1
|
Mandolesi M, Das H, de Vries L, Yang Y, Kim C, Dhinakaran M, Castro Dopico X, Fischbach J, Kim S, Guryleva MV, Àdori M, Chernyshev M, Stålmarck A, Hanke L, McInerney GM, Sheward DJ, Corcoran M, Hällberg BM, Murrell B, Karlsson Hedestam GB. Multi-compartmental diversification of neutralizing antibody lineages dissected in SARS-CoV-2 spike-immunized macaques. Nat Commun 2024; 15:6338. [PMID: 39068149 PMCID: PMC11283548 DOI: 10.1038/s41467-024-50286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The continued evolution of SARS-CoV-2 underscores the need to understand qualitative aspects of the humoral immune response elicited by spike immunization. Here, we combine monoclonal antibody (mAb) isolation with deep B cell receptor (BCR) repertoire sequencing of rhesus macaques immunized with prefusion-stabilized spike glycoprotein. Longitudinal tracing of spike-sorted B cell lineages in multiple immune compartments demonstrates increasing somatic hypermutation and broad dissemination of vaccine-elicited B cells in draining and non-draining lymphoid compartments, including the bone marrow, spleen and, most notably, periaortic lymph nodes. Phylogenetic analysis of spike-specific monoclonal antibody lineages identified through deep repertoire sequencing delineates extensive intra-clonal diversification that shaped neutralizing activity. Structural analysis of the spike in complex with a broadly neutralizing mAb provides a molecular basis for the observed differences in neutralization breadth between clonally related antibodies. Our findings highlight that immunization leads to extensive intra-clonal B cell evolution where members of the same lineage can both retain the original epitope specificity and evolve to recognize additional spike variants not previously encountered.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Macaca mulatta
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- B-Lymphocytes/immunology
- Antibodies, Viral/immunology
- Phylogeny
- Antibodies, Monoclonal/immunology
- Epitopes/immunology
- COVID-19/immunology
- COVID-19/virology
- Humans
- COVID-19 Vaccines/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Somatic Hypermutation, Immunoglobulin
- Immunization
Collapse
Affiliation(s)
- Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Liset de Vries
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiu Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manojj Dhinakaran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Fischbach
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mariia V Guryleva
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aron Stålmarck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
2
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Shorayeva K, Nakhanov A, Nurpeisova A, Chervyakova O, Jekebekov K, Abay Z, Assanzhanova N, Sadikaliyeva S, Kalimolda E, Terebay A, Moldagulova S, Absatova Z, Tulendibayev A, Kopeyev S, Nakhanova G, Issabek A, Nurabayev S, Kerimbayev A, Kutumbetov L, Abduraimov Y, Kassenov M, Orynbayev M, Zakarya K. Pre-Clinical Safety and Immunogenicity Study of a Coronavirus Protein-Based Subunit Vaccine for COVID-19. Vaccines (Basel) 2023; 11:1771. [PMID: 38140175 PMCID: PMC10748237 DOI: 10.3390/vaccines11121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Creating an effective and safe vaccine is critical to fighting the coronavirus infection successfully. Several types of COVID-19 vaccines exist, including inactivated, live attenuated, recombinant, synthetic peptide, virus-like particle-based, DNA and mRNA-based, and sub-unit vaccines containing purified immunogenic viral proteins. However, the scale and speed at which COVID-19 is spreading demonstrate a global public demand for an effective prophylaxis that must be supplied more. The developed products promise a bright future for SARS-CoV-2 prevention; however, evidence of safety and immunogenicity is mandatory before any vaccine can be produced. In this paper, we report on the results of our work examining the safety, toxicity, immunizing dose choice, and immunogenicity of QazCoVac-P, a Kazakhstan-made sub-unit vaccine for COVID-19. First, we looked into the product's safety profile by assessing its pyrogenicity in vaccinated rabbit models and using the LAL (limulus amebocyte lysate) test. We examined the vaccine's acute and sub-chronic toxicity on BALB/c mice and rats. The vaccine did not cause clinically significant toxicity-related changes or symptoms in our toxicity experiments. Finally, we performed a double immunization of mice, ferrets, Syrian hamsters, and rhesus macaques (Macaca mulatta). We used ELISA to measure antibody titers with the maximum mean geometric titer of antibodies in the animals' blood sera totaling approximately 8 log2. The results of this and other studies warrant recommending the QazCoVac-P vaccine for clinical trials.
