1
|
Jurczak M, Kaczmarek J, Kowalewska-Pietrzak M, Druszczynska M. Immunomodulatory Effect of the Bacillus Calmette-Guérin (BCG) Vaccine on the In Vitro Interferon Response Induced by Respiratory Syncytial Virus (RSV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antigens. Arch Immunol Ther Exp (Warsz) 2025; 73:aite-2025-0007. [PMID: 40101137 DOI: 10.2478/aite-2025-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/29/2025] [Indexed: 03/20/2025]
Abstract
Studies on the bacillus Calmette-Guérin (BCG) vaccine, traditionally used against tuberculosis, indicate its potential benefit in protecting against infections. The vaccine's ability to broadly activate the immune system suggests its potential to bolster non-specific immunity, which could be crucial for combating respiratory pathogens. This study aimed to evaluate the messenger RNA (mRNA) expression of interferon (IFN)-α, IFN-β, and IFN-γ as well as the secretion of these cytokines in whole blood co-stimulated cultures with BCG and antigens of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or respiratory syncytial virus (RSV) from BCG-vaccinated Polish children who have been infected or uninfected with RSV and/or SARS-CoV-2. Significant differences were observed in the secretion and mRNA expression of IFN-α and IFN-γ in response to RSV antigens in all groups of children studied. When cultures were conducted in the presence of SARS-CoV-2 antigens, live BCG did not induce increased IFN-α secretion compared with cultures stimulated with these antigens alone. However, enhanced secretion was observed for IFN-γ, and no such relationship was observed for mRNA expression. Furthermore, discrepancies between IFN-β secretion and mRNA expression were observed, suggesting that IFN protein secretion can also be controlled at the translational or posttranslational level. The data from our studies indicate that BCG vaccination may modulate the IFN response to viral challenges with SARS-CoV-2 and RSV, suggesting a potential immunoregulatory role.
Collapse
Affiliation(s)
- Magdalena Jurczak
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Joanna Kaczmarek
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Lodz, Lodz, Poland
| | | | - Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Peixoto RF, de Sousa Palmeira PH, Csordas BG, Cavalcante-Silva LHA, de Andrade AG, de Medeiros IA, de Lourdes Assunção Araújo de Azevedo F, Veras RC, Janebro D, Do Amaral IPG, Keesen TSL. Predominance of CD137 + And TNF-α Expressing CD8 + Central Memory T Cells in Mild COVID-19 Recovered Patients Upon SARS-CoV-2 Re-Exposure. Immunol Invest 2024; 53:1092-1101. [PMID: 38994913 DOI: 10.1080/08820139.2024.2376003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Memory CD8+ T cells are essential for long-term immune protection in viral infections, including COVID-19. METHODS This study examined the responses of CD8+ TEM, TEMRA, and TCM subsets from unvaccinated individuals who had recovered from mild and severe COVID-19 by flow cytometry. RESULTS AND DISCUSSION The peptides triggered a higher frequency of CD8+ TCM cells in the recovered mild group. CD8+ TCM and TEM cells showed heterogeneity in CD137 expression between evaluated groups. In addition, a predominance of CD137 expression in naïve CD8+ T cells, TCM, and TEM was observed in the mild recovered group when stimulated with peptides. Furthermore, CD8+ TCM and TEM cell subsets from mild recovered volunteers had higher TNF-α expression. In contrast, the expression partner of IFN-γ, IL-10, and IL-17 indicated an antiviral signature by CD8+ TEMRA cells. These findings underscore the distinct functional capabilities of each memory T cell subset in individuals who have recovered from COVID-19 upon re-exposure to SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Rephany Fonseca Peixoto
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Pedro Henrique de Sousa Palmeira
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bárbara Guimarães Csordas
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Luiz Henrique Agra Cavalcante-Silva
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | | | | | | | - Daniele Janebro
- Department of Pharmaceutical Sciences, Health Science Center, João Pessoa, Brazil
| | - Ian P G Do Amaral
- Biotechnology Graduation Program, Federal University of Paraiba, João Pessoa, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
3
|
Baldassarro VA, Alastra G, Cescatti M, Quadalti C, Lorenzini L, Giardino L, Calzà L. SARS-CoV-2-related peptides induce endothelial-to-mesenchymal transition in endothelial capillary cells derived from different body districts: focus on membrane (M) protein. Cell Tissue Res 2024; 397:241-262. [PMID: 38953987 DOI: 10.1007/s00441-024-03900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19, may lead to multiple organ dysfunctions and long-term complications. The induction of microvascular dysfunction is regarded as a main player in these pathological processes. To investigate the possible impact of SARS-CoV-2-induced endothelial-to-mesenchymal transition (EndMT) on fibrosis in "long-COVID" syndrome, we used primary cultures of human microvascular cells derived from the lungs, as the main infection target, compared to cells derived from different organs (dermis, heart, kidney, liver, brain) and to the HUVEC cell line. To mimic the virus action, we used mixed SARS-CoV-2 peptide fragments (PepTivator®) of spike (S), nucleocapsid (N), and membrane (M) proteins. TGFβ2 and cytokine mix (IL-1β, IL-6, TNFα) were used as positive controls. The percentage of cells positive to mesenchymal and endothelial markers was quantified by high content screening. We demonstrated that S+N+M mix induces irreversible EndMT in all analyzed endothelial cells via the TGFβ pathway, as demonstrated by ApoA1 treatment. We then tested the contribution of single peptides in lung and brain cells, demonstrating that EndMT is triggered by M peptide. This was confirmed by transfection experiment, inducing the endogenous expression of the glycoprotein M in lung-derived cells. In conclusion, we demonstrated that SARS-CoV-2 peptides induce EndMT in microvascular endothelial cells from multiple body districts. The different peptides play different roles in the induction and maintenance of the virus-mediated effects, which are organ-specific. These results corroborate the hypothesis of the SARS-CoV-2-mediated microvascular damage underlying the multiple organ dysfunctions and the long-COVID syndrome.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | | | - Corinne Quadalti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy.
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Pena NM, Santana LC, Hunter JR, Blum VF, Vergara T, Gouvea C, Leal E, Bellei N, Schechter M, Diaz RS. T cell-mediated Immune response and correlates of inflammation and their relationship with COVID-19 clinical severity: not an intuitive guess. BMC Infect Dis 2024; 24:612. [PMID: 38902613 PMCID: PMC11191252 DOI: 10.1186/s12879-024-09490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Predictors of the outcome of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection remain to be fully determined. We evaluated selected viral characteristics and immunological responses that might predict and/or correlate to the clinical outcome of COVID-19. METHODS For individuals developing divergent clinical outcomes, the magnitude and breadth of T cell-mediated responses were measured within 36 h of symptom onset. Peripheral Blood Mononuclear Cells (PBMCs) were subjected to in vitro stimulation with SARS-CoV-2-based peptides. In addition, SARS-CoV-2 sequences were generated by metagenome, and HLA typing was performed using Luminex technology. FINDINGS CD4+ T cell activation was negatively correlated with SARS-CoV-2 basal viral load in patients with severe COVID-19 (p = 0·043). The overall cellular immune response, as inferred by the IFN-γ signal, was higher at baseline for patients who progressed to mild disease compared to patients who progressed to severe disease (p = 0·0044). Subjects with milder disease developed higher T cell responses for MHC class I and II-restricted peptides (p = 0·033). INTERPRETATION Mounting specific cellular immune responses in the first days after symptom onset, as inferred by IFN-γ magnitude in the ELISPOT assay, may efficiently favor a positive outcome. In contrast, progression to severe COVID-19 was accompanied by stronger cellular immune responses, higher CD4 + T cell activation, and a higher number of in silico predicted high-affinity class I HLA alleles.
Collapse
Affiliation(s)
- Nathalia Mantovani Pena
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
- Weill Cornell Medicine, New York, United States of America
| | - Luiz Claudio Santana
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - James R Hunter
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Vinicius Fontanesi Blum
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Tania Vergara
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
- Oncohiv, Rio de Janeiro, Brazil
| | - Celso Gouvea
- Centro de Hematologia e Hemoterapia do Ceará, Fortaleza, CE, Brazil
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Nancy Bellei
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
5
|
Wolz OO, Vahrenhorst D, Quintini G, Lemberg C, Koch SD, Kays SK, Walz L, Kulkarni N, Fehlings M, Wengenmayer P, Heß J, Oostvogels L, Lazzaro S, von Eisenhart-Rothe P, Mann P. Innate Responses to the Former COVID-19 Vaccine Candidate CVnCoV and Their Relation to Reactogenicity and Adaptive Immunogenicity. Vaccines (Basel) 2024; 12:388. [PMID: 38675770 PMCID: PMC11053638 DOI: 10.3390/vaccines12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines are highly effective at preventing severe coronavirus disease (COVID-19). With mRNA vaccines, further research is needed to understand the association between immunogenicity and reactogenicity, which is defined as the physical manifestation of an inflammatory response to a vaccination. This study analyzed the immune response and reactogenicity in humans, post immunization, to the former SARS-CoV-2 mRNA investigational vaccine CVnCoV (CV-NCOV-001 and CV-NCOV-002 clinical trials). Immunogenicity was investigated using whole-blood RNA sequencing, serum cytokine levels, and SARS-CoV-2-specific antibodies. The T cell responses in peripheral blood were assessed using intracellular cytokine staining (ICS) and high-dimensional profiling in conjunction with SARS-CoV-2 antigen-specificity testing via mass cytometry. Reactogenicity was graded after participants' first and second doses of CVnCoV using vaccine-related solicited adverse events (AEs). Finally, a Spearman correlation was performed between reactogenicity, humoral immunity, and serum cytokine levels to assess the relationship between reactogenicity and immunogenicity post CVnCoV vaccination. Our findings showed that the gene sets related to innate and inflammatory immune responses were upregulated one day post CVnCoV vaccination, while the gene sets related to adaptive immunity were upregulated predominantly one week after the second dose. The serum levels of IFNα, IFNγ, IP-10, CXCL11, IL-10, and MCP-1 increased transiently, peaking one day post vaccination. CD4+ T cells were induced in all vaccinated participants and low frequencies of CD8+ T cells were detected by ex vivo ICS. Using mass cytometry, SARS-CoV-2 spike-specific CD8+ T cells were induced and were characterized as having an activated effector memory phenotype. Overall, the results demonstrated a positive correlation between vaccine-induced systemic cytokines, reactogenicity, and adaptive immunity, highlighting the importance of the balance between the induction of innate immunity to achieve vaccine efficacy and ensuring low reactogenicity.
Collapse
Affiliation(s)
- Olaf-Oliver Wolz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Dominik Vahrenhorst
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Gianluca Quintini
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Christina Lemberg
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sven D. Koch
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sarah-Katharina Kays
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lisa Walz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Neeraja Kulkarni
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Michael Fehlings
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Peter Wengenmayer
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Jana Heß
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lidia Oostvogels
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sandra Lazzaro
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | | | - Philipp Mann
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| |
Collapse
|
6
|
Sheetikov SA, Khmelevskaya AA, Zornikova KV, Zvyagin IV, Shomuradova AS, Serdyuk YV, Shakirova NT, Peshkova IO, Titov A, Romaniuk DS, Shagina IA, Chudakov DM, Kiryukhin DO, Shcherbakova OV, Khamaganova EG, Dzutseva V, Afanasiev A, Bogolyubova AV, Efimov GA. Clonal structure and the specificity of vaccine-induced T cell response to SARS-CoV-2 Spike protein. Front Immunol 2024; 15:1369436. [PMID: 38629062 PMCID: PMC11018901 DOI: 10.3389/fimmu.2024.1369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.
