves three modes: fracturing, surface infiltration, and groundwater lateral runoff. This study validates the effectiveness of Na, Cl, Br, Sr, Ba, Li and B as favorable tracers for monitoring PW intrusion.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xu Han
- Geology Institute of China Chemical Geology and Mine Bureau, Beijing 100028, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Ling Zhou
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Dandan Huang
- School of Water Resources & Environment Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Fan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
19
|
Li Y, Ma G, Xi Y, Wang S, Zeng X, Jia Y. Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay. ENVIRONMENTAL RESEARCH 2024; 245:118030. [PMID: 38151148 DOI: 10.1016/j.envres.2023.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Understanding how abundant (AT) and rare (RT) taxa adapt to diverse environmental stresses is vital for assessing ecological processes, yet remains understudied. We collected sediment samples from Liaoning Province, China, representing rivers (upstream of wastewater outlet), estuaries (wastewater outlets), and Jinzhou Bay (downstream of wastewater outlets), to comprehensively evaluate AT and RT adaptation strategies to both natural stressors (salinity stress) and anthropogenic stressors (metal stress). Generally, RT displayed higher α- and β-diversities and taxonomic groups compared to AT. Metal and salinity stresses induced distinct α-diversity responses in AT and RT, while β-diversity remained consistent. Both subcommunities were dominated by Woeseia genus. Metal stress emerged as the primary driver of diversity and compositional discrepancies in AT and RT. Notably, AT responded more sensitively to salinity stress than RT. Stress increased topological parameters in the biotic network of AT subcommunities while decreasing values in RT subcommunities, concurrently loosening interactions of AT with other taxa and strengthening interactions of RT with others in biotic networks. RT generally exhibited greater diversity of metal resistance genes compared to AT. Greater numbers of genes related to salinity tolerance was observed for the RT than for AT. Compared to AT, RT demonstrated higher diversity of metal resistance genes and a greater abundance of genes associated with salinity tolerance. Additionally, deterministic processes governed AT community assembly, reinforced by salinity stress. However, the opposite trend was observed in the RT, where the importance of stochastic process gradually increased with metal stresses. The study is centered on exploring the adaptation strategies of both AT and RT to environmental stress. It underscores the importance of future research incorporating diverse ecosystems and a range of environmental stressors to draw broader and more reliable conclusions. This comprehensive approach is essential for gaining a thorough understanding of the adaptive mechanisms employed by these microorganisms.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| |
Collapse
|
20
|
Chen X, Sheng Y, Wang G, Zhou P, Liao F, Mao H, Zhang H, Qiao Z, Wei Y. Spatiotemporal successions of N, S, C, Fe, and As cycling genes in groundwater of a wetland ecosystem: Enhanced heterogeneity in wet season. WATER RESEARCH 2024; 251:121105. [PMID: 38184913 DOI: 10.1016/j.watres.2024.121105] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Microorganisms in wetland groundwater play an essential role in driving global biogeochemical cycles. However, largely due to the dynamics of spatiotemporal surface water-groundwater interaction, the spatiotemporal successions of biogeochemical cycling in wetland groundwater remain poorly delineated. Herein, we investigated the seasonal coevolution of hydrogeochemical variables and microbial functional genes involved in nitrogen, carbon, sulfur, iron, and arsenic cycling in groundwater within a typical wetland, located in Poyang Lake Plain, China. During the dry season, the microbial potentials for dissimilatory nitrate reduction to ammonium and ammonification were dominant, whereas the higher potentials for nitrogen fixation, denitrification, methane metabolism, and carbon fixation were identified in the wet season. A likely biogeochemical hotspot was identified in the area located in the low permeable aquifer near the lake, characterized by reducing conditions and elevated levels of Fe2+ (6.65-17.1 mg/L), NH4+ (0.57-3.98 mg/L), total organic carbon (1.02-1.99 mg/L), and functional genes. In contrast to dry season, higher dissimilarities of functional gene distribution were observed in the wet season. Multivariable statistics further indicated that the connection between the functional gene compositions and hydrogeochemical variables becomes less pronounced as the seasons transition from dry to wet. Despite this transition, Fe2+ remained the dominant driving force on gene distribution during both seasons. Gene-based co-occurrence network displayed reduced interconnectivity among coupled C-N-Fe-S cycles from the dry to the wet season, underpinning a less complex and more destabilizing occurrence pattern. The rising groundwater level may have contributed to a reduction in the stability of functional microbial communities, consequently impacting ecological functions. Our findings shed light on microbial-driven seasonal biogeochemical cycling in wetland groundwater.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Pengpeng Zhou
