1
|
Zheng K, Chong AY, Mentzer AJ. How could our genetics impact COVID-19 vaccine response? Expert Rev Clin Immunol 2024; 20:1027-1039. [PMID: 38676712 DOI: 10.1080/1744666x.2024.2346584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed unprecedented global health challenges since its emergence in December 2019. The rapid availability of vaccines has been estimated to save millions of lives, but there is variation in how individuals respond to vaccines, influencing their effectiveness at an individual, and population level. AREAS COVERED This review focuses on human genetic factors influencing the immune response and effectiveness of vaccines, highlighting the importance of associations across the HLA locus. Genome-Wide Association Studies (GWAS) and other genetic association analyses have identified statistically significant associations between specific HLA alleles including HLA-DRB1*13, DBQ1*06, and A*03 impacting antibody responses and the risk of breakthrough infections post-vaccination. Relationships between these associations and potential mechanisms and links with risks of natural infection or disease are explored, and this review concludes by emphasizing how understanding the mechanisms of these genetic determinants may inform the development of tailored vaccination strategies. EXPERT OPINION Although complex, we believe these findings from the SARS-CoV2 pandemic offer a unique opportunity to understand the relationships between HLA and infection and vaccine response, with a goal of optimizing individual protection against COVID-19 in the ongoing pandemic, and possibly influencing wider vaccine development in the future.
Collapse
Affiliation(s)
- Keyi Zheng
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Buoninfante A, Andeweg A, Genov G, Cavaleri M. Myocarditis associated with COVID-19 vaccination. NPJ Vaccines 2024; 9:122. [PMID: 38942751 PMCID: PMC11213864 DOI: 10.1038/s41541-024-00893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/23/2024] [Indexed: 06/30/2024] Open
Abstract
Following the start of the COVID-19 vaccination campaign, the adverse events of myocarditis and pericarditis were linked mainly to mRNA COVID-19 vaccines by the regulatory authorities worldwide. COVID-19 vaccines have been administered to several million people and the risk of myocarditis post COVID-19 vaccination has been characterised in great detail. At the present time the research data available are scarce and there is still no clear understanding of the biological mechanism/s responsible for this disease. This manuscript provides a concise overview of the epidemiology of myocarditis and the most prominent mechanistic insights in the pathophysiology of the disease. Most importantly it underscores the needed next steps in the research agenda required to characterize the pathophysiology of this disease post-COVID-19 vaccination. Finally, it shares our perspectives and considerations for public health.
Collapse
Affiliation(s)
| | - Arno Andeweg
- Public Health Threats, European Medicines Agency, Amsterdam, The Netherlands
| | - Georgy Genov
- Pharmacovigilance Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Marco Cavaleri
- Public Health Threats, European Medicines Agency, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Kim SH, Españo E, Padasas BT, Son JH, Oh J, Webby RJ, Lee YR, Park CS, Kim JK. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Netw 2024; 24:e19. [PMID: 38974213 PMCID: PMC11224667 DOI: 10.4110/in.2024.24.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | | | - Ju-Ho Son
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jihee Oh
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38195, USA
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
4
|
Xie J, Mothe B, Alcalde Herraiz M, Li C, Xu Y, Jödicke AM, Gao Y, Wang Y, Feng S, Wei J, Chen Z, Hong S, Wu Y, Su B, Zheng X, Cohet C, Ali R, Wareham N, Alhambra DP. Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes. Nat Commun 2024; 15:4031. [PMID: 38740772 DOI: 10.1038/s41467-024-48339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.
Collapse
Affiliation(s)
- Junqing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Beatriz Mothe
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Marta Alcalde Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Chunxiao Li
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Annika M Jödicke
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Yaqing Gao
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Yunhe Wang
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jia Wei
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Zhuoyao Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yeda Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Catherine Cohet
- Real-World Evidence Workstream, Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Noord-Holland, The Netherlands
| | - Raghib Ali
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nick Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Daniel Prieto Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Esposito M, Minnai F, Copetti M, Miscio G, Perna R, Piepoli A, De Vincentis G, Benvenuto M, D'Addetta P, Croci S, Baldassarri M, Bruttini M, Fallerini C, Brugnoni R, Cavalcante P, Baggi F, Corsini EMG, Ciusani E, Andreetta F, Dragani TA, Fratelli M, Carella M, Mantegazza RE, Renieri A, Colombo F. Human leukocyte antigen variants associate with BNT162b2 mRNA vaccine response. COMMUNICATIONS MEDICINE 2024; 4:63. [PMID: 38575714 PMCID: PMC10995155 DOI: 10.1038/s43856-024-00490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.