Collapse
Affiliation(s)
- Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra A. Khmelevskaya
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan V. Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alina S. Shomuradova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana V. Serdyuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Naina T. Shakirova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Iuliia O. Peshkova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Aleksei Titov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Dmitrii S. Romaniuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Irina A. Shagina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M. Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Dmitry O. Kiryukhin
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Olga V. Shcherbakova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ekaterina G. Khamaganova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Vitalina Dzutseva
- Novosibirsk State University, Medical School, Novosibirsk, Russia
- NPO Petrovax Pharm LLC, Moscow, Russia
| | | | | | - Grigory A. Efimov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
7
|
Coulon PG, Prakash S, Dhanushkodi NR, Srivastava R, Zayou L, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Nesburn AB, Kuppermann BD, Bahraoui E, Vahed H, Gil D, Jones TM, Ulmer JB, BenMohamed L. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4 + and CD8 + memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. Front Immunol 2024; 15:1343716. [PMID: 38605956 PMCID: PMC11007208 DOI: 10.3389/fimmu.2024.1343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Sebastian D. Schubl
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lanny Hsieh
- Department of Medicine, Division of Infectious Diseases and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | | | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Université Paul Sabatier, Infinity, Inserm, Toulouse, France
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Institute for Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
8
|
Nesamari R, Omondi MA, Baguma R, Höft MA, Ngomti A, Nkayi AA, Besethi AS, Magugu SFJ, Mosala P, Walters A, Clark GM, Mennen M, Skelem S, Adriaanse M, Grifoni A, Sette A, Keeton RS, Ntusi NAB, Riou C, Burgers WA. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 2024; 32:162-169.e3. [PMID: 38211583 PMCID: PMC10901529 DOI: 10.1016/j.chom.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rofhiwa Nesamari
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anathi A Nkayi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Asiphe S Besethi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Siyabulela F J Magugu
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Paballo Mosala
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gesina M Clark
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
9
|
Prakash S, Dhanushkodi NR, Zayou L, Ibraim IC, Quadiri A, Coulon PG, Tifrea DF, Suzer B, Shaik AM, Chilukuri A, Edwards RA, Singer M, Vahed H, Nesburn AB, Kuppermann BD, Ulmer JB, Gil D, Jones TM, BenMohamed L. Cross-protection induced by highly conserved human B, CD4 +, and CD8 + T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Front Immunol 2024; 15:1328905. [PMID: 38318166 PMCID: PMC10839970 DOI: 10.3389/fimmu.2024.1328905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). Conclusion A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jeffrey B Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
10
|
Paniskaki K, Goretzki S, Anft M, Konik MJ, Meister TL, Pfaender S, Lechtenberg K, Vogl M, Dogan B, Dolff S, Westhoff TH, Rohn H, Felderhoff-Mueser U, Stervbo U, Witzke O, Dohna-Schwake C, Babel N. Increased SARS-CoV-2 reactive low avidity T cells producing inflammatory cytokines in pediatric post-acute COVID-19 sequelae (PASC). Pediatr Allergy Immunol 2023; 34:e14060. [PMID: 38146118 DOI: 10.1111/pai.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems, and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce. METHODS In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests, and physical examination were obtained from all patients. SARS-CoV-2 reactive T-cell response was analyzed via multiparametric flow cytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay. RESULTS The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache, and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4+ and CD8+ T cells among the PASC study group, characterized by TNFα and IFNγ production and low functional avidity. CRP levels are positively correlated with IFNγ producing reactive CD8+ T cells. CONCLUSIONS Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Sarah Goretzki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Margarethe J Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Toni L Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Klara Lechtenberg
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Vogl
- Department of Pediatrics III, Pediatric Pulmonology and Sleep Medicine, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Burcin Dogan
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Mueser
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences C-TNBS, University of Duisburg-Essen, Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Dohna-Schwake
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences C-TNBS, University of Duisburg-Essen, Essen, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
- Berlin Institute of Health at Charité - University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT) Berlin, Berlin, Germany
| |
Collapse
|
11
|
Paniskaki K, Goretzki S, Anft M, Konik MJ, Lechtenberg K, Vogl M, Meister TL, Pfaender S, Zettler M, Jäger J, Dolff S, Westhoff TH, Rohn H, Felderhoff-Mueser U, Stervbo U, Witzke O, Dohna-Schwake C, Babel N. Fading SARS-CoV-2 humoral VOC cross-reactivity and sustained cellular immunity in convalescent children and adolescents. BMC Infect Dis 2023; 23:818. [PMID: 37993788 PMCID: PMC10664582 DOI: 10.1186/s12879-023-08805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Cross-reactive cellular and humoral immunity can substantially contribute to antiviral defense against SARS-CoV-2 variants of concern (VOC). While the adult SARS-CoV-2 cellular and humoral immunity and its cross-recognition potential against VOC is broadly analyzed, similar data regarding the pediatric population are missing. In this study, we perform an analysis of the humoral and cellular SARS-CoV-2 response immune of 32 convalescent COVID-19 children (children), 27 convalescent vaccinated adults(C + V+) and 7 unvaccinated convalescent adults (C + V-). Similarly to adults, a significant reduction of cross-reactive neutralizing capacity against delta and omicron VOC was observed 6 months after SARS-CoV-2 infection. While SAR-CoV-2 neutralizing capacity was comparable among children and C + V- against all VOC, children demonstrated as expected an inferior humoral response when compared to C + V+. Nevertheless, children generated SARS-CoV-2 reactive T cells with broad cross-recognition potential. When compared to V + C+, children presented even comparable frequencies of WT-reactive CD4 + and CD8 + T cells with high avidity and functionality. Taking into consideration the limitations of study - unknown disease onset for 53% of the asymptomatic pediatric subjects, serological detection of SARS-CoV-2 infection-, our results suggest that following SARS-CoV-2 infection children generate a humoral SARS-CoV-2 response with neutralizing potential comparable to unvaccinated COVID-19 convalescent adults as well a sustained SARS-CoV-2 cellular response cross-reactive to VOC.
Collapse
Affiliation(s)
- Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany.
| | - Sarah Goretzki
- Department of Pediatrics I, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Margarethe J Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Klara Lechtenberg
- Department of Pediatrics I, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Melanie Vogl
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Toni L Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Markus Zettler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jasmin Jäger
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Mueser
- Department of Pediatrics I, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Dohna-Schwake
- Department of Pediatrics I, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
- Berlin Institute of Health at Charité - University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT) Berlin, Berlin, Germany
| |
Collapse
|
12
|
Tyagi K, Rai P, Gautam A, Kaur H, Kapoor S, Suttee A, Jaiswal PK, Sharma A, Singh G, Barnwal RP. Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders. Eur J Med Res 2023; 28:307. [PMID: 37649125 PMCID: PMC10469568 DOI: 10.1186/s40001-023-01293-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Coronaviruses such as Severe Acute Respiratory Syndrome coronavirus (SARS), Middle Eastern Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are associated with critical illnesses, including severe respiratory disorders. SARS-CoV-2 is the causative agent of the deadly COVID-19 illness, which has spread globally as a pandemic. SARS-CoV-2 may enter the human body through olfactory lobes and interact with the angiotensin-converting enzyme2 (ACE2) receptor, further facilitating cell binding and entry into the cells. Reports have shown that the virus can pass through the blood-brain barrier (BBB) and enter the central nervous system (CNS), resulting in various disorders. Cell entry by SARS-CoV-2 largely relies on TMPRSS2 and cathepsin L, which activate S protein. TMPRSS2 is found on the cell surface of respiratory, gastrointestinal and urogenital epithelium, while cathepsin-L is a part of endosomes. AIM The current review aims to provide information on how SARS-CoV-2 infection affects brain function.. Furthermore, CNS disorders associated with SARS-CoV-2 infection, including ischemic stroke, cerebral venous thrombosis, Guillain-Barré syndrome, multiple sclerosis, meningitis, and encephalitis, are discussed. The many probable mechanisms and paths involved in developing cerebrovascular problems in COVID patients are thoroughly detailed. MAIN BODY There have been reports that the SARS-CoV-2 virus can cross the blood-brain barrier (BBB) and enter the central nervous system (CNS), where it could cause a various illnesses. Patients suffering from COVID-19 experience a range of neurological complications, including sleep disorders, viral encephalitis, headaches, dysgeusia, and cognitive impairment. The presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of COVID-19 patients has been reported. Health experts also reported its presence in cortical neurons and human brain organoids. The possible mechanism of virus infiltration into the brain can be neurotropic, direct infiltration and cytokine storm-based pathways. The olfactory lobes could also be the primary pathway for the entrance of SARS-CoV-2 into the brain. CONCLUSIONS SARS-CoV-2 can lead to neurological complications, such as cerebrovascular manifestations, motor movement complications, and cognitive decline. COVID-19 infection can result in cerebrovascular symptoms and diseases, such as strokes and thrombosis. The virus can affect the neural system, disrupt cognitive function and cause neurological disorders. To combat the epidemic, it is crucial to repurpose drugs currently in use quickly and develop novel therapeutics.
Collapse
Affiliation(s)
- Kritika Tyagi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Prachi Rai
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Anuj Gautam
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Harjeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Sumeet Kapoor
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | |
Collapse
|
13
|
Lalia JK, Schild R, Lütgehetmann M, Dunay GA, Kallinich T, Kobbe R, Massoud M, Oh J, Pietzsch L, Schulze-Sturm U, Schuetz C, Sibbertsen F, Speth F, Thieme S, Witkowski M, Berner R, Muntau AC, Gersting SW, Toepfner N, Pagel J, Paul K. Reduced Humoral and Cellular Immune Response to Primary COVID-19 mRNA Vaccination in Kidney Transplanted Children Aged 5-11 Years. Viruses 2023; 15:1553. [PMID: 37515239 PMCID: PMC10384144 DOI: 10.3390/v15071553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The situation of limited data concerning the response to COVID-19 mRNA vaccinations in immunocom-promised children hinders evidence-based recommendations. This prospective observational study investigated humoral and T cell responses after primary BNT162b2 vaccination in secondary immunocompromised and healthy children aged 5-11 years. Participants were categorized as: children after kidney transplantation (KTx, n = 9), proteinuric glomerulonephritis (GN, n = 4) and healthy children (controls, n = 8). Expression of activation-induced markers and cytokine secretion were determined to quantify the T cell response from PBMCs stimulated with peptide pools covering the spike glycoprotein of SARS-CoV-2 Wuhan Hu-1 and Omicron BA.5. Antibodies against SARS-CoV-2 spike receptor-binding domain were quantified in serum. Seroconversion was detected in 56% of KTx patients and in 100% of the GN patients and controls. Titer levels were significantly higher in GN patients and controls than in KTx patients. In Ktx patients, the humoral response increased after a third immunization. No differences in the frequency of antigen-specific CD4+ and CD8+ T cells between all groups were observed. T cells showed a predominant anti-viral capacity in their secreted cytokines; however, this capacity was reduced in KTx patients. This study provides missing evidence concerning the humoral and T cell response in immunocompromised children after COVID-19 vaccination.
