1
|
Taniguchi-Ponciano K, Hinojosa-Alvarez S, Hernandez-Perez J, Chavez-Santoscoy RA, Remba-Shapiro I, Guinto G, Magallon-Gayon E, Telles-Ramirez B, de Leon-Conconi RP, Vela-Patiño S, Andonegui-Elguera S, Cano-Zaragoza A, Martinez-Mendoza F, Kerbel J, Loza-Mejia M, Rodrigo-Salazar J, Mendez-Perez A, Aguilar-Flores C, Chavez-Gonzalez A, Ortiz-Reyes E, Gomez-Apo E, Bonifaz LC, Marrero-Rodriguez D, Mercado M. Longitudinal multiomics analysis of aggressive pituitary neuroendocrine tumors: comparing primary and recurrent tumors from the same patient, reveals genomic stability and heterogeneous transcriptomic profiles with alterations in metabolic pathways. Acta Neuropathol Commun 2024; 12:142. [PMID: 39217365 PMCID: PMC11365143 DOI: 10.1186/s40478-024-01796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/12/2024] [Indexed: 09/04/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNET) represent the vast majority of sellar masses. Some behave aggressively, growing rapidly and invading surrounding tissues, with high rates of recurrence and resistance to therapy. Our aim was to establish patterns of genomic, transcriptomic and methylomic evolution throughout time in primary and recurrent tumors from the same patient. Therefore, we performed transcriptome- and exome-sequencing and methylome microarrays of aggressive, primary, and recurrent PitNET from the same patient. Primary and recurrent tumors showed a similar exome profile, potentially indicating a stable genome over time. In contrast, the transcriptome of primary and recurrent PitNET was dissimilar. Gonadotroph, silent corticotroph, as well as metastatic corticotroph and a somatotroph PitNET expressed genes related to fatty acid biosynthesis and metabolism, phosphatidylinositol signaling, glycerophospholipid and phospholipase D signaling, respectively. Diacylglycerol kinase gamma (DGKG), a key enzyme in glycerophospholipid metabolism and phosphatidylinositol signaling pathways, was differentially expressed between primary and recurrent PitNET. These alterations did not seem to be regulated by DNA methylation, but rather by several transcription factors. Molecular docking showed that dasatinib, a small molecule tyrosine kinase inhibitor used in the treatment of chronic lymphocytic and acute lymphoblastic leukemia, could target DGKG. Dasatinib induced apoptosis and decreased proliferation in GH3 cells. Our data indicate that pituitary tumorigenesis could be driven by transcriptomically heterogeneous clones, and we describe alternative pharmacological therapies for aggressive and recurrent PitNET.
Collapse
Affiliation(s)
- Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | | | | | | | - Ilan Remba-Shapiro
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Gerardo Guinto
- Centro Neurológico, Centro Médico ABC, Ciudad de Mexico, México
| | | | | | | | - Sandra Vela-Patiño
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Sergio Andonegui-Elguera
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Amayrani Cano-Zaragoza
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Florencia Martinez-Mendoza
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Jacobo Kerbel
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Marco Loza-Mejia
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Juan Rodrigo-Salazar
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Alonso Mendez-Perez
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Cristina Aguilar-Flores
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Antonieta Chavez-Gonzalez
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Elenka Ortiz-Reyes
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Erick Gomez-Apo
- Área de Neuropatología, Servicio de Anatomía Patológica, Hospital General de México Dr. Eduardo Liceaga, Ciudad de Mexico, México
| | - Laura C Bonifaz
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Marrero-Rodriguez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México.
| | - Moises Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México.