Collapse
Affiliation(s)
- Martina Esposito
- National Research Council, Institute for Biomedical Technologies, Segrate, MI, Italy
| | - Francesca Minnai
- National Research Council, Institute for Biomedical Technologies, Segrate, MI, Italy
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Giuseppe Miscio
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Rita Perna
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Ada Piepoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | | | - Mario Benvenuto
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Paola D'Addetta
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Susanna Croci
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Mirella Bruttini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | | | | | - Fulvio Baggi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Emilio Ciusani
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | | | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Colombo
- National Research Council, Institute for Biomedical Technologies, Segrate, MI, Italy.
| |
Collapse
|
6
|
Aharon A, Benedek G, Barhoum B, Parnasa E, Magadle N, Perzon O, Mevorach D. HLA binding-groove motifs are associated with myocarditis induction after Pfizer-BioNTech BNT162b2 vaccination. Eur J Clin Invest 2024; 54:e14142. [PMID: 38071404 DOI: 10.1111/eci.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS We found a higher incidence of myocarditis in young males who had received at least two Pfizer-BioNTech BNT162b2 vaccinations. The human leukocyte antigens (HLA) are known to play an important role in infectious and autoinflammatory diseases. We hypothesized that certain HLA alleles might be associated with vaccination-induced myocarditis. METHODS HLA typing was performed using next-generation sequencing technology with the Illumina Iseq100 platform. HLA class I and II loci were genotyped in 29 patients with post-vaccination myocarditis and compared with HLA data from 300 healthy controls. RESULTS We demonstrate that the DRB1*14:01, DRB1*15:03 alleles and the motifs in HLA-A - Leu62 and Gln63, which are part of binding pocket B and HLA-DR Tyr47, His60, Arg70 and Glu74, which are part of binding pockets P4, P7 and P9, were significantly associated with disease susceptibility. CONCLUSIONS Our findings suggest that immunogenetic fingerprints in HLA peptide-binding grooves may affect the presentation of peptides derived from the Pfizer-BioNTech BNT162b2 vaccination to T cells and induce an inflammatory process that results in myocarditis.
Collapse
Affiliation(s)
- Aviran Aharon
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Gil Benedek
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Barhoum Barhoum
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elchanan Parnasa
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nur Magadle
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Perzon
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
7
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Crocchiolo R, Frassati C, Gallina AM, Pedini P, Maioli S, Veronese L, Pani A, Scaglione F, D'Amico F, Crucitti L, Sacchi N, Rossini S, Picard C. Strong humoral response after Covid-19 vaccination correlates with the common HLA allele A*03:01 and protection from breakthrough infection. HLA 2024; 103:e15421. [PMID: 38433722 DOI: 10.1111/tan.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Few data exist on the role of genetic factors involving the HLA system on response to Covid-19 vaccines. Moving from suggestions of a previous study investigating the association of some HLA alleles with humoral response to BNT162b2, we here compared the HLA allele frequencies among weak (n = 111) and strong (n = 123) responders, defined as those healthcare workers with the lowest and the highest anti-Spike antibody levels after vaccination. Individuals with clinical history of Covid-19 or positive anti-nucleocapside antibodies were excluded. We found the common HLA-A*03:01 allele as an independent predictor of strong humoral response (OR = 12.46, 95% CI: 4.41-35.21, p < 0.0001), together with younger age of vaccines (p = 0.004). Correlation between antibody levels and protection from breakthrough infection has been observed, with a 2-year cumulative incidence of 42% and 63% among strong and weak responders, respectively (p = 0.03). Due to the high frequency of HLA-A*03:01 and the need for seasonal vaccinations against SARS-CoV-2 mutants, our findings provide useful information about the inter-individual differences observed in humoral response after Covid-19 vaccine and might support further studies on the next seasonal vaccines.