Collapse
Affiliation(s)
- Jasmin K Lalia
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Raphael Schild
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Inhoffenstr. 7, 38124 Brauschweig, Germany
| | - Gabor A Dunay
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Robin Kobbe
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Department of Infectious Disease Epidemiology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Mona Massoud
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), An Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Jun Oh
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Leonora Pietzsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ulf Schulze-Sturm
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Freya Sibbertsen
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Fabian Speth
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Sebastian Thieme
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mario Witkowski
- Institute of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), An Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Reinhard Berner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Julia Pagel
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Inhoffenstr. 7, 38124 Brauschweig, Germany
- Division of Pediatric Stem Cell Transplantation, Immunology and Rheumatology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kevin Paul
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
14
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Cortese P, Amato F, Davino A, De Franchis R, Esposito S, Zollo I, Di Domenico M, Solito E, Zarrilli F, Gentile L, Cernera G, Castaldo G. The Immune Response to SARS-CoV-2 Vaccine in a Cohort of Family Pediatricians from Southern Italy. Cells 2023; 12:1447. [PMID: 37296568 PMCID: PMC10252549 DOI: 10.3390/cells12111447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
In Italy, from January 2021, the Ministry of Health indicated a vaccination plan against COVID for frail patients and physicians based on a three-dose scheme. However, conflicting results have been reported on which biomarkers permit immunization assessment. We used several laboratory approaches (i.e., antibodies serum levels, flow cytometry analysis, and cytokines release by stimulated cells) to investigate the immune response in a cohort of 53 family pediatricians (FPs) at different times after the vaccine. We observed that the BNT162b2-mRNA vaccine induced a significant increase of specific antibodies after the third (booster) dose; however, the antibody titer was not predictive of the risk of developing the infection in the six months following the booster dose. The antigen stimulation of PBMC cells from subjects vaccinated with the third booster jab induced the increase of the activated T cells (i.e., CD4+ CD154+); the frequency of CD4+ CD154+ TNF-α+ cells, as well as the TNF-α secretion, was not modified, while we observed a trend of increase of IFN-γ secretion. Interestingly, the level of CD8+ IFN-γ+ (independently from antibody titer) was significantly increased after the third dose and predicts the risk of developing the infection in the six months following the booster jab. Such results may impact also other virus vaccinations.
Collapse
Affiliation(s)
- Paolo Cortese
- Federazione Italiana Medici Pediatri (FIMP), 80142 Naples, Italy; (P.C.); (A.D.); (R.D.F.)
| | - Felice Amato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; (F.A.); (I.Z.); (F.Z.); (G.C.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy; (S.E.); (L.G.)
| | - Antonio Davino
- Federazione Italiana Medici Pediatri (FIMP), 80142 Naples, Italy; (P.C.); (A.D.); (R.D.F.)
| | - Raffaella De Franchis
- Federazione Italiana Medici Pediatri (FIMP), 80142 Naples, Italy; (P.C.); (A.D.); (R.D.F.)
| | - Speranza Esposito
- CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy; (S.E.); (L.G.)
| | - Immacolata Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; (F.A.); (I.Z.); (F.Z.); (G.C.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy; (S.E.); (L.G.)
| | - Marina Di Domenico
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Egle Solito
- Centre for Translational Medicine and Therapeutics William Harvey Research Institute, Queen Mary Univesity, London E1 4NS, UK;
| | - Federica Zarrilli
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; (F.A.); (I.Z.); (F.Z.); (G.C.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy; (S.E.); (L.G.)
| | - Laura Gentile
- CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy; (S.E.); (L.G.)
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; (F.A.); (I.Z.); (F.Z.); (G.C.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy; (S.E.); (L.G.)
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; (F.A.); (I.Z.); (F.Z.); (G.C.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy; (S.E.); (L.G.)
| |
Collapse
|
16
|
Pieren DKJ, Kuguel SG, Rosado J, Robles AG, Rey-Cano J, Mancebo C, Esperalba J, Falcó V, Buzón MJ, Genescà M. Limited induction of polyfunctional lung-resident memory T cells against SARS-CoV-2 by mRNA vaccination compared to infection. Nat Commun 2023; 14:1887. [PMID: 37019909 PMCID: PMC10074357 DOI: 10.1038/s41467-023-37559-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Resident memory T cells (TRM) present at the respiratory tract may be essential to enhance early SARS-CoV-2 viral clearance, thus limiting viral infection and disease. While long-term antigen-specific TRM are detectable beyond 11 months in the lung of convalescent COVID-19 patients, it is unknown if mRNA vaccination encoding for the SARS-CoV-2 S-protein can induce this frontline protection. Here we show that the frequency of CD4+ T cells secreting IFNγ in response to S-peptides is variable but overall similar in the lung of mRNA-vaccinated patients compared to convalescent-infected patients. However, in vaccinated patients, lung responses present less frequently a TRM phenotype compared to convalescent infected individuals and polyfunctional CD107a+ IFNγ+ TRM are virtually absent in vaccinated patients. These data indicate that mRNA vaccination induces specific T cell responses to SARS-CoV-2 in the lung parenchyma, although to a limited extend. It remains to be determined whether these vaccine-induced responses contribute to overall COVID-19 control.
Collapse
Affiliation(s)
- Daan K J Pieren
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joel Rosado
- Thoracic Surgery and Lung Transplantation Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Alba G Robles
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joan Rey-Cano
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Cristina Mancebo
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - María J Buzón
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
17
|
Maghsood F, Ghorbani A, Yadegari H, Golsaz-Shirazi F, Amiri MM, Shokri F. SARS-CoV-2 nucleocapsid: Biological functions and implication for disease diagnosis and vaccine design. Rev Med Virol 2023; 33:e2431. [PMID: 36790816 DOI: 10.1002/rmv.2431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has affected millions of people all around the world, leading to more than 6.5 million deaths. The nucleocapsid (N) phosphoprotein plays important roles in modulating viral replication and transcription, virus-infected cell cycle progression, apoptosis, and regulation of host innate immunity. As an immunodominant protein, N protein induces strong humoral and cellular immune responses in COVID-19 patients, making it a key marker for studying N-specific B cell and T cell responses and the development of diagnostic serological assays and efficient vaccines. In this review, we focus on the structural and functional features and the kinetic and epitope mapping of B cell and T cell responses against SARS-CoV-2 N protein to extend our understanding on the development of sensitive and specific diagnostic immunological tests and effective vaccines.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Blyakher MS, Fedorova IM, Tulskaya E, Kapustin IV, Koteleva SI, Ramazanova ZK, Odintsov EE, Sandalova SV, Novikova LI. [Assesment of specific T-cell immunity to SARS-CoV-2 virus antigens in COVID-19 reconvalescents]. Vopr Virusol 2023; 67:527-537. [PMID: 37264842 DOI: 10.36233/0507-4088-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The development of the COVID-19 pandemic has stimulated the scientific research aimed at studying of the mechanisms of formation the immunity against SARS-CoV-2. Currently, there is a need to develop a domestic simple and cost-effective specific method suitable for monitoring of T-cell response against SARS-CoV-2 in reconvalescents and vaccinated individuals. AIM Development of a screening method for evaluation specific T-cell immunity against SARS-CoV-2. MATERIALS AND METHODS Total 40 individuals who had mild to moderate COVID-19 and 20 healthy volunteers who did not have a history of this disease were examined. The presence and levels of IgG and IgM antibodies to SARS-CoV-2 were identified in participants sera by ELISA using the diagnostic kits from JSC Vector-Best (Novosibirsk, Russian Federation). Antigenic stimulation of mononuclear cells was carried out on commercial plates with adsorbed whole-virion inactivated SARS-CoV-2 antigen (State Research Center of Virology and Biotechnology VECTOR Novosibirsk, Russian Federation). The concentration of IFN- was measured in ELISA using the test systems from JSC Vector-Best (Novosibirsk, Russian Federation). The immunophenotyping of lymphocytes was performed on a flow cytometer Cytomics FC500 (Beckman Coulter, USA). Statistical data processing was carried out using the Microsoft Excel and STATISTICA 10 software package. RESULTS Stimulation of mononuclear cells isolated from the peripheral blood with whole-virion inactivated SARS-CoV-2 antigen fixed at the bottom of the wells of a polystyrene plate showed a significantly higher median response in terms of IFN- production in 40 people who had history of COVID-19 compared to 20 healthy blood donors (172.1 [34.3575.1] pg/ml versus 15.4 [6.925.8] pg/ml, p 0.0001). There was no difference in median IFN- levels in supernatants collected from unstimulated mononuclear cells from COVID-19 reconvalescents and healthy donors (2.7 [0.411.4] pg/ml versus 0.8 [0.023.3] pg/ml, p 0.05). The overall sensitivity and specificity of this method were 73% (95% CI 5888%) and 100% (95% CI 100100%), respectively, at a cut-off of 50 pg/ml. CONCLUSION The developed method for assessment of the cellular immune response to SARS-CoV-2 can be used as a screening method for monitoring the T-cell response in a population against a new coronavirus infection in recovered people.
Collapse
Affiliation(s)
- M S Blyakher
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I M Fedorova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E Tulskaya
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I V Kapustin
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S I Koteleva
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - Z K Ramazanova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E E Odintsov
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S V Sandalova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - L I Novikova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| |
Collapse
|
19
|
Kidney Transplant Patients Generate Varicella Zoster-Reactive T-cell and Humoral Immunity Following Protein-based Varicella Zoster Vaccination. Transplantation 2023; 107:e58-e59. [PMID: 36696521 DOI: 10.1097/tp.0000000000004406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Cellular and humoral immune response to the fourth Pfizer-BioNTech COVID-19 vaccine dose in individuals aged 60 years and older. Vaccine 2023; 41:914-921. [PMID: 36572602 PMCID: PMC9767892 DOI: 10.1016/j.vaccine.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
With the emergence of the severe acute respiratory syndrome 2 (SARS-CoV-2) B.1.1.529/BA.1 (Omicron) variant in early 2022, Israel began vaccinating individuals 6o years of age or older with a fourth BNT162b2 vaccine. While the decision was based on little experimental data, longer follow-up showed clinical effectiveness of the fourth dose with reduction in the number of severely affected individuals. However, the immune response to fourth vaccine dose in this age group was not yet characterized, and little is known about the immunogenicity of repeated vaccine dosing in this age group. We therefore aimed to evaluate the humoral and cellular immune response pre- and 3-week post- the fourth vaccine dose in patients age 60 years or older. For this purpose, blood samples were collected from donors age 60 years or older, all received their 3rd vaccine dose 5 months prior. Serum samples were evaluated for the presence of anti-Spike protein (anti-S) antibodies (N = 133), and peripheral blood mononuclear cells (PBMCs) were evaluated by flow cytometry for their ability to respond to the SARS-CoV-2 wild type Spike-glycoprotein peptide mix, Membrane-glycoprotein (M) peptide mix and to the mutated Spike-regions of the Omicron variant (N = 34). Three weeks after the fourth vaccine dose, 24 out of 34 donors (70.5%) showed significant increase in the number of cells responding to the wild type S-peptide mix. Of note, out of 34 donors, 11 donors (32.3%) had pre-boost anti-M T-cell response, none of which had history of confirmed COVID-19, suggesting possible asymptomatic exposure. Interestingly, in M non-responding individuals, no statistically significant increase in the cellular response was observed following stimulation with omicron S-mutated regions. While there are limited data regarding the longevity of the observed response, our results are in accordance with the described clinical efficacy, provide mechanistic evidence to support it and argue against vaccine-induced or age-related immunosenescence.