| |
Collapse
|
2
|
Vemuri K, Iqbal J, Kumar S, Logerfo A, Verzi MP. Diet-induced obesity mediated through Estrogen-Related Receptor α is independent of intestinal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602978. [PMID: 39071436 PMCID: PMC11275757 DOI: 10.1101/2024.07.10.602978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Obesity has become an epidemic, prompting advances in therapies targeting this condition. Estrogen-related receptor α (ESRRA), a transcription factor, plays pivotal roles in energy metabolism across diverse tissues. Studies have demonstrated that loss of Esrra leads to fat malabsorption and resistance to diet-induced obesity. However, the reliance of these studies on germline Esrra mutants overlooks the tissue-specific implications of ESRRA in diet-induced obesity. Notably, Esrra exhibits high expression in the gastrointestinal (GI) tract relative to other tissues. Given the critical role of the GI tract in dietary lipid metabolism, this study employs mouse genetics and genomics approaches to dissect the specific impact of intestinal ESRRA along with investigating its role in diet-induced obesity.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jahangir Iqbal
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA
- NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Chen W, Song YS, Lee HS, Lin CW, Lee J, Kang YE, Kim SK, Kim SY, Park YJ, Park JI. Estrogen-related receptor alpha promotes thyroid tumor cell survival via a tumor subtype-specific regulation of target gene networks. Oncogene 2024; 43:2431-2446. [PMID: 38937602 DOI: 10.1038/s41388-024-03078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells. Further, ESRRA expression and activity were relatively high in thyroid tumors with oncocytic characteristics, wherein ESRRA and mortalin exhibited relatively high functional overlap. Mechanistically, ESRRA directly regulated HSPA9 transcription through a novel ESRRA-responsive element located upstream of the HSPA9 promoter. Physiologically, ESRRA depletion suppressed thyroid tumor cell survival via caspase-dependent apoptosis, which ectopic mortalin expression substantially abrogated. ESRRA depletion also effectively suppressed tumor growth and mortalin expression in the xenografts of oncocytic or ESRRA-overexpressing human thyroid tumor cells in mice. Notably, our Bioinformatics analyses of patient data revealed two ESRRA target gene clusters that contrast oncocytic-like and anaplastic features of follicular thyroid tumors. These findings suggest that ESRRA is a tumor-specific regulator of mortalin expression, the ESRRA-mortalin axis has higher significance in tumors with oncocytic characteristics, and ESRRA target gene networks can refine molecular classification of thyroid cancer.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Sai Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Junguee Lee
- Department of Pathology, Konyang University School of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital & College of Medicine, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Ning Z, Liu Y, Wan M, Zuo Y, Chen S, Shi Z, Xu Y, Li H, Ko H, Zhang J, Xiao S, Guo D, Tang Y. APOE2 protects against Aβ pathology by improving neuronal mitochondrial function through ERRα signaling. Cell Mol Biol Lett 2024; 29:87. [PMID: 38867189 PMCID: PMC11170814 DOI: 10.1186/s11658-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease and apolipoprotein E (APOE) genotypes (APOE2, APOE3, and APOE4) show different AD susceptibility. Previous studies indicated that individuals carrying the APOE2 allele reduce the risk of developing AD, which may be attributed to the potential neuroprotective role of APOE2. However, the mechanisms underlying the protective effects of APOE2 is still unclear. METHODS We analyzed single-nucleus RNA sequencing and bulk RNA sequencing data of APOE2 and APOE3 carriers from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort. We validated the findings in SH-SY5Y cells and AD model mice by evaluating mitochondrial functions and cognitive behaviors respectively. RESULTS The pathway analysis of six major cell types revealed a strong association between APOE2 and cellular stress and energy metabolism, particularly in excitatory and inhibitory neurons, which was found to be more pronounced in the presence of beta-amyloid (Aβ). Moreover, APOE2 overexpression alleviates Aβ1-42-induced mitochondrial dysfunction and reduces the generation of reactive oxygen species in SH-SY5Y cells. These protective effects may be due to ApoE2 interacting with estrogen-related receptor alpha (ERRα). ERRα overexpression by plasmids or activation by agonist was also found to show similar mitochondrial protective effects in Aβ1-42-stimulated SH-SY5Y cells. Additionally, ERRα agonist treatment improve the cognitive performance of Aβ injected mice in both Y maze and novel object recognition tests. ERRα agonist treatment increased PSD95 expression in the cortex of agonist-treated-AD mice. CONCLUSIONS APOE2 appears to enhance neural mitochondrial function via the activation of ERRα signaling, which may be the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Mengyao Wan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - You Zuo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Wang ZH, Wang J, Liu F, Sun S, Zheng Q, Hu X, Yin Z, Xie C, Wang H, Wang T, Zhang S, Wang YP. THAP3 recruits SMYD3 to OXPHOS genes and epigenetically promotes mitochondrial respiration in hepatocellular carcinoma. FEBS Lett 2024; 598:1513-1531. [PMID: 38664231 DOI: 10.1002/1873-3468.