1
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
2
|
Feng Y, Xie T, Li F. New challenge: Mitigation and control of antibiotic resistant genes in aquatic environments by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174385. [PMID: 38960194 DOI: 10.1016/j.scitotenv.2024.174385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
With an increase of diverse contaminants in the environment, particularly antibiotics, the maintenance and propagation of antibiotic resistance genes (ARGs) are promoted by co-selection mechanisms. ARGs are difficult to degrade, cause long-lasting pollution, and are widely transmitted in aquatic environments. Biochar is frequently used to remove various pollutants during environmental remediation. Thus, this review provides a thorough analysis of the current state of ARGs in the aquatic environment as well as their removal by using biochar. This article summarizes the research and application of biochar and modified biochar to remove ARGs in aquatic environments, in order to refine the following contents: 1) fill gaps in the research on the various ARG behaviors mediated by biochar and some influence factors, 2) further investigate the mechanisms involved in effects of biochar on extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in aquatic environments, including direct and the indirect effects, 3) describe the propagation process and resistance mechanisms of ARGs, 4) propose the challenges and prospects of feasibility of application and subsequent treatment in actual aquatic environment. Here we highlight the most recent research on the use of biochar to remove ARGs from aquatic environments and suggest future directions for optimization, as well as current perspectives to guide future studies on the removal of ARGs from aquatic environments.
Collapse
Affiliation(s)
- Yimeng Feng
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Tong Xie
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
3
|
Chen L, Deng Y, Li P, Yang H, Su H, Wang N, Yang R. Effect of metal-modified sewage sludge biochar tubule on immobilization of chromium in unsaturated soil: Groundwater table fluctuations induced by rainfall. CHEMOSPHERE 2024; 365:143378. [PMID: 39306109 DOI: 10.1016/j.chemosphere.2024.143378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Many studies have studied biochar immobilizing chromium (Cr) in soil. However, few studies were conducted to reduce the environmental risks due to biochar aging in soil. In this study, we adopt FeCl3, MgCl2, and AlCl3 to activate sewage sludge to form modified biochar and produce biochar tubules. Then, the column experiments were carried out to study the effect of fluctuating groundwater table on Cr leaching behavior, total Cr, and fractions distribution with the insertion of biochar tubule. Results showed that the Cr immobilization performance was improved by metal-modification biochar, the biochar tubules can significantly decrease the Cr leaching amounts, retard the Cr downward migration in the soil, and there was a better effect with slightly Cr-contaminated soil. In addition, the immobilization effect is also impacted by the biochar's application mode and the hydrodynamic conditions. Detailedly, the Cr leaching amounts maximally decreased by 33.39%, the residual amounts maximally increased by 10.05% in the soil column, and the exchangeable (EX) and carbonates-bound (CB) fractions were maximally increased by 85.18%, 151.78% at the equal depth of soil column, respectively. BET, SEM-EDS, XRD, and FTIR analyses revealed that biochars' immobilization mechanisms on Cr involved reduction(predominately), physisorption, precipitation, and complexation. Risk assessment demonstrated that the sewage sludge biochar has very low environmental risk. This study indicates that the biochar tubule applied to immobilize Cr in soil has potential and provides new insights into reducing environmental risks due to biochar aging.
Collapse
Affiliation(s)
- Lin Chen
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yinger Deng
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Pengjie Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Hongkun Yang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Hu Su
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Ning Wang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Rui Yang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
4
|
Wang Y, Tian L, Zheng J, Tan Y, Li Y, Wei L, Zhang F, Zhu L. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: A sustainable solution. WATER RESEARCH 2024; 267:122551. [PMID: 39369509 DOI: 10.1016/j.watres.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Denitrification is an important biological process in wastewater treatment plants (WWTPs). However, a low carbon-to-nitrogen (C/N) ratio limits the availability of organic carbon, potentially reducing denitrification efficiency. This study investigates the impact of sludge-derived biochar on the nitrogen removal of activated sludge for low C/N ratio municipal wastewater. Sludge-based biochar was characterized by its physicochemical properties, revealing that biochar prepared at 400 °C exhibited the highest specific surface area and the most favorable surface functional groups for electron transfer. The results from batch tests showed that adding 4 g/L of biochar dosage enhanced denitrification rates and total nitrogen (TN) removal efficiency the most. Sequencing batch reactors (SBRs) experiments further confirmed that biochar dosgae improved the removal efficiencies of COD, NH4+-N, and TN, achieving stable values of 97.2 ± 1.2 %, 99.2 ± 0.6 %, and 83.8 ± 2.4 %, respectively. Metabolic and electrochemical analyses revealed that biochar addition enhanced the activity of denitrification enzymes, increasing the ammonia oxidation rate by 12.9 ± 0.7 %, nitrite oxidation rate by 14.7 ± 1.2 %, nitrate reduction rate by 36.9 ± 1.5 %, and nitrite reduction rate by 16.4 ± 0.8 %. The relative abundance of denitrification functional genes (amoA, nirS, nirK, narG, nosZ) increased, and the activities of the corresponding enzymes (AMO, NXR, NAP, NIR) rose by 23±6 %, 53±5 %, 260±15 %, and 55±7 %, respectively. This increase in enzyme activity suggested enhanced denitrification processes, which was further supported by the 60.1 ± 3.7 % increase in electron transfer system activity (ETSA), indicating that biochar acted as an electron shuttle. This study proposes a potential sustainable approach for sludge recycling and enhanced wastewater nitrogen removal under low C/N conditions.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luling Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lecheng Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Zhang
- School of Chemistry and Physics, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
5
|
Liu Y, Lu C, Jin C, Wang H, Li M, Zhao Y, Zhang X. From Transformation to Life Cycle Assessment of Biochar: A Case Study of Wheat Straw Biochar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39268860 DOI: 10.1021/acs.langmuir.4c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Biochar, as a carbon-rich material, exhibits significant potential for industrial applications. While numerous research endeavors have focused on its interactions within soil ecosystems, scant attention has been given to its behavior and potential impact on aquatic environments. In this study, we conducted an investigation to compare the environmental implications of pristine biochar with those of aged biochar. Initially, we assessed the interaction between biochar and key water quality indicators, revealing the release of endogenous ions (e.g., NH4+, NO3-, PO43-, Cu2+, and Cd2+) as well as organic substances (e.g., DOC) from both pristine and aged biochar samples. Aged biochar released higher amounts of ions and organic substances than pristine biochar due to the change in the structure and properties of aged biochar. Environmental risk and toxicity of pristine and aged biochar were subsequently evaluated using the potential ecological risk index (RI) and the impact on growth of Chlorella vulgaris, respectively. The values of RI for Cu indicated a very low degree of environmental risk, while those for Cd were dependent on water quality for surface water. Our study provided thorough analysis on the environmental assessment of biochar by combining experimental environmental transformation and life cycle assessment (LCA) analysis, suggesting biochar could have excellent environmental applications.