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100094, PR China
| |
Collapse
|
21
|
Lei J, Qi R, Tumrani SH, Dong L, Jia H, Lei P, Yang Y, Feng C. Selective stepwise adsorption for enhanced removal of multi-component dissolved organic chemicals from petrochemical wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169600. [PMID: 38151126 DOI: 10.1016/j.scitotenv.2023.169600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The coexistence of multi-component dissolved organic chemicals causes tremendous challenge in purifying petrochemical wastewater, and stepwise selective adsorption holds the most promise for enhanced treatments. This study is designed to enhance the removal of multiple dissolved organic chemicals by stepwise adsorption. Special attention is given to the selective removal mechanisms for the major pollutant N,N-dimethylformamide (DMF), the sensitive pollutant fluorescent dissolved organic matter (FDOM) and other components. The results indicated that the combination of coal activated carbon and aluminum silica gel produced a synergistic effect and broke the limitation of removing only certain pollutants. Combined removal rates of 80.5 % for the dissolved organic carbon and 86.7 % for the biotoxicity in petrochemical wastewater were obtained with the enhanced two-step adsorption. The adsorption performance of both adsorbents remained stable even after five cycles. The selective adsorption mechanism revealed that hydrophobic organics such as DMF was adsorbed by the macropores of coal activated carbon, while the FDOM was eliminated by π-π stacking, electrostatic interaction and hydrophobic interaction. The hydrophilic organics were removed by the mesopores of aluminum silica gel, the silica hydroxyl groups and hydrophilic interaction. This study provides a comprehensive understanding of the selective adsorption mechanism and enhanced stepwise removal of multiple pollutants in petrochemical wastewater, which will guide the deep treatment of complex wastewater.
Collapse
Affiliation(s)
- Jinming Lei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ruifang Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, PR China
| | - Sadam Hussain Tumrani
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lili Dong
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, PR China
| | - Huixian Jia
- Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan 030008, PR China
| | - Peng Lei
- Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan 030008, PR China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
22
|
Liu F, Wang G, Li B, Wang C, Qu S, Liao F. Rare earth element behaviors of groundwater in overlying aquifers under the influence of coal mining in northern Ordos Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13284-13301. [PMID: 38244162 DOI: 10.1007/s11356-024-31958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Rare earth elements (REEs) have been used as tracers to reveal the hydrochemical sources and processes in groundwater systems that are usually modified by anthropogenic inputs. However, the REE behaviors in groundwater affected by mining activities have yet to be fully understood. In combination of REE geochemistry with general hydrochemical and isotopic (δ2H and δ18O) methods, this study investigated the concentration and fractionation of REEs in alkaline groundwater from two coal mines with similar aquifer lithology but different mining histories in the Northern Ordos Basin. One of the coal mines started mining in March 2009 (Ningtiaota coal mine, NTT), while the other started mining in December 2018 (Caojiatan coal mine, CJT). Results show that the primary hydrochemical type is HCO3-Ca in NTT groundwater with pH value ranging between 7.68 and 8.60, while CJT groundwater was dominated by the HCO3-Na type with higher pH of 9.09-10.00. The average values of ΣREEs were lower, and the NASC-normalized pattern reflected more intense fractionation in NTT groundwater than those in CJT groundwater. The evident differences are caused by the distinctions in water-rock interaction, complexation of inorganic species, and adsorption of REEs in NTT and CJT groundwater. Furthermore, these processes were closely related to the pH of groundwater that was different in two coal mines, which is likely linked to the different durations of coal mining activities that led to differences in development of rock fractures and pyrite oxidation. It is expected that REEs, combined with other indicators such as pH, can be used to trace and help better understand the hydrochemical changes in groundwater caused by mining.
Collapse
Affiliation(s)
- Fengxia Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, China.