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria harbor the oxidative phosphorylation (OXPHOS) system to sustain cellular respiration. However, the transcriptional regulation of OXPHOS remains largely unexplored. Through the cancer genome atlas (TCGA) transcriptome analysis, transcription factor THAP domain-containing 3 (THAP3) was found to be strongly associated with OXPHOS gene expression. Mechanistically, THAP3 recruited the histone methyltransferase SET and MYND domain-containing protein 3 (SMYD3) to upregulate H3K4me3 and promote OXPHOS gene expression. The levels of THAP3 and SMYD3 were altered by metabolic cues. They collaboratively supported liver cancer cell proliferation and colony formation. In clinical human liver cancer, both of them were overexpressed. THAP3 positively correlated with OXPHOS gene expression. Together, THAP3 cooperates with SMYD3 to epigenetically upregulate cellular respiration and liver cancer cell proliferation.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Sijun Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaotian Hu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zihan Yin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, China
| | - Shengjie Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yi-Ping Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
6
|
van der Zalm AP, Dings MPG, Manoukian P, Boersma H, Janssen R, Bailey P, Koster J, Zwijnenburg D, Volckmann R, Bootsma S, Waasdorp C, van Mourik M, Blangé D, van den Ende T, Oyarce CI, Derks S, Creemers A, Ebbing EA, Hooijer GK, Meijer SL, van Berge Henegouwen MI, Medema JP, van Laarhoven HWM, Bijlsma MF. The pluripotency factor NANOG contributes to mesenchymal plasticity and is predictive for outcome in esophageal adenocarcinoma. COMMUNICATIONS MEDICINE 2024; 4:89. [PMID: 38760583 PMCID: PMC11101480 DOI: 10.1038/s43856-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Despite the advent of neoadjuvant chemoradiotherapy (CRT), overall survival rates of esophageal adenocarcinoma (EAC) remain low. A readily induced mesenchymal transition of EAC cells contributes to resistance to CRT. METHODS In this study, we aimed to chart the heterogeneity in cell state transition after CRT and to identify its underpinnings. A panel of 12 esophageal cultures were treated with CRT and ranked by their relative epithelial-mesenchymal plasticity. RNA-sequencing was performed on 100 pre-treatment biopsies. After RNA-sequencing, Ridge regression analysis was applied to correlate gene expression to ranked plasticity, and models were developed to predict mesenchymal transitions in patients. Plasticity score predictions of the three highest significant predictive models were projected on the pre-treatment biopsies and related to clinical outcome data. Motif enrichment analysis of the genes associated with all three models was performed. RESULTS This study reveals NANOG as the key associated transcription factor predicting mesenchymal plasticity in EAC. Expression of NANOG in pre-treatment biopsies is highly associated with poor response to neoadjuvant chemoradiation, the occurrence of recurrences, and median overall survival difference in EAC patients (>48 months). Perturbation of NANOG reduces plasticity and resensitizes cell lines, organoid cultures, and patient-derived in vivo grafts. CONCLUSIONS In conclusion, NANOG is a key transcription factor in mesenchymal plasticity in EAC and a promising predictive marker for outcome.
Collapse
Affiliation(s)
- Amber P van der Zalm
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Paul Manoukian
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Hannah Boersma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Reimer Janssen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Peter Bailey
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Danny Zwijnenburg
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Richard Volckmann
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Sanne Bootsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Monique van Mourik
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Dionne Blangé
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Tom van den Ende
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - César I Oyarce
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Sarah Derks
- Oncode Institute, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Aafke Creemers
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Eva A Ebbing
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Gerrit K Hooijer
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Sybren L Meijer
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands.
