1
|
Nakazawa R, Nagami S, Nozaki H, Yataka M, Akiyama K, Uchino T, Azuma N. Fatigue disappearance in hemodialysis patients by dual approach with hydrogen gas inhalation and hydrogen-enriched dialysate: two case reports. Med Gas Res 2025; 15:122-123. [PMID: 39436179 PMCID: PMC11515080 DOI: 10.4103/mgr.medgasres-d-24-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
| | - Shintaro Nagami
- Department of Clinical Engineering, Tokatsu-Clinic, Matsudo, Japan
| | - Hiroshi Nozaki
- Department of Clinical Engineering, Tokatsu-Clinic, Matsudo, Japan
| | - Minako Yataka
- Department of Clinical Engineering, Tokatsu-Clinic, Matsudo, Japan
| | | | | | | |
Collapse
|
2
|
Canaud B, Stenvinkel P, Scheiwe R, Steppan S, Bowry S, Castellano G. The Janus-faced nature of complement in hemodialysis: interplay between complement, inflammation, and bioincompatibility unveiling a self-amplifying loop contributing to organ damage. FRONTIERS IN NEPHROLOGY 2024; 4:1455321. [PMID: 39691704 PMCID: PMC11649546 DOI: 10.3389/fneph.2024.1455321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024]
Abstract
In hemodialysis (HD), complement activation, bioincompatibility, and inflammation are intricately intertwined. In the 1970s, as HD became a routine therapy, the observation of complement pathway activation and transient leukopenia by cellulosic dialysis membranes triggered the bioincompatibility debate and its clinical relevance. Extensive deliberations have covered definitions, assessment markers, scope, and long-term clinical consequences of membrane-dependent bioincompatibility reactions. While complement pathways' interplay with coagulation and inflammation has been delineated, HD's focus has primarily been on developing more biocompatible membranes using advanced technologies. Recent advances and understanding of the current HD delivery mode (4-hour sessions, thrice weekly) suggest that factors beyond membrane characteristics play a significant role, and a more complex, multifactorial picture of bioincompatibility is emerging. Chronic activation of the complement system and persistent low-grade "uremic inflammation" in chronic kidney disease (CKD) and HD lead to premature inflammaging of the kidney, resembling aging in the general population. Cellular senescence, modulated by complement activation and the uremic milieu, contributes to chronic inflammaging. Additionally, the formation of neutrophil extracellular traps (NETs, process of NETosis) during HD and their biological activity in the interdialytic period can lead to dialysis-induced systemic stress. Thus, complement-inflammation manifestations in HD therapies extend beyond traditional membrane-related bioincompatibility consequences. Recent scientific knowledge is reshaping strategies to mitigate detrimental consequences of bioincompatibility, both technologically and in HD therapy delivery modes, to improve dialysis patient outcomes.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
| | - Peter Stenvinkel
- Dept of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Sudhir Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany
| | - Giuseppe Castellano
- Center for Hemolytic Uremic Syndrome (HUS) Prevention, Control, and Management at the Nephrology and Dialysis Unit, Fondazione Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Liberale L, Torino C, Pizzini P, Mezzatesta S, D'Arrigo G, Gori M, Carbone F, Schiavetta E, Cugno V, Cabri M, Sgura C, Maioli E, Mbarga D, Rubini G, Tirandi A, Ramoni D, Mallamaci F, Tripepi G, Zoccali C, Montecucco F. Plasma levels of myeloperoxidase and resistin independently predict mortality in dialysis patients. Eur J Intern Med 2024; 129:87-92. [PMID: 39019736 DOI: 10.1016/j.ejim.