Collapse
Affiliation(s)
- Roberto Crocchiolo
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | | - Anna Maria Gallina
- Italian Bone Marrow Donor Registry, E.O. Ospedali Galliera Genova, Genova, Italy
| | | | | | - Luca Veronese
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Arianna Pani
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Francesco Scaglione
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Federico D'Amico
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Lara Crucitti
- Hematology Department, Azienda Sanitaria Provinciale di Trapani, Castelvetrano, Italy
| | - Nicoletta Sacchi
- Italian Bone Marrow Donor Registry, E.O. Ospedali Galliera Genova, Genova, Italy
| | - Silvano Rossini
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | |
Collapse
|
9
|
Cruz Cisneros MC, Anderson EJ, Hampton BK, Parotti B, Sarkar S, Taft-Benz S, Bell TA, Blanchard M, Dillard JA, Dinnon KH, Hock P, Leist SR, Madden EA, Shaw GD, West A, Baric RS, Baxter VK, Pardo-Manuel de Villena F, Heise MT, Ferris MT. Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population. Vaccines (Basel) 2024; 12:103. [PMID: 38276675 PMCID: PMC10821422 DOI: 10.3390/vaccines12010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.
Collapse
Affiliation(s)
- Marta C. Cruz Cisneros
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
| | - Brea K. Hampton
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Breantié Parotti
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Matthew Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| |
Collapse
|
10
|
Marchal A, Cirulli ET, Neveux I, Bellos E, Thwaites RS, Schiabor Barrett KM, Zhang Y, Nemes-Bokun I, Kalinova M, Catchpole A, Tangye SG, Spaan AN, Lack JB, Ghosn J, Burdet C, Gorochov G, Tubach F, Hausfater P, Dalgard CL, Zhang SY, Zhang Q, Chiu C, Fellay J, Grzymski JJ, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Lack of association between HLA and asymptomatic SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299623. [PMID: 38168184 PMCID: PMC10760282 DOI: 10.1101/2023.12.06.23299623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the US (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified. These findings suggest that memory T-cell immunity to seasonal coronaviruses does not strongly influence the outcome of SARS-CoV-2 infection in unvaccinated individuals.
Collapse
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Evangelos Bellos
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ryan S. Thwaites
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Ivana Nemes-Bokun
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | | | | | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - András N. Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands, EU
| | - Justin B. Lack
- NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University of Paris, Paris, France, EU
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France, EU
| | - Charles Burdet
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University of Paris, Paris, France, EU
- Epidémiologie clinique du Centre d’Investigation Clinique (CIC-EP), INSERM CIC 1425, Hôpital Bichat, 75018 Paris, France, EU
- Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France, EU
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d’immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France, EU
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, CIC-1901, Paris, France, EU
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France, EU
- GRC-14 BIOFAST Sorbonne Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France, EU
| | | | | | | | | | | | | | | | | | | | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christopher Chiu
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph J. Grzymski
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
- Renown Health, Reno, NV, USA
| | - Vanessa Sancho-Shimizu
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
11
|
Magri C, Marchina E, Sansone E, D'Adamo AP, Cappellani S, Bonfanti C, Terlenghi L, Biasiotto G, Zanella I, Sala E, Caruso A, Lombardo M, Gasparini P, De Palma G, Gennarelli M. Genome-wide association studies of response and side effects to the BNT162b2 vaccine in Italian healthcare workers: Increased antibody levels and side effects in carriers of the HLA-A*03:01 allele. HLA 2023; 102:707-719. [PMID: 37469131 DOI: 10.1111/tan.15157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
The remarkable variability of response to vaccines against SARS-CoV-2 is apparent. The present study aims to estimate the extent to which the host genetic background contributes to this variability in terms of immune response and side effects following the administration of the BNT162b2 vaccine. We carried out a genome wide association study (GWAS) by genotyping 873 Italian healthcare workers who underwent anti-SARS-CoV-2 vaccination with the BNT162b2 vaccine and for whom information about anti-SARS-CoV-2 spike antibodies titers and vaccine side effects were available. The GWAS revealed a significant association between the HLA locus and the anti-SARS-CoV-2 Spike antibodies level at 2 months following the first dose of vaccine (SNP: rs1737060; p = 9.80 × 10-11 ). In particular, we observed a positive association between the antibody levels and the presence of the HLA-A*03:01 allele. The same allele was found associated with a 2-2.4-fold increased risk of experiencing specific side effects such as fever, chills and myalgia and a 1.5-1.8-fold increased risk of joint pain, nausea, fatigue, headache and asthenia, independently of age and sex. This study confirms that the heterogeneity in the immune response to the BNT162b2 vaccine and in its side effects are at least partially influenced by genetic variants. This information, integrated with individual biological and lifestyle-related correlates, could be of use in the definition of algorithms aimed at the identification of subjects in which the administration of additional vaccine doses would be particularly beneficial to maintain immunity against the virus.