Collapse
Affiliation(s)
- Yang Liu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
| | - Chenyang Lu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
| | - Chensheng Jin
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
| | - Haina Wang
- Global Choice Project Consulting, Co., Ltd, Tianjin 300050, China
| | - Mei Li
- Global Choice Project Consulting, Co., Ltd, Tianjin 300050, China
| | - Yingcan Zhao
- Environmental Science Program, Department of Life Sciences, Beijing Normal University-Hong Kong Baptist University United International College, No. 2000 Jintong Road, Tangjiawan, Zhuhai, Guangdong 519087, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin 300384, China
| |
Collapse
|
6
|
Kundu S, Khandaker T, Anik MAAM, Hasan MK, Dhar PK, Dutta SK, Latif MA, Hossain MS. A comprehensive review of enhanced CO 2 capture using activated carbon derived from biomass feedstock. RSC Adv 2024; 14:29693-29736. [PMID: 39297049 PMCID: PMC11409178 DOI: 10.1039/d4ra04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The increasing level of atmospheric CO2 requires the urgent development of effective capture technologies. This comprehensive review thoroughly examines various methods for the synthesis of carbon materials, modification techniques for converting biomass feedstock into carbon materials and pivotal factors impacting their properties. The novel aspect of this review is its in-depth comparison of how these modifications specifically affect the pore structure and surface area together with the exploration of the mechanism underlying the enhancement of CO2 adsorption performance. Additionally, this review addresses research gaps and provides recommendations for future studies concerning the advantages and drawbacks of CO2 adsorbents and their prospects for commercialization and economic feasibility. This article revealed that among the various strategies, template carbonization offers a viable option for providing control of the material pore diameter and structure without additional modification treatments. Optimizing the pore structure of activated carbons, particularly those activated with agents such as KOH and ZnCl2, together with synthesizing hybrid activated carbons using multiple activating agents, is crucial for enhancing their CO2 capture performance. Cost-benefit analysis suggests that biomass-derived activated carbons can significantly meet the escalating demand for CO2 capture materials, offering economic advantages and supporting sustainable waste management.
Collapse
Affiliation(s)
- Shreyase Kundu
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | - Tasmina Khandaker
- Department of Chemistry, Bangladesh Army University of Engineering & Technology (BAUET) Qadirabad Cantonment Natore-6431 Bangladesh
| | | | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | | | | | - M Abdul Latif
- Department of Chemistry, Begum Rokeya University Rangpur-5404 Bangladesh
| | | |
Collapse
|
7
|
Luo L, Wang J, Yan A, Wang J, Wu S, Xu X, Chen W, Liu Z. Is Pyrolysis Treatment a Viable Solution to Detoxify Metal(loid)s in Sewage Sludge toward Land Application? Case Studies of Chromium and Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16186-16195. [PMID: 39189695 DOI: 10.1021/acs.est.4c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Metal(loid)s in sewage sludge (SS) are effectively immobilized after pyrolysis. However, the bioavailability and fate of the immobilized metal(loid)s in SS-derived biochar (SSB) following land application remain largely unknown. Here, the speciation and bioavailability evolution of SSB-borne Cr and Zn in soil were systematically investigated by combining pot and field trials and X-ray absorption spectroscopy. Results showed that approximately 58% of Cr existing as Cr(III)-humic complex in SS were transformed into Fe (hydr)oxide-bound Cr(III), while nano-ZnS in SS was transformed into stable ZnS and ferrihydrite-bound species (accounting for over 90% of Zn in SSB) during pyrolysis. All immobilized metal(loid)s, including Cr and Zn, in SSB tended to be slowly remobilized during aging in soil. This study highlighted that SSB acted as a dual role of source and sink of metal(loid)s in soil and posed potential risks by serving a greater role of a metal(loid) source than a sink when applied to uncontaminated soils. Nevertheless, SSB could impede the translocation of metal(loid)s from soil to crop compared to SS, where coexisting elements, including Fe, P, and Zn, played critical roles. These findings provide new insights for understanding the fate of SSB-borne metal(loid)s in soil and assessing the viability of pyrolyzing SS for land application.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiawen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Aichu Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songlin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuehui Xu
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Li S, Zhou Y, Wang J, Dou M, Zhang Q, Huo K, Han C, Shi J. Sewage sludge pyrolysis 'kills two birds with one stone': Biochar synergies with persulfate for pollutants removal and energy recovery. CHEMOSPHERE 2024; 363:142824. [PMID: 38996980 DOI: 10.1016/j.chemosphere.2024.142824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The disposal and resource utilization of sewage sludge (SS) have always been significant challenges for environmental protection. This study employed straightforward pyrolysis to prepare iron-containing sludge biochar (SBC) used as a catalyst and to recover bio-oil used as fuel energy. The results indicated that SBC-700 could effectively activate persulfate (PS) to remove 97.2% of 2,4-dichlorophenol (2,4-DCP) within 60 min. Benefiting from the appropriate iron content, oxygen-containing functional groups and defective structures provide abundant active sites. Meanwhile, SBC-700 exhibits good stability and reusability in cyclic tests and can be easily recovered by magnetic separation. The role of non-radicals is emphasized in the SBC-700/PS system, and in particular, single linear oxygen (1O2) is proposed to be the dominant reactive oxygen. The bio-oil, a byproduct of pyrolysis, exhibits a higher heating value (HHV) of about 30 MJ/kg, with H/C and O/C ratios comparable to those of biodiesel. The energy recovery rate of the SS pyrolysis system was calculated at 80.5% with a lower input cost. In conclusion, this investigation offers a low-energy consumption and sustainable strategy for the resource utilization of SS while simultaneously degrading contaminants.