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND In patients with kidney failure (KF) undergoing dialysis, neutrophils are dysfunctionally activated. Such chronic activation does not correspond to increased protection against infections and is thought to cause direct vascular damage accounting for the higher incidence of cardiovascular (CV) events. We hypothesized that circulating levels of neutrophil degranulation products (i.e. myeloperoxidase (MPO) and resistin) can predict overall and CV-specific mortality in dialysis patients. METHODS MPO and resistin levels were assessed in plasma samples from n = 1182 dialysis patients who were followed-up for median 2.9 years (IQR: 1.7-4.2). RESULTS Patients were 65 ± 14 (SD) years old and 36 % women. Median value of MPO and resistin were 78 ng/mL (IQR: 54 - 123) and 72 ng/mL (IQR: 46 - 110), respectively. MPO and resistin levels correlated with biomarkers of organ damage, nutritional status and inflammation. Both MPO and resistin levels predicted all-cause mortality even after adjustment for traditional risk factors and inflammation, nutritional and KF-related indexes (MPO, HRfor 1 ln unit increase: 1.26, 95 %CI 1.11 - 1.42, P < 0.001; Resistin, HRfor 1 ln unit increase: 1.25, 95 %CI 1.09 - 1.44, P = 0.001). Similarly, their predictive ability held true also for CV death (MPO, HRfor 1 ln unit increase: 1.19, 95 %CI 1.01 - 1.41, P = 0.04; Resistin, HRfor 1 ln unit increase: 1.29, 95 %CI 1.07 - 1.56, P = 0.007). CONCLUSION Plasma levels of MPO and resistin correlate with prospective overall and CV-specific mortality risk in KF patients undergoing dialysis and might be useful prognostic tools. Mediators of inflammation may be potential target to improve survival of those patients.
Collapse
Affiliation(s)
- Luca Liberale
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Claudia Torino
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Patrizia Pizzini
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Sabrina Mezzatesta
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Graziella D'Arrigo
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | | | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Elisa Schiavetta
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Valeria Cugno
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Mara Cabri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Cosimo Sgura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Elia Maioli
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Danielle Mbarga
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Gianluca Rubini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Davide Ramoni
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Francesca Mallamaci
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy; Nephrology, Hypertension and Renal Transplantation Unit, Grande Ospedale Metropolitano, Reggio Cal. Italy
| | - Giovanni Tripepi
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, USA; IPNET, c/o Nefrologia del Grande Ospedale Metropolitano, Reggio Cal. Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
4
|
Bogacka A, Olszewska M, Ciechanowski K. Effects of Diet and Supplements on Parameters of Oxidative Stress, Inflammation, and Antioxidant Mechanisms in Patients with Chronic Renal Failure Undergoing Hemodialysis. Int J Mol Sci 2024; 25:11036. [PMID: 39456817 PMCID: PMC11507481 DOI: 10.3390/ijms252011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of chronic kidney disease (CKD) worldwide increases as the population ages. The progression of the disease increases the risk of complications and death and leads to end-stage renal failure, requiring renal replacement therapy. Despite the positive effect of hemodialysis (HD), patients are at risk of developing malnutrition, inflammation, oxidative stress, or cardiovascular disease, which worsens quality of life and can lead to organ dysfunction. The occurrence of the mentioned disorders depends largely on the diet, so changes in diet composition are an important part of the treatment of kidney disease. This study aimed to evaluate the effects of a balanced diet on some parameters of oxidative stress, immune response, and nutritional status in patients. This study included 57 HD patients (19 women and 38 men). In all of them, nutritional status and diet were initially determined, and then, they were divided into six groups, which received different diets and supplements. Serum levels of albumin, total protein, MDA, and the cytokines Il-1, IL-6, IL-8, TNF-α, and IL-10 were determined, and the activity of the enzymes such as CAT, SOD, and GSH-Px were determined in erythrocytes by spectrophotometry. Based on the results of BMI, albumin, and total protein, it can be concluded that a well-balanced diet can reduce weight loss. This study shows that a well-balanced diet can reduce the secretion of pro-inflammatory cytokines, and ensure the normal activity of antioxidative enzymes in the blood of HD patients.