- School of Water Resources and Environment, China University of Geosciences, Beijing, China.
| | - Bo Li
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Chenyu Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Shen Qu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| |
Collapse
|
23
|
Wang J, Zhang Y, Ding Y, Zhang Y, Xu W, Zhang X, Wang Y, Li D. Adaptive characteristics of indigenous microflora in an organically contaminated high salinity groundwater. CHEMOSPHERE 2024; 349:140951. [PMID: 38101485 DOI: 10.1016/j.chemosphere.2023.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Salinity, a critical factor, could directly or indirectly affect the microbial community structure and diversity. Changes in salinity levels act as environmental filters that influence the transformation of key microbial species. This study investigates the adaptive characteristics of indigenous microflora in groundwater in relation to external organic pollutants under high salinity stress. A highly mineralized shallow groundwater in Northwest China was conducted as the study area, and six representative sampling points were chosen to explore the response of groundwater hydrochemical parameters and microflora, as well as to identify the tolerance mechanisms of indigenous microflora to combined pollution. The results revealed that the dominant genera found in high salinity groundwater contaminated with organic pollutants possess the remarkable ability to degrade such pollutants even under challenging high salinity conditions, including Halomonas, Pseudomonas, Halothiobacillus, Sphingomonas, Lutibacter, Aquabacterium, Thiomicrospira, Aequorivita, etc. The hydrochemical factors, including total dissolved solids (TDS), sulfide, nitrite, nitrate, oxidation reduction potential (ORP), NH3-N, Na, Fe, benzene series, phenols, and halogenated hydrocarbons, demonstrated a significant influence on microflora. High levels of sulphate and sulfide in groundwater can exhibit dual effects on microflora. On one hand, these compounds can inhibit the growth and metabolism of microorganisms. On the other hand, they can also serve as effective electron donors/receptors during the microbial degradation of organic pollutants. Microorganisms exhibit resilience to the inhibitory effects of high salinity and organic pollutants via a series of tolerance mechanisms, such as strengthening the extracellular membrane barrier, enhancing the synthesis of relevant enzymes, initiating novel biochemical reactions, improving cellular self-healing capabilities, responding to unfavorable environmental conditions by migration, and enhancing the S cycle for the microbial metabolism of organic pollutants.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
24
|
Yang R, Hou B, Zhang L. Dissolved organic compounds in shale gas extraction flowback water as principal disturbance factors of soil nitrogen dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168197. [PMID: 37914118 DOI: 10.1016/j.scitotenv.2023.168197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Flowback water, a by-product of shale gas extraction, represents an extremely complex industrial wastewater characterized by high organic compounds content and high salinity. The prospect of flowback water entering the soil through various approaches concerns regarding its ecological risk. Nitrogen mineralization (Nmin), a key rate-limiting step in the soil N cycle, might be adversely affected by flowback water. Nonetheless, no previous studies have examined the effects of flowback water on soil Nmin rates, let alone quantified the relative contributions of the major components of flowback water to changes in Nmin rates. Therefore, this study investigated the effects of flowback water and sterile flowback water at two different concentrations on the Nmin rates of three distinct soil types. This study aimed to elucidate the predominant influence of the key constituents within flowback water on the changes in soil Nmin rates. The results showed that soil soluble salt content, dissolved organic carbon (DOC) and dissolved nitrogen (DN) content significantly increased by 8.37 times, 9.5 % and 26.4 %, respectively, in soils contaminated by flowback water. In comparison with the control group, the introduction of flowback water resulted in a significant 25.9 % reduction in Nmin rate in sandy soils. Conversely, in clay and loam soils, there was a significant increase in Nmin rates by 44.9 % and 131.8 % respectively. Throughout the incubation period, leucine-aminopeptidase activity exhibited irregular fluctuations. Analysis of microbial communities demonstrated that flowback water only significant impacted soil rare microbial taxa, inducing a significant increase in alpha diversity for sandy, clay, and loamy soils by -16.9 %, 10.12 %, and 1.63 %, respectively. Linear regression and random forest analyses indicated that alterations in soil DOC:DN ratio and salt content were responsible for changes in soil Nmin rates within flowback water-contaminated soils. In contrast, only salt content significantly contributed to shifts in alpha diversity among soil rare microbial taxa. Structural equation modeling highlighted that the total effect of dissolved organic compounds (DOC and DN, λ = 0.64) from flowback water was greater than the total effect of salinity (λ = 0.24) on soil Nmin rates. In conclusion, our findings imply that dissolved organic compounds within flowback water play pivotal roles in determining soil Nmin rates. To the best of our knowledge, this is the first study to reveal the effects of major components in the flowback water on soil N mineralization rates.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Bowen Hou
