1
|
Li X, Hua Z, Zhang J, Jin J, Wang Y. Effects of perfluoroalkyl acids on nitrogen release, transformation and microbial community during the debris decomposition of Alisma orientale and Iris pseudacorus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107171. [PMID: 39577360 DOI: 10.1016/j.aquatox.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The release of nutrients into water during debris decomposition is a serious concern, leading to severe environmental pollution. To understand the effects of extensively present emerging contaminants (such as perfluoroalkyl acids (PFAAs)) on the nitrogen (N) release and transformation, the concentration dynamics of different N species in surrounding water and changes in microbial communities on biofilm during the 70-days decomposition of two typical submerged macrophyte (Alisma orientale and Iris pseudacorus) debris were studied. The results showed that large amounts of N species (especially organic and ammonium N) were released during decomposition. PFAAs with a low concentration (1 μg/L) could stimulate total N (TN) release, whereas PFAAs with a high concentration (≥ 10 μg/L) might have inhibited TN release. Higher intensities of ammonification, nitrosification, and denitrification, but lower intensities of nitrification were observed in water in the presence of PFAAs. Microbiota associated with organic matter hydrolysis, nitrification and denitrification, as well as PFAA degrading/tolerant bacteria, were beneficial and might have occupied dominant states. Redundancy analysis showed that PFAAs were positively associated with the amounts of nitrate, denitrifiers, and azotobacteria but negatively correlated with the TN, ammonia, nitrite, organic N, and nitrosobacteria amounts (p = 0.0002). The complete N metabolism pathway was identified using PICRUSt and KEGG. Functional genes related to ammonification (0.76‰-2.16‰), N reduction (3.43‰-5.05‰), and assimilation (0.81‰-2.16‰) were more abundant than others in all treatments. This study provides a more comprehensive understanding of N cycling during debris decomposition under the increasingly intractable threat of emerging contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China.
| | - Jianyun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China
| | - Junliang Jin
- Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
Wu J, Li L, Chen M, Liu M, Zeng M, Tu W. Metabolomic interpretation of bacterial and fungal contribution to per- and polyfluoroalkyl substances interface migration in waterlogged paddy fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125580. [PMID: 39730035 DOI: 10.1016/j.envpol.2024.125580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release. Inhibition of bacterial and fungal metabolic activity both significantly altered PFAS cross-media translocation (p < 0.05). Gemmatimonadota, Desulfobacterota, Acidobacteriota, Actinobacteriota, and Bacteroidota were vital bacterial taxa affecting PFAS transport, while Basidiobolomycota and Chytridiomycota were vital fungal taxa. Fungi regulated PFAS migration more (R2 = 0.379-0.526) than bacteria (R2 = 0.021-0.030) due to the higher metabolic stability of stochastic-dominated fungi than deterministic-dominated bacteria. At the water-soil interface, the amino acid-like dissolved organic matter (Tyrosine and Tryptophan) contributed most (48.5-58.6 %) to the PFAS multiphase distribution. Untargeted metabolomics further clarified that fungal amino acid-like metabolites, including Phosphoenolpyruvate and Methionine, were key triggers stimulating Tyrosine and Tryptophan biosynthesis (p < 0.001), which were vital in modulating PFAS interface translocation (p < 0.001). These results provide novel insights into soil microbial metabolites' participation in PFAS water-soil interface migration, benefiting PFAS pollution control and agricultural security risk assessment in waterlogged paddy ecosystems.
Collapse
Affiliation(s)
- Jianyi Wu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingxuan Li
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meiyu Liu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijuan Zeng
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenqing Tu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Tang WQ, Wang TT, Miao JW, Tan HD, Zhang HJ, Guo TQ, Chen ZB, Wu CY, Mo L, Mai BX, Wang S. Presence and sources of per- and polyfluoroalkyl substances (PFASs) in the three major rivers on Hainan Island. ENVIRONMENTAL RESEARCH 2024; 266:120590. [PMID: 39675456 DOI: 10.1016/j.envres.2024.120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted considerable attention because of their toxicity, persistence and bioaccumulation potential. With the construction of the Hainan Free Trade Port and the rapid development of economy, environmental pollution on Hainan Island is becoming increasingly prominent. PFASs have been detected in the seawater and sediments of mangrove ecosystems on Hainan Island. As the receiving water of wastewater treatment plants (WWTPs) and industrial wastewater, rivers are inevitably contaminated by PFASs. However, few studies have focused on PFAS pollution in three large rivers (the Nandu, Changhua, and Wanquan rivers) on Hainan Island. In the present study, the pollution status, potential sources, and ecological risks of PFASs in these three major rivers were explored. Perfluorobutanonic acid (PFBA) (48.7%) was found to be the major PFASs in the surface waters, and perfluoroundecanoic acid (PFUnDA) (19.7%) was the major PFASs in the sediments of the three major rivers. The concentrations of ∑PFASs in the upper-midstream region were low due to minimal human influence and increased in the middle-lower reaches with increasing industrial activity and urbanization, whereas decreased at downstream sites near estuaries where river water was diluted with seawater. WWTP effluent, industrial wastewater discharge, the application and discharge of aqueous fire-fighting foam, storm runoff and landfill leachate were the major sources of PFASs in the three major rivers. In surface water, perfluorooctanoic acid (PFOA), perfluorooctane sulfonamide (PFOSA) and perfluorooctadecanoic acid (PFODA) posed low-moderate risks at 5.71-85.6% of the sampling sites. PFASs in the sediment posed no ecological risk. This study provides key data regarding the pollution status and potential sources of PFASs in large rivers on subtropical islands.