Collapse
Affiliation(s)
- Anna Bogacka
- Department of Commodity Science, Quality Assessment, Process Engineering, and Human Nutrition, West Pomeranian University of Technology in Szczecin, 71-459 Szczecin, Poland
| | - Maria Olszewska
- Departament of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Kazimierz Ciechanowski
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| |
Collapse
|
5
|
Ehlerding G, Ries W, Kempkes-Koch M, Ziegler E, Ronová P, Krizsán M, Verešová J, Böke M, Erlenkötter A, Nitschel R, Zawada AM, Kennedy JP, Braun J, Larkin JW, Korolev N, Lang T, Ottillinger B, Stauss-Grabo M, Griesshaber B. Randomized investigation of increased dialyzer membrane hydrophilicity on hemocompatibility and performance. BMC Nephrol 2024; 25:220. [PMID: 38987671 PMCID: PMC11234537 DOI: 10.1186/s12882-024-03644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hemodialyzers should efficiently eliminate small and middle molecular uremic toxins and possess exceptional hemocompatibility to improve well-being of patients with end-stage kidney disease. However, performance and hemocompatibility get compromised during treatment due to adsorption of plasma proteins to the dialyzer membrane. Increased membrane hydrophilicity reduces protein adsorption to the membrane and was implemented in the novel FX CorAL dialyzer. The present randomized controlled trial compares performance and hemocompatibility profiles of the FX CorAL dialyzer to other commonly used dialyzers applied in hemodiafiltration treatments. METHODS This prospective, open, controlled, multicentric, interventional, crossover study randomized stable patients on post-dilution online hemodiafiltration (HDF) to FX CorAL 600, FX CorDiax 600 (both Fresenius Medical Care) and xevonta Hi 15 (B. Braun) each for 4 weeks. Primary outcome was β2-microglobulin removal rate (β2-m RR). Non-inferiority and superiority of FX CorAL versus comparators were tested. Secondary endpoints were RR and/or clearance of small and middle molecules, and intra- and interdialytic profiles of hemocompatibility markers, with regards to complement activation, cell activation/inflammation, platelet activation and oxidative stress. Further endpoints were patient reported outcomes (PROs) and clinical safety. RESULTS 82 patients were included and 76 analyzed as intention-to-treat (ITT) population. FX CorAL showed the highest β2-m RR (76.28%), followed by FX CorDiax (75.69%) and xevonta (74.48%). Non-inferiority to both comparators and superiority to xevonta were statistically significant. Secondary endpoints related to middle molecules corroborated these results; performance for small molecules was comparable between dialyzers. Regarding intradialytic hemocompatibility, FX CorAL showed lower complement, white blood cell, and platelet activation. There were no differences in interdialytic hemocompatibility, PROs, or clinical safety. CONCLUSIONS The novel FX CorAL with increased membrane hydrophilicity showed strong performance and a favorable hemocompatibility profile as compared to other commonly used dialyzers in clinical practice. Further long-term investigations should examine whether the benefits of FX CorAL will translate into improved cardiovascular and mortality endpoints. TRIAL REGISTRATION eMPORA III registration on 19/01/2021 at ClinicalTrials.gov (NCT04714281).
Collapse
Affiliation(s)
- Götz Ehlerding
- Zentrum für Nieren-, Hochdruck- und Stoffwechselerkrankungen, 30453, Hannover, Germany
| | - Wolfgang Ries
- Diakonissenkrankenhaus, Innere Medizin, Abtlg. Nephrologie, 24939, Flensburg, Germany
| | | | | | - Petra Ronová
- Fresenius Nephrocare Praha 9, Praha, 19061, Czechia
| | - Mária Krizsán
- Péterfy II. Dialízis Központ, Budapest, 1077, Hungary
| | - Jana Verešová
- Fresenius Nephrocare Nymburk, Nymburk, 28802, Czechia
| | - Mária Böke
- Váci Dialízis Központ, Vác, 2600, Hungary
| | - Ansgar Erlenkötter
- Fresenius Medical Care Deutschland GmbH, Biosciences, VS Dialyzers, Care Enablement, 66606, St. Wendel, Germany
| | - Robert Nitschel
- Fresenius Medical Care Deutschland GmbH, Biosciences, VS Dialyzers, Care Enablement, 66606, St. Wendel, Germany
| | - Adam M Zawada
- Fresenius Medical Care Deutschland GmbH, Product Development, VS Dialyzers, Care Enablement, 66606, St. Wendel, Germany
| | - James P Kennedy
- Fresenius Medical Care Deutschland GmbH, Product Development, VS Dialyzers, Care Enablement, 66606, St. Wendel, Germany
| | - Jennifer Braun
- Fresenius Medical Care Deutschland GmbH, Global Biomedical Evidence Generation, Global Medical Office, 61352, Bad Homburg, Germany
| | - John W Larkin