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
7
|
Spinelli S, Bruschi M, Passalacqua M, Guida L, Magnone M, Sturla L, Zocchi E. Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System. Int J Mol Sci 2024; 25:4796. [PMID: 38732013 PMCID: PMC11084903 DOI: 10.3390/ijms25094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| |
Collapse
|
8
|
Viggars MR, Berko HE, Hesketh SJ, Wolff CA, Gutierrez-Monreal MA, Martin RA, Jennings IG, Huo Z, Esser KA. Skeletal muscle BMAL1 is necessary for transcriptional adaptation of local and peripheral tissues in response to endurance exercise training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562100. [PMID: 37905004 PMCID: PMC10614785 DOI: 10.1101/2023.10.13.562100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objectives In this investigation, we addressed the contribution of the core circadian clock factor, BMAL1, in skeletal muscle to both acute transcriptional responses to exercise and transcriptional remodelling in response to exercise training. Additionally, we adopted a systems biology approach to investigate how loss of skeletal muscle BMAL1 altered peripheral tissue homeostasis as well as exercise training adaptations in iWAT, liver, heart, and lung of male mice. Methods Combining inducible skeletal muscle specific BMAL1 knockout mice, physiological testing and standardized exercise protocols, we performed a multi-omic analysis (transcriptomics, chromatin accessibility and metabolomics) to explore loss of muscle BMAL1 on muscle and peripheral tissue responses to exercise. Results Muscle-specific BMAL1 knockout mice demonstrated a blunted transcriptional response to acute exercise, characterized by the lack of upregulation of well-established exercise responsive transcription factors including Nr4a3 and Ppargc1a. Six weeks of exercise training in muscle-specific BMAL1 knockout mice induced significantly greater and divergent transcriptomic and metabolomic changes in muscle. Surprisingly, liver, lung, inguinal white adipose and heart showed divergent exercise training transcriptomes with less than 5% of 'exercise-training' responsive genes shared for each tissue between genotypes. Conclusion Our investigation has uncovered the critical role that BMAL1 plays in skeletal muscle as a key regulator of gene expression programs for both acute exercise and training adaptations. In addition, our work has uncovered the significant impact that altered exercise response in muscle plays in the peripheral tissue adaptation to exercise training. We also note that the transcriptome adaptations to steady state training suggest that without BMAL1, skeletal muscle does not achieve the expected homeostatic program. Our work also demonstrates that if the muscle adaptations diverge to a more maladaptive state this is linked to increased inflammation across many tissues. Understanding the molecular targets and pathways contributing to health vs. maladaptive exercise adaptations will be critical for the next stage of therapeutic design for exercise mimetics.
Collapse
Affiliation(s)
- Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Hannah E Berko
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Stuart J Hesketh
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- School of Medicine, University of Central Lancashire, United Kingdom
| | - Christopher A Wolff
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Miguel A Gutierrez-Monreal
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Isabel G Jennings
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
9
|
Li XY, Zhou GF, Xie XY, Pu YL, -Chen X, Li CL, Yang J, Wang L, Chen GJ. Short-term regulation of TSFM level does not alter amyloidogenesis and mitochondrial function in type-specific cells. Mol Biol Rep 2024; 51:484. [PMID: 38578353 DOI: 10.1007/s11033-024-09426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Mitochondrial Ts translation elongation factor (TSFM) is an enzyme that catalyzes exchange of guanine nucleotides. By forming a complex with mitochondrial Tu translation elongation factor (TUFM), TSFM participates in mitochondrial protein translation. We have previously reported that TUFM regulates translation of beta-site APP cleaving enzyme 1 (BACE1) via ROS (reactive oxygen species)-dependent mechanism, suggesting a potential role in amyloid precursor protein (APP) processing associated with Alzheimer's disease (AD), which led to the speculation that TSFM may regulate APP processing in a similar way to TUFM. METHODS AND RESULTS Here, we report that in cultured cells, knockdown or overexpression TSFM did not change protein levels in BACE1 and APP. Besides, the levels of cytoplasmic ROS and mitochondrial superoxide, in addition to ATP level, cell viability and mitochondrial membrane potential were not significantly altered by TSFM knockdown in the short term. Further transcriptome analysis revealed that expression of majority of mitochondrial genes were not remarkably changed by TSFM silencing. The possibility of TSFM involved in cardiomyopathy and cancer development was uncovered using bioinformatics analysis. CONCLUSIONS Collectively, short-term regulation of TSFM level in cultured cells does not cause a significant change in proteins involved in APP processing, levels in ROS and ATP associated with mitochondrial function. Whereas our study could contribute to comprehend certain clinical features of TSFM mutations, the roles of TSFM in cardiomyopathy and cancer development might deserve further investigation.