Collapse
Affiliation(s)
- Wang-Qing Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Tuan-Tuan Wang
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China; School of Ecology, Hainan University, Haikou, 570228, China
| | - Jiang-Wei Miao
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China; School of Ecology, Hainan University, Haikou, 570228, China
| | - Hua-Dong Tan
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hong-Jin Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Tuan-Qi Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhong-Bing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16500, Praha, Suchdol, Czech Republic
| | - Chun-Yuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Bi-Xian Mai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Sai Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Liu J, Xie Y, Zhou L, Lu G, Li Y, Gao P, Hou J. Co-accumulation characteristics and interaction mechanism of microplastics and PFASs in a large shallow lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135780. [PMID: 39259996 DOI: 10.1016/j.jhazmat.2024.135780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) coexist widely in lakes and affect ecological security. The coexistence characteristics and adsorption-desorption mechanisms between MPs and typical PFASs were explored in a typical eutrophic shallow lake (Taihu Lake). Polyvinyl chloride (PVC) and polyethylene (PE) are the primary types of MPs in Taihu Lake, with average abundances in water and sediment of 18630 n/m3 and 584 n/kg, respectively. The average concentrations of PFASs in water and sediment are 288.93 ng/L and 4.33 ng/g, with short-chain PFASs (C4-C7) being the main pollutants. Perfluorobutanoic acid (PFBA) in both water and sediment contributed 38.48 % and 44.53 %, respectively, followed by hexafluoropropylene oxide dimer acid (HFPO-DA). The morphological characteristics of MPs influence the distribution of long-chain PFAS in lake water, while the presence of HFPO-DA and perfluorohexanoic acid (PFHxA) in sediment is directly linked to the concentration and size of MPs. A combination of field investigations and indoor experiments revealed that the irreversible adsorption characteristics between MPs and HFPO-DA may promote the high cumulative flux of HFPO-DA in sediment, and the biofilm on the surface of MPs significantly accelerates this accumulation process. The results provide a new perspective on the co-transport behavior of emerging pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yinuo Xie
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lv Zhou
- Nanjing Water Supply and Water Conservation Guidance Center, Nanjing 210004, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Guo S, Zhang S, Lv X, Tang Y, Zhang T, Hua Z. Occurrence, risk assessment and source apportionment of perfluoroalkyl acids in the river of a hill-plain intersection region: The impacts of land use and river network structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176260. [PMID: 39277016 DOI: 10.1016/j.scitotenv.2024.176260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Studying the impacts of land use and river network structure on perfluoroalkyl acids (PFAAs) footprint in rivers is crucial for predicting the fate of PFAAs in aquatic environments. This study investigated the distribution, ecological risks, sources and influence factors of 17 PFAAs in water and sediments of rivers from hills to plain areas. The results showed that the detection frequencies were higher for short-chain PFAAs than long-chain PFAAs in water, whereas an opposite pattern was found in sediments. The concentration of ∑PFAAs ranged from 59.2 to 414 ng/L in water and from 1.4 to 60.1 ng/g in sediments. Perfluorohexanoic acid and perfluorooctanoic acid were identified as the main pollutants in the river. The average concentrations of PFAAs were higher in the aquaculture areas (water: 309.8 ng/L; sediments: 43.27 ng/g) than in residential areas (water: 206.03 ng/L; sediments: 11.7 ng/g) and farmland areas (water: 123.12 ng/L; sediments: 9.4 ng/g). Environmental risk assessment showed that PFAAs were mainly low risk or no risk in water, but were moderate risk and even high risk in sediments, especially for perfluorooctane sulfonate. Source apportionment found that PFAA sources were mostly from industry, wastewater discharge, and surface runoff. Dissolved oxygen, chemical oxygen demand, water system circularity, network connectivity and organic matter were significantly correlated to PFAA concentration, indicating that the physicochemical properties and river network might directly influence the environmental behavior of PFAAs. The built-up area was positively correlated with PFAAs. These findings indicated that a comprehensive understanding of the influences of land use and river network structure on PFAAs in rivers is essential for managers to formulate effective PFAA control strategies.
Collapse
Affiliation(s)
- Shaozhuang Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yongsheng Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Bureau of Comprehensive Development Ministry of Water Resources of China, Beijing 100053, China
| | - Tilang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; The Second Construction Limited Corporation of China Construction Seventh Engineering Division, Kunshan 215300, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
6
|
Wu J, Li L, Chen M, Liu M, Tu W. Modulation of irrigation-induced microbial nitrogen‑iron redox to per- and polyfluoroalkyl substances' water-soil interface release in paddy fields: Activation or immobilization? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177377. [PMID: 39505044 DOI: 10.1016/j.scitotenv.2024.177377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Understanding the modulation of paddy field irrigation to the migration of per- and polyfluoroalkyl substances (PFAS) at the water-soil interface is pivotal for the management of PFAS pollution in paddy soil and surrounding surface water environments. In flooded soils, soil organic matter was transformed into aromatic protein-like dissolved organic matter (DOM). Meanwhile, Na+, K+, and Mg2+ were translocated into extracellular polymeric substances (EPS) under the catalysis of cation channel enzymes (p < 0.05), provided ion bridging for the binding of DOM and PFAS, and accelerated the accumulation of C4-C9 PFAS in overlying water (41.79-99.14 %). Short-chain PFAS's accumulation in soil solution of drought soils was stimulated by microorganisms secreting soluble microbial by-product-like DOM (53.15-97.96 %). Furthermore, PFAS's distribution in flood soils was dominated by bacterial denitrification and iron-reduction, whereas iron-oxidation and ammoxidation controlled that in drought soils. The transformation of organic carbon including CO and COC caused by irrigation-induced redox modulated PFAS cross-media translocation. Iron‑nitrogen redox in flooded paddy soils immobilized the PFAS's migration into overlying water (p < 0.05). Our findings have profound implications for PFAS's pollution control, surface water environmental protection, and rice production security in paddy fields.