Collapse
Affiliation(s)
- Shaoya Li
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Yanmei Zhou
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China; The Center of National Railway Intelligent Transportation System Engineering and Technology, China Academy of Railway Sciences Corporation Limited, Beijing, 100081, China.
| | - Jin Wang
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China.
| | - Mengmeng Dou
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Qingyun Zhang
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Kaili Huo
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Chao Han
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Jinyang Shi
- School of Traffic and Transportation, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| |
Collapse
|
9
|
Zeng Y, Xu Z, Dong B. Enhanced Cu 2+ and Cd 2+ removal by a novel co-pyrolysis biochar derived from sewage sludge and phosphorus tailings: adsorption performance and mechanisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:396. [PMID: 39180627 DOI: 10.1007/s10653-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The reutilization of municipal wastes has always been one of the hottest subjects of sustainable development study. In this study, a novel biochar co-pyrolyzed from municipal sewage sludge and phosphorus tailings was produced to enhance the adsorption performance of the composite on Cu2+ and Cd2+. The maximum Cu2+ and Cd2+ adsorption capacity of SSB-PT were 44.34 and 45.91 mg/g, respectively, which were much higher than that of sewage sludge biochar (5.21 and 4.58 mg/g). Chemisorption dominated the whole adsorption process while multilayer adsorption and indirect interaction were also involved. According to the result of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectrum (XPS), the load of CO32-, Mg2+, and Ca2+ on the surface of SSB-PT enhanced the precipitation and ion exchange effect. Posnjakite and CdCO3 were formed after the adsorption of Cu2+ and Cd2+, respectively. Besides, complexation, and metal-π interaction were also involved during the adsorption process. Therefore, this study offered a promising method to reuse sewage sludge and phosphorus tailings as an effective adsorbent.
Collapse
Affiliation(s)
- Yifan Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
10
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 2: Biochar Characterization and Application in the Remediation of Heavy Metal-Contaminated Soils. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3850. [PMID: 39124513 PMCID: PMC11314058 DOI: 10.3390/ma17153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The disposal of municipal sewage sludge (MSS) from wastewater treatment plants poses a major environmental challenge due to the presence of inorganic and organic pollutants. Co-pyrolysis, in which MSS is thermally decomposed in combination with biomass feedstocks, has proven to be a promising method to immobilize inorganic pollutants, reduce the content of organic pollutants, reduce the toxicity of biochar and improve biochar's physical and chemical properties. This part of the review systematically examines the effects of various co-substrates on the physical and chemical properties of MSS biochar. This review also addresses the effects of the pyrolysis conditions (temperature and mixing ratio) on the content and stability of the emerging pollutants in biochar. Finally, this review summarizes the results of recent studies to provide an overview of the current status of the application of MSS biochar from pyrolysis and co-pyrolysis for the remediation of HM-contaminated soils. This includes consideration of the soil and heavy metal types, experimental conditions, and the efficiency of HM immobilization. This review provides a comprehensive analysis of the potential of MSS biochar for environmental sustainability and offers insights into future research directions for optimizing biochar applications in soil remediation.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
11
|
Wei C, Liu L, Yi W, Yu R, Xu Y, Zeng S. Characteristics of nutrients and heavy metals release from sewage sludge biochar produced by industrial-scale pyrolysis in the aquatic environment and its potential as a slow-release fertilizer and adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121871. [PMID: 39018844 DOI: 10.1016/j.jenvman.2024.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
To assess the application potential of sewage sludge biochar produced by industrial-scale pyrolysis (ISB), the release characteristics of nutrients (NH4+, PO43-, K, Ca, Mg and Fe) and heavy metals (Mn, Cu, Zn, Pb, Ni and Cr) were investigated. Their release amounts increased with decreasing initial pH and increasing solid-liquid ratios (RS-L) and temperature. The release types of NH4+, K, Mg, and Mn were diffusion/dissolution, while those of Cu, Zn, Pb, Ni, and Cr were diffusion/resorption. The release types of PO43- and Ca varied with initial pH and RS-L, respectively. The chemical actions played dominant roles in their release, while particle surface diffusion and liquid film diffusion determined the rates of diffusion and resorption phases, respectively. The release of NH4+, PO43-, K, Ca, Mg, Mn and Zn was a non-interfering, spontaneous (except PO43-), endothermic, and elevated randomness process. The release efficiency of NH4+, PO43- and K met the Chinese standard for slow-release fertilizers, while the total risk of ISB was low. The eutrophication and potential ecological risks of ISB were acceptable when the dose was less than 3 g L-1 and the initial pH was no lower than 3. In conclusion, ISB had potential as a slow-release fertilizer and adsorbent.