Collapse
|
21
|
Dror Levinsky M, Brenner B, Yalon M, Levi Z, Livneh Z, Cohen Z, Paz-Elizur T, Grossman R, Ram Z, Volovitz I. A Highly Sensitive Flow Cytometric Approach to Detect Rare Antigen-Specific T Cells: Development and Comparison to Standard Monitoring Tools. Cancers (Basel) 2023; 15:574. [PMID: 36765532 PMCID: PMC9913544 DOI: 10.3390/cancers15030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Personalized vaccines against patient-unique tumor-associated antigens represent a promising new approach for cancer immunotherapy. Vaccine efficacy is assessed by quantification of changes in the frequency and/or the activity of antigen-specific T cells. Enzyme-linked immunosorbent spot (ELISpot) and flow cytometry (FCM) are methodologies frequently used for assessing vaccine efficacy. We tested these methodologies and found that both ELISpot and standard FCM [monitoring CD3/CD4/CD8/IFNγ/Viability+CD14+CD19 (dump)] demonstrate background IFNγ secretion, which, in many cases, was higher than the antigen-specific signal measured by the respective methodology (frequently ranging around 0.05-0.2%). To detect such weak T-cell responses, we developed an FCM panel that included two early activation markers, 4-1BB (CD137) and CD40L (CD154), in addition to the above-cited markers. These two activation markers have a close to zero background expression and are rapidly upregulated following antigen-specific activation. They enabled the quantification of rare T cells responding to antigens within the assay well. Background IFNγ-positive CD4 T cell frequencies decreased to 0.019% ± 0.028% and CD8 T cells to 0.009% ± 0.013%, which are 19 and 13 times lower, respectively, than without the use of these markers. The presented methodology enables highly sensitive monitoring of T-cell responses to tumor-associated antigens in the very low, but clinically relevant, frequencies.
Collapse
Affiliation(s)
- Meytal Dror Levinsky
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Baruch Brenner
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Institute of Oncology, Davidoff Cancer Center, The Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Michal Yalon
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Pediatric Hematology-Oncology Department, Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Zohar Levi
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Gastroenterology Department; The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Zvi Livneh
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zoya Cohen
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Tamar Paz-Elizur
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rachel Grossman
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zvi Ram
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
22
|
Rümke LW, Smit WL, Bossink A, Limonard GJM, Muilwijk D, Haas LEM, Reusken C, van der Wal S, Thio BJ, van Os YMG, Gremmels H, Beekman JM, Nijhuis M, Wensing AMJ, Heron M, Thijsen SFT. Impaired SARS-CoV-2 specific T-cell response in patients with severe COVID-19. Front Immunol 2023; 14:1046639. [PMID: 37168853 PMCID: PMC10165493 DOI: 10.3389/fimmu.2023.1046639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular immune responses are of pivotal importance to understand SARS-CoV-2 pathogenicity. Using an enzyme-linked immunosorbent spot (ELISpot) interferon-γ release assay with wild-type spike, membrane and nucleocapsid peptide pools, we longitudinally characterized functional SARS-CoV-2 specific T-cell responses in a cohort of patients with mild, moderate and severe COVID-19. All patients were included before emergence of the Omicron (B.1.1.529) variant. Our most important finding was an impaired development of early IFN-γ-secreting virus-specific T-cells in severe patients compared to patients with moderate disease, indicating that absence of virus-specific cellular responses in the acute phase may act as a prognostic factor for severe disease. Remarkably, in addition to reactivity against the spike protein, a substantial proportion of the SARS-CoV-2 specific T-cell response was directed against the conserved membrane protein. This may be relevant for diagnostics and vaccine design, especially considering new variants with heavily mutated spike proteins. Our data further strengthen the hypothesis that dysregulated adaptive immunity plays a central role in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Lidewij W. Rümke
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Utrecht, Netherlands
- Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wouter L. Smit
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Utrecht, Netherlands
- Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ailko Bossink
- Department of Pulmonary Diseases, Diakonessenhuis Utrecht, Utrecht, Netherlands
| | - Gijs J. M. Limonard
- Department of Pulmonary Diseases, Diakonessenhuis Utrecht, Utrecht, Netherlands
| | - Danya Muilwijk
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, Utrecht, Netherlands
| | - Lenneke E. M. Haas
- Department of Intensive Care, Diakonessenhuis Utrecht, Utrecht, Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, WHO Reference Laboratory for COVID-19, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sanne van der Wal
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Utrecht, Netherlands
| | - Bing J. Thio
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Utrecht, Netherlands
| | - Yvonne M. G. van Os
- Occupational Health Office, Department of Human Resources, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Utrecht, Netherlands
- Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, Utrecht, Netherlands
| | - Monique Nijhuis
- Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annemarie M. J. Wensing
- Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michiel Heron
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Utrecht, Netherlands
- *Correspondence: Michiel Heron,
| | - Steven F. T. Thijsen
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Utrecht, Netherlands
| |
Collapse
|
23
|
Arish M, Qian W, Narasimhan H, Sun J. COVID-19 immunopathology: From acute diseases to chronic sequelae. J Med Virol 2023; 95:e28122. [PMID: 36056655 PMCID: PMC9537925 DOI: 10.1002/jmv.28122] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/17/2023]
Abstract
The clinical manifestation of coronavirus disease 2019 (COVID-19) mainly targets the lung as a primary affected organ, which is also a critical site of immune cell activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, recent reports also suggest the involvement of extrapulmonary tissues in COVID-19 pathology. The interplay of both innate and adaptive immune responses is key to COVID-19 management. As a result, a robust innate immune response provides the first line of defense, concomitantly, adaptive immunity neutralizes the infection and builds memory for long-term protection. However, dysregulated immunity, both innate and adaptive, can skew towards immunopathology both in acute and chronic cases. Here we have summarized some of the recent findings that provide critical insight into the immunopathology caused by SARS-CoV-2, in acute and post-acute cases. Finally, we further discuss some of the immunomodulatory drugs in preclinical and clinical trials for dampening the immunopathology caused by COVID-19.
Collapse
Affiliation(s)
- Mohd Arish
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
24
|
Clonal diversity predicts persistence of SARS-CoV-2 epitope-specific T-cell response. Commun Biol 2022; 5:1351. [PMID: 36494499 PMCID: PMC9734123 DOI: 10.1038/s42003-022-04250-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
T cells play a pivotal role in reducing disease severity during SARS-CoV-2 infection and formation of long-term immune memory. We studied 50 COVID-19 convalescent patients and found that T cell response was induced more frequently and persisted longer than circulating antibodies. We identified 756 clonotypes specific to nine CD8+ T cell epitopes. Some epitopes were recognized by highly similar public clonotypes. Receptors for other epitopes were extremely diverse, suggesting alternative modes of recognition. We tracked persistence of epitope-specific response and individual clonotypes for a median of eight months after infection. The number of recognized epitopes per patient and quantity of epitope-specific clonotypes decreased over time, but the studied epitopes were characterized by uneven decline in the number of specific T cells. Epitopes with more clonally diverse TCR repertoires induced more pronounced and durable responses. In contrast, the abundance of specific clonotypes in peripheral circulation had no influence on their persistence.
Collapse
|
25
|
Thieme CJ, Schulz M, Wehler P, Anft M, Amini L, Blàzquez-Navarro A, Stervbo U, Hecht J, Nienen M, Stittrich AB, Choi M, Zgoura P, Viebahn R, Schmueck-Henneresse M, Reinke P, Westhoff TH, Roch T, Babel N. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int 2022; 102:1392-1408. [PMID: 36103953 DOI: 10.1016/j.kint.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Constantin J Thieme
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malissa Schulz
- Hochschule für Technik und Wirtschaft Berlin (HTW), Berlin, Germany
| | - Patrizia Wehler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arturo Blàzquez-Navarro
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikalai Nienen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Department of Surgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
26
|
Association between SARS-CoV-2 RNAemia and dysregulated immune response in acutely ill hospitalized COVID-19 patients. Sci Rep 2022; 12:19658. [PMID: 36385627 PMCID: PMC9667450 DOI: 10.1038/s41598-022-23923-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Severe/critical COVID-19 is associated with immune dysregulation and plasmatic SARS-CoV-2 detection (i.e. RNAemia). We detailed the association of SARS-CoV-2 RNAemia with immune responses in COVID-19 patients at the end of the first week of disease. We enrolled patients hospitalized in acute phase of ascertained SARS-CoV-2 pneumonia, and evaluated SARS-CoV-2 RNAemia, plasmatic cytokines, activated/pro-cytolytic T-cells phenotypes, SARS-CoV-2-specific cytokine-producing T-cells (IL-2, IFN-γ, TNF-α, IL-4, IL-17A), simultaneous Th1-cytokines production (polyfunctionality) and amount (iMFI). The humoral responses were assessed with anti-S1/S2 IgG, anti-RBD total-Ig, IgM, IgA, IgG1 and IgG3, neutralization and antibody-dependent cellular cytotoxicity (ADCC). Out of 54 patients, 27 had detectable viremia (viremic). Albeit comparable age and co-morbidities, viremic more frequently required ventilatory support, with a trend to higher death. Viremic displayed higher pro-inflammatory cytokines (IFN-α, IL-6), lower activated T-cells (HLA-DR+CD38+), lower functional SARS-CoV-2-specific T-cells (IFN-γ+CD4+, TNF-α+CD8+, IL-4+CD8+, IL-2+TNF-α+CD4+, and IL-2+TNF-α+CD4+ iMFI) and SARS-CoV-2-specific Abs (anti-S IgG, anti-RBD total-Ig, IgM, IgG1, IgG3; ID50, %ADCC). These data suggest a link between SARS-CoV-2 RNAemia at the end of the first stage of disease and immune dysregulation. Whether high ab initium viral burden and/or intrinsic host factors contribute to immune dysregulation in severe COVID-19 remains to be elucidated, to further inform strategies of targeted therapeutic interventions.
Collapse
|
27
|
Adaptive Immunity to Viruses: What Did We Learn from SARS-CoV-2 Infection? Int J Mol Sci 2022; 23:ijms232213951. [PMID: 36430430 PMCID: PMC9694482 DOI: 10.3390/ijms232213951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 virus causes various conditions, from asymptomatic infection to the fatal coronavirus disease 2019 (COVID-19). An intact immune system can overcome SARS-CoV-2 and other viral infections. Defective natural, mainly interferon I- and III-dependent, responses may lead to the spread of the virus to multiple organs. Adaptive B- and T-cell responses, including memory, highly influence the severity and outcome of COVID-19. With respect to B-cell immunity, germinal centre formation is delayed or even absent in the most severe cases. Extrafollicular low-affinity anti-SARS-CoV-2 antibody production will occur instead of specific, high-affinity antibodies. Helper and CD8+ cytotoxic T-cells become hyperactivated and then exhausted, leading to ineffective viral clearance from the body. The dysregulation of neutrophils and monocytes/macrophages, as well as lymphocyte hyperreactivity, might lead to the robust production of inflammatory mediators, also known as cytokine storm. Eventually, the disruption of this complex network of immune cells and mediators leads to severe, sometimes fatal COVID-19 or another viral disease.