Collapse
Affiliation(s)
- Jianyi Wu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxuan Li
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meiyu Liu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Saha B, Ateia M, Tolaymat T, Fernando S, Varghese JR, Golui D, Bezbaruah AN, Xu J, Aich N, Briest J, Iskander SM. The unique distribution pattern of PFAS in landfill organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135678. [PMID: 39217946 PMCID: PMC11483333 DOI: 10.1016/j.jhazmat.2024.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Mohamed Ateia
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Thabet Tolaymat
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Juby R Varghese
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - John Briest
- Weaver Consultants Group, Centennial, CO 80111, United States
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
8
|
Xu S, Zhu P, Wang C, Zhang D, Zhang M, Pan X. Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135515. [PMID: 39178777 DOI: 10.1016/j.jhazmat.2024.135515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.
Collapse
Affiliation(s)
- Shuyan Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Caiqin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
9
|
Chen ZW, Hua ZL. Effect of Co-exposure to Additional Substances on the Bioconcentration of Per(poly)fluoroalkyl Substances: A Meta-Analysis Based on Hydroponic Experimental Evidence. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:270-286. [PMID: 39367139 DOI: 10.1007/s00244-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024]
Abstract
A consensus has yet to emerge regarding the bioconcentration responses of per(poly)fluoroalkyl substances under co-exposure with other additional substances in aqueous environments. This study employed a meta-analysis to systematically investigate the aforementioned issues on the basis of 1,085 published datasets of indoor hydroponic simulation experiments. A hierarchical meta-analysis model with an embedded variance covariance matrix was constructed to eliminate the non-independence and shared controls of the data. Overall, the co-exposure resulted in a notable reduction in PFAS bioaccumulation (cumulative effect size, CES = - 0.4287, p < 0.05) and bioconcentration factor (R2 = 0.9507, k < 1, b < 0) in hydroponics. In particular, the inhibition of PFAS bioconcentration induced by dissolved organic matter (percentage form of the effect size, ESP = - 48.98%) was more pronounced than that induced by metal ions (ESP = - 35.54%), particulate matter (ESP = - 24.70%) and persistent organic pollutants (ESP = - 18.66%). A lower AS concentration and a lower concentration ratio of ASs to PFASs significantly promote PFAS bioaccumulation (p < 0.05). The bioaccumulation of PFASs with long chains or high fluoride contents tended to be exacerbated in the presence of ASs. Furthermore, the effect on PFAS bioaccumulation was also significantly dependent on the duration of co-exposure (p < 0.05). The findings of this study provide novel insights into the fate and bioconcentration of PFAS in aquatic environments under co-exposure conditions.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Yangtze Institute for Conservation and Development, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
10
|
Li XQ, Hua ZL, Zhang JY, Jin JL. Effects of long-chained perfluoroalkyl acids (PFAAs) on the uptake and bioaccumulation of short-chained PFAAs in two free-floating macrophytes: Eichhornia crassipes and Ceratophyllum demersum. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134778. [PMID: 38843637 DOI: 10.1016/j.jhazmat.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Short-chained perfluoroalkyl acids (PFAAs, CnF2n+1-R, n ≤ 6) have merged as global concerns due to their extensive application and considerable toxicity. However, long-chained PFAAs (n ≥ 7) featured with high persistence are still ubiquitously observed in aquatic environment. To understand the uptake behavior of short-chained PFAAs in aquatic macrophytes, the uptake kinetics, bioconcentration, and translocation of short-chained PFAAs (3 ≤n ≤ 6) in two typical free-floating macrophytes (Eichhornia crassipes and Ceratophyllum demersum) were investigated in the treatments with and without long-chained PFAAs (7 ≤n ≤ 11). Results showed that short-chained PFAAs can be readily accumulated in both E. crassipes and C. demersum, and the uptake of short-chained PFAAs fit the two-compartment kinetic model well (p < 0.05). In the treatments with long-chained PFAAs, significant concentration decreases of all concerned short-chained PFAAs in E. crassipes and PFAAs with n ≤ 5 in C. demersum were observed. Long-chained PFAAs could hinder the uptake rates, bioconcentration factors, and translocation factors of most short-chained PFAAs in free-floating macrophytes (p < 0.01). Significant correlations between bioconcentration factors and perfluoroalkyl chain length were only observed when long-chained PFAAs were considered (p < 0.01). Our results underlined that the effects of long-chained PFAAs should be taken into consideration in understanding the uptake and bioaccumulation behaviors of short-chained PFAAs.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Jun-Liang Jin
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|
11
|
Rahaman MH, Yang T, Zhang Z, Liu W, Chen Z, Mąkinia J, Zhai J. Molecular transformation of dissolved organic matter in manganese ore-mediated constructed wetlands for fresh leachate treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120834. [PMID: 38631170 DOI: 10.1016/j.jenvman.2024.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were employed: one using only sand as substrates (act as a control, CW-C) and the other employing an equal mixture of manganese ore powder and sand (experimental, CW-M). Over 488 days of operation, CW-M exhibited significantly higher removal rates for chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and dissolved organic matter (represented by dissolved organic carbon, DOC) at 98.2 ± 2.5%, 99.2 ± 1.4%, and 97.9 ± 1.9%, respectively, in contrast to CW-C (92.8 ± 6.8%, 77.1 ± 28.1%, and 74.7 ± 9.5%). The three-dimensional fluorescence excitation-emission matrix (3D-EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses unveiled that the influent DOM was predominantly composed of readily biodegradable protein-like substances with high carbon content and low unsaturation. Throughout treatment, it led to the degradation of low O/C and high H/C compounds, resulting in the formation of DOM with higher unsaturation and aromaticity, resembling humic-like substances. CW-M showcased a distinct DOM composition, characterized by lower carbon content yet higher unsaturation and aromaticity than CW-C. The study also identified the presence of Gammaproteobacteria, reported as Mn-oxidizing bacteria with significantly higher abundance in the upper and middle layers of CW-M, facilitating manganese cycling and improving DOM removal. Key pathways contributing to DOM removal encompassed adsorption, catalytic oxidation by manganese oxides, and microbial degradation. This study offers novel insights into DOM transformation and removal from FL during CW treatment, which will facilitate better design and enhanced performance.