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
25
|
Wu Z, Yu X, Ji Y, Liu G, Gao P, Xia L, Li P, Liang B, Freilich S, Gu L, Qiao W, Jiang J. Flexible catabolism of monoaromatic hydrocarbons by anaerobic microbiota adapting to oxygen exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132762. [PMID: 37837778 DOI: 10.1016/j.jhazmat.2023.132762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Microbe-mediated anaerobic degradation is a practical method for remediation of the hazardous monoaromatic hydrocarbons (BTEX, including benzene, toluene, ethylbenzene and xylenes) under electron-deficient contaminated sites. However, how do the anaerobic functional microbes adapt to oxygen exposure and flexibly catabolize BTEX remain poorly understood. We investigated the switches of substrate spectrum and bacterial community upon oxygen perturbation in a nitrate-amended anaerobic toluene-degrading microbiota which was dominated by Aromatoleum species. DNA-stable isotope probing demonstrated that Aromatoleum species was involved in anaerobic mineralization of toluene. Metagenome-assembled genome of Aromatoleum species harbored both the nirBD-type genes for nitrate reduction to ammonium coupled with toluene oxidation and the additional meta-cleavage pathway for aerobic benzene catabolism. Once the anaerobic microbiota was fully exposed to oxygen and benzene, 1.05 ± 0.06% of Diaphorobacter species rapidly replaced Aromatoleum species and flourished to 96.72 ± 0.01%. Diaphorobacter sp. ZM was isolated, which was not only able to utilize benzene as the sole carbon source for aerobic growth and but also innovatively reduce nitrate to ammonium with citrate/lactate/glucose as the carbon source under anaerobic conditions. This study expands our understanding of the adaptive mechanism of microbiota for environmental redox disturbance and provides theoretical guidance for the bioremediation of BTEX-contaminated sites.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhan Ji
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Gao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Xia
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfa Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Lifeng Gu
- ChangXing AISHENG Environmental Technology Co., Ltd, Zhejiang 313199, China
| | - Wenjing Qiao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Qiao Z, Sheng Y, Wang G, Chen X, Liao F, Mao H, Zhang H, He J, Liu Y, Lin Y, Yang Y. Deterministic factors modulating assembly of groundwater microbial community in a nitrogen-contaminated and hydraulically-connected river-lake-floodplain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119210. [PMID: 37801950 DOI: 10.1016/j.jenvman.2023.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
27
|
Chang Y, Zhou K, Yang T, Zhao X, Li R, Li J, Xu S, Feng Z, Ding X, Zhang L, Shi X, Su J, Li J, Wei Y. Bacillus licheniformis inoculation promoted humification process for kitchen waste composting: Organic components transformation and bacterial metabolic mechanism. ENVIRONMENTAL RESEARCH 2023; 237:117016. [PMID: 37657603 DOI: 10.1016/j.envres.2023.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Kitchen waste (KW) composting always has trouble with slow humification process and low humification degree. The objective of this study was to develop potentially efficient solutions to improve the humification of KW composting, accelerate the humus synthesis and produce HS with a high polymerization degree. The impact of Bacillus licheniformis inoculation on the transformation of organic components, humus synthesis, and bacterial metabolic pathways in kitchen waste composting, was investigated. Results revealed that microbial inoculation promoted the degradation of organic constituents, especially readily degradable carbohydrates during the heating phase and lignocellulose fractions during the cooling phase. Inoculation facilitated the production and conversion of polyphenol, reducing sugar, and amino acids, leading to an increase of 20% in the content of humic acid compared to the control. High-throughput sequencing and network analysis indicated inoculation enriched the presence of Bacillus, Lactobacillus, and Streptomyces during the heating phase, while suppressing the abundance of Pseudomonas and Oceanobacillus, enhancing positive microbial interactions. PICRUSt2 analysis suggested inoculation enhanced the metabolism of carbohydrates and amino acids, promoting the polyphenol humification pathway and facilitating the formation of humus. These findings provide insights for optimizing the humification process of kitchen waste composting by microbial inoculation.