Collapse
Affiliation(s)
- Xiao-Yun Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiong-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Ya-Lan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xue -Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Chen-Lu Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
10
|
Liu Z, Zeinalzadeh Z, Huang T, Han Y, Peng L, Wang D, Zhou Z, Ousmane D, Wang J. Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer. Transl Oncol 2024; 42:101896. [PMID: 38324960 PMCID: PMC10851222 DOI: 10.1016/j.tranon.2024.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Esophageal cancer, known for its high incidence and low five-year survival rate, poses significant treatment challenges. A key aspect of this challenge is the close link between mitochondria and resistance to chemoradiotherapy (CRT). Currently, there is a scarcity of biomarkers for predicting CRT response and prognosis in esophageal cancer. Our study addresses this gap by developing a prognostic model that incorporates mitochondria-related CRT resistance (MRCRTR) genes, including CTSL, TBL1X, CLN8, MMP1, PDPN, and MRPL37. Survival analysis using Kaplan-Meier curves reveals that patients with high MRCRTR scores have lower survival rates than those with low scores. Utilizing a nomogram, we successfully predict the one-, two-, and three-year overall survival rates for esophageal cancer patients. Cox regression analysis confirms the MRCRTR score as an independent prognostic factor. Furthermore, our single-cell and correlation analyses suggested that MRCRTR genes might influence CRT resistance by modulating the immune microenvironment and impacting angiogenesis. Our pan-cancer analysis also indicates the potential applicability of MRCRTR scores to head and neck squamous cell carcinoma. The validation of these findings, conducted with samples from Xiang-ya Hospital, aligns closely with our bioinformatics results. Our study not only explores the role of MRCRTR genes in predicting the prognosis of esophageal cancer but also enhances the understanding of the interplay between CRT, mitochondria, and patient outcomes.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Henckens SPG, Liu D, Gisbertz SS, Kalff MC, Anderegg MCJ, Crull D, Daams F, van Dalsen AD, Dekker JWT, van Det MJ, van Duijvendijk P, Eshuis WJ, Groenendijk RPR, Haveman JW, van Hillegersberg R, Luyer MDP, Olthof PB, Pierie JPEN, Plat VD, Rosman C, Ruurda JP, van Sandick JW, Sosef MN, Voeten DM, Vijgen GHEJ, Bijlsma MF, Meijer SL, Hulshof MCCM, Oyarce C, Lagarde SM, van Laarhoven HWM, van Berge Henegouwen MI. Prognostic value of Mandard score and nodal status for recurrence patterns and survival after multimodal treatment of oesophageal adenocarcinoma. Br J Surg 2024; 111:znae034. [PMID: 38387083 PMCID: PMC10883709 DOI: 10.1093/bjs/znae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND This study evaluated the association of pathological tumour response (tumour regression grade, TRG) and a novel scoring system, combining both TRG and nodal status (TRG-ypN score; TRG1-ypN0, TRG>1-ypN0, TRG1-ypN+ and TRG>1-ypN+), with recurrence patterns and survival after multimodal treatment of oesophageal adenocarcinoma. METHODS This Dutch nationwide cohort study included patients treated with neoadjuvant chemoradiotherapy followed by oesophagectomy for distal oesophageal or gastro-oesophageal junctional adenocarcinoma between 2007 and 2016. The primary endpoint was the association of Mandard score and TRG-ypN score with recurrence patterns (rate, location, and time to recurrence). The secondary endpoint was overall survival. RESULTS Among 2746 inclusions, recurrence rates increased with higher Mandard scores (TRG1 30.6%, TRG2 44.9%, TRG3 52.9%, TRG4 61.4%, TRG5 58.2%; P < 0.001). Among patients with recurrent disease, the distribution (locoregional versus distant) was the same for the different TRG groups. Patients with TRG1 developed more brain recurrences (17.7 versus 9.8%; P = 0.001) and had a longer mean overall survival (44 versus 35 months; P < 0.001) than those with TRG>1. The TRG>1-ypN+ group had the highest recurrence rate (64.9%) and worst overall survival (mean 27 months). Compared with the TRG>1-ypN0 group, patients with TRG1-ypN+ had a higher risk of recurrence (51.9 versus 39.6%; P < 0.001) and worse mean overall survival (33 versus 41 months; P < 0.001). CONCLUSION Improved tumour response to neoadjuvant therapy was associated with lower recurrence rates and higher overall survival rates. Among patients with recurrent disease, TRG1 was associated with a higher incidence of brain recurrence than TRG>1. Residual nodal disease influenced prognosis more negatively than residual disease at the primary tumour site.