Collapse
|
28
|
Babel N, Hugo C, Westhoff TH. Vaccination in patients with kidney failure: lessons from COVID-19. Nat Rev Nephrol 2022; 18:708-723. [PMID: 35999285 PMCID: PMC9397175 DOI: 10.1038/s41581-022-00617-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 02/06/2023]
Abstract
Infection is the second leading cause of death in patients with chronic kidney disease (CKD). Adequate humoral (antibody) and cellular (T cell-driven) immunity are required to minimize pathogen entry and promote pathogen clearance to enable infection control. Vaccination can generate cellular and humoral immunity against specific pathogens and is used to prevent many life-threatening infectious diseases. However, vaccination efficacy is diminished in patients with CKD. Premature ageing of the immune system and chronic systemic low-grade inflammation are the main causes of immune alteration in these patients. In the case of SARS-CoV-2 infection, COVID-19 can have considerable detrimental effects in patients with CKD, especially in those with kidney failure. COVID-19 prevention through successful vaccination is therefore paramount in this vulnerable population. Although patients receiving dialysis have seroconversion rates comparable to those of patients with normal kidney function, most kidney transplant recipients could not generate humoral immunity after two doses of the COVID-19 vaccine. Importantly, some patients who were not able to produce antibodies still had a detectable vaccine-specific T cell response, which might be sufficient to prevent severe COVID-19. Correlates of protection against SARS-CoV-2 have not been established for patients with kidney failure, but they are urgently needed to enable personalized vaccination regimens.
Collapse
Affiliation(s)
- Nina Babel
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
- Center for Translational Medicine and Immune Diagnostics Laboratory, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT) and Berlin Institute of Health, Berlin, Germany.
| | - Christian Hugo
- Medizinische Klinik und Poliklinik III, Universitätsklinikum, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| |
Collapse
|
29
|
Pacheco-Olvera DL, Saint Remy-Hernández S, García-Valeriano MG, Rivera-Hernández T, López-Macías C. Bioinformatic Analysis of B- and T-cell Epitopes from SARS-CoV-2 Structural Proteins and their Potential Cross-reactivity with Emerging Variants and other Human Coronaviruses. Arch Med Res 2022; 53:694-710. [PMID: 36336501 PMCID: PMC9633039 DOI: 10.1016/j.arcmed.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The mutations in SARS-CoV-2 variants of concern (VOC) facilitate the virus' escape from the neutralizing antibodies induced by vaccines. However, the protection from hospitalization and death is not significantly diminished. Both vaccine boosters and infection improve immune responses and provide protection, suggesting that conserved and/or cross-reactive epitopes could be involved. While several important T- and B-cell epitopes have been identified, mainly in the S protein, the M and N proteins and their potential cross-reactive epitopes with other coronaviruses remain largely unexplored. AIMS To identify and map new potential B- and T-cell epitopes within the SARS-CoV-2 S, M and N proteins, as well as cross-reactive epitopes with human coronaviruses. METHODS Different bioinformatics tools were used to: i) Identify new and compile previously-reported B-and T-cell epitopes from SARS-CoV-2 S, M and N proteins; ii) Determine the mutations in S protein from VOC that affect B- and T-cell epitopes, and; iii) Identify cross-reactive epitopes with coronaviruses relevant to human health. RESULTS New, potential B- and T-cell epitopes from S, M and N proteins as well as cross-reactive epitopes with other coronaviruses were found and mapped within the proteins' structures. CONCLUSION Numerous potential B- and T-cell epitopes were found in S, M and N proteins, some of which are conserved between coronaviruses. VOCs present mutations within important epitopes in the S protein; however, a significant number of other epitopes remain unchanged. The epitopes identified here may contribute to augmenting the protective response to SARS-CoV-2 and its variants induced by infection and/or vaccination, and may also be used for the rational design of novel broad-spectrum coronavirus vaccines.
Collapse
Affiliation(s)
- Diana Laura Pacheco-Olvera
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Stephanie Saint Remy-Hernández
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - María Guadalupe García-Valeriano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Tania Rivera-Hernández
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
30
|
Paniskaki K, Konik MJ, Anft M, Meister TL, Marheinecke C, Pfaender S, Jäger J, Krawczyk A, Zettler M, Dolff S, Westhoff TH, Rohn H, Stervbo U, Witzke O, Babel N. Superior humoral immunity in vaccinated SARS-CoV-2 convalescence as compared to SARS-COV-2 infection or vaccination. Front Immunol 2022; 13:1031254. [PMID: 36389833 PMCID: PMC9659602 DOI: 10.3389/fimmu.2022.1031254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2023] Open
Abstract
Emerging variants of concern (VOC) raise obstacles in shaping vaccination strategies and ending the pandemic. Vaccinated SARS-CoV-2 convalescence shapes the current immune dynamics. We analyzed the SARS-CoV-2 VOC-specific cellular and humoral response of 57 adults: 42 convalescent mRNA vaccinated patients (C+V+), 8 uninfected mRNA vaccinated (C-V+) and 7 unvaccinated convalescent individuals (C+V-). While C+V+ demonstrated a superior humoral SARS-CoV-2 response against all analyzed VOC (alpha, delta, omicron) compared to C-V+ and C+V-, SARS-CoV-2 reactive CD4+ and CD8+ T cells, which can cross-recognize the alpha, delta and omicron VOC after infection and/or vaccination were observed in all there groups without significant differences between the groups. We observed a preserved cross-reactive C+V+ and C-V+ T cell memory. An inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C+V+ was observed, as well as an inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C-V+. Adaptive immunity generated after SARS-CoV-2 infection and vaccination leads to superior humoral immune response against VOC compared to isolated infection or vaccination. Despite the apparent loss of neutralization potential caused by viral evolution, a preserved SARS-CoV-2 reactive T cell response with a robust potential for cross-recognition of the alpha, delta and omicron VOC was detected in all studied cohorts. Our results may have implications on current vaccination strategies.
Collapse
Affiliation(s)
- Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Margarethe J. Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Toni L. Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Corinna Marheinecke
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Jasmin Jäger
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Zettler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Timm H. Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
- Berlin Institute of Health at Charité – University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT) Berlin, Berlin, Germany
| |
Collapse
|
31
|
Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A, Guruge D, Wijesinghe A, Gunasekera B, Tanussiya S, Kuruppu H, Ranasinghe T, Dayarathne S, Dissanayake O, Gamalath N, Ekanayake D, Jayamali J, Jayathilaka D, Dissanayake M, Madusanka D, Jayadas TT, Mudunkotuwa A, Somathilake G, Harvie M, Nimasha T, Danasekara S, Wijayamuni R, Schimanski L, Rijal P, Tan TK, Dong T, Townsend A, Ogg GS, Malavige GN. Immune responses to Sinopharm/BBIBP-CorV in individuals in Sri Lanka. Immunology 2022; 167:275-285. [PMID: 35758860 PMCID: PMC11495257 DOI: 10.1111/imm.13536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
As there are limited data of the immunogenicity of the Sinopharm/BBIBP-CorV in different populations, antibody responses against different SARS-CoV-2 variants of concern and T cell responses, we investigated the immunogenicity of the vaccine, in individuals in Sri Lanka. SARS-CoV-2-specific antibodies were measured in 282 individuals who were seronegative at baseline, and ACE2 receptor blocking antibodies, antibodies to the receptor-binding domain (RBD) of the wild-type (WT), alpha, beta and delta variants, ex vivo and cultured IFNγ ELISpot assays, intracellular cytokine secretion assays and B cell ELISpot assays were carried out in a sub cohort of the vaccinees at 4 and 6 weeks (2 weeks after the second dose). Ninety-five percent of the vaccinees seroconverted, although the seroconversion rates were significantly lower (p < 0.001) in individuals >60 years (93.3%) compared to those who were 20-39 years (98.9%); 81.25% had ACE2 receptor blocking antibodies at 6 weeks, and there was no difference in these antibody titres in vaccine sera compared to convalescent sera (p = 0.44). Vaccinees had significantly less (p < 0.0001) antibodies to the RBD of WT and alpha, although there was no difference in antibodies to the RBD of beta and delta compared to convalescent sera; 27.7% of 46.4% of vaccinees had ex vivo IFNγ and cultured ELISpot responses respectively, and IFNγ and CD107a responses were detected by flow cytometry. Sinopharm/BBIBP-CorV appeared to induce a similar level of antibody responses against ACE2 receptor, delta and beta as seen following natural infection.
Collapse
Affiliation(s)
- Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Inoka Sepali Aberathna
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Pradeep Darshana Pushpakumara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Achala Kamaladasa
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | | | - Ayesha Wijesinghe
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Banuri Gunasekera
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Shyrar Tanussiya
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Heshan Kuruppu
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Thushali Ranasinghe
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Shashika Dayarathne
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Osanda Dissanayake
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Nayanathara Gamalath
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Dinithi Ekanayake
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Jeewantha Jayamali
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Deshni Jayathilaka
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Madushika Dissanayake
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Deshan Madusanka
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Tibutius Thanesh Jayadas
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Anushika Mudunkotuwa
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Gayasha Somathilake
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Michael Harvie
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Thashmi Nimasha
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Saubhagya Danasekara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | | | - Lisa Schimanski
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxfordUK
- Centre for Translational ImmunologyChinese Academy of Medical Sciences Oxford Institute, University of OxfordOxfordUK
| | - Pramila Rijal
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxfordUK
- Centre for Translational ImmunologyChinese Academy of Medical Sciences Oxford Institute, University of OxfordOxfordUK
| | - Tiong K. Tan
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxfordUK
- Centre for Translational ImmunologyChinese Academy of Medical Sciences Oxford Institute, University of OxfordOxfordUK
| | - Tao Dong
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxfordUK
- Centre for Translational ImmunologyChinese Academy of Medical Sciences Oxford Institute, University of OxfordOxfordUK
| | - Alain Townsend
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxfordUK
- Centre for Translational ImmunologyChinese Academy of Medical Sciences Oxford Institute, University of OxfordOxfordUK
| | - Graham S. Ogg
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxfordUK
- Centre for Translational ImmunologyChinese Academy of Medical Sciences Oxford Institute, University of OxfordOxfordUK
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular MedicineUniversity of Sri JayewardenepuraNugegodaSri Lanka
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxfordUK
| |
Collapse
|
32
|
Gurevich M, Zilkha‐Falb R, Sonis P, Magalashvili D, Dolev M, Mandel M, Menascu S, Achiron A. COVID-19 Alpha Variant (B.1.1.7): Humoral, memory B and T cells in COVID-19 pediatric convalescents. Pediatr Allergy Immunol 2022; 33:e13863. [PMID: 36282137 PMCID: PMC9827896 DOI: 10.1111/pai.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Studies of anti-SARS-CoV-2 humoral and adaptive response in COVID-19 non-vaccinated pediatric convalescents are controversial and further evidence from the pediatric population are needed. OBJECTIVES To elucidate SARS-CoV-2 humoral and memory B- and T-cells responses in pediatric convalescents as compared with the adult. METHODS Blood samples were obtained from 80 non-vaccinated, IgG-positive, COVID-19 convalescents (age 8.0-61.0 years), 4.0 months from onset. Frequency of responders and magnitudes of SARS-COV-2 IgG, memory B-cells (MBC) and IFNg- and IL2-secreting memory T-cells (MTC) in response to immuno-dominant peptide pools in pediatric, young adults and middle-aged adults with onset age 8-18 years (N = 20), 19-39 years (N = 30) and 40-61 years (N = 30), respectively, were analyzed. SARS-CoV-2 IgG were detected by ELISA (Euroimmun, Germany). MBC, IFNg-, IL2- and IFNg+IL2-secreting MTC (IFNg-MTC, IL2-MTC and IFNg+IL2-MTC) were detected using FluoroSpot (Mabtech, Sweden). RESULTS MBC level was lower in pediatric as compared with the middle-aged adults (median 12.75 interquartile range [IQR] 4.27-33.7 and 32.0 IQR 6.0-124.2, respectively, p = .003). MBC level in young adults was lower than in middle-aged adults (median 18.5 IQR 1.7-43.8 and 32.0 IQR 6.0-124.2, respectively, p = .006). The level of IL2-MTC was lower in the pediatric group as compared with middle aged-adults (median 2.1 IQR 0-16.9 and 28.6 IQR 11-49.6, respectively, p < .03) and in young adults lower than in middle-aged adults (median 1.45 IQR 0-18.6 and 28.6 IQR 11-49.6, respectively, p = .02). In addition, the level of IFNg-MTC was lower in pediatric as compared with young adults (median 4.25 IQR 0.0-15.0 and 20.9 IQR 0-75.2, respectively, p = .05). The level of IgG was comparable between pediatric and both young and middle-aged adult groups (4.82 ± 2.95, 3.70 ± 2.65 and 4.9 ± 2.94, respectively, p > .34). CONCLUSION Non-vaccinated COVID-19 pediatric convalescents have lower adaptive immune responses than adults sustaining the recommendation for vaccination of the pediatric population.