Collapse
Affiliation(s)
- Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emanuele Sansone
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Unit of Occupational Health and Industrial Hygiene, University of Brescia, Brescia, Italy
| | - Adamo Pio D'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Carlo Bonfanti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory of Microbiology, ASST Spedali Civili, Brescia, Italy
| | | | - Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Section of Cytogenetics and Molecular Genetics, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Emma Sala
- Unit of Occupational Health, Hygiene, Toxicology and Prevention, ASST Spedali Civili, Brescia, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory of Microbiology, ASST Spedali Civili, Brescia, Italy
| | - Massimo Lombardo
- Chief Executive Office, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Unit of Occupational Health and Industrial Hygiene, University of Brescia, Brescia, Italy
- Unit of Occupational Health, Hygiene, Toxicology and Prevention, ASST Spedali Civili, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
12
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
13
|
Song L, Bai G, Liu XS, Li B, Li H. Efficient and accurate KIR and HLA genotyping with massively parallel sequencing data. Genome Res 2023; 33:923-931. [PMID: 37169596 PMCID: PMC10519407 DOI: 10.1101/gr.277585.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Killer cell immunoglobulin like receptor (KIR) genes and human leukocyte antigen (HLA) genes play important roles in innate and adaptive immunity. They are highly polymorphic and cannot be genotyped with standard variant calling pipelines. Compared with HLA genes, many KIR genes are similar to each other in sequences and may be absent in the chromosomes. Therefore, although many tools have been developed to genotype HLA genes using common sequencing data, none of them work for KIR genes. Even specialized KIR genotypers could not resolve all the KIR genes. Here we describe T1K, a novel computational method for the efficient and accurate inference of KIR or HLA alleles from RNA-seq, whole-genome sequencing, or whole-exome sequencing data. T1K jointly considers alleles across all genotyped genes, so it can reliably identify present genes and distinguish homologous genes, including the challenging KIR2DL5A/KIR2DL5B genes. This model also benefits HLA genotyping, where T1K achieves high accuracy in benchmarks. Moreover, T1K can call novel single-nucleotide variants and process single-cell data. Applying T1K to tumor single-cell RNA-seq data, we found that KIR2DL4 expression was enriched in tumor-specific CD8+ T cells. T1K may open the opportunity for HLA and KIR genotyping across various sequencing applications.
Collapse
Affiliation(s)
- Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gali Bai
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA;
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Sugimoto T, Yorishima A, Oka N, Masuda S, Nakamoto N, Kidoguchi G, Watanabe H, Yoshida Y, Mokuda S, Hirata S. Appearance of anti-MDA5 antibody-positive dermatomyositis after COVID-19 vaccination. Mod Rheumatol Case Rep 2023; 7:108-112. [PMID: 35950798 DOI: 10.1093/mrcr/rxac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023]
Abstract
The direct causes of dermatomyositis, a common autoimmune disease, have not yet been accurately identified, but several studies have linked this condition to various patient-associated and environmental factors, such as viral infections and area of residence. In the present report, we describe our experience with a patient presenting with anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis, which developed after vaccination against coronavirus disease 2019 (COVID-19). This patient was simultaneously diagnosed with anti-glutamic acid decarboxylase antibody-positive slowly progressive insulin-dependent diabetes (SPIDDM); her human leucocyte antigen test revealed that she expressed the DRB1*04:05 allele. This is important as this genotype is known to increase susceptibility to both anti-MDA5 antibody-positive dermatomyositis and type I diabetes. To the best of our knowledge, this is the first case of dermatomyositis complicated by SPIDDM identified after COVID-19 vaccination against COVID-19 and presenting with an underlying susceptible genotype. The patient's genetic predisposition may also be important for the development of autoimmune disease after COVID-19 vaccination.