Collapse
Affiliation(s)
- Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Wei Yi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Ronghao Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China
| | - Si Zeng
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| |
Collapse
|
12
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3603. [PMID: 39063895 PMCID: PMC11278580 DOI: 10.3390/ma17143603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
With the increasing production of municipal sewage sludge (MSS) worldwide, the development of efficient and sustainable strategies for its management is crucial. Pyrolysis of MSS offers several benefits, including volume reduction, pathogen elimination, and energy recovery through the production of biochar, syngas, and bio-oil. However, the process can be limited by the composition of the MSS, which can affect the quality of the biochar. Co-pyrolysis has emerged as a promising solution for the sustainable management of MSS, reducing the toxicity of biochar and improving its physical and chemical properties to expand its potential applications. This review discusses the status of MSS as a feedstock for biochar production. It describes the types and properties of various co-substrates grouped according to European biochar certification requirements, including those from forestry and wood processing, agriculture, food processing residues, recycling, anaerobic digestion, and other sources. In addition, the review addresses the optimization of co-pyrolysis conditions, including the type of furnace, mixing ratio of MSS and co-substrate, co-pyrolysis temperature, residence time, heating rate, type of inert gas, and flow rate. This overview shows the potential of different biomass types for the upgrading of MSS biochar and provides a basis for research into new co-substrates. This approach not only mitigates the environmental impact of MSS but also contributes to the wider goal of achieving a circular economy in MSS management.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
13
|
Zhao Y, Li X, Xu G, Nan J. Multilevel investigation of the ecotoxicological effects of sewage sludge biochar on the earthworm Eisenia fetida. CHEMOSPHERE 2024; 360:142455. [PMID: 38810797 DOI: 10.1016/j.chemosphere.2024.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The ecological risks of sewage sludge biochar (SSB) after land use is still not truly reflected. Herein, the ecological risks of SSB prepared at different temperature were investigated using the earthworm E. fetida as a model organism from the perspectives of organismal, tissue, cellular, and molecular level. The findings revealed that the ecological risk associated with low-temperature SSB (SSB300) was more pronounced compared to medium- and high-temperature SSB (SSB500 and SSB700), and the ecological risk intensified with increasing SSB addition rates, as revealed by an increase in the integrated biomarker response v2 (IBRv2) value by 2.59-25.41 compared to those of SSB500 and SSB700. Among them, 10% SSB300 application caused significant oxidative stress and neurotoxicity in earthworms compared to CK (p < 0.001). The weight growth rate and cocoon production rate of earthworms were observed to decrease by 25.06% and 69.29%, respectively, while the mortality rate exhibited a significant increase of 33.34% following a 10% SSB300 application, as compared to the CK. Moreover, 10% SSB300 application also resulted in extensive stratum corneum injury and significant longitudinal muscle damage in earthworms, while also inducing severe collapse of intestinal epithelial cells and disruption of intestinal integrity. In addition, 10% SSB300 caused abnormal expression of earthworm detoxification and cocoon production genes (p < 0.001). These results may improve our understanding of the ecotoxicity of biochar, especially in the long term application, and contribute to providing the guidelines for applying biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
14
|
Hu W, Jin HY, Gao XY, Tang CC, Zhou AJ, Liu W, Ren YX, Li Z, He ZW. Biochar derived from alkali-treated sludge residue regulates anaerobic digestion: Enhancement performance and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 251:118578. [PMID: 38423498 DOI: 10.1016/j.envres.2024.118578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Biochar produced from bio-wastes has been widely used to promote the performance of anaerobic digestion. Waste activated sludge (WAS) is considered as a kind of popular precursor for biochar preparation, but the abundant resources in WAS were neglected previously. In this study, the roles of biochar prepared from raw, pretreated, and fermented sludge on anaerobic digestion were investigated. That is, parts of carbon sources and nutrients like polysaccharides, proteins, and phosphorus were firstly recovered after sludge pretreatment or fermentation, and then the sludge residuals were used as raw material to prepare biochar. The methane yield improved by 22.1% with adding the biochar (AK-BC) prepared by sludge residual obtained from alkaline pretreatment. Mechanism study suggested that the characteristics of AK-BC like specific surface area and defect levels were updated. Then, the conversion performance of intermediate metabolites and electro-activities of extracellular polymeric substances were up-regulated. As a result, the activity of electron transfer was increased with the presence of AK-BC, with increase ratio of 21.4%. In addition, the electroactive microorganisms like Anaerolineaceae and Methanosaeta were enriched with the presence of AK-BC, and the potential direct interspecies electron transfer was possibly established. Moreover, both aceticlastic and CO2-reducing methanogenesis pathways were improved by up-regulating related enzymes. Therefore, the proposed strategy can not only obtain preferred biochar but also recover abundant resources like carbon source, nutrients, and bioenergy.