Collapse
Affiliation(s)
- Michael Gurevich
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Rina Zilkha‐Falb
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - Polina Sonis
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - David Magalashvili
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - Mark Dolev
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Mathilda Mandel
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Shay Menascu
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Anat Achiron
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
33
|
Zlei M, Sidorov IA, Joosten SA, Heemskerk MHM, Myeni SK, Pothast CR, de Brouwer CS, Boomaars-van der Zanden AL, van Meijgaarden KE, Morales ST, Wessels E, Janse JJ, Goeman JJ, Cobbaert CM, Kroes ACM, Cannegieter SC, Roestenberg M, Visser LG, Kikkert M, Feltkamp MCW, Arbous SM, Staal FJT, Ottenhoff THM, van Dongen JJM, Roukens AHE, de Vries JJC. Immune Determinants of Viral Clearance in Hospitalised COVID-19 Patients: Reduced Circulating Naïve CD4+ T Cell Counts Correspond with Delayed Viral Clearance. Cells 2022; 11:2743. [PMID: 36078151 PMCID: PMC9455062 DOI: 10.3390/cells11172743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Virus-specific cellular and humoral responses are major determinants for protection from critical illness after SARS-CoV-2 infection. However, the magnitude of the contribution of each of the components to viral clearance remains unclear. Here, we studied the timing of viral clearance in relation to 122 immune parameters in 102 hospitalised patients with moderate and severe COVID-19 in a longitudinal design. Delayed viral clearance was associated with more severe disease and was associated with higher levels of SARS-CoV-2-specific (neutralising) antibodies over time, increased numbers of neutrophils, monocytes, basophils, and a range of pro-inflammatory cyto-/chemokines illustrating ongoing, partially Th2 dominating, immune activation. In contrast, early viral clearance and less critical illness correlated with the peak of neutralising antibodies, higher levels of CD4 T cells, and in particular naïve CD4+ T cells, suggesting their role in early control of SARS-CoV-2 possibly by proving appropriate B cell help. Higher counts of naïve CD4+ T cells also correlated with lower levels of MIF, IL-9, and TNF-beta, suggesting an indirect role in averting prolonged virus-induced tissue damage. Collectively, our data show that naïve CD4+ T cell play a critical role in rapid viral T cell control, obviating aberrant antibody and cytokine profiles and disease deterioration. These data may help in guiding risk stratification for severe COVID-19.
Collapse
Affiliation(s)
- Mihaela Zlei
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Igor A. Sidorov
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mirjam H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sebenzile K. Myeni
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cilia R. Pothast
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Caroline S. de Brouwer
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Linda Boomaars-van der Zanden
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Krista E. van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Shessy T. Morales
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Els Wessels
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacqueline J. Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jelle J. Goeman
- Medical Statistics Section, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aloys C. M. Kroes
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Leonardus G. Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mariet C. W. Feltkamp
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sesmu M. Arbous
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Intensive Care, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Anna H. E. Roukens
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jutte J. C. de Vries
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | |
Collapse
|
34
|
Goldblatt D, Alter G, Crotty S, Plotkin SA. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol Rev 2022; 310:6-26. [PMID: 35661178 PMCID: PMC9348242 DOI: 10.1111/imr.13091] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibodies against epitopes in S1 give the most accurate CoP against infection by the SARS-CoV-2 coronavirus. Measurement of those antibodies by neutralization or binding assays both have predictive value, with binding antibody titers giving the highest statistical correlation. However, the protective functions of antibodies are multiple. Antibodies with multiple functions other than neutralization influence efficacy. The role of cellular responses can be discerned with respect to CD4+ T cells and their augmentation of antibodies, and with respect to CD8+ cells with regard to control of viral replication, particularly in the presence of insufficient antibody. More information is needed on mucosal responses.
Collapse
Affiliation(s)
- David Goldblatt
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Galit Alter
- Massachusetts General HospitalRagon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCaliforniaUSA
- Department of Medicine, Division of Infectious Diseases and Global Public HealthUniversity of California San Diego (UCSD)La JollaCaliforniaUSA
| | | |
Collapse
|
35
|
Andreica I, Blazquez-Navarro A, Sokolar J, Anft M, Kiltz U, Pfaender S, Vidal Blanco E, Westhoff T, Babel N, Stervbo U, Baraliakos X. Different humoral but similar cellular responses of patients with autoimmune inflammatory rheumatic diseases under disease-modifying antirheumatic drugs after COVID-19 vaccination. RMD Open 2022; 8:rmdopen-2022-002293. [PMID: 36104115 PMCID: PMC9475968 DOI: 10.1136/rmdopen-2022-002293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives The effect of different modes of immunosuppressive therapy in autoimmune inflammatory rheumatic diseases (AIRDs) remains unclear. We investigated the impact of immunosuppressive therapies on humoral and cellular responses after two-dose vaccination. Methods Patients with rheumatoid arthritis, axial spondyloarthritis or psoriatic arthritis treated with TNFi, IL-17i (biological disease-modifying antirheumatic drugs, b-DMARDs), Janus-kinase inhibitors (JAKi) (targeted synthetic, ts-DMARD) or methotrexate (MTX) (conventional synthetic DMARD, csDMARD) alone or in combination were included. Almost all patients received mRNA-based vaccine, four patients had a heterologous scheme. Neutralising capacity and levels of IgG against SARS-CoV-2 spike-protein were evaluated together with quantification of activation markers on T-cells and their production of key cytokines 4 weeks after first and second vaccination. Results 92 patients were included, median age 50 years, 50% female, 33.7% receiving TNFi, 26.1% IL-17i, 26.1% JAKi (all alone or in combination with MTX), 14.1% received MTX only. Although after first vaccination only 37.8% patients presented neutralising antibodies, the majority (94.5%) developed these after the second vaccination. Patients on IL17i developed the highest titres compared with the other modes of action. Co-administration of MTX led to lower, even if not significant, titres compared with b/tsDMARD monotherapy. Neutralising antibodies correlated well with IgG titres against SARS-CoV-2 spike-protein. T-cell immunity revealed similar frequencies of activated T-cells and cytokine profiles across therapies. Conclusions Even after insufficient seroconversion for neutralising antibodies and IgG against SARS-CoV-2 spike-protein in patients with AIRDs on different medications, a second vaccination covered almost all patients regardless of DMARDs therapy, with better outcomes in those on IL-17i. However, no difference of bDMARD/tsDMARD or csDMARD therapy was found on the cellular immune response.
Collapse
Affiliation(s)
- Ioana Andreica
- Ruhr-Universität Bochum, Bochum, Germany .,Rheumazentrum Ruhrgebiet, Herne, Germany
| | - Arturo Blazquez-Navarro
- Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Charite Universitätsmedizin, Berlin, Germany
| | - Jan Sokolar
- Ruhr-Universität Bochum, Bochum, Germany.,Rheumazentrum Ruhrgebiet, Herne, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical department I, Marien Hospital, University Hospital of the Ruhr-Universität Bochum, Herne, Germany
| | - Uta Kiltz
- Ruhr-Universität Bochum, Bochum, Germany.,Rheumazentrum Ruhrgebiet, Herne, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-Universität, Bochum, Germany
| | - Elena Vidal Blanco
- Department of Molecular and Medical Virology, Ruhr-Universität, Bochum, Germany
| | - Timm Westhoff
- Ruhr-Universität Bochum, Bochum, Germany.,Medical Department I, Marien Hospital Herne,University Hospital of the Ruhr-Universität Bochum, Herne, Germany
| | - Nina Babel
- Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Charite Universitätsmedizin, Berlin, Germany.,Center for Translational Medicine and Immune Diagnostics Laboratory, Medical department I, Marien Hospital, University Hospital of the Ruhr-Universität Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical department I, Marien Hospital, University Hospital of the Ruhr-Universität Bochum, Herne, Germany
| | - Xenofon Baraliakos
- Ruhr-Universität Bochum, Bochum, Germany.,Rheumazentrum Ruhrgebiet, Herne, Germany
| |
Collapse
|
36
|
Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev 2022; 310:27-46. [PMID: 35733376 PMCID: PMC9349657 DOI: 10.1111/imr.13089] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Immunological memory is the basis of protective immunity provided by vaccines and previous infections. Immunological memory can develop from multiple branches of the adaptive immune system, including CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing development; quantitative and qualitative features of different cellular and anatomical compartments; and durability of each cellular component and antibodies. Given the sophistication of the measurements; the size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head comparisons between infection and vaccines or between multiple vaccines, the understanding of immune memory for 1 year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
37
|
Safont G, Latorre I, Villar-Hernández R, Stojanovic Z, Marín A, Pérez-Cano C, Lacoma A, Molina-Moya B, Solis AJ, Arméstar F, Matllo J, Díaz-Fernández S, Cendón A, Sokalchuk L, Tolosa G, Casas I, Rosell A, Domínguez J. Measuring T-Cell Responses against SARS-CoV-2 Is of Utility for Disease and Vaccination Management. J Clin Med 2022; 11:5103. [PMID: 36079033 PMCID: PMC9457376 DOI: 10.3390/jcm11175103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The measurement of specific T-cell responses can be a useful tool for COVID-19 diagnostics and clinical management. In this study, we evaluated the IFN-γ T-cell response against the main SARS-CoV-2 antigens (spike, nucleocapsid and membrane) in acute and convalescent individuals classified according to severity, and in vaccinated and unvaccinated controls. IgG against spike and nucleocapsid were also measured. Spike antigen triggered the highest number of T-cell responses. Acute patients showed a low percentage of positive responses when compared to convalescent (71.6% vs. 91.7%, respectively), but increased during hospitalization and with severity. Some convalescent patients showed an IFN-γ T-cell response more than 200 days after diagnosis. Only half of the vaccinated individuals displayed an IFN-γ T-cell response after the second dose. IgG response was found in a higher percentage of individuals compared to IFN-γ T-cell responses, and moderate correlations between both responses were seen. However, in some acute COVID-19 patients specific T-cell response was detected, but not IgG production. We found that the chances of an IFN-γ T-cell response against SARS-CoV-2 is low during acute phase, but may increase over time, and that only half of the vaccinated individuals had an IFN-γ T-cell response after the second dose.