Collapse
Affiliation(s)
- Sofie P G Henckens
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Dajia Liu
- Department of Medical Oncology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Centre for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Suzanne S Gisbertz
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Marianne C Kalff
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Maarten C J Anderegg
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - David Crull
- Department of Surgery, Ziekenhuisgroep Twente, Almelo, the Netherlands
| | - Freek Daams
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | - Marc J van Det
- Department of Surgery, Ziekenhuisgroep Twente, Almelo, the Netherlands
| | | | - Wietse J Eshuis
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | | | - Jan Willem Haveman
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Misha D P Luyer
- Department of Surgery, Catharina Ziekenhuis, Eindhoven, the Netherlands
| | - Pim B Olthof
- Department of Surgery, Reinier de Graaf Groep, Delft, the Netherlands
| | | | - Victor D Plat
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Camiel Rosman
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jelle P Ruurda
- Department of Surgery, UMC Utrecht, Utrecht, the Netherlands
| | - Johanna W van Sandick
- Department of Surgery, Antoni van Leeuwenhoek Ziekenhuis, Amsterdam, the Netherlands
| | | | - Daan M Voeten
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Guy H E J Vijgen
- Department of Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Maarten F Bijlsma
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Centre for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Sybren L Meijer
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten C C M Hulshof
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Radiotherapy, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Cesar Oyarce
- Centre for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Sjoerd M Lagarde
- Department of Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Su Y, Xu Y, Hu Y, Chang Y, Wu F, Yang M, Peng Y. Late age at first birth is a protective factor for oesophageal cancer and gastro-oesophageal reflux: the evidence from the genetic study. Front Endocrinol (Lausanne) 2024; 14:1329763. [PMID: 38288469 PMCID: PMC10823002 DOI: 10.3389/fendo.2023.1329763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Objective The primary objective of this research endeavor was to examine the underlying genetic causality between the age at first birth (AFB) and four prevalent esophageal diseases, namely oesophageal obstruction (OO), oesophageal varices (OV), gastro-oesophageal reflux (GOR), and oesophageal cancer (OC). Methods We conducted a two-sample Mendelian randomization (MR) analysis to examine the causal association between AFB and four prevalent esophageal disorders. We employed eight distinct MR analysis techniques to evaluate causal relationships, encompassing random-effects inverse variance weighted (IVW), MR Egger, weighted median, simple mode, weighted mode, maximum likelihood, penalized weighted median, and fixed-effects IVW. The random-effects IVW method served as the primary approach for our analysis. Furthermore, we executed several sensitivity analyses to assess the robustness of the genetic causal inferences. Results The random-effects IVW analysis revealed a significant negative genetic causal association between AFB and both GOR (P < 0.001, Odds Ratio [OR] 95% Confidence Interval [CI] = 0.882 [0.828-0.940]) and OC (P < 0.001, OR 95% CI = 0.998 [0.998-0.999]). Conversely, there was insufficient evidence support to substantiate a genetic causal link between AFB and OO (P = 0.399, OR 95% CI = 0.873 [0.637-1.197]) or OV (P = 0.881, OR 95% CI = 0.978 [0.727-1.314]). The results of sensitivity analyses underscore the robustness and reliability of our MR analysis. Conclusion The findings of this investigation substantiate the notion that elevated AFB confers a protective effect against GOR and OC. In addition, no causative association was discerned between AFB and OO or OV at the genetic level.