Collapse
Affiliation(s)
- Tomohiro Sugimoto
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| | - Ai Yorishima
- Department of Rheumatology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Naoya Oka
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| | - Sho Masuda
- Department of Rheumatology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Naoki Nakamoto
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| | - Genki Kidoguchi
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| | - Hirofumi Watanabe
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| | - Yusuke Yoshida
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| | - Sho Mokuda
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| | - Shintaro Hirata
- Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan
| |
Collapse
|
15
|
Dobrijević Z, Gligorijević N, Šunderić M, Penezić A, Miljuš G, Tomić S, Nedić O. The association of human leucocyte antigen (HLA) alleles with COVID-19 severity: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2378. [PMID: 35818892 PMCID: PMC9349710 DOI: 10.1002/rmv.2378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Due to their pivotal role in orchestrating the immune response, HLA loci were recognized as candidates for genetic association studies related to the severity of COVID-19. Since the findings on the effects of HLA alleles on the outcome of SARS-CoV-2 infection remain inconclusive, we aimed to elucidate the potential involvement of genetic variability within HLA loci in the molecular genetics of COVID-19 by classifying the articles according to different disease severity/outcomes and by conducting a systematic review with meta-analysis. Potentially eligible studies were identified by searching PubMed, Scopus and Web of Science literature databases. A total of 28 studies with 13,073 participants were included in qualitative synthesis, while the results of 19 studies with 10,551 SARS-CoV-2-positive participants were pooled in the meta-analysis. According to the results of quantitative data synthesis, association with COVID-19 severity or with the lethal outcome was determined for the following alleles and allele families: HLA-A*01, HLA-A*03, HLA-A*11, HLA-A*23, HLA-A*31, HLA-A*68, HLA-A*68:02, HLA-B*07:02, HLA-B*14, HLA-B*15, HLA-B*40:02, HLA-B*51:01, HLA-B*53, HLA-B*54, HLA-B*54:01, HLA-C*04, HLA-C*04:01, HLA-C*06, HLA-C*07:02, HLA-DRB1*11, HLA-DRB1*15, HLA-DQB1*03 and HLA-DQB1*06 (assuming either allelic or dominant genetic model). We conclude that alleles of HLA-A, -B, -C, -DRB1 and -DQB1 loci may represent potential biomarkers of COVID-19 severity and/or mortality, which needs to be confirmed in a larger set of studies.