Collapse
Affiliation(s)
- Guillem Safont
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Irene Latorre
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Villar-Hernández
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Zoran Stojanovic
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Marín
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Cristina Pérez-Cano
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Lacoma
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Bárbara Molina-Moya
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alan Jhunior Solis
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Medicine Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Joan Matllo
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Sergio Díaz-Fernández
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Arnau Cendón
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Liliya Sokalchuk
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Guillermo Tolosa
- Diagnostic and Research in Immunodeficiencies Jeffrey Modell Center, Cytometry and Cellular Culture Area, La Frontera University, Temuco 01145, Chile
| | - Irma Casas
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Preventive Medicine Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Antoni Rosell
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - José Domínguez
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
38
|
Olea B, Albert E, Giménez E, Torres I, Amat P, Remigia MJ, Alberola J, Carbonell N, Ferreres J, Blasco ML, Navarro D. SARS-CoV-2-reactive IFN-γ-producing CD4 + and CD8 + T cells in blood do not correlate with clinical severity in unvaccinated critically ill COVID-19 patients. Sci Rep 2022; 12:14271. [PMID: 35995830 PMCID: PMC9395536 DOI: 10.1038/s41598-022-18659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
We examined the relationship between peripheral blood levels of SARS-CoV-2 S (Spike protein)1/M (Membrane protein)-reactive IFN-γ-producing CD4+ and CD8+ T cells, serum levels of biomarkers of clinical severity, and mortality in critically ill COVID-19 patients. The potential association between SARS-CoV-2-S-Receptor Binding Domain (RBD)-specific IgG levels in sera and mortality was also investigated. SARS-CoV-2 T cells and anti-RBD IgG levels were monitored in 71 non-consecutive patients (49 male and 22 female; median age, 65 years) by whole-blood flow cytometry and Enzyme-linked immunosorbent assay (ELISA), respectively (326 specimens). SARS-CoV-2 RNA loads in paired tracheal aspirates [TA] (n = 147) were available from 54 patients. Serum levels of interleukin-6, ferritin, D-Dimer, lactose dehydrogenase and C-reactive protein in paired sera were known. SARS-CoV-2 T cells (either CD4+, CD8+ or both) were detectable in 70 patients. SARS-CoV-2 IFN-γ CD4+ T-cell responses were documented more frequently than their CD8+ counterparts (62 vs. 56 patients) and were of greater magnitude overall. Detectable SARS-CoV-2 S1/M-reactive CD8+ and CD4+ T-cell responses were associated with higher SARS-CoV-2 RNA loads in TA. SARS-CoV-2 RNA load in TA decreased over time, irrespective of the dynamics of SARS-CoV-2-reactive CD8+ and CD4+ T cells. No correlation was found between SARS-CoV-2 IFN-γ T-cell counts, anti-RBD IgG concentrations and biomarker serum levels (Rho ≤ 0.3). The kinetics of both T cell subsets was comparable between those who died or survived, whereas anti-RBD IgG levels were higher across different time points in deceased patients than in survivors. Enumeration of peripheral blood levels of SARS-CoV-2-S1/M-reactive IFN-γ CD4+ and CD8+ T cells does not predict viral clearance from the lower respiratory tract or poor clinical outcomes in critically ill COVID-19 patients. In contrast, anti-RBD IgG levels were directly associated with increased mortality.
Collapse
Affiliation(s)
- Beatriz Olea
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Paula Amat
- Hematology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - María José Remigia
- Hematology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Juan Alberola
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Nieves Carbonell
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - José Ferreres
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - María Luisa Blasco
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain. .,Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain.
| |
Collapse
|
39
|
Karsten H, Cords L, Westphal T, Knapp M, Brehm TT, Hermanussen L, Omansen TF, Schmiedel S, Woost R, Ditt V, Peine S, Lütgehetmann M, Huber S, Ackermann C, Wittner M, Addo MM, Sette A, Sidney J, Schulze zur Wiesch J. High-resolution analysis of individual spike peptide-specific CD4 + T-cell responses in vaccine recipients and COVID-19 patients. Clin Transl Immunology 2022; 11:e1410. [PMID: 35957961 PMCID: PMC9363231 DOI: 10.1002/cti2.1410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.
Collapse
Affiliation(s)
- Hendrik Karsten
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leon Cords
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Westphal
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Maximilian Knapp
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Lennart Hermanussen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Frederik Omansen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Stefan Schmiedel
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robin Woost
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Vanessa Ditt
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sven Peine
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Samuel Huber
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christin Ackermann
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Melanie Wittner
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Marylyn Martina Addo
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - John Sidney
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| |
Collapse
|
40
|
Kumar A, Ladha A, Choudhury A, Ikbal AMA, Bhattacharjee B, Das T, Gupta G, Sharma C, Sarbajna A, Mandal SC, Choudhury MD, Ali N, Slama P, Rezaei N, Palit P, Tiwari ON. The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19? Expert Rev Vaccines 2022; 21:1071-1086. [PMID: 35604776 DOI: 10.1080/14760584.2022.2081156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Amit Ladha
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Ankita Choudhury
- Department of Pharmaceutical Sciences, Allama TR College of Pharmacy, Hospital Rd, Srigouri, India
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura (W), India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tanmay Das
- Department of Business Administration, Assam University Silchar, India
| | - Gaurav Gupta
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chhavi Sharma
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Adity Sarbajna
- Department of Zoology, Surendranath College, Kolkata, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Nahid Ali
- Division of Immunology, Department of Infectious Diseases, INDIAN INSTITUTE OF CHEMICAL BIOLOGY, Kolkata, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Partha Palit
- Department of Pharmaceutical Sciences Drug Discovery research Laboratory, Assam University, Silchar, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
41
|
Bakhshi H, Soleimani M, Soufizomorrod M, Kooshkaki O. Evaluation of Hematologic Parameters in Patients with COVID-19 Following Mesenchymal Stem Cell Therapy. DNA Cell Biol 2022; 41:768-777. [PMID: 35914059 DOI: 10.1089/dna.2021.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
At present, severe acute respiratory syndrome coronavirus 2 is spreading and has caused over 188 million confirmed patients and more than 4,059,101 deaths. Currently, several clinical trials are done using mesenchymal stem cell (MSC) therapy in patients with coronavirus disease 2019 (COVID-19). These cells have shown safety and effectiveness, implying a promising clinical application in patients with COVID-19. Studies have shown that abnormalities in hematological measures such as white blood cells count, neutrophilia, elevated neutrophil to lymphocyte ratio, inflammatory markers, and lactate dehydrogenase can be used to assess the severity of COVID-19 disease and the response to therapy following MSC treatment. Our study has aimed to review the role of hematological factors in determination of responsiveness to MSC therapy and disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Haniye Bakhshi
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufizomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Omid Kooshkaki
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
42
|
Singh VK, Chaurasia H, Mishra R, Srivastava R, Yadav AK, Dwivedi J, Singh P, Singh RK. COVID-19: Pathophysiology, transmission, and drug development for therapeutic treatment and vaccination strategies. Curr Pharm Des 2022; 28:2211-2233. [PMID: 35909276 DOI: 10.2174/1381612828666220729093340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
COVID-19, a dreaded and highly contagious pandemic, is flagrantly known for its rapid prevalence across the world. Till date, none of the treatments are distinctly accessible for this life-threatening disease. Under the prevailing conditions of medical emergency, one creative strategy for the identification of novel and potential antiviral agents gaining momentum in research institutions and progressively being leveraged by pharmaceutical companies is target-based drug repositioning/repurposing. A continuous monitoring and recording of results offer an anticipation that this strategy may help to reveal new medications for viral infections. This review recapitulates the neoteric illation of COVID-19, its genomic dispensation, molecular evolution via phylogenetic assessment, drug targets, the most frequently worldwide used repurposed drugs and their therapeutic applications, and a recent update on vaccine management strategies. The available data from solidarity trials exposed that the treatment with several known drugs, viz. lopinavir-ritonavir, chloroquine, hydroxychloroquine, etc had displayed various antagonistic effects along with no impactful result in diminution of mortality rate. The drugs like remdesivir, favipiravir, and ribavirin proved to be quite safer therapeutic options for treatment against COVID-19. Similarly, dexamethasone, convalescent plasma therapy and oral administration of 2DG are expected to reduce the mortality rate of COVID-19 patients.