Collapse
Affiliation(s)
- Wen Hu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiang-Yu Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
15
|
Wystalska K, Kowalczyk M, Kamizela T, Worwąg M, Zabochnicka M. Properties and Possibilities of Using Biochar Composites Made on the Basis of Biomass and Waste Residues Ferryferrohydrosol Sorbent. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2646. [PMID: 38893909 PMCID: PMC11173671 DOI: 10.3390/ma17112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron atoms, after CO2 capture. The composites were produced in a one-stage or two-stage pyrolysis process. Their selected properties were determined as follows: pH, ash content, C, H, N, O, specific surface area, microstructure and the presence of surface functional groups. The produced biochar and composites had different properties resulting from the production method and the additive used. The results of experiments on the removal of methylene blue (MB) from solutions allowed us to rank the adsorbents used according to the maximum dye removal value achieved as follows: BC1 (94.99%), B (84.61%), BC2 (84.09%), BC3 (83.23%) and BC4 (83.23%). In terms of maximum amoxicillin removal efficiency, the ranking is as follows: BC1 (55.49%), BC3 (23.51%), BC2 (18.13%), B (13.50%) and BC4 (5.98%). The maximum efficiency of diclofenac removal was demonstrated by adsorbents BC1 (98.71), BC3 (87.08%), BC4 (74.20%), B (36.70%) and BC2 (30.40%). The most effective removal of metals Zn, Pb and Cd from the solution was demonstrated by BC1 and BC3 composites. The final concentration of the tested metals after sorption using these composites was less than 1% of the initial concentration. The highest increase in biomass on prepared substrates was recorded for the BC5 composite. It was higher by 90% and 54% (for doses of 30 g and 15 g, respectively) in relation to the biomass growth in the soil without additives. The BC1 composite can be used in pollutant sorption processes. However, BC5 has great potential as a soil additive in crop yield and plant growth.
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (M.K.); (T.K.); (M.W.); (M.Z.)
| | | | | | | | | |
Collapse
|
16
|
Ma F, Zhao H, Zheng X, Zhang J, Ding W, Jiao Y, Li Q, Kang H. Green synthesis of nZVI-modified biochar significantly enhanced the removal of Cr(VI) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33993-34009. [PMID: 38696011 DOI: 10.1007/s11356-024-33553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Water contamination by hexavalent chromium (Cr(VI)) seriously jeopardizes human health, which is a pressing environmental concern. Biochar-loaded green-synthesized nZVI, as a green and environmentally friendly material, can efficiently reduce Cr(VI) to Cr(III) while removing Cr(VI) from water. Therefore, in this study, an efficient green-modified biochar material (TP-nZVI/BC) was successfully prepared using tea polyphenol (TP) and sludge biochar (BC) using a low-cost and environmentally friendly green synthesis method. The preparation conditions of TP-nZVI/BC were optimized using response surface methodology (RSM), revealing that the dosage of tea polyphenols plays a crucial role in the removal performance (R2 = 1271.09), followed by reaction time and temperature. The quadratic regression model proved accurate. The optimal preparation conditions are as follows: tea polyphenols (TP) dosage at 48 g/L, reaction temperature at 75 ℃, and a reaction time of 3 h. TP-nZVI/BC removed Cr(VI) from water at a rate 7.6 times greater than BC. The pseudo-second-order kinetic model (R2 = 0.987) accurately describes the adsorption process, suggesting that chemical adsorption predominantly controls the removal process. The adsorption of Cr(VI) by TP-nZVI/BC can be well described by the Langmuir model, and the maximum adsorption capacity reached 105.65 mg/g. FTIR and XPS analyses before and after adsorption demonstrate that nZVI plays a crucial role in the reduction process of Cr(VI), and the synergistic effects of surface adsorption, reduction, and co-precipitation enhance Cr(VI) removal. In summary, using green-modified biochar for Cr(VI) removal is a feasible and promising method with significant potential.