- Fresenius Medical Care, Global Medical Office, Waltham, MA, USA
| | - Natalia Korolev
- Fresenius Medical Care Deutschland GmbH, Global Biomedical Evidence Generation, Global Medical Office, 61352, Bad Homburg, Germany
| | - Thomas Lang
- Fresenius Medical Care Deutschland GmbH, Global Biomedical Evidence Generation, Global Medical Office, 61352, Bad Homburg, Germany
| | | | - Manuela Stauss-Grabo
- Fresenius Medical Care Deutschland GmbH, Global Biomedical Evidence Generation, Global Medical Office, 61352, Bad Homburg, Germany
| | - Bettina Griesshaber
- Fresenius Medical Care Deutschland GmbH, Global Biomedical Evidence Generation, Global Medical Office, 61352, Bad Homburg, Germany.
| |
Collapse
|
6
|
Trandafir MF, Savu OI, Gheorghiu M. The Complex Immunological Alterations in Patients with Type 2 Diabetes Mellitus on Hemodialysis. J Clin Med 2024; 13:3687. [PMID: 38999253 PMCID: PMC11242658 DOI: 10.3390/jcm13133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
It is widely known that diabetes mellitus negatively impacts both the innate immunity (the inflammatory response) and the acquired immunity (the humoral and cellular immune responses). Many patients with diabetes go on to develop chronic kidney disease, which will necessitate hemodialysis. In turn, long-term chronic hemodialysis generates an additional chronic inflammatory response and impairs acquired immunity. The purpose of this paper is to outline and compare the mechanisms that are the basis of the constant aggression towards self-components that affects patients with diabetes on hemodialysis, in order to find possible new therapeutic ways to improve the functionality of the immune system. Our study will take a detailed look at the mechanisms of endothelial alteration in diabetes and hemodialysis, at the mechanisms of inflammatory generation and signaling at different levels and also at the mechanisms of inflammation-induced insulin resistance. It will also discuss the alterations in leukocyte chemotaxis, antigen recognition and the dysfunctionalities in neutrophils and macrophages. Regarding acquired immunity, we will outline the behavioral alterations of T and B lymphocytes induced by diabetes mellitus and chronic hemodialysis.
Collapse
Affiliation(s)
- Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Octavian Ionel Savu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
7
|
Xu L, Cai M. Tacrolimus Maintains the Balance of Neutrophil Extracellular Traps by Inducing DNA Methylation of Neutrophils to Reduce Immune Rejection. Life (Basel) 2023; 13:2253. [PMID: 38137854 PMCID: PMC10744459 DOI: 10.3390/life13122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Immune rejection is a significant concern in organ transplantation, as it can lead to damage to and failure of the transplanted organ. To prevent or treat immune rejection, transplant recipients are commonly administered immunosuppressive drugs. Tacrolimus (FK506) is a widely used immunosuppressive drug in organ transplantation. The excessive formation of neutrophil extracellular traps (NETs) can contribute to inflammation and tissue damage. Although NETs play an antimicrobial role, their overproduction can be harmful. To investigate the mechanism by which FK506 suppresses immune rejection, we utilized HL-60 cells, which were differentiated into neutrophils using DMSO and induced to form NETs with phorbol myristate acetate (PMA), a very efficient and frequently used drug for inducing NET formation. By comparing pre- and post-treatment with FK506, we examined whether FK506 affects the formation of NETs. Various experimental techniques were employed, including confocal imaging for visualizing cell NETs, qPCR and Western blotting for gene and protein expression analyses, ELISAs for protein content detection, and LC-MS/MS for methylation detection. In our study, we discovered that FK506 can enhance DNA methylation, which likely contributes to the reduction in NETs. Genes and proteins related to methylation, namely, DNMT3B and TET3, exhibited significant correlations with methylation. Consistent changes in both genes and proteins suggest that DNMT3B and TET3 are key factors that are influenced by FK506, resulting in enhanced DNA methylation and the potential inhibition of PMA-induced NET production. In summary, we have identified a novel mechanism by which FK506 inhibits NET production through the enhancement of DNA methylation. This finding highlights a new aspect of FK506's immunosuppressive effect. Our results provide valuable insights for clinical research, immunosuppression, and organ preservation strategies.