Collapse
Affiliation(s)
| | | | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, The Ministry of Health of the Republic of Kazakhstan, Gvardeiskiy 080409, Kazakhstan (Z.A.); (E.K.); (Z.A.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Barbey C, Su J, Billmeier M, Stefan N, Bester R, Carnell G, Temperton N, Heeney J, Protzer U, Breunig M, Wagner R, Peterhoff D. Immunogenicity of a silica nanoparticle-based SARS-CoV-2 vaccine in mice. Eur J Pharm Biopharm 2023; 192:41-55. [PMID: 37774890 DOI: 10.1016/j.ejpb.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Safe and effective vaccines have been regarded early on as critical in combating the COVID-19 pandemic. Among the deployed vaccine platforms, subunit vaccines have a particularly good safety profile but may suffer from a lower immunogenicity compared to mRNA based or viral vector vaccines. In fact, this phenomenon has also been observed for SARS-CoV-2 subunit vaccines comprising the receptor-binding domain (RBD) of the spike (S) protein. Therefore, RBD-based vaccines have to rely on additional measures to enhance the immune response. It is well accepted that displaying antigens on nanoparticles can improve the quantity and quality of vaccine-mediated both humoral and cell-mediated immune responses. Based on this, we hypothesized that SARS-CoV-2 RBD as immunogen would benefit from being presented to the immune system via silica nanoparticles (SiNPs). Herein we describe the preparation, in vitro characterization, antigenicity and in vivo immunogenicity of SiNPs decorated with properly oriented RBD in mice. We found our RBD-SiNP conjugates show narrow, homogeneous particle distribution with optimal size of about 100 nm for efficient transport to and into the lymph node. The colloidal stability and binding of the antigen was stable for at least 4 months at storage- and in vivo-temperatures. The antigenicity of the RBD was maintained upon binding to the SiNP surface, and the receptor-binding motif was readily accessible due to the spatial orientation of the RBD. The particles were efficiently taken up in vitro by antigen-presenting cells. In a mouse immunization study using an mRNA vaccine and spike protein as benchmarks, we found that the SiNP formulation was able to elicit a stronger RBD-specific humoral response compared to the soluble protein. For the adjuvanted RBD-SiNP we found strong S-specific multifunctional CD4+ T cell responses, a balanced T helper response, improved auto- and heterologous virus neutralization capacity, and increased serum avidity, suggesting increased affinity maturation. In summary, our results provide further evidence for the possibility of optimizing the cellular and humoral immune response through antigen presentation on SiNP.
Collapse
Affiliation(s)
- Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Nadine Stefan
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - George Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, United Kingdom
| | - Jonathan Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Zhang J, Koolmeister C, Han J, Filograna R, Hanke L, Àdori M, Sheward DJ, Teifel S, Gopalakrishna S, Shao Q, Liu Y, Zhu K, Harris RA, McInerney G, Murrell B, Aoun M, Bäckdahl L, Holmdahl R, Pekalski M, Wedell A, Engvall M, Wredenberg A, Karlsson Hedestam GB, Castro Dopico X, Rorbach J. Antigen receptor stimulation induces purifying selection against pathogenic mitochondrial tRNA mutations. JCI Insight 2023; 8:e167656. [PMID: 37681412 PMCID: PMC10544217 DOI: 10.1172/jci.insight.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/27/2023] [Indexed: 09/09/2023] Open
Abstract
Pathogenic mutations in mitochondrial (mt) tRNA genes that compromise oxidative phosphorylation (OXPHOS) exhibit heteroplasmy and cause a range of multisyndromic conditions. Although mitochondrial disease patients are known to suffer from abnormal immune responses, how heteroplasmic mtDNA mutations affect the immune system at the molecular level is largely unknown. Here, in mice carrying pathogenic C5024T in mt-tRNAAla and in patients with mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS) syndrome carrying A3243G in mt-tRNALeu, we found memory T and B cells to have lower pathogenic mtDNA mutation burdens than their antigen-inexperienced naive counterparts, including after vaccination. Pathogenic burden reduction was less pronounced in myeloid compared with lymphoid lineages, despite C5024T compromising macrophage OXPHOS capacity. Rapid dilution of the C5024T mutation in T and B cell cultures could be induced by antigen receptor-triggered proliferation and was accelerated by metabolic stress conditions. Furthermore, we found C5024T to dysregulate CD8+ T cell metabolic remodeling and IFN-γ production after activation. Together, our data illustrate that the generation of memory lymphocytes shapes the mtDNA landscape, wherein pathogenic variants dysregulate the immune response.
Collapse
Affiliation(s)
- Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sina Teifel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Qiuya Shao
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Liselotte Bäckdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Marcin Pekalski
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Wedell
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Engvall
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Villarraza J, Fuselli A, Gugliotta A, Garay E, Rodríguez MC, Fontana D, Antuña S, Gastaldi V, Battagliotti JM, Tardivo MB, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. A COVID-19 vaccine candidate based on SARS-CoV-2 spike protein and immune-stimulating complexes. Appl Microbiol Biotechnol 2023; 107:3429-3441. [PMID: 37093307 PMCID: PMC10124706 DOI: 10.1007/s00253-023-12520-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.