Collapse
Affiliation(s)
- Vishal Kumar Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| | - Himani Chaurasia
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| | - Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| | - Jayati Dwivedi
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| | - Prashant Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj- 211002, India
| |
Collapse
|
43
|
Aiello A, Grossi A, Meschi S, Meledandri M, Vanini V, Petrone L, Casetti R, Cuzzi G, Salmi A, Altera AM, Pierelli L, Gualano G, Ascoli Bartoli T, Castilletti C, Agrati C, Girardi E, Palmieri F, Nicastri E, Di Rosa E, Goletti D. Coordinated innate and T-cell immune responses in mild COVID-19 patients from household contacts of COVID-19 cases during the first pandemic wave. Front Immunol 2022; 13:920227. [PMID: 35967321 PMCID: PMC9364317 DOI: 10.3389/fimmu.2022.920227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023] Open
Abstract
Objective To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time. Methods Household contacts of COVID-19 cases screened for SARS−CoV−2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42). Of these, 28 subjects returned for a follow-up test (T1). The innate response was assessed by detecting a panel of soluble factors by multiplex-technology in plasma samples. Cell-mediated response was evaluated by measuring interferon (IFN)-γ levels by ELISA in plasma harvested from whole-blood stimulated with SARS−CoV−2 peptide pools, including spike (S), nucleocapsid (N) and membrane (M) proteins. The serological response was assessed by quantifying anti-Receptor-Binding-Domain (RBD), anti-Nucleocapsid (N), whole virus indirect immunofluorescence, and neutralizing antibodies. Results At T0, higher levels of plasmatic IFN-α, IL-1ra, MCP-1 and IP-10, and lower levels of IL-1β, IL-9, MIP-1β and RANTES were observed in subjects with positive swab compared to individuals with a negative one (p<0.05). Plasmatic IFN-α was the only cytokine detectable in subjects with positive SARS-CoV-2 swabs with high accuracy for swab score positivity (0.93, p<0.0001). Among subjects with positive swabs, significant negative correlations were found among the RT-PCR cycle threshold values reported for genes S and N and IFN-α or IP-10 levels. At T0, the IFN-γ T-cell specific response was detected in 50% (5/10) of subjects with positive swab, while anti-RBD/anti-N antibodies showed a positivity rate of 10% (1/10). At T1, the IFN-γ T-cell specific response was detected in most of the confirmed-infection subjects (77.8%, 7/9), whereas the serological response was still observed in a minority of them (44.4%, 4/9). Overall, the swab test showed a moderate concordance with the T-cell response (78.6%, k=0.467), and a scarce concordance with the serological one (72.9%, k=0.194). Conclusions Plasmatic IFN-α and the IFN-γ T-cell specific response appear early even in the absence of seroconversion, and show a greater positivity rate than the serological response in household contacts with positive swab.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Adriano Grossi
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Marcello Meledandri
- Unità Operativa Complessa (UOC) Microbiology and Virology, Azienda Sanitaria Locale (ASL) Roma 1-San Filippo Neri Hospital, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Luca Pierelli
- Unità Operativa Complessa (UOC) Transfusion Medicine and Stem Cell, San Camillo Forlanini Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Girardi
- Clinical Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Di Rosa
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- *Correspondence: Delia Goletti,
| |
Collapse
|
44
|
Paul K, Sibbertsen F, Weiskopf D, Lütgehetmann M, Barroso M, Danecka MK, Glau L, Hecher L, Hermann K, Kohl A, Oh J, Schulze zur Wiesch J, Sette A, Tolosa E, Vettorazzi E, Woidy M, Zapf A, Zazara DE, Mir TS, Muntau AC, Gersting SW, Dunay GA. Specific CD4+ T Cell Responses to Ancestral SARS-CoV-2 in Children Increase With Age and Show Cross-Reactivity to Beta Variant. Front Immunol 2022; 13:867577. [PMID: 35911689 PMCID: PMC9336222 DOI: 10.3389/fimmu.2022.867577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
SARS-CoV-2 is still a major burden for global health despite effective vaccines. With the reduction of social distancing measures, infection rates are increasing in children, while data on the pediatric immune response to SARS-CoV-2 infection is still lacking. Although the typical disease course in children has been mild, emerging variants may present new challenges in this age group. Peripheral blood mononuclear cells (PBMC) from 51 convalescent children, 24 seronegative siblings from early 2020, and 51 unexposed controls were stimulated with SARS-CoV-2-derived peptide MegaPools from the ancestral and beta variants. Flow cytometric determination of activation-induced markers and secreted cytokines were used to quantify the CD4+ T cell response. The average time after infection was over 80 days. CD4+ T cell responses were detected in 61% of convalescent children and were markedly reduced in preschool children. Cross-reactive T cells for the SARS-CoV-2 beta variant were identified in 45% of cases after infection with an ancestral SARS-CoV-2 variant. The CD4+ T cell response was accompanied most predominantly by IFN-γ and Granzyme B secretion. An antiviral CD4+ T cell response was present in children after ancestral SARS-CoV-2 infection, which was reduced in the youngest age group. We detected significant cross-reactivity of CD4+ T cell responses to the more recently evolved immune-escaping beta variant. Our findings have epidemiologic relevance for children regarding novel viral variants of concern and vaccination efforts.
Collapse
Affiliation(s)
- Kevin Paul
- University Children’s Research - UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Freya Sibbertsen
- University Children’s Research - UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Madalena Barroso
- University Children’s Research - UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta K. Danecka
- University Children’s Research - UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Glau
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Hecher
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Hermann
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aloisa Kohl
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Oh
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Woidy
- University Children’s Research - UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Zapf
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E. Zazara
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas S. Mir
- Department of Pediatric Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ania C. Muntau
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Søren W. Gersting
- University Children’s Research - UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabor A. Dunay
- University Children’s Research - UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics - Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Jo N, Zhang R, Ueno H, Yamamoto T, Weiskopf D, Nagao M, Yamanaka S, Hamazaki Y. Aging and CMV Infection Affect Pre-existing SARS-CoV-2-Reactive CD8 + T Cells in Unexposed Individuals. FRONTIERS IN AGING 2022; 2:719342. [PMID: 35822004 PMCID: PMC9261342 DOI: 10.3389/fragi.2021.719342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Age is a major risk factor for COVID-19 severity, and T cells play a central role in anti-SARS-CoV-2 immunity. Because SARS-CoV-2-cross-reactive T cells have been detected in unexposed individuals, we investigated the age-related differences in pre-existing SARS-CoV-2-reactive T cells. SARS-CoV-2-reactive CD4+ T cells from young and elderly individuals were mainly detected in the central memory fraction and exhibited similar functionalities and numbers. Naïve-phenotype SARS-CoV-2-reactive CD8+ T cell populations decreased markedly in the elderly, while those with terminally differentiated and senescent phenotypes increased. Furthermore, senescent SARS-CoV-2-reactive CD8+ T cell populations were higher in cytomegalovirus seropositive young individuals compared to seronegative ones. Our findings suggest that age-related differences in pre-existing SARS-CoV-2-reactive CD8+ T cells may explain the poor outcomes in elderly patients and that cytomegalovirus infection is a potential factor affecting CD8+ T cell immunity against SARS-CoV-2. Thus, this study provides insights for developing effective therapeutic and vaccination strategies for the elderly.
Collapse
Affiliation(s)
- Norihide Jo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Alliance Laboratory for Advanced Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rui Zhang
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Longitudinal Assessment of SARS-CoV-2-Specific T Cell Cytokine-Producing Responses for 1 Year Reveals Persistence of Multicytokine Proliferative Responses, with Greater Immunity Associated with Disease Severity. J Virol 2022; 96:e0050922. [PMID: 35699447 PMCID: PMC9278147 DOI: 10.1128/jvi.00509-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.
Collapse
|
47
|
Torresi J, Edeling MA, Nolan T, Godfrey DI. A Complementary Union of SARS-CoV2 Natural and Vaccine Induced Immune Responses. Front Immunol 2022; 13:914167. [PMID: 35911696 PMCID: PMC9326230 DOI: 10.3389/fimmu.2022.914167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination has progressed considerably since the COVID-19 pandemic was first declared on the 11th of March in 2020. Recovery from infection is associated with the development of protective immune responses, although over time these become less effective against new emerging SARS-CoV-2 variants. Consequently, reinfection with SARS-CoV-2 variants is not infrequent and has contributed to the ongoing pandemic. COVID-19 vaccines have had a tremendous impact on reducing infection and particularly the number of deaths associated with SARS-CoV-2 infection. However, waning of vaccine induced immunity plus the emergence of new variants has necessitated the use of boosters to maintain the benefits of vaccination in reducing COVID-19 associated deaths. Boosting is also beneficial for individuals who have recovered from COVID-19 and developed natural immunity, also enhancing responses immune responses to SARS-CoV-2 variants. This review summarizes our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination, the risks of reinfection with emerging variants and the very important protective role vaccine boosting plays in both vaccinated and previously infected individuals.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Melissa A. Edeling
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Terry Nolan
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
48
|
Blanas A, Karsjens H, de Ligt A, Huijbers EJ, van Loon K, Denisov SS, Durukan C, Engbersen DJ, Groen J, Hennig S, Hackeng TM, van Beijnum JR, Griffioen AW. Vaccination with a bacterial peptide conjugated to SARS-CoV-2 RBD accelerates immunity and protects against COVID-19. iScience 2022; 25:104719. [PMID: 35813877 PMCID: PMC9252865 DOI: 10.1016/j.isci.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Poor immunogenicity of critical epitopes can hamper vaccine efficacy. To boost immune recognition of non- or low-immunogenic antigens, we developed a vaccine platform based on the conjugation of a target protein to a chimeric designer peptide (CDP) of bacterial origin. Here, we exploited this immune Boost (iBoost) technology to enhance the immune response against the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. Despite its fundamental role during viral infection, RBD is only moderately immunogenic. Immunization studies in mice showed that the conjugation of CDP to RBD induced superior immune responses compared to RBD alone. CDP-RBD elicited cross-reactive antibodies against the variants of concern Delta and Omicron. Furthermore, hamsters vaccinated with CDP-RBD developed potent neutralizing antibody responses and were fully protected from lung lesion formation upon challenge with SARS-CoV-2. In sum, we show that the iBoost conjugate vaccine technology provides a valuable tool for both quantitatively and qualitatively enhancing anti-viral immunity. An iBoost-based CDP-RBD conjugate vaccine against SARS-CoV-2 Induction of potent RBD-specific humoral and cellular responses CDP-RBD vaccination protects hamsters from lung lesion formation
Collapse
Affiliation(s)
- Athanasios Blanas
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Haiko Karsjens
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aafke de Ligt
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elisabeth J.M. Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Stepan S. Denisov
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Canan Durukan
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Jan Groen
- Intravacc, Institute for Translational Vaccinology, Bilthoven, the Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tilman M. Hackeng
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | | | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Corresponding author
| |
Collapse
|
49
|
Mehta N, Shah S, Paudel K, Chamlagain R, Chhetri S. Safety and efficacy of coronavirus disease-19 vaccines in chronic kidney disease patients under maintenance hemodialysis: A systematic review. Health Sci Rep 2022; 5:e700. [PMID: 35755410 PMCID: PMC9203992 DOI: 10.1002/hsr2.700] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
Background and aims Patients on maintenance dialysis are a high-risk, immune-compromised population with 15%-25% coronavirus disease (COVID-19) mortality rate that has been underrepresented in COVID-19 vaccination clinical trials. The aim of study was to review of those studies to determine the safety and efficacy of the COVID-19 vaccination in chronic kidney disease (CKD) patients receiving maintenance hemodialysis systematically. Methods The effectiveness was assessed by looking at the humoral and cellular responses. The humoral response is defined as de novo IgG- or IgA-anti-SpikeS1 antibody positivity. The establishment of de novo T-cell immunity after immunization was used to measure cellular response. Adverse results were also reported of the included studies to analyze the safety of COVID-19 vaccines. Eight previous works were included in our study. Results Two doses of COVID-19 vaccines were shown to be effective with seroconversion rate of humoral response ranging from 81% to 97% among eight studies. The T-cell response was shown 67% and 100% in two studies. COVID-19 vaccines did not have notable adverse events and hence can be considered safe. Conclusion Although a single dosage has not shown to improve humoral immune response in most hemodialysis trials, a double dose has been reported to improve seroconversion rate and humoral immune response. Further research are required to observe if hemodialysis patients generate effective T-cell responses.
Collapse
Affiliation(s)
- Neha Mehta
- Tribhuvan University Teaching HospitalMaharajgunjNepal
| | - Sangam Shah
- Division of Research Affairs, Larkins Community HospitalSouth MiamiFloridaUSA
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan UniversityMaharajgunjNepal
| | | | | | - Santosh Chhetri
- Department of Nephrology and Transplantation Medicine, Institute of MedicineTribhuvan UniversityMaharajgunjNepal
| |
Collapse
|
50
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|