Collapse
Affiliation(s)
| | - Ming Cai
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China;
| |
Collapse
|
8
|
Cristol JP, Thierry AR, Bargnoux AS, Morena-Carrere M, Canaud B. What is the role of the neutrophil extracellular traps in the cardiovascular disease burden associated with hemodialysis bioincompatibility? Front Med (Lausanne) 2023; 10:1268748. [PMID: 38034546 PMCID: PMC10684960 DOI: 10.3389/fmed.2023.1268748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite significant progress in dialysis modalities, intermittent renal replacement therapy remains an "unphysiological" treatment that imperfectly corrects uremic disorders and may lead to low-grade chronic inflammation, neutrophil activation, and oxidative stress due to repetitive blood/membrane interactions contributing to the "remaining uremic syndrome" and cardiovascular disease burden of hemodialysis patients. Understanding dialysis bioincompatibility pathways still remains a clinical and biochemical challenge. Indeed, surrogate biomarkers of inflammation including C-reactive protein could not discriminate between all components involved in these complex pathways. A few examples may serve to illustrate the case. Cytokine release during dialysis sessions may be underestimated due to their removal using high-flux dialysis or hemodiafiltration modalities. Complement activation is recognized as a key event of bioincompatibility. However, it appears as an early and transient event with anaphylatoxin level normalization at the end of the dialysis session. Complement activation is generally assumed to trigger leukocyte stimulation leading to proinflammatory mediators' secretion and oxidative burst. In addition to being part of the innate immune response involved in eliminating physically and enzymatically microbes, the formation of Neutrophil Extracellular Traps (NETs), known as NETosis, has been recently identified as a major harmful component in a wide range of pathologies associated with inflammatory processes. NETs result from the neutrophil degranulation induced by reactive oxygen species overproduction via NADPH oxidase and consist of modified chromatin decorated with serine proteases, elastase, bactericidal proteins, and myeloperoxidase (MPO) that produces hypochlorite anion. Currently, NETosis remains poorly investigated as a sensitive and integrated marker of bioincompatibility in dialysis. Only scarce data could be found in the literature. Oxidative burst and NADPH oxidase activation are well-known events in the bioincompatibility phenomenon. NET byproducts such as elastase, MPO, and circulating DNA have been reported to be increased in dialysis patients more specifically during dialysis sessions, and were identified as predictors of poor outcomes. As NETs and MPO could be taken up by endothelium, NETs could be considered as a vascular memory of intermittent bioincompatibility phenomenon. In this working hypothesis article, we summarized the puzzle pieces showing the involvement of NET formation during hemodialysis and postulated that NETosis may act as a disease modifier and may contribute to the comorbid burden associated with dialysis bioincompatibility.
Collapse
Affiliation(s)
- Jean-Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
- Charles Mion Foundation, AIDER-Santé, Montpellier, France
| | - Alain R. Thierry
- Research Institute of Cancerology of Montpellier, INSERM, IRCM, ICM, University of Montpellier, Montpellier, France
| | - Anne-Sophie Bargnoux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Marion Morena-Carrere
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
- MTX Consulting Int., Montpellier, France
| |
Collapse
|
9
|
Amaya-Garrido A, Brunet M, Buffin-Meyer B, Piedrafita A, Grzesiak L, Agbegbo E, Del Bello A, Ferrandiz I, Ardeleanu S, Bermudez-Lopez M, Fedou C, Camus M, Burlet-Schiltz O, Massines J, Buléon M, Feuillet G, Alves M, Neau E, Casemayou