Collapse
Affiliation(s)
- Md Hasibur Rahaman
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu, 213300, China
| | - Tong Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing, 400045, China
| | - Zhongyi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing, 400045, China
| | - Wenbo Liu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu, 213300, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Praha, Suchdol, Czech Republic
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Gdansk ' University of Technology, 80-233, Gdansk, Poland
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu, 213300, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
12
|
Duan C, Liu F, You J, Yang K, Liu X, Xu H. Influences of dissolved organic matters on the adsorption and bioavailability of sulfadiazine: Molecular weight- and type-dependent heterogeneities. CHEMOSPHERE 2024; 354:141677. [PMID: 38467198 DOI: 10.1016/j.chemosphere.2024.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
The bioavailability of contaminants in aquatic environments was highly related with the existing forms (soluble or adsorbed) and properties of dissolved organic matters (DOMs). In this study, the molecular weight (MWs)-dependent effects of DOMs on the adsorption and bioavailability of sulfadiazine were explored. Colloid ZnO and Al2O3 were employed as the representative colloidal particles, and algae-derived organic matter (AOM) and humic acid (HA) were selected as typical autochthonous and allochthonous DOMs. The ultrafiltration procedure was applied to divide the bulk DOMs into high MW (HMW-, 1 kDã0.45 μm) and low MW (LMW-, <1 kDa) fractions. Results showed that HMW-DOM contained more aromatic and protein-like substances as compared to the LMW counterparts. In addition, presence of AOM promoted sulfadiazine adsorption capabilities by 1.19-4.54 folds and mitigated the inhibition ratio by 0.56-0.78 folds, whereas those of HA inhibited sulfadiazine adsorption by 0.27-0.84 folds and enhanced the biotoxicity by 1.21-1.45 folds. Regardless of different DOM types, HMW-fraction exhibited highest effects on sulfadiazine adsorption and bioavailability, followed by the bulk- and LMW-fractions. Two-dimensional correlation spectroscopy showed that sulfadiazine was adsorbed on colloidal surfaces prior to AOM, and the subsequent adsorption of AOM can provide additional sites for sulfadiazine adsorption, which decreased the concentrations of aqueous sulfadiazine as well as the biotoxicity to Microcystis aeruginosa (M. aeruginosa). The HA, however, was preferentially adsorbed on colloidal surfaces, which hindered the subsequent sulfadiazine adsorption and resulted in a high sulfadiazine abundance in aqueous solution as well as the enhanced biotoxicity to M. aeruginosa. This study highlighted the importance of the types and MWs of DOMs in influencing the behaviors and ecological effects of aquatic contaminants.
Collapse
Affiliation(s)
- Chongsen Duan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Fei Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jikang You
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Keli Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Xin Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China.
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
13
|
Fan T, Yao X, Sang D, Liu L, Sun Z, Deng H, Zhang Y, Sun X. Composition characteristics and metal binding behavior of macrophyte-derived DOM (MDOM) under microbial combined photodegradation: A state closer to actual macrophytic lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133124. [PMID: 38142658 DOI: 10.1016/j.jhazmat.2023.133124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
In actual lakes, the "unstable components" of macrophyte-derived DOM (MDOM) are always degraded and cannot exist abidingly, but the environmental impact brought by it is ignored. In this study, MDOM from Potamogeton crispus was extracted to carry out microbial combined photodegradation (M-Photodegradation) and fluorescence titration experiments. Then the traits and metal binding reaction of MDOM under M-Photodegradation were analysed and compared with the features of lake-derived DOM (LDOM) from point monitoring of Dongping Lake through EEM-PARAFAC, 2D-SF-COS, and 2D-FTIR-COS. The results showed that the features of MDOM after M-Photodegradation were closer to those of LDOM. The degradation amplitudes were 93.53% ± 0.53% for C4 in microbial degradation and 78.31% ± 0.74% for C3 in photodegradation. Correspondingly, both were hardly detected in LDOM. Protein-like substances and aliphatic C-OH were preferentially selected by Cu2+, while humic-like matter and phenolic hydroxyl O-H responded faster to Pb2+. Although the binding sequences remained unchanged after M-Photodegradation, the LogKCu and LogKPb of components decreased overall, indicating increased environmental risks. This study proves that the refractory MDOM retained after degradation was more consistent with the actual state of macrophytic lakes and provides more information for the treatment of heavy metal pollution in lakes.