Collapse
Affiliation(s)
- Javier Villarraza
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina.
| | - Ernesto Garay
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Diego Fontana
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Victoria Gastaldi
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
| | | | | | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Cellargen Biotech SRL, Santa Fe, Pcia., Santa Fe, Argentina
| |
Collapse
|
7
|
Characterization of Systemic and Mucosal Humoral Immune Responses to an Adjuvanted Intranasal SARS-CoV-2 Protein Subunit Vaccine Candidate in Mice. Vaccines (Basel) 2022; 11:vaccines11010030. [PMID: 36679875 PMCID: PMC9865305 DOI: 10.3390/vaccines11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Continuous viral evolution of SARS-CoV-2 has resulted in variants capable of immune evasion, vaccine breakthrough infections and increased transmissibility. New vaccines that invoke mucosal immunity may provide a solution to reducing virus transmission. Here, we evaluated the immunogenicity of intranasally administered subunit protein vaccines composed of a stabilized SARS-CoV-2 spike trimer or the receptor binding domain (RBD) adjuvanted with either cholera toxin (CT) or an archaeal lipid mucosal adjuvant (AMVAD). We show robust induction of immunoglobulin (Ig) G and IgA responses in plasma, nasal wash and bronchoalveolar lavage in mice only when adjuvant is used in the vaccine formulation. While the AMVAD adjuvant was more effective at inducing systemic antibodies against the RBD antigen than CT, CT was generally more effective at inducing overall higher IgA and IgG titers against the spike antigen in both systemic and mucosal compartments. Furthermore, vaccination with adjuvanted spike led to superior mucosal IgA responses than with the RBD antigen and produced broadly targeting neutralizing plasma antibodies against ancestral, Delta and Omicron variants in vitro; whereas adjuvanted RBD elicited a narrower antibody response with neutralizing activity only against ancestral and Delta variants. Our study demonstrates that intranasal administration of an adjuvanted protein subunit vaccine in immunologically naïve mice induced both systemic and mucosal neutralizing antibody responses that were most effective at neutralizing SARS-CoV-2 variants when the trimeric spike was used as an antigen compared to RBD.
Collapse
|
8
|
To A, Wong TAS, Lieberman MM, Thompson K, Ball AH, Pessaint L, Greenhouse J, Daham N, Cook A, Narvaez B, Flinchbaugh Z, Van Ry A, Yalley-Ogunro J, Elyard HA, Lai CY, Donini O, Lehrer AT. A Recombinant Subunit Vaccine Induces a Potent, Broadly Neutralizing, and Durable Antibody Response in Macaques against the SARS-CoV-2 P.1 (Gamma) Variant. ACS Infect Dis 2022; 8:825-840. [PMID: 35263081 PMCID: PMC8938837 DOI: 10.1021/acsinfecdis.1c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/12/2022]
Abstract
FDA-approved and emergency use-authorized vaccines using new mRNA and viral-vector technology are highly effective in preventing moderate to severe disease; however, information on their long-term efficacy and protective breadth against severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) is currently scarce. Here, we describe the durability and broad-spectrum VOC immunity of a prefusion-stabilized spike (S) protein adjuvanted with liquid or lyophilized CoVaccine HT in cynomolgus macaques. This recombinant subunit vaccine is highly immunogenic and induces robust spike-specific and broadly neutralizing antibody responses effective against circulating VOCs (B.1.351 [Beta], P.1 [Gamma], and B.1.617 [Delta]) for at least three months after the final boost. Protective efficacy and postexposure immunity were evaluated using a heterologous P.1 challenge nearly three months after the last immunization. Our results indicate that while immunization with both high and low S doses shorten and reduce viral loads in the upper and lower respiratory tract, a higher antigen dose is required to provide durable protection against disease as vaccine immunity wanes. Histologically, P.1 infection causes similar COVID-19-like lung pathology as seen with early pandemic isolates. Postchallenge IgG concentrations were restored to peak immunity levels, and vaccine-matched and cross-variant neutralizing antibodies were significantly elevated in immunized macaques indicating an efficient anamnestic response. Only low levels of P.1-specific neutralizing antibodies with limited breadth were observed in control (nonvaccinated but challenged) macaques, suggesting that natural infection may not prevent reinfection by other VOCs. Overall, these results demonstrate that a properly dosed and adjuvanted recombinant subunit vaccine can provide protective immunity against circulating VOCs for at least three months.