Collapse
Affiliation(s)
- Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Hao Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xudong Zheng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Weixuan Ding
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yaxian Jiao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Qing Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hongbing Kang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
17
|
Sava C, Iluţiu-Varvara DA, Mare R, Roman MD, Rada S, Pică EM, Jäntschi L. Physico-chemical characterization and possible uses of sludge processed from an urban sewage treatment plant. Heliyon 2024; 10:e29576. [PMID: 38699733 PMCID: PMC11063455 DOI: 10.1016/j.heliyon.2024.e29576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Nowadays, the challenge is to transform dehydrated sewage sludge resulting from wastewater treatment plants from waste into resource. Following this objective, the sludge was further dried and submitted to X-ray diffraction (XRD) and FTIR analysis. The sludge was first dried in ventilated and unventilated spaces at 50 ∘C and 100 ∘C, for 60 and 100 minutes (min) in each case. The final mass and evaporation degree of the sludge depends on the initial mass, ventilation type, drying time, and temperature. The ventilated drying space is preferred for temperature control, homogeneity, and higher evaporation degree. The influence of the drying process on the structure and behavior of the sewage sludge was emphasized through X-ray diffraction (XRD) and FTIR analysis. The XRD shows good structural properties of the sludge samples given by the reduction of the particle size through evaporation. According to FTIR, evaporation influences the depolymerization of the silicate network. The hydroxyl units and metallic ion modifiers can improve the sludge structure, but its intensity decreases through evaporation. With high content of solid substance, and good relation between the composition of the sludge and its structure and behavior, the dried sewage sludge can be used in: (i) agriculture, (ii) construction, (iii) the energy sector.
Collapse
Affiliation(s)
- Cornel Sava
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 28 Memorandumului st., Cluj-Napoca, 400114, Cluj, Romania
| | - Dana-Adriana Iluţiu-Varvara
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului st., Cluj-Napoca, 400114, Cluj, Romania
| | - Roxana Mare
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului st., Cluj-Napoca, 400114, Cluj, Romania
| | - Marius Daniel Roman
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului st., Cluj-Napoca, 400114, Cluj, Romania
| | - Simona Rada
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 28 Memorandumului st., Cluj-Napoca, 400114, Cluj, Romania
| | - Elena Maria Pică
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 28 Memorandumului st., Cluj-Napoca, 400114, Cluj, Romania
| | - Lorentz Jäntschi
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 28 Memorandumului st., Cluj-Napoca, 400114, Cluj, Romania
| |
Collapse
|
18
|
Liu Y, Duan Y, Chen L, Yang Z, Yang X, Liu S, Song G. Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms 2024; 12:680. [PMID: 38674623 PMCID: PMC11051992 DOI: 10.3390/microorganisms12040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Y.D.); (L.C.); (Z.Y.); (X.Y.); (S.L.); (G.S.)
| | | | | | | | | | | | | |
Collapse
|
19
|
Mitzia A, Böserle Hudcová B, Vítková M, Kunteová B, Casadiego Hernandez D, Moško J, Pohořelý M, Grasserová A, Cajthaml T, Komárek M. Pyrolysed sewage sludge for metal(loid) removal and immobilisation in contrasting soils: Exploring variety of risk elements across contamination levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170572. [PMID: 38309337 DOI: 10.1016/j.scitotenv.2024.170572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Efficient treatment of sewage sludge may transform waste into stable materials with minimised hazardous properties ready for secondary use. Pyrolysed sewage sludge, sludgechar, has multiple environmental benefits including contaminant sorption capacity and nutrient recycling. The properties of five sludgechars were tested firstly for adsorption efficiency in laboratory solutions before prospective application to soils. A wide variety of metal(loid)s (As, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn) was involved. Secondly, the sludgechars (3 % v/v) were incubated in five soils differing in (multi)-metal(loid) presence and the level of contamination. The main aim was to evaluate the metal(loid) immobilisation potential of the sludgechars for soil remediation. Moreover, nutrient supply was investigated to comprehensively assess the material's benefits for soils. All sludgechars were efficient (up to 100 %) for the removal of metal cations while their efficiency for metal(loid) anions was limited in aqueous solutions. Phosphates and sulphates were identified crucial for metal(loid) capture, based on SEM/EDS, XRD and MINTEQ findings. In soils, important fluctuations were observed for Zn, being partially immobilised by the sludgechars in high-Zntot soils, while partially solubilised in moderate to low-Zntot soils. Moreover, pH showed to be crucial for material stability, metal(loid) adsorption ability and their immobilisation in soils. Although metal(loid) retention was generally low in soils, nutrient enrichment was significant after sludgechar application. Long-term evaluation of the material sorption efficiency, nutrient supply, and ageing in soil environments will be necessary in future studies.
Collapse
Affiliation(s)
- Aikaterini Mitzia
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Barbora Böserle Hudcová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic.
| | - Barbora Kunteová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Daniela Casadiego Hernandez
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Jaroslav Moško
- Institute of Chemical Process Fundamentals, The Czech Academy of Sciences, Rozvojová 135, 165 00 Prague 6, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals, The Czech Academy of Sciences, Rozvojová 135, 165 00 Prague 6, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4 - Krč, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Praha 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4 - Krč, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Praha 2, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| |
Collapse
|
20
|
Wang C, Li Y, Wang Y, Zhang Y, Feng J, An X, Wang R, Xu Y, Cheng X. Removal of sulfonamide antibiotics by non-free radical dominated peroxymonosulfate oxidation catalyzed by cobalt-doped sulfur-containing biochar from sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133535. [PMID: 38271878 DOI: 10.1016/j.jhazmat.2024.133535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
The reuse of activated sludge as a solid waste is severely underutilized due to the limitations of traditional treatment and disposal methods. Given that, the sulfur-containing activated sludge catalyst doped with cobalt (SK-Co(1.0)) was successfully prepared by one-step pyrolysis and calcinated at 850 ℃. The generation of CoSx was successfully characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), indicating that the sulfur inside the sludge was the anchoring site for the externally doped cobalt. Cobalt (Ⅱ) (Co2+), as the main adsorption site for peroxymonosulfate(PMS), formed a complex (SK-Co(1.0)-PMS* ) and created the conditions for the generation of surface radicals. The SK-Co(1.0)/PMS system showed high degradation efficiency and apparent rate constants for Sulfamethoxazole (SMX) (91.56% and 0.187 min-1) and Sulfadiazine (SDZ) (90.73% and 0.047 min-1) within 10 min and 30 min, respectively. Three sites of generation of 1O2, which played a dominant role in the degradation of SMX and SDZ in the SK-Co(1.0)/PMS system, were summarized as:sulfur vacancies (SVs), the Co3+/Co2+ cycles promoted by sulfur(S) species, oxygen-containing functional groups (C-O). The degradation mechanisms and pathways had been thoroughly investigated using DFT calculations. In view of this, a new idea for the resource utilization of activated sludge solid waste was provided and a new strategy for wastewater remediation was proposed.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Li
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yukun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yan Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Jingbo Feng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Xiaomeng An
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Rui Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yinyin Xu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China.