Collapse
Affiliation(s)
- Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Longli Zhang
- Beijing VOTO Biotech Co.,Ltd, 100193, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
28
|
Dong Z, Ma Y, Yu M, Cai Y, Chen Y, Wu J, Ma F, Hu B. Affinity difference determines the assembly and interaction mode of anammox community reconstructed by siderophores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165278. [PMID: 37414172 DOI: 10.1016/j.scitotenv.2023.165278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Anammox community is the core of anammox process. The constancy of the anammox community determines the stability of the anammox process and the ability of withstand environmental impact. Community stability is influenced by the assembly and interaction mode of the community. This study aimed to explore the assembly, interaction mode, and stability of anammox community influenced by two siderophores (enterobactin and putrebactin) specific for Ca. Brocadia and Ca. Kuenenia as produced in our previous research. Siderophores improved the stability of the anammox community, among which vulnerability dropped by 30.02 % and 72.53 % respectively. Enterobactin and putrebactin altered the succession speed and assembly pattern of communities, with a respective increase of 9.77 % and 80.87 % in the deterministic process of anammox community assembly, respectively. Enterobactin and putrebactin reduced the dependence of Ca. Brocadia and Ca. Kuenenia on companion bacteria by 60 items and 27 items respectively. The affinity of different siderophore-Fe with bacterial membrane receptors caused variations in community reconstruction, with Ca. Brocadia and Ca. Kuenenia exhibiting the highest affinity with enterobactin-Fe (-11.4 kcal/mol) and putrebactin-Fe (-9.0 kcal/mol), respectively. This study demonstrated how siderophores can enhance the stability of anammox process by regulating assembly and interaction mode of anammox community, while also revealing the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ziyang Dong
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxin Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Mengwen Yu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yufei Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yingluo Chen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Junwei Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
29
|
Chen X, Wang G, Sheng Y, Liao F, Mao H, Li B, Zhang H, Qiao Z, He J, Liu Y, Lin Y, Yang Y. Nitrogen species and microbial community coevolution along groundwater flowpath in the southwest of Poyang Lake area, China. CHEMOSPHERE 2023; 329:138627. [PMID: 37031839 DOI: 10.1016/j.chemosphere.2023.138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Nitrate and ammonia overload in groundwater can lead to eutrophication of surface water in areas where surface water is recharged by groundwater. However, this process remained elusive due to the complicated groundwater N cycling, which is governed by the co-evolution of hydrogeochemical conditions and N-cycling microbial communities. Herein, this process was studied along a generalized groundwater flowpath in Ganjing Delta, Poyang Lake area, China. From groundwater recharge to the discharge area near the lake, oxidation-reduction potential (ORP), NO3-N, and NO2-N decreased progressively, while NH3-N, total organic carbon (TOC), Fe2+, sulfide, and TOC/NO3- ratio accumulated in the lakeside samples. The anthropogenic influences such as sewage and agricultural activities drove the nitrate distribution, as observed by Cl- vs. NO3-/Cl- ratio and isotopic composition of nitrate. The hydrogeochemical evolution was intimately coupled with the changes in microbial communities. Variations in microbial community structures was significantly explained by Fe2+, NH3-N, and sulfide, while TOC/NO3- controlled the distribution of predicted N cycling gene. The absence of NH3-N in groundwater upstream was accompanied by the enrichment in Acinetobacter capable of nitrification and aerobic denitrification. These two processes were also supported by Ca2+ + Mg2+ vs. HCO3- ratio and isotopic composition of NO3-. The DNRA process downstream was revealed by both the presence of DNRA-capable microbes such as Arthrobacter and the isotopic composition of NH4+ in environments with high concentrations of NH3-N, TOC/NO3-, Fe2+, and sulfide. This coupled evolution of N cycling and microbial community sheds new light on the N biogeochemical cycle in areas where surface water is recharged by groundwater.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Bo Li
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
30
|
Ma XC, Wang K, Gao XL, Li XK, Liu GG, Chen HY, Piao CY, You SJ. Deciphering the fate of osmotic stress priming on enhanced microorganism acclimation for purified terephthalic acid wastewater treatment with high salinity and organic load. BIORESOURCE TECHNOLOGY 2023; 374:128656. [PMID: 36690216 DOI: 10.1016/j.biortech.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress priming (OSP) was an effective management strategy for improving microbial acclimation to salt stress. In this study, the interaction between pollutants and microbiota, and microbial osmoregulation were investigated triggered by OSP (alternately increasing salinity and organic loading). Results showed that OSP significantly improved COD removal from 31.53 % to 67.99 % and mitigated the terephthalate inhibition produced by toluate, decreasing from 1908.08 mg/L to 837.16 mg/L compared with direct priming. Due to an increase in salinity, Pelotomaculum and Mesotoga were enriched to facilitate terephthalate degradation and syntrophic acetate oxidation (SAO). And organic load promoted acetate formation through syntrophic metabolism of Syntrophorhabdus/Pelotomaculum and SAO-dependent hydrogenotrophic methanogenesis. K+ absorbing, proline and trehalose synthesis participated in osmoregulation at 0.5 % salinity, while only ectoine alleviated intracellular osmolarity under 1.0 % salinity with OLR of 0.44 kg COD /m3. This study provided in-depth insight for microbial acclimation process of anaerobic priming of saline wastewater.