Collapse
Affiliation(s)
- Tuantuan Fan
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xin Yao
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China.
| | - Dongling Sang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Li Liu
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Zhaoli Sun
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Huanguang Deng
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Yinghao Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Xiao Sun
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
14
|
Deng J, Han J, Hou C, Zhang Y, Fang Y, Du W, Li M, Yuan Y, Tang C, Hu X. Efficient removal of per- and polyfluoroalkyl substances from biochar composites: Cyclic adsorption and spent regenerant degradation. CHEMOSPHERE 2023; 341:140051. [PMID: 37660789 DOI: 10.1016/j.chemosphere.2023.140051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
In order to solve the problem of efficient desorption of per- and polyfluoroalkyl substances (PFAS) and regeneration of adsorbents, a novel biochar composite was prepared based on the quaternary ammonium groups and hydrophobicity of sulfobetaine polymer, which can be used for the efficient removal of various PFASs and has great regeneration ability. Through adsorption, regeneration and degradation experiment, the comprehensive effect of the novel biochar composite on the whole process of removal of PFAS was systematically investigated. The results showed that the maximum adsorption capacity of PFOS, PFOA, PFBS, and PFBA reached 634 mg/g, 536 mg/g, 301 mg/g and 264 mg/g, respectively. The adsorption process involved hydrophobicity, electrostatic, pore diffusion and complexation. The NaI + NaOH solution was used at 50 °C to achieve efficient regeneration of the adsorbent, which can be recycled more than 4 times. When the vacuum-ultraviolet (VUV)/sulfite reduction system was used for deep degradation of the regenerated solution, the effect of hydrated electrons on PFAS was enhanced due to the inclusion of NaI and NaOH in the regeneration reagent, resulting in an increase in the degradation efficiency (89.1%-99.9%) and defluorination efficiency (63.3%-84.1%). Based on the performance of BC-P(SB-co-AM) and the treatment efficiency of PFAS, the design idea of the whole process treatment technology of PFAS proposed in this work is expected to hold great promise in environmental applications. This work provides a novel idea and system for the efficient adsorption removal and desorption of PFAS, and subsequent deep degradation.
Collapse
Affiliation(s)
- Jiaqin Deng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China.
| | - Jianing Han
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Changlan Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China
| | - Ying Fang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - WanXuan Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yuan Yuan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
15
|
Wu JY, Hua ZL, Gu L. Iron-Nitrogen Amendment Reduced Perfluoroalkyl Acids' Phyto-Uptake in the Wheat-Soil Ecosystem: Contributions of Dissolved Organic Matters in Soil Solution and Root Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16065-16074. [PMID: 37843047 DOI: 10.1021/acs.est.3c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Understanding the mechanisms underlying perfluoroalkyl acids (PFAAs) translocation, distribution, and accumulation in wheat-soil ecosystems is essential for agricultural soil pollution control and crop ecological risk assessment. This study systematically investigated the translocation of 13 PFAAs under different iron and nitrogen fertilization conditions in a wheat-soil ecosystem. Short-chain PFAAs including PFBA, PFPeA, PFHxA, and PFBS mostly accumulated in soil solution (10.43-55.33%) and soluble extracellular polymeric substances (S-EPS) (11.39-14.77%) by the adsorption to amino- (-NH2) and hydroxyl (-OH) groups in dissolved organic matter (DOM). Other PFAAs with longer carbon chain lengths were mostly distributed on the soil particle surface by hydrophobic actions (74.63-94.24%). Iron-nitrogen amendments triggered (p < 0.05) soil iron-nitrogen cycling, rhizospheric reactive oxygen species fluctuations, and the concentration increases of -NH2 and -OH in the DOM structure. Thus, the accumulation capacity of PFAAs in soil solution and root EPS was increased. In sum, PFAAs' translocation from soil particles to wheat root was synergistically reduced by iron and nitrogen fertilization through increased adsorption of soil particles (p < 0.05) and the retention of soil solution and root EPSs. This study highlights the potential of iron-nitrogen amendments in decreasing the crop ecological risks to PFAAs' pollution.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu 210098, China
| |
Collapse
|
16
|
Yu W, Xu Y, Wang Y, Sui Q, Xin Y, Wang H, Zhang J, Zhong H, Wei Y. An extensive assessment of seasonal rainfall on intracellular and extracellular antibiotic resistance genes in Urban River systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131561. [PMID: 37167875 DOI: 10.1016/j.jhazmat.2023.131561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Rainfall events are responsible for the accelerated transfer of antibiotic-resistant contaminants to receiving environments. However, the specific profiles of various ARG types, including intra- and extracellular ARGs (iARGs and eARGs) responding to season rainfall needed more comprehensive assessments. Particularly, the key factors driving the distribution and transport of iARGs and eARGs have not been well characterized. Results revealed that the absolute abundance of eARGs was observed to be more than one order of magnitude greater than that of iARGs during the dry season in the reservoir. However, the absolute abundance of iARGs significantly increased after rainfall (p < 0.01). Meanwhile, seasonal rainfall significantly decreased the diversity of eARGs and the number of shared genes between iARGs and eARGs (p < 0.01). Results of structural equation models (SEM) and network analysis showed the rank and co-occurrence of influencing factors (e.g., microbial community, MGEs, environmental variables, and dissolved organic matter (DOM)) concerning the changes in iARGs and eARGs. DOM contributed majorly to eARGs in the reservoir and pathogens was responsible for eARGs in the river during the wet season. Network analysis revealed that the tnp-04 and IS613 genes-related MGEs co-occurred with eARGs in the dry and wet seasons, which were regarded as potential molecular indicators to shape eARGs profiles in urban rivers. Besides, the results demonstrated close relationships between DOM fluorescence signatures and two-typed ARGs. Specifically, humic acid was significantly and positively correlated with the eARGs in the reservoir during the wet season, while fulvic acid-like substances exhibited strong correlations of iARGs and eARGs in the river during the dry season (p < 0.01). This work provides extensive insights into the potential effect of seasonal rainfall on the dynamic distribution of iARGs and eARGs and the dominance of DOM in driving the fate of two-typed ARGs in urban river systems.