Collapse
Affiliation(s)
- Yani Su
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yiwei Xu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yunfeng Hu
- Department of Radiotherapy, Yan’an University Affiliated Hospital, Yan’an, China
| | - Yu Chang
- Department of Radiotherapy, Yan’an University Affiliated Hospital, Yan’an, China
| | - Fangcai Wu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuhui Peng
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
13
|
Liu H, Wang X. Esophageal organoids: applications and future prospects. J Mol Med (Berl) 2023; 101:931-945. [PMID: 37380866 DOI: 10.1007/s00109-023-02340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Organoids have been developed in the last decade as a new research tool to simulate organ cell biology and disease. Compared to traditional 2D cell lines and animal models, experimental data based on esophageal organoids are more reliable. In recent years, esophageal organoids derived from multiple cell sources have been established, and relatively mature culture protocols have been developed. Esophageal inflammation and cancer are two directions of esophageal organoid modeling, and organoid models of esophageal adenocarcinoma, esophageal squamous cell carcinoma, and eosinophilic esophagitis have been established. The properties of esophageal organoids, which mimic the real esophagus, contribute to research in drug screening and regenerative medicine. The combination of organoids with other technologies, such as organ chips and xenografts, can complement the deficiencies of organoids and create entirely new research models that are more advantageous for cancer research. In this review, we will summarize the development of tumor and non-tumor esophageal organoids, the current application of esophageal organoids in disease modeling, regenerative medicine, and drug screening. We will also discuss the future prospects of esophageal organoids.
Collapse
Affiliation(s)
- Hongyuan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xianli Wang
- Shanghai Jiao Tong University, School of Public Health, Shanghai, 200025, China.
| |
Collapse
|
14
|
van der Zalm AP, Bootsma S, Rodermond HM, Oei AL, Bijlsma MF. Local irradiation of patient-derived tumors in immunodeficient mice. STAR Protoc 2023; 4:102098. [PMID: 36825807 PMCID: PMC9929630 DOI: 10.1016/j.xpro.2023.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Severe combined immunodeficient mice are typically used for xenografting experiments and show reliable tumor engraftment; however, their Prkdscid mutation renders them highly sensitive to irradiation. Here, we describe a protocol that allows safe local irradiation of tumor xenografts in immunodeficient mice. We detail the steps for the establishment and handling of patient-derived cancer cultures, subcutaneous injection of cancer cells on the mouse hind limb, localized irradiation in mice, tumor monitoring, and tumor characterization via histological and immunohistochemical assessment. For complete details on the use and execution of this protocol, please refer to Dings et al. (2022).1.
Collapse
Affiliation(s)
- Amber P van der Zalm
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, De Boelelaan 1118, 1081HV Amsterdam, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, De Boelelaan 1118, 1081HV Amsterdam, the Netherlands
| | - Hans M Rodermond
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, De Boelelaan 1118, 1081HV Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Arlene L Oei
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, De Boelelaan 1118, 1081HV Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, De Boelelaan 1118, 1081HV Amsterdam, the Netherlands
| |
Collapse
|