Collapse
Affiliation(s)
- Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Karen Thompson
- Department of Pathology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Aquena H. Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | | | - Jack Greenhouse
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | | | - Anthony Cook
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Brandon Narvaez
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Zack Flinchbaugh
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Alex Van Ry
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Jake Yalley-Ogunro
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Hanne Andersen Elyard
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | - Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, 96813, USA
| |
Collapse
|
9
|
Mahalingam G, Rachamalla HK, Arjunan P, Periyasami Y, M S, Thangavel S, Mohankumar KM, Moorthy M, Velayudhan SR, Srivastava A, Marepally S. Optimization of SARS-CoV-2 Pseudovirion Production in Lentivirus Backbone With a Novel Liposomal System. Front Pharmacol 2022; 13:840727. [PMID: 35401169 PMCID: PMC8990231 DOI: 10.3389/fphar.2022.840727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/11/2023] Open
Abstract
Due to the fast mutating nature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of novel therapeutics, vaccines, and evaluating the efficacies of existing one’s against the mutated strains is critical for containing the virus. Pseudotyped SARS-CoV-2 viruses are proven to be instrumental in evaluating the efficiencies of therapeutics, owing to their ease in application and safety when compared to handling the live virus. However, a comprehensive protocol that includes selecting transfection reagents, validating different packaging systems for high-throughput screening of neutralizing antibodies, is still a requisite. To this end, we designed and synthesized amide linker-based cationic lipids with varying hydrophilic head groups from dimethyl (Lipo-DME) to methyl, ethylhydroxyl (Lipo-MeOH), and diethylhydroxyl (Lipo-DOH) keeping the hydrophobic tail, stearic acid, as constant. Among the liposomal formulations of these lipids, Lipo-DOH was found to be superior in delivering plasmids and demonstrated comparable transfection efficiencies with commercial standard Lipofectamine 3000. We further used Lipo-DOH for lentivirus and SARS-CoV-2 pseudovirion preparation. For comparing different lentivirus packaging systems, we optimized conditions using Addgene and BEI systems and found that the BEI lenti plasmid system was found to be efficient in making lentiviruses using Lipo-DOH. Using the optimized transfection reagent and the lentivirus system, we developed a robust protocol for the generation of SARS-CoV-2 pseudovirions and characterized their infectivity in human ACE2 expressing HEK-293T cells and neutralizing properties in IgG against spike protein of SARS-CoV-2 positive human sera from individuals recovered from COVID-19.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Salma M
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
- *Correspondence: Srujan Marepally,
| |
Collapse
|
10
|
Castro Dopico X, Muschiol S, Grinberg NF, Aleman S, Sheward DJ, Hanke L, Ahl M, Vikström L, Forsell M, Coquet JM, McInerney G, Dillner J, Bogdanovic G, Murrell B, Albert J, Wallace C, Karlsson Hedestam GB. Probabilistic classification of anti-SARS-CoV-2 antibody responses improves seroprevalence estimates. Clin Transl Immunology 2022; 11:e1379. [PMID: 35284072 PMCID: PMC8891432 DOI: 10.1002/cti2.1379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 02/02/2023] Open
Abstract
Objectives Population-level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data-driven manner, leading to uncertainty when classifying low-titer responses. To improve upon this, we evaluated cutoff-independent methods for their ability to assign likelihood of SARS-CoV-2 seropositivity to individual samples. Methods Using robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-binding domain (RBD), we profiled antibody responses in a group of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines-linear discriminant analysis learner (SVM-LDA) suited for this purpose. Results In the training data from confirmed ancestral SARS-CoV-2 infections, 99% of participants had detectable anti-S and -RBD IgG in the circulation, with titers differing > 1000-fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3-6SD from the mean of pre-pandemic negative controls (n = 595). In contrast, SVM-LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50-99% likelihood, and 4.0% (n = 203) to have a 10-49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD-based methods, such tools allow for more statistically-sound seropositivity estimates in large cohorts. Conclusion Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Sandra Muschiol
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden,Department of Clinical MicrobiologyKarolinska University HospitalStockholmSweden
| | - Nastasiya F Grinberg
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Soo Aleman
- Department of Infectious DiseasesKarolinska University HospitalHuddingeSweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Marcus Ahl
- Department of Infectious DiseasesKarolinska University HospitalHuddingeSweden
| | - Linnea Vikström
- Department of Clinical MicrobiologyUmeå UniversitetUmeåSweden
| | - Mattias Forsell
- Department of Clinical MicrobiologyUmeå UniversitetUmeåSweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Joakim Dillner
- Division of PathologyDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Gordana Bogdanovic
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden,Department of Clinical MicrobiologyKarolinska University HospitalStockholmSweden
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK,Medical Research Council Biostatistics UnitUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
11
|
Coria LM, Saposnik LM, Pueblas Castro C, Castro EF, Bruno LA, Stone WB, Pérez PS, Darriba ML, Chemes LB, Alcain J, Mazzitelli I, Varese A, Salvatori M, Auguste AJ, Álvarez DE, Pasquevich KA, Cassataro J. A Novel Bacterial Protease Inhibitor Adjuvant in RBD-Based COVID-19 Vaccine Formulations Containing Alum Increases Neutralizing Antibodies, Specific Germinal Center B Cells and Confers Protection Against SARS-CoV-2 Infection in Mice. Front Immunol 2022; 13:844837. [PMID: 35296091 PMCID: PMC8919065 DOI: 10.3389/fimmu.2022.844837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 01/18/2023] Open
Abstract
In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.