Collapse
Affiliation(s)
- Wenchao Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Ye Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - YaWei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan Xin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
17
|
Fan T, Yao X, Sun Z, Sang D, Liu L, Deng H, Zhang Y. Properties and metal binding behaviors of sediment dissolved organic matter (SDOM) in lakes with different trophic states along the Yangtze River Basin: A comparison and summary. WATER RESEARCH 2023; 231:119605. [PMID: 36680825 DOI: 10.1016/j.watres.2023.119605] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The nature of sediment dissolved organic matter (SDOM) can reflect the environmental background, nutritional status and human activities and is an important part of lakes. The differences in the binding capacity of heavy metals and organic matter in lake sediments with different trophic states at the catchment scale and the mechanism of the differences in binding are still unclear. To solve this problem, we collected bulk SDOMs (< 0.7 μm) from 6 respective lakes (from upstream to downstream) in the Yangtze River Basin (YRB) to qualitatively and quantitatively characterize their properties and metal binding behaviors using excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-FARAFAC) and two-dimensional correlation spectroscopy of synchronous fluorescence spectroscopy and Fourier transform infrared spectroscopy (2D-SF-COS and 2D-FTIR-COS). The results showed that sediment dissolved organic carbon (SDOC) was mainly enriched in low molecular weight (LMW: < 1 kDa) fractions. The total fluorescence intensity (Fmax) of SDOM from upstream was larger than that from downstream (p = 0.033), and humic-like fluorophores were dominant in these lakes. The Fmax of sediment humic-like components (C1+C2) was closely related to the trophic levels of the lakes. Protein-like substances and oxygen-containing functional groups (C-OH, C=O, and C-O) were preferred in the reaction between SDOM and copper (Cu2+) or cadmium (Cd2+), while a unique binding path was exhibited in the moderately eutrophic DCL. In terms of fluorophore types, higher Cu2+-binding abilities (LogKCu) were observed in the humic-like matter for the lakes in the upper reaches and tryptophan-like matter for the lakes from the midstream and downstream areas of the YRB. Although Cd2+ complexed only with humic-like matter, LogKCd was higher than LogKCu. In terms of molecular weight (MW), the LogKCu/Cd of components were enhanced after MW fractionation. The HMW (0.7 μm - 1 kDa) components possessed higher LogKCu in most lakes (except for CHL and C4). The different fluorophores and molecular weight fractions in SDOM make an important contribution to reducing the ecological risks of heavy metals in lakes.
Collapse
Affiliation(s)
- Tuantuan Fan
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China; Institute of Huanghe Studies, University of Liaocheng, Liaocheng 252000, China
| | - Xin Yao
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China; Institute of Huanghe Studies, University of Liaocheng, Liaocheng 252000, China.
| | - Zhaoli Sun
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Dongling Sang
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Li Liu
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Huanguang Deng
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Yinghao Zhang
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| |
Collapse
|
18
|
Xin S, Li W, Zhang X, He Y, Chu J, Zhou X, Zhang Y, Liu X, Wang S. Spatiotemporal variations and bioaccumulation of per- and polyfluoroalkyl substances and oxidative conversion of precursors in shallow lake water. CHEMOSPHERE 2023; 313:137527. [PMID: 36535501 DOI: 10.1016/j.chemosphere.2022.137527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in water and fish from Nansi Lake, Chian and in inflowing tributaries and nearby sewage treatment plants (STPs) were determined to evaluate their distribution and bioaccumulation. The potential precursors of perfluoroalkyl acid (PFAA) present in the water were converted via hydroxyl radical oxidation. Over 3 seasons, the average concentration ranges of the 15 PFAA (∑15PFAA) concentrations in Nansi Lake, inflowing tributaries, and STPs were 22.8-70.3, 19.5-43.5, and 84.1-129 ng L-1, respectively. Perfluorooctanoic acid, perfluorooctane sulfonate (PFOS), and short-chain PFAA (perfluorocarboxlate acid <8, perfluorosulfonate acids <6) were present in high concentrations in the lake and tributaries. PFAA concentration was the lowest during the wet season and the highest during the dry season. Moreover, PFAA precursors were converted to perfluorocarboxlate acid. The concentration of C8-based precursors was higher than that of the C6-based precursors in the lake and tributaries. The concentration of PFAA in the fish liver was higher than that in fish muscles, and PFOS was the dominant chemical present in fish. Potential risk assessment based on Environment Quality Standard revealed heavy PFOS contamination in the fish. Thus, the water of Nansi Lake was heavily polluted by PFAS.