Collapse
Affiliation(s)
- Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xin-Lei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Gai-Ge Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Hong-Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Yu Piao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Hou Z, Zhou Q, Mo F, Kang W, Ouyang S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161402. [PMID: 36638996 DOI: 10.1016/j.scitotenv.2023.161402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
32
|
Yang Y, Li J, Lv N, Wang H, Zhang H. Multiphase migration and transformation of BTEX on groundwater table fluctuation in riparian petrochemical sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55756-55767. [PMID: 36905541 DOI: 10.1007/s11356-023-26393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Light non-aqueous phase liquids (LNAPL) are considered to be a composition-based risk, containing multiple chemical ingredients that release dissolved- and vapor-phase plumes. In dissolved form, there is a saturation-based risk as the water source expands, affecting groundwater aquifers on a larger scale in the aquifer. As a typical pollutant found in petrochemical contaminated sites, the migration and transformation of benzene, toluene, ethylbenzene, and o-xylene (BTEX) between gas, aqueous, and NAPL phases are distinctly affected by groundwater table fluctuation (GTF). BTEX multiphase migration and transformation pattern in a petrochemical factory at the riverside was simulated based on the TMVOC model in differentiating pollution distribution and interphase transformation under stable or fluctuating groundwater tables conditions. TMVOC model performed an excellent simulation effect on the migration and transformation of BTEX in GTF circumstances. In comparison with the stable groundwater table condition, the BTEX pollution depth under GTF increased by 0.5 m, the pollution area increased by 25%, and the total mass increased by 0.12 × 102 kg. In both cases, the mass reduction of NAPL-phase pollutants was more significant than the total mass reduction of pollutants, and GTF further promoted the mass conversion of NAPL-phase pollutants to water pollutants. Prominently, as the groundwater table rises, the GTF can correct for evacuation, and the transport flux of gaseous pollutants at the atmospheric boundary decreases with increasing transport distance. Furthermore, descended groundwater table will intensify the transmission flux of gaseous pollutants at the atmospheric boundary with the transmission range expanding, which can be harmful to human health on the surface due to gaseous pollutants entering into the air.
Collapse
Affiliation(s)
- Yang Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China
| | - Juan Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China
| | - Ningqing Lv
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Haizhou Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China.
| |
Collapse
|
33
|
Dai H, Zhang Y, Fang W, Liu J, Hong J, Zou C, Zhang J. Microbial community structural response to variations in physicochemical features of different aquifers. Front Microbiol 2023; 14:1025964. [PMID: 36865779 PMCID: PMC9971630 DOI: 10.3389/fmicb.2023.1025964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The community structure of groundwater microorganisms has a significant impact on groundwater quality. However, the relationships between the microbial communities and environmental variables in groundwater of different recharge and disturbance types are not fully understood. Methods In this study, measurements of groundwater physicochemical parameters and 16S rDNA high-throughput sequencing technology were used to assess the interactions between hydrogeochemical conditions and microbial diversity in Longkou coastal aquifer (LK), Cele arid zone aquifer (CL), and Wuhan riverside hyporheic zone aquifer (WH). Redundancy analysis indicated that the primary chemical parameters affecting the microbial community composition were NO3 -, Cl-, and HCO3 -. Results The species and quantity of microorganisms in the river-groundwater interaction area were considerably higher than those in areas with high salinity [Shannon: WH (6.28) > LK (4.11) > CL (3.96); Chao1: WH (4,868) > CL (1510) > LK (1,222)]. Molecular ecological network analysis demonstrated that the change in microbial interactions caused by evaporation was less than that caused by seawater invasion under high-salinity conditions [(nodes, links): LK (71,192) > CL (51,198)], whereas the scale and nodes of the microbial network were greatly expanded under low-salinity conditions [(nodes, links): WH (279,694)]. Microbial community analysis revealed that distinct differences existed in the classification levels of the different dominant microorganism species in the three aquifers. Discussion Environmental physical and chemical conditions selected the dominant species according to microbial functions. Gallionellaceae, which is associated with iron oxidation, dominated in the arid zones, while Rhodocyclaceae, which is related to denitrification, led in the coastal zones, and Desulfurivibrio, which is related to sulfur conversion, prevailed in the hyporheic zones. Therefore, dominant local bacterial communities can be used as indicators of local environmental conditions.