Collapse
Affiliation(s)
- Lorena M. Coria
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Lucas M. Saposnik
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Eliana F. Castro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura A. Bruno
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - William B. Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Paula S. Pérez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Maria Laura Darriba
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Lucia B. Chemes
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Julieta Alcain
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Melina Salvatori
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Albert J. Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Diego E. Álvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Karina A. Pasquevich
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- *Correspondence: Karina A. Pasquevich, ; Juliana Cassataro,
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- *Correspondence: Karina A. Pasquevich, ; Juliana Cassataro,
| |
Collapse
|
12
|
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep Med 2022; 3:100528. [PMID: 35233549 PMCID: PMC8784613 DOI: 10.1016/j.xcrm.2022.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing. S glycoprotein formaldehyde cross-linking stabilizes S in the prefusion conformation Vaccination of cynomolgus macaques with S lipid particles induces neutralization Vaccination protects macaques against a SARS-CoV-2 challenge Sterilizing protection correlates with nasopharyngeal anti-S IgG and IgA titers
Collapse
|
13
|
Mekonnen D, Mengist HM, Jin T. SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert Rev Vaccines 2022; 21:69-81. [PMID: 34633259 PMCID: PMC8567292 DOI: 10.1080/14760584.2021.1991794] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Vaccines are the agreed upon weapon against the COVID-19 pandemic. This review discusses about COVID-19 subunit vaccines adjuvants and their signaling pathways, which could provide a glimpse into the selection of appropriate adjuvants for prospective vaccine development studies. AREAS COVERED In the introduction, a brief background about the SARS-CoV-2 pandemic, the vaccine development race and classes of vaccine adjuvants were provided. . The antigen, trial stage, and types of adjuvants were extracted from the included articles and thun assimilated. Finally, the pattern recognition receptors (PRRs), their classes, cognate adjuvants, and potential signaling pathways were comprehended. EXPERT OPINION Adjuvants are unsung heroes of subunit vaccines. The in silico studies are very vital in avoiding several costly trial errors and save much work times. The majority of the (pre)clinical studies are promising. It is encouraging that most of the selected adjuvants are novel. Much emphasis must be paid to the optimal paring of antigen-adjuvant-PRRs for obtaining the desired vaccine effect. A good subunit vaccine/adjuvant is one that has high efficacy, safety, dose sparing, and rapid seroconversion rate and broad spectrum of immune response. In the years to come, COVID-19 adjuvanted subunit vaccines are expected to have superior utility than any other vaccines for various reasons.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Rodrigues KA, Rodriguez-Aponte SA, Dalvie NC, Lee JH, Abraham W, Carnathan DG, Jimenez LE, Ngo JT, Chang JYH, Zhang Z, Yu J, Chang A, Nakao C, Goodwin B, Naranjo CA, Zhang L, Silva M, Barouch DH, Silvestri G, Crotty S, Love JC, Irvine DJ. Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2. SCIENCE ADVANCES 2021; 7:eabj6538. [PMID: 34878851 PMCID: PMC8654298 DOI: 10.1126/sciadv.abj6538] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/21/2021] [Indexed: 05/29/2023]
Abstract
There is a need for additional rapidly scalable, low-cost vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to achieve global vaccination. Aluminum hydroxide (alum) adjuvant is the most widely available vaccine adjuvant but elicits modest humoral responses. We hypothesized that phosphate-mediated coanchoring of the receptor binding domain (RBD) of SARS-CoV-2 together with molecular adjuvants on alum particles could potentiate humoral immunity by promoting extended vaccine kinetics and codelivery of vaccine components to lymph nodes. Modification of RBD immunogens with phosphoserine (pSer) peptides enabled efficient alum binding and slowed antigen clearance, leading to notable increases in germinal center responses and neutralizing antibody titers in mice. Adding phosphate-containing CpG or saponin adjuvants to pSer-RBD:alum immunizations synergistically enhanced vaccine immunogenicity in mice and rhesus macaques, inducing neutralizing responses against SARS-CoV-2 variants. Thus, phosphate-mediated coanchoring of RBD and molecular adjuvants to alum is an effective strategy to enhance the efficacy of SARS-CoV-2 subunit vaccines.