Collapse
Affiliation(s)
- Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Wanting Li
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xinru Zhang
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Yihang He
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Jizhuang Chu
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xin Zhou
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Yingqi Zhang
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
19
|
Wu JY, Hua ZL, Liang ZY, Gu L. Impacts of iron amendments and per-fluoroalkyl substances' bio-availability to the soil microbiome in wheat ecosystem. CHEMOSPHERE 2023; 311:137140. [PMID: 36343601 DOI: 10.1016/j.chemosphere.2022.137140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Per-fluoroalkyl substances (PFASs) have become ubiquitous in farmland ecosystems and pose risks to agricultural safety, and iron is often applied to farmland soils to reduce the availability of pollutants. However, the effects of iron amendment on the availability of PFASs in the soil and on the soil microbiome are not well understood. Here, we investigated the responses of wheat soil containing PFASs to iron addition using a 21-day experiment. Our results showed that iron amendment enhanced PFAS availability (p < 0.05) and stimulated superoxide dismutase (SOD) activity in the wheat soil (p < 0.05), but iron amendment decreased the activities of soil catalase (CAT) and peroxidase (POD) (p < 0.05). Soil bacterial community was more structurally stable than fungal community in response to iron addition, while species' pools were more stable in fungi than in bacteria (p < 0.05). Finally, PFPeA's availability in the wheat soil was the most important abiotic factors driving community succession of iron-cycling bacteria (p < 0.05). These results highlighted the potential interactions among PFASs' availability and microbial iron cycling in wheat farmland soil ecosystems and provided guidance in farmland environmental conservation and management.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zhong-Yan Liang
- Nanjing Guohuan Science and Technology Co., Ltd., Nanjing, 210001, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| |
Collapse
|
20
|
Ye Y, Cai X, Wang Z, Xie X. Characterization of dissolved black carbon and its binding behaviors to ceftazidime and diclofenac pharmaceuticals: Employing the molecular weight fractionation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120449. [PMID: 36265731 DOI: 10.1016/j.envpol.2022.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As the ubiquitous component of the aquatic environment, dissolved organic matter (DOM) readily bind with residual pharmaceutical contaminants (PCs) and influence their environmental behaviors. However, the binding mechanisms between dissolved black carbon (DBC), a vital part of the natural DOM pool, and PCs were poorly researched. In this study, the bulk DBC was divided into four fractions in molecular weight (MW) via an ultrafiltration system, and the properties of DBC and their binding interaction with two kinds of typical PCs (ceftazidime (CAZ) and diclofenac (DCF)) were explored concretely. The results showed that low MW component was the main contributor to bulk DBC, and the aromaticity increased with the increase of MW. The categories of chemical structures and fluorescent substances in different MW DBC were similar. Multispectral techniques showed that the oxygen-enriched compounds in DBC had the higher affinity to CAZ/DCF. The -NH-, -COOH, -NH2 groups in CAZ molecules appeared to form the hydrogen bond with DBC. Fluorescence quenching experiments were analyzed, and the binding mechanisms were specifically expounded from the thermodynamic perspective. The fluorophore of fulvic acid-like compounds (FA) were quenched by both static and dynamic quenching mechanisms, while only static quenching occurred for humic acid-like compounds (HA). For bulk DBC, the hydrogen bond and van der Waals force were the major forces in the HA-CAZ system, while the hydrophobic force made the primary contribution to the HA-DCF system, which might be ascribed to the higher hydrophobic nature of DCF. Notably, with the increase of HA MW, the main binding mode of HA-CAZ/DCF changed from hydrophobic force to hydrogen bond and van der Waals force gradually, which also directly proved that various noncovalent interactions co-driven the binding processes. Our findings are beneficial to better assess the fate of DBC and PCs and the corresponding complexes in the aquatic environment.
Collapse
Affiliation(s)
- Yuping Ye
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| | - Xuewei Cai
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China.
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
21
|
Liu W, Lin T, Zhang X, Jiang F, Yan X, Chen H. Adsorption of perfluoroalkyl acids on granular activated carbon supported chitosan: Role of nanobubbles. CHEMOSPHERE 2022; 309:136733. [PMID: 36209863 DOI: 10.1016/j.chemosphere.2022.136733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The safety threat posed by Perfluoroalkyl acids (PFAAs) in drinking water is a growing concern. In this study, we loaded chitosan (CS) on granular activated carbon (GAC) to adsorb PFAAs, and we explored the role of nanobubbles in the adsorption process through experiments and density functional theory (DFT) calculations. Compared with GAC, we found that the use of the composite adsorbent (CS/GAC) enhanced the removal rate of perfluorooctanoic acid by 136% with the assistance of nanobubbles. PFAAs with different chain lengths have different adsorption mechanisms owing to surface activity differences. PFAAs with longer C-F chains can be directly enriched with amino groups on the CS or air-water interface on composite adsorbents. Additionally, PFAAs can be enriched with nanobubbles in solution to form nanobubble-PFAA colloids, which are adsorbed by protonated amino groups on CS through electrostatic interactions. We found that PFAAs with shorter C-F chains are less affected by nanobubbles, and DFT calculations indicated that the adsorption of short-chain PFAAs is mainly affected by electrostatic interactions. We also proved that the electrostatic interactions between CS and PFAAs are mainly derived from the abundant protonated amino groups.