| |
Collapse
|
21
|
Schlederer F, Martín-Hernández E, Vaneeckhaute C. Micropollutants in biochar produced from sewage sludge: A systematic review on the impact of pyrolysis operating conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:618-629. [PMID: 38154418 DOI: 10.1016/j.wasman.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Biochar obtained from sewage sludge serves as a valuable soil amendment in agriculture, enhancing soil properties by increasing the nutrient content, cation exchange capacity, water retention, and oxygen transmission. However, its utilisation is hampered by the presence of micropollutants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and volatile organic compounds (VOCs). Previous studies indicate that the type and amount of micropollutants can be significantly adjusted by selecting the right process parameters. This literature review provides an overview of how (1) pyrolysis temperature, (2) carrier gas flow and type, (3) heating rate, and (4) residence time affect the concentration of micropollutants in biochar produced from sewage sludge. The micropollutants targeted are those listed by the European Biochar Certificate (EBC) and by the International Biochar Institution (IBI), including PAHs, PCDD/Fs, PCBs and VOCs. In addition, per- and poly-fluoroalkyl substances (PFAS) are also considered due to their presence in sewage sludge. The findings suggest that higher pyrolysis temperatures reduce micropollutant levels. Moreover, the injection of a carrier gas (N2 or CO2) during the pyrolysis and cooling processes effectively lowers PAHs and PCDD/Fs, by reducing the contact of biochar with oxygen, which is crucial in mitigating micropollutants. Nevertheless, limited available data impedes an assessment of the impact of these parameters on PFAS in biochar. In addition, further research is essential to understand the effects of carrier gas type, heating rate, and residence time in order to determine the optimal pyrolysis process parameters for generating clean biochar.
Collapse
Affiliation(s)
- Felizitas Schlederer
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Edgar Martín-Hernández
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Céline Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
22
|
Xia F, Zhang Z, Zhang Q, Huang H, Zhao X. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168734. [PMID: 38007117 DOI: 10.1016/j.scitotenv.2023.168734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Anthropogenic greenhouse gas (GHG) emissions are a major factor influencing climate change. The application of biochar as a soil amendment may be an effective way to reduce GHG emissions. Life cycle assessment (LCA) is widely used to assess the impact of biochar as a soil amendment on GHG emissions. The methodology is effective in assessing the impacts of the various stages of the biochar life cycle on GHG emissions. However, because of the diversity of biochar types, it is difficult to summarize the regularity of biochar life cycle impacts on GHG emissions. This paper summarizes the pathways of biochar's effect on GHG emissions and in-depth analyzes the mechanism of biochar's influence on GHG emissions from the perspective of biochar properties. Finally, the review comprehensively analyzes the effects of different types of biochar feedstock on GHG emissions at the stages of feedstock pretreatment, preparation, and application of the life cycle. The conclusions are as follows: (1) Biochar affects GHG emissions in three ways: feedstock supply, pyrolysis process, and application process. (2) The impact of biochar on GHG emissions is influenced by a combination of the physicochemical properties of biochar. (3) Biochar has a positive impact (feedstock pretreatment stage and preparation stage) or a negative impact (application stage) on life cycle GHG emissions. (4) The carbon sequestration capacity of biochar varies by feedstock type. The ranking of carbon sequestration capacity is waste wood biochar (WWB) > crop straw biochar (CSB) > livestock manure biochar (LMB) > sewage sludge biochar (SSB).
Collapse
Affiliation(s)
- Fang Xia
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Qian Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaohui Zhao
- Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
23
|
Pan Y, Han W, Shi H, Liu X, Xu S, Li J, Peng H, Zhao X, Gu T, Huang C, Peng K, Wang S, Zeng M. Incorporating environmental capacity considerations to prioritize control factors for the management of heavy metals in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119820. [PMID: 38113783 DOI: 10.1016/j.jenvman.2023.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Heavy metals (HMs) pollution threatens food security and human health. While previous studies have evaluated source-oriented health risk assessments, a comprehensive integration of environmental capacity risk assessments with pollution source analysis to prioritize control factors for soil contamination is still lacking. Herein, we collected 837 surface soil samples from agricultural land in the Nansha District of China in 2019. We developed an improved integrated assessment model to analyze the pollution sources, health risks, and environmental capacities of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The model graded pollution source impact on environmental capacity risk to prioritize control measures for soil HMs. All HMs except Pb exceeded background values and were sourced primarily from natural, transportation, and industrial activities (31.26%). Approximately 98.92% (children), 97.87% (adult females), and 97.41% (adult males) of carcinogenic values exceeded the acceptable threshold of 1E-6. HM pollution was classified as medium capacity (3.41 kg/hm2) with mild risk (PI = 0.52). Mixed sources of natural backgrounds, transportation, and industrial sources were identified as priority sources, and As a priority element. These findings will help prioritize control factors for soil HMs and direct resources to the most critical pollutants and sources of contamination, particularly when resources are limited.