Collapse
Affiliation(s)
- Heng Dai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Yiyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Wen Fang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Juan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Jun Hong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Chaowang Zou
- Hubei Shuili Hydro Power Reconnaissance Design Institute, Wuhan, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China
- Chinese Academy of Sciences, Xinjiang Institute of Ecology and Geography, Ürümqi, China
| |
Collapse
|
34
|
Chen J, Gui H, Guo Y, Li J. Spatial distributions of microbial diversity in the contaminated deep groundwater: A case study of the Huaibei coalfield. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120866. [PMID: 36529341 DOI: 10.1016/j.envpol.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The impact of coal mining activities on the structure of groundwater microbial communities in coal mining areas has gradually received academic attention. In this study, hydrochemical analysis and sequencing of the V4 region of the 16S rRNA gene were carried out using groundwater samples from the fourth aquifer in the loose layer of Cenozoic, the sandstone fissure aquifer in the coal measure strata of Permian, the Carboniferous Taiyuan Formation limestone aquifer, and the Ordovician limestone aquifer, at depths of 250 m, 600 m, 750 m, and 1000 m in monitoring wells. Results showed that the operational taxonomy units (OTUs) in the deep groundwater ecosystem were clustered distinguishably between the contaminated and the uncontaminated aquifers. The microbial community alpha-diversity of groundwater was significantly correlated with depth, and the richness of microbial community composition decreased with increasing depth. Proteobacteria (34.41%-97.41%), was found to be the dominant phylum, Gammaproteobacteria (10.05%-92.06%) was the dominant class and "Unassigned" (4.12%-64.72%) was dominant at the genus level. The number of endemic bacteria in the four aquifers was 1, 33, 99 and 11, respectively. It was also found that F-, oxidation-reduction potential (ORP), and TOC were the main environmental variables affecting the groundwater all OTUs, abundant OTUs, and rare OTUs, respectively. These results indicate that the activity of rare OTU subcommunities increases gradually with increasing aquifer depth and that mining significantly enriched Thiovirga in deep groundwater. In addition, it was found that with the increase of depth, the effect of ORP on microbial community abundance decreased. This study deepens our understanding of the evolution characteristics of microbial communities in deep groundwater in coal mining areas. The unique characteristics of microbial communities characteristics of four aquifers with different depths provide a microbial perspective for understanding the characteristics of deep aquifers.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China; National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China.
| | - Yan Guo
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Jun Li
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| |
Collapse
|
35
|
Degradation of benzene in anaerobic groundwater in the typical cold industrial region: Identification, interactions, and optimization of nitrate-/sulfate-reducing assemblages. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Ning Z, Sheng Y, Guo C, Wang S, Yang S, Zhang M. Incorporating the Soil Gas Gradient Method and Functional Genes to Assess the Natural Source Zone Depletion at a Petroleum-Hydrocarbon-Contaminated Site of a Purification Plant in Northwest China. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010114. [PMID: 36676063 PMCID: PMC9866602 DOI: 10.3390/life13010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
An increasing number of studies have demonstrated that natural source zone depletion (NSZD) in the vadose zone accounts for the majority (90%~99%) of the natural attenuation of light non-aqueous phase liquid (LNAPL). Until now, 0.05 to 12 kg/a.m2 NSZD rates at tens of petroleum LNAPL source zones have been determined in the middle or late evolution stage of LNAPL release, in which limited volatile organic compounds (VOCs) and methane (CH4) were detected. NSZD rates are normally estimated by the gradient method, yet the associated functional microbial activity remains poorly investigated. Herein, the NSZD at an LNAPL-releasing site was studied using both soil gas gradient methods quantifying the O2, CO2, CH4, and VOCs concentrations and molecular biology methods quantifying the abundance of the pmoA and mcrA genes. The results showed that the methanogenesis rates were around 4 to 40 kg/a.m2. The values were greater than the rates calculated by the sum of CH4 escaping (0.3~1.2 kg/a.m2) and O2 consuming (3~13 kg/a.m2) or CO2 generating rates (2~4 kg/a.m2), suggesting that the generated CH4 was oxidized but not thoroughly to CO2. The functional gene quantification also supported the indication of this process. Therefore, the NSZD rates at the site roughly equaled the methanogenesis rates (4~40 kg/a.m2), which were greater than most of the previously studied sites with a 90th percentile value of 4 kg/a.m2. The study extended the current knowledge of the NSZD and has significant implications for LNAPL remediation management.