Collapse
Affiliation(s)
- Wei Liu
- College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou, 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou, 215002, China
| | - Xiaoshu Yan
- College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Han Chen
- College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
22
|
Xu S, Zhu P, Wang C, Zhang D, Pan X. Environmental concentration PFOS as a light shield for lake exopolymers against photodegradation by formation of sandwiched supramolecular nanostructures. WATER RESEARCH 2022; 227:119345. [PMID: 36395569 DOI: 10.1016/j.watres.2022.119345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
EPS (exopolymers) play a central role in global carbon cycling due to huger amount in aquatic environment, and PFOS (Perfluorooctane sulfonate) is also ubiquitous and persistent pollutant. Whether and how can PFOS of environmental concentrations affect behavior and fate of EPS was unclear. In this study, for the first time interaction between lake EPS and PFOS of environmental concentrations was visually probed by AFM-IR technique. It was found that EPS could effectively trap PFOS and the latter of environmental concentrations could trigger nanoscale reassembly of the former. Sandwiched PFOS-EPS nanostructures were formed via supramolecular interaction between EPS and PFOS, confirmed by fluorescence quenching titration and FTIR spectroscopy. The PFOS microlayers sandwiched in EPS was proven to be a light shield that could protect EPS from photodegradation because of its high reflectivity and nearly zero absorbance of UV-Vis light. The light shielding effect of PFOS was confirmed by evidences from photodegradation experiments, including change of concentrations of ions released and molecular weight distribution patterns. These novel findings provided valuable information for deep insight into environmental behavior of PFOS and its effects on biogeochemical carbon cycle of biopolymers in global waters.
Collapse
Affiliation(s)
- Shuyan Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Caiqin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
23
|
Qin C, Lu YX, Borch T, Yang LL, Li YW, Zhao HM, Hu X, Gao Y, Xiang L, Mo CH, Li QX. Interactions between Extracellular DNA and Perfluoroalkyl Acids (PFAAs) Decrease the Bioavailability of PFAAs in Pakchoi ( Brassica chinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14622-14632. [PMID: 36375011 DOI: 10.1021/acs.jafc.2c04597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging ionic organic pollutants worldwide. Great amounts of extracellular DNA (∼mg/kg) coexist with PFAAs in the environment. However, PFAA-DNA interactions and effects of such interactions have not been well studied. Herein, we used isothermal titration calorimetry (ITC), spectroscopy, and computational simulations to investigate the PFAA-DNA interactions. ITC assays showed that specific binding affinities of PFHxA-DNA, PFOA-DNA, PFNA-DNA, and PFOS-DNA were 5.14 × 105, 3.29 × 105, 1.99 × 105, and 2.18 × 104 L/mol, respectively, which were about 1-2 orders of magnitude stronger than those of PFAAs with human serum albumin. Spectral analysis suggested interactions of PFAAs with adenine (A), cytosine (C), guanine (G), and thymine (T), among which grooves associated with thymine were the major binding sites. Molecular dynamics simulations and quantum chemical calculations suggested that hydrogen bonds and van der Waals forces were the main interaction forces. Such a PFAA-DNA binding decreased the bioavailability of PFAAs in plant seedlings. The findings will help to improve the current understanding of the interaction between PFAAs and biomacromolecules, as well as how such interactions affect the bioavailability of PFAAs.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Ying-Xin Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado80523, United States
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Ling-Ling Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii96822, United States
| |
Collapse
|
24
|
Gao Y, Zhu J, He A. Effect of dissolved organic matter on the bioavailability and toxicity of cadmium in zebrafish larvae: Determination based on toxicokinetic-toxicodynamic processes. WATER RESEARCH 2022; 226:119272. [PMID: 36283231 DOI: 10.1016/j.watres.2022.119272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The presence of dissolved organic matter (DOM) strongly influences the bioavailability of metals in aquatic environments; however, the association between the binding activities and the concentrations of DOM compositions is not well documented, leading to uncertainties in metal toxicity assessment. We creatively quantify the mitigation and acceleration effects of DOM compositions on cadmium (Cd) bioaccumulation and toxicity in zebrafish larvae using abiotic ligand (ABLs) and biotic ligand (BLs) in a toxicokinetic-toxicodynamic (TK-TD) model. The BL-TK-TD model could accurately predict the protective effect of fulvic acid while overestimating the complexing capacity of citric acid. The model also could successfully simulate the protective effects of native DOM in most cases from 32 natural water bodies in China. The observed LC50 values of Cd showed a peak effect for the native DOM fraction comprising hydrophilic acidic contents (3.55 ± 0.44 mg L - 1) in natural water from 32 sites. The BL-TK-TD model provides practically useful information to identify the effect of different DOM compositions on metal bioavailability and toxicity in aquatic environments and guides future water management policies aimed at controlling aquatic heavy metal pollution.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Jingxue Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - An He
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
25
|
Mechanistic study of electrooxidation of coexisting chloramphenicol and natural organic matter: Performance, DFT calculation and removal route. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Xu M, Yang M, Sun H, Meng J, Li Y, Gao M, Wang Q, Wu C. Role of multistage inoculation on the co-composting of food waste and biogas residue. BIORESOURCE TECHNOLOGY 2022; 361:127681. [PMID: 35878772 DOI: 10.1016/j.biortech.2022.127681] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Effect of diverse Lactobacillus amylophilus, Geobacillus thermoleovorans, and Bacillus subtilis inoculation patterns on the co-composting performance of food waste and biogas residue was explored. Experimental results revealed that, compared to the single-stage inoculation and non-inoculation groups, the multistage inoculation pattern prolonged the thermophilic period during composting, consequently improving organic matter decomposition and humification [with a high germination index (120.9%)]. In addition, it could promote the development of humic substances [with a high humus index (4.3) and biological index (1.4)] and lower emissions of carbon dioxide (CO2), methane (CH4), and ammonia (NH3). Additionally, it could improve the microbial variety and the amounts of functional bacteria (i.e., Chloroflexi) in compost, which might be advantageous for the decomposition of refractory organic materials and plant growth. Therefore, the multistage inoculation pattern is recommended for organic waste composting in terms of its gas emissions, compost quality and efficacy benefits.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Meng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongsheng Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|