Collapse
Affiliation(s)
- Yujie Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Han
- Geological Survey Research Institute, China University of Geosciences, Wuhan, 430074, China
| | - Huanhuan Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xiaorui Liu
- China Electric Power Research Institute, Beijing, 100192, China
| | - Shasha Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Hongxia Peng
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| | - Xinwen Zhao
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Tao Gu
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Chansgheng Huang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Ke Peng
- Survey Affairs Center for Natural Resources and Planning of Yongzhou City, Yongzhou, 425000, China
| | - Simiao Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, 314001, China
| | - Min Zeng
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China.
| |
Collapse
|
24
|
Sadia MR, Hasan M, Islam ARMT, Jion MMMF, Masud MAA, Rahman MN, Peu SD, Das A, Bari ABMM, Islam MS, Pal SC, Rakib MRJ, Senapathi V, Idris AM, Malafaia G. A review of microplastic threat mitigation in Asian lentic environments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104284. [PMID: 38101231 DOI: 10.1016/j.jconhyd.2023.104284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.
Collapse
Affiliation(s)
- Moriom Rahman Sadia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | | | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Naimur Rahman
- Center for Archaeological Studies, University of Liberal Arts, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, 6 Rajshahi, 6204, Bangladesh
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
25
|
Fan Y, Su J, Wang Z, Liu S, Li X, Hou C. Improvement of the specific surface area of biochar by calcium-precipitated nanoparticles synthesized by microbial induction as a template skeleton: Removal mechanism of tetracycline in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119279. [PMID: 37857215 DOI: 10.1016/j.jenvman.2023.119279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
The template method is an effective means to improve the specific surface area and porosity of biochar, but the synthesis of template agents and the way they are integrated with biomass materials still need further development. Therefore, the free Pseudomonas sp. Y1 was used to synthesize calcium-precipitated nanoparticles (CPN) on sludge as a fused template skeleton to enlarge the surface area of sludge biochar facilitating the adsorption of tetracycline (TC) in this work. The modified biochar (FBC) showed excellent specific surface area (448.55 m2 g-1) and porosity (0.0053 cm³ g-1), stable morphological structure, abundant active functional groups, and appreciable adsorption capacity (65.43 mg g-1) based on several characterization and adsorption experiments. Moreover, the adsorption model postulated that the removal of TC is mainly a chemisorption-based heat-trapping, disordered multilayer interaction. In detail, this process involved the joint contribution from electrostatic interactions, ligand exchange, hydrogen bonding, π-π bonding, complexation, and pore filling. Meanwhile, the adaptability and stability of FBC were examined by pH and coexisting substances. This template skeleton induced by microorganisms can provide new insight into the modification of biochar with the template method.
Collapse
Affiliation(s)
- Yong Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
26
|
Wang Y, Zhang Z, Wang X, Guo H, Zhu T, Ni BJ, Liu Y. Percarbonate-strengthened ferrate pretreatment for enhancing short-chain fatty acids production from sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166771. [PMID: 37660812 DOI: 10.1016/j.scitotenv.2023.166771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Sewage sludge management poses a pressing environmental challenge, demanding the implementation of sustainable solutions to facilitate resource recovery. Short-chain fatty acids (SCFAs) serve as valuable chemicals and renewable energy sources, underscoring the importance of maximizing their production to achieve sustainable waste management. Therefore, this study proposes a novel and green strategy, i.e., percarbonate-strengthened ferrate pretreatment to enhance SCFAs synthesis from sewage sludge, because percarbonate could activate ferrate oxidation through providing (bi) carbonate and hydrogen peroxide. Results show that percarbonate largely reduces the required ferrate dosage for fermentation improvement, and their combination exhibits obvious synergistic effects on SCFAs accumulation and sludge reduction. Under the optimal pretreatment conditions, SCFAs production is promoted to 3670.2 mg COD/L, representing a remarkable increase of 5512.4 %, 156.0 % or 395.1 % compared to the control, percarbonate alone or ferrate alone, respectively. Mechanism explorations demonstrate that percarbonate-strengthened ferrate pretreatment significantly enhances sludge solubilization, elevates substrate biodegradability, and alters the physiochemical properties of sludge to favor organics fermentation. The synergistic effects on solid organics release and sludge properties can be attributed to the combined mechanisms of enhanced oxidation and alkaline hydrolysis. Further investigations on metabolic pathways reveal that the combination substantially improves key enzyme activities associated with hydrolysis and SCFAs formation, while severely inhibits that of SCFAs consumption. These findings are further supported by the functional genes coding relevant enzymes. Moreover, the combination alters microbial structures and compositions, leading to the screening and enrichment of key microbes that facilitate SCFAs accumulation. This innovative strategy holds significant promise in advancing sewage sludge management towards a more circular and resource-efficient paradigm.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|