Collapse
Affiliation(s)
- Zorana Dobrijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Nikola Gligorijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Miloš Šunderić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Ana Penezić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Goran Miljuš
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Sergej Tomić
- Department for Immunology and ImmunoparasitologyUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Olgica Nedić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| |
Collapse
|
16
|
Srivastava A, Hollenbach JA. The immunogenetics of COVID-19. Immunogenetics 2022; 75:309-320. [PMID: 36534127 PMCID: PMC9762652 DOI: 10.1007/s00251-022-01284-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
Collapse
Affiliation(s)
- Anshika Srivastava
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| | - Jill A. Hollenbach
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
17
|
Gemmati D, Longo G, Gallo I, Silva JA, Secchiero P, Zauli G, Hanau S, Passaro A, Pellegatti P, Pizzicotti S, Serino ML, Singh AV, Tisato V. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: The role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes. Front Genet 2022; 13:1028081. [PMID: 36531241 PMCID: PMC9748098 DOI: 10.3389/fgene.2022.1028081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 08/26/2023] Open
Abstract
Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Stefania Hanau
- Department of Neuroscience & Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | - Ajay Vikram Singh
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Gabashvili IS. The Incidence and Effect of Adverse Events Due to COVID-19 Vaccines on Breakthrough Infections: Decentralized Observational Study With Underrepresented Groups. JMIR Form Res 2022; 6:e41914. [PMID: 36309347 PMCID: PMC9640199 DOI: 10.2196/41914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Despite continuing efforts to improve the inclusion of underserved groups in clinical research, gaps in diversity remain. Participation of special populations is especially important when facing problems of unprecedented complexity such as the COVID-19 pandemic. A better understanding of factors associated with the immune response in diverse populations would advance future preventive and curative approaches. Objective The objective of this study was to investigate the factors potentially responsible for adverse events following COVID-19 immunization. The study population included adults from rural areas, transitional countries, and those with medically understudied conditions, across a broad age range. Methods The study evolved from peer support networks developed during the COVID-19 pandemic. Participants were recruited digitally through online neighborhood and health communities. Some of the participants volunteered as study investigators assisting with offline recruitment and safety monitoring. Individuals who consented to participate were asked to share their vaccination experiences either using constantly evolving web-based surveys or via one-on-one communication. Inferential statistical analysis to estimate differences between study groups was performed using parametric and nonparametric tests. Results Of 1430 participants who shared their vaccination experiences, 648 had outcome measures at their 1.5-year follow-up. Significant differences were found between age groups, types of vaccine adverse events (VAEs), incidences of breakthrough infections, and health conditions linked to the microbiome. Pairwise comparisons showed that VAEs interfering with daily activities were significantly higher in both younger (18-59 years) and older age groups (80-100 years, P<.001) than in the 60-79–year age group. Short-term VAEs were associated with lower incidence of breakthrough COVID-19 infections relative to those who reported either minimal or long-term adverse events (P<.001). A genetic origin was suggested for some adverse reactions. Conclusions The findings of this study demonstrate that vaccine adverse reactions in older individuals are being overlooked, and the incidence of VAEs impairing immunity may be higher than previously perceived. Better preventive measures are needed for all those at risk for life-threatening and long-term adverse events due to vaccination. Supportive community-based studies focusing on these populations could add important data to the current body of knowledge. Further and more comprehensive studies should follow. Trial Registration ClinicalTrials.gov NCT04832932; https://clinicaltrials.gov/ct2/show/NCT04832932 International Registered Report Identifier (IRRID) RR2-10.1101/2021.06.28.21256779
Collapse
|
19
|
Bolze A, Mogensen TH, Zhang SY, Abel L, Andreakos E, Arkin LM, Borghesi A, Brodin P, Hagin D, Novelli G, Okada S, Peter J, Renia L, Severe K, Tiberghien P, Vinh DC, Cirulli ET, Casanova JL, Hsieh EWY. Decoding the Human Genetic and Immunological Basis of COVID-19 mRNA Vaccine-Induced Myocarditis. J Clin Immunol 2022; 42:1354-1359. [PMID: 36207567 PMCID: PMC9546418 DOI: 10.1007/s10875-022-01372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022]
Affiliation(s)
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lisa M Arkin
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Petter Brodin
- SciLifeLab, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, University of Tel-Aviv, Tel-Aviv, Israel
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jonny Peter
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Cape Town, Cape Town, South Africa
| | - Laurent Renia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Karine Severe
- Haitian Group for the Study of Kaposi's Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Pierre Tiberghien
- Etablissement Francais du Sang, La Plaine-St Denis, France
- UMR 1098 RIGHT, Inserm EFS, Université de Franche-Comté, Besançon, France