Collapse
Affiliation(s)
- Kristen A. Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeong Hyun Lee
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Diane G. Carnathan
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luis E. Jimenez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julia T. Ngo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason Y. H. Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Zeli Zhang
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Catherine Nakao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Benjamin Goodwin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Christopher A. Naranjo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Libin Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan H. Barouch
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
15
|
Mabrouk MT, Chiem K, Rujas E, Huang WC, Jahagirdar D, Quinn B, Surendran Nair M, Nissly RH, Cavener VS, Boyle NR, Sornberger TA, Kuchipudi SV, Ortega J, Julien JP, Martinez-Sobrido L, Lovell J. Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice. SCIENCE ADVANCES 2021; 7:eabj1476. [PMID: 34851667 PMCID: PMC8635435 DOI: 10.1126/sciadv.abj1476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/12/2021] [Indexed: 05/22/2023]
Abstract
The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 μg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 μg), along with monophosphoryl lipid A (dose, 0.16 μg) and QS-21 (dose, 0.16 μg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Edurne Rujas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Breandan Quinn
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria S. Cavener
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Nina R. Boyle
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ty A. Sornberger
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Jonathan Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Corresponding author.
| |
Collapse
|
16
|
Cunha LER, Stolet AA, Strauch MA, Pereira VA, Dumard CH, Gomes AM, Monteiro FL, Higa LM, Souza PN, Fonseca JG, Pontes FE, Meirelles LG, Albuquerque JW, Sacramento CQ, Fintelman-Rodrigues N, Lima TM, Alvim RG, Marsili FF, Caldeira MM, Zingali RB, de Oliveira GA, Souza TM, Silva AS, Muller R, Rodrigues DDRF, Jesus da Costa L, Alves ADR, Pinto MA, Oliveira AC, Guedes HL, Tanuri A, Castilho LR, Silva JL. Polyclonal F(ab') 2 fragments of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high potency. iScience 2021; 24:103315. [PMID: 34723156 PMCID: PMC8539203 DOI: 10.1016/j.isci.2021.103315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.
Collapse
Affiliation(s)
| | | | | | - Victor A.R. Pereira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Carlos H. Dumard
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M.O. Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Fábio L. Monteiro
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Luiza M. Higa
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | | | | | | | | | | | - Carolina Q. Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Tulio M. Lima
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Renata G.F. Alvim
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Federico F. Marsili
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Marcella Moreira Caldeira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Russolina B. Zingali
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A.P. de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Thiago M.L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Alexandre S. Silva
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Rodrigo Muller
- Animal Experimentation Laboratory (LAEAN), Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Daniela del Rosário Flores Rodrigues
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luciana Jesus da Costa
- Department of Virology, Laboratory of Genetics and Immunology of Viral Infections, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ CEP 21941902 , Brazil
| | - Arthur Daniel R. Alves
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Andréa C. Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Herbert L.M. Guedes
- Immunopharmacology Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Amilcar Tanuri
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Leda R. Castilho
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| |
Collapse
|
17
|
Sheward DJ, Mandolesi M, Urgard E, Kim C, Hanke L, Perez Vidakovics L, Pankow A, Smith NL, Castro Dopico X, McInerney GM, Coquet JM, Karlsson Hedestam GB, Murrell B. Beta RBD boost broadens antibody-mediated protection against SARS-CoV-2 variants in animal models. Cell Rep Med 2021; 2:100450. [PMID: 34723224 PMCID: PMC8536561 DOI: 10.1016/j.xcrm.2021.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 11/03/2022]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with resistance to neutralizing antibodies are threatening to undermine vaccine efficacy. Vaccination and infection have led to widespread humoral immunity against the pandemic founder (Wu-Hu-1). Against this background, it is critical to assess the outcomes of subsequent immunization with variant antigens. It is not yet clear whether heterotypic boosts would be compromised by original antigenic sin, where pre-existing responses to a prior variant dampen responses to a new one, or whether the memory B cell repertoire would bridge the gap between Wu-Hu-1 and VOCs. We show, in macaques immunized with Wu-Hu-1 spike, that a single dose of adjuvanted beta variant receptor binding domain (RBD) protein broadens neutralizing antibody responses to heterologous VOCs. Passive transfer of plasma sampled after Wu-Hu-1 spike immunization only partially protects K18-hACE2 mice from lethal challenge with a beta variant isolate, whereas plasma sampled following heterotypic RBD boost protects completely against disease.