Collapse
Affiliation(s)
- Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Shijiazhuang 050061, China
| | - Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Caijuan Guo
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Shijiazhuang 050061, China
| | - Shuaiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Shijiazhuang 050061, China
| | - Shuai Yang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266000, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Shijiazhuang 050061, China
- Correspondence: ; Tel.: +86-0311-67598605
| |
Collapse
|
37
|
Tucci M, Viggi CC, Crognale S, Matturro B, Rossetti S, Capriotti AL, Cavaliere C, Cerrato A, Montone CM, Harnisch F, Aulenta F. Insights into the syntrophic microbial electrochemical oxidation of toluene: a combined chemical, electrochemical, taxonomical, functional gene-based, and metaproteomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157919. [PMID: 35964739 DOI: 10.1016/j.scitotenv.2022.157919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of aromatic hydrocarbons in anoxic contaminated environments is typically limited by the lack of bioavailable electron acceptors. Microbial electrochemical technologies (METs) are able to provide a virtually inexhaustible electron acceptor in the form of a solid electrode. Recently, we provided first experimental evidence for the syntrophic degradation of toluene in a continuous-flow bioelectrochemical reactor known as the "bioelectric well". Herein, we further analyzed the structure and function of the electroactive toluene-degrading microbiome using a suite of chemical, electrochemical, phylogenetic, proteomic, and functional gene-based analyses. The bioelectric well removed 83 ± 7 % of the toluene from the influent with a coulombic efficiency of 84 %. Cyclic voltammetry allowed to identify the formal potentials of four putative electron transfer sites, which ranged from -0.2 V to +0.1 V vs. SHE, consistent with outer membrane c-type cytochromes and pili of electroactive Geobacter species. The biofilm colonizing the surface of the anode was indeed highly enriched in Geobacter species. On the other hand, the planktonic communities thriving in the bulk of the reactor harbored aromatic hydrocarbons degraders and fermentative propionate-producing microorganisms, as revealed by phylogenetic and proteomic analyses. Most likely, propionate, acetate or other VFAs produced in the bulk liquid from the degradation of toluene were utilized as substrates by the electroactive biofilm. Interestingly, key-functional genes related to the degradation of toluene were found both in the biofilm and in the planktonic communities. Taken as a whole, the herein reported results highlight the importance of applying a comprehensive suite of techniques to unravel the complex cooperative metabolisms occurring in METs.
Collapse
Affiliation(s)
- Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Simona Crognale
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | | | - Chiara Cavaliere
- Department of Chemistry, Sapienza - University of Rome, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza - University of Rome, Rome, Italy
| | | | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy.
| |
Collapse
|
38
|
Yin Y, Zhang Z, Yang K, Gu P, Liu S, Jia Y, Zhang Z, Wang T, Yin J, Miao H. Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127978. [PMID: 36126846 DOI: 10.1016/j.biortech.2022.127978] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The threshold salt concentration to inhibit the anaerobic digestion (AD) has been intensively investigated, but its insight mechanism is not fully revealed. Therefore, this study systematically investigated the effect of salinity on acidogenesis and methanogenesis and its mechanism. Results showed that low salinity level (i.e. 0.6%) had stimulatory effect on volatile fatty acids (VFA) and methane production, while significant inhibition was observed with further increased salinity. Moreover, high salinity limited the butyric acid degradation at acidogenesis process. The decreases of enzymes (AK and PTA) activity and functional genes (ackA, pta and ACOX) expression that related to β-oxidation explained the butyric acid accumulation at high salinity levels. Microbial community analysis revealed high salinity levels significantly inhibited the proliferation of Syntrophomonas sp., which are known to be associated with butyric acid degradation. Similarly, the relative abundance of acetoclastic methanogen (Methanothrix sp.) and methylotrophic methanogen (Methanolinea sp.) significantly decreased at salinity condition.
Collapse
Affiliation(s)
- Yijang Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Jia
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi 214105, PR China
| | - Jianqi Yin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|