| | - Donald C Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | | | | | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Elena W Y Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado Anschutz Medical Campus, School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Nishibayashi H, Kishimoto S, Sekiguchi K, Okada S, Ihara K. Myocarditis in 13-Year-Old Monochorionic Diamniotic Twins After COVID-19 Vaccination. J Clin Immunol 2022; 42:1351-1353. [PMID: 36008643 PMCID: PMC9410742 DOI: 10.1007/s10875-022-01360-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Hayato Nishibayashi
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Yufu, Oita, 879-5593, Japan
- Department of Pediatrics, Nakatsu Municipal Hospital, Nakatsu, Oita, 871-0011, Japan
| | - Shintaro Kishimoto
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Yufu, Oita, 879-5593, Japan
| | - Kazuhito Sekiguchi
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Yufu, Oita, 879-5593, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
22
|
Redin C, Thorball CW, Fellay J. Host genomics of SARS-CoV-2 infection. Eur J Hum Genet 2022; 30:908-914. [PMID: 35768520 PMCID: PMC9244159 DOI: 10.1038/s41431-022-01136-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infected a large fraction of humans in the past 2 years. The clinical presentation of acute infection varies greatly between individuals, ranging from asymptomatic or mild to life-threatening COVID-19 pneumonia with multi-organ complications. Demographic and comorbid factors explain part of this variability, yet it became clear early in the pandemic that human genetic variation also plays a role in the stark differences observed amongst SARS-CoV-2 infected individuals. Using tools and approaches successfully developed for human genomic studies in the previous decade, large international collaborations embarked in the exploration of the genetic determinants of multiple outcomes of SARS-CoV-2 infection, with a special emphasis on disease severity. Genome-wide association studies identified multiple common genetic variants associated with COVID-19 pneumonia, most of which in regions encoding genes with known or suspected immune function. However, the downstream, functional work required to understand the precise causal variants at each locus has only begun. The interrogation of rare genetic variants using targeted, exome, or genome sequencing approaches has shown that defects in genes involved in type I interferon response explain some of the most severe cases. By highlighting genes and pathways involved in SARS-CoV-2 pathogenesis and host-virus interactions, human genomic studies not only revealed novel preventive and therapeutic targets, but also paved the way for more individualized disease management.
Collapse
Affiliation(s)
- Claire Redin
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christian W Thorball
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
23
|
Avetyan D, Hakobyan S, Nikoghosyan M, Ghukasyan L, Khachatryan G, Sirunyan T, Muradyan N, Zakharyan R, Chavushyan A, Hayrapetyan V, Hovhannisyan A, Mohamed Bakhash SA, Jerome KR, Roychoudhury P, Greninger AL, Niazyan L, Davidyants M, Melik-Andreasyan G, Sargsyan S, Nersisyan L, Arakelyan A. Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses 2022; 14:1074. [PMID: 35632815 PMCID: PMC9142918 DOI: 10.3390/v14051074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmission, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2 using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia. The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and considerable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of mutations in sequences largely affected epitopes associated with protective HLA loci and did not cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We also compared the performance of nanopore and Illumina short-read sequencing and showed the utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2 variants in Armenia in the global context of the virus molecular genomic surveillance.
Collapse
Affiliation(s)
- Diana Avetyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Siras Hakobyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
| | - Maria Nikoghosyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
| | - Lilit Ghukasyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
| | - Gisane Khachatryan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Tamara Sirunyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Nelli Muradyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
| | - Roksana Zakharyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Andranik Chavushyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Davidyants Laboratories, Yerevan 0054, Armenia
| | - Varduhi Hayrapetyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Anahit Hovhannisyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Shah A. Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lyudmila Niazyan
- NORK Infection Clinical Hospital, MoH RA, Yerevan 0047, Armenia; (L.N.); (M.D.)
| | - Mher Davidyants
- NORK Infection Clinical Hospital, MoH RA, Yerevan 0047, Armenia; (L.N.); (M.D.)
| | - Gayane Melik-Andreasyan
- National Center of Disease Control and Prevention, Ministry of Health RA, Yerevan 0025, Armenia; (G.M.-A.); (S.S.)
| | - Shushan Sargsyan
- National Center of Disease Control and Prevention, Ministry of Health RA, Yerevan 0025, Armenia; (G.M.-A.); (S.S.)
| | - Lilit Nersisyan
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Solna, Sweden
| | - Arsen Arakelyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
| |
Collapse
|
24
|
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will Host Genetics Affect the Response to SARS-CoV-2 Vaccines? Historical Precedents. Front Med (Lausanne) 2022; 9:802312. [PMID: 35360730 PMCID: PMC8962369 DOI: 10.3389/fmed.2022.802312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|