Collapse
Affiliation(s)
- Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alec Pankow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalie L. Smith
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M. Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Akache B, Renner TM, Tran A, Deschatelets L, Dudani R, Harrison BA, Duque D, Haukenfrers J, Rossotti MA, Gaudreault F, Hemraz UD, Lam E, Régnier S, Chen W, Gervais C, Stuible M, Krishnan L, Durocher Y, McCluskie MJ. Immunogenic and efficacious SARS-CoV-2 vaccine based on resistin-trimerized spike antigen SmT1 and SLA archaeosome adjuvant. Sci Rep 2021; 11:21849. [PMID: 34750472 PMCID: PMC8576046 DOI: 10.1038/s41598-021-01363-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Tyler M Renner
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Anh Tran
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Blair A Harrison
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Diana Duque
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Julie Haukenfrers
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Martin A Rossotti
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Francis Gaudreault
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Usha D Hemraz
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Sophie Régnier
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Wangxue Chen
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Christian Gervais
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Lakshmi Krishnan
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
19
|
Langellotto F, Dellacherie MO, Yeager C, Ijaz H, Yu J, Cheng C, Dimitrakakis N, Seiler BT, Gebre MS, Gilboa T, Johnson R, Storm N, Bardales S, Graveline A, White D, Tringides CM, Cartwright MJ, Doherty EJ, Honko A, Griffiths A, Barouch DH, Walt DR, Mooney DJ. A Modular Biomaterial Scaffold-Based Vaccine Elicits Durable Adaptive Immunity to Subunit SARS-CoV-2 Antigens. Adv Healthc Mater 2021; 10:e2101370. [PMID: 34605223 PMCID: PMC8652677 DOI: 10.1002/adhm.202101370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Indexed: 12/14/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic demonstrates the importance of generating safe and efficacious vaccines that can be rapidly deployed against emerging pathogens. Subunit vaccines are considered among the safest, but proteins used in these typically lack strong immunogenicity, leading to poor immune responses. Here, a biomaterial COVID-19 vaccine based on a mesoporous silica rods (MSRs) platform is described. MSRs loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF), the toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid A (MPLA), and SARS-CoV-2 viral protein antigens slowly release their cargo and form subcutaneous scaffolds that locally recruit and activate antigen-presenting cells (APCs) for the generation of adaptive immunity. MSR-based vaccines generate robust and durable cellular and humoral responses against SARS-CoV-2 antigens, including the poorly immunogenic receptor binding domain (RBD) of the spike (S) protein. Persistent antibodies over the course of 8 months are found in all vaccine configurations tested and robust in vitro viral neutralization is observed both in a prime-boost and a single-dose regimen. These vaccines can be fully formulated ahead of time or stored lyophilized and reconstituted with an antigen mixture moments before injection, which can facilitate its rapid deployment against emerging SARS-CoV-2 variants or new pathogens. Together, the data show a promising COVID-19 vaccine candidate and a generally adaptable vaccine platform against infectious pathogens.
Collapse
Affiliation(s)
- Fernanda Langellotto
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Maxence O. Dellacherie
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Chyenne Yeager
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Hamza Ijaz
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Jingyou Yu
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
| | - Chi‐An Cheng
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's HospitalBostonMA02115USA
- Harvard Medical SchoolBostonMA02115USA
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Benjamin T. Seiler
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Makda S. Gebre
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
| | - Tal Gilboa
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's HospitalBostonMA02115USA
- Harvard Medical SchoolBostonMA02115USA
| | - Rebecca Johnson
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Nadia Storm
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Sarai Bardales
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Des White
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Christina M. Tringides
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Harvard Program in BiophysicsHarvard UniversityCambridgeMA02138USA
- Harvard–MIT Division in Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark J. Cartwright
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Edward J. Doherty
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Anna Honko
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Anthony Griffiths
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Dan H. Barouch
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
- Ragon Institute of MGHMIT, and HarvardCambridgeMA02139USA
- Massachusetts Consortium on Pathogen ReadinessBostonMA02215USA
| | - David R. Walt
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's HospitalBostonMA02115USA
- Harvard Medical SchoolBostonMA02115USA
| | - David J. Mooney
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
20
|
Pushparaj PN, Abdulkareem AA, Naseer MI. Identification of Novel Gene Signatures using Next-Generation Sequencing Data from COVID-19 Infection Models: Focus on Neuro-COVID and Potential Therapeutics. Front Pharmacol 2021; 12:688227. [PMID: 34531741 PMCID: PMC8438179 DOI: 10.3389/fphar.2021.688227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is the causative agent for coronavirus disease-19 (COVID-19) and belongs to the family Coronaviridae that causes sickness varying from the common cold to more severe illnesses such as severe acute respiratory syndrome, sudden stroke, neurological complications (Neuro-COVID), multiple organ failure, and mortality in some patients. The gene expression profiles of COVID-19 infection models can be used to decipher potential therapeutics for COVID-19 and related pathologies, such as Neuro-COVID. Here, we used the raw RNA-seq reads (Single-End) in quadruplicates derived using Illumina Next Seq 500 from SARS-CoV-infected primary human bronchial epithelium (NHBE) and mock-treated NHBE cells obtained from the Gene Expression Omnibus (GEO) (GSE147507), and the quality control (QC) was evaluated using the CLC Genomics Workbench 20.0 (Qiagen, United States) before the RNA-seq analysis using BioJupies web tool and iPathwayGuide for gene ontologies (GO), pathways, upstream regulator genes, small molecules, and natural products. Additionally, single-cell transcriptomics data (GSE163005) of meta clusters of immune cells from the cerebrospinal fluid (CSF), such as T-cells/natural killer cells (NK) (TcMeta), dendritic cells (DCMeta), and monocytes/granulocyte (monoMeta) cell types for comparison, namely, Neuro-COVID versus idiopathic intracranial hypertension (IIH), were analyzed using iPathwayGuide. L1000 fireworks display (L1000FWD) and L1000 characteristic direction signature search engine (L1000 CDS2) web tools were used to uncover the small molecules that could potentially reverse the COVID-19 and Neuro-COVID-associated gene signatures. We uncovered small molecules such as camptothecin, importazole, and withaferin A, which can potentially reverse COVID-19 associated gene signatures. In addition, withaferin A, trichostatin A, narciclasine, camptothecin, and JQ1 have the potential to reverse Neuro-COVID gene signatures. Furthermore, the gene set enrichment analysis (GSEA) preranked method and Metascape web tool were used to decipher and annotate the gene signatures that were potentially reversed by these small molecules. In conclusion, our study unravels a rapid approach for applying next-generation knowledge discovery (NGKD) platforms to discover small molecules with therapeutic potential against COVID-19 and its related disease pathologies.
Collapse
Affiliation(s)
- Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
S N N, B N R, C P, K S S, Ramakrishnappa T, B T K, S M J, M M, N A, Yallappa, D DP, T V R, E G, Bagoji M, Chandaragi SS. SARS-CoV 2 spike protein S1 subunit as an ideal target for stable vaccines: A bioinformatic study. MATERIALS TODAY. PROCEEDINGS 2021; 49:904-912. [PMID: 34307057 PMCID: PMC8279943 DOI: 10.1016/j.matpr.2021.07.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Covid-19 a pandemic infectious disease and affected life across the world resulting in over 188.65 million confirmed cases across 223 countries, territories and areas with 4.06 million deaths. It is caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and spike (S) protein of SARS-CoV-2, which plays a key role in the receptor recognition and cell membrane fusion process, is composed of two subunits, S1 and S2. The S1 subunit contains a receptor-binding domain (RBD) that recognizes and binds to the host receptor angiotensin-converting enzyme 2 (ACE2), while the S2 subunit mediates viral cell membrane fusion. Hence, it is a key target for developing neutralizing antibodies. Here, we have performed phylogenetic analysis and structural modeling of the SARS-CoV-2 spike glycoprotein, which is found highly conserved. The overall percent protein sequence identity from the SARS-CoV-2 spike protein sequences from the NCBI database was 99.68%. The functional domains of the S protein reveal that the S1 subunit was highly conserved (99.70%) than the S2 subunit (99.66%). Further, the 319-541 residues (RBD) of amino acids within the S1 domain were 100% similar among the spike protein. The 3D modeling of SARS-CoV-2 spike glycoprotein indicated that S protein has four domains with five protein units and the S1 subunit from 1 to 289 amino acid of domain 1 is highly conserved without any change in the ligand interaction site. This analysis clearly suggests that the S1 subunit (RBD 319-541) can be used as a target region for stable and safe vaccine development.
Collapse
Affiliation(s)
- Nagesha S N
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Ramesh B N
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Pradeep C
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Shashidhara K S
- Department of Genetics and Plant Breeding, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Thippeswamy Ramakrishnappa
- Department of Chemistry, BMS Institute of Technology and Management, Avalahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Krishnaprasad B T
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Jnanashree S M
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Manohar M
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Arunkumar N
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Yallappa
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Dhanush Patel D
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Rakesh T V
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Girish E
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Mahantesh Bagoji
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| | - Shreeram S Chandaragi
- Department of Biotechnology, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India
| |
Collapse
|
22
|
Scourfield DO, Reed SG, Quastel M, Alderson J, Bart VMT, Teijeira Crespo A, Jones R, Pring E, Richter FC, Burnell SEA. The role and uses of antibodies in COVID-19 infections: a living review. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab003. [PMID: 34192270 PMCID: PMC7928637 DOI: 10.1093/oxfimm/iqab003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity.
Collapse
Affiliation(s)
- D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sophie G Reed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Max Quastel
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jennifer Alderson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 FTY, UK
| | - Valentina M T Bart
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alicia Teijeira Crespo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN UK
| | - Ruth Jones
- Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Ellie Pring
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Felix Clemens Richter
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 FTY, UK
| | - Stephanie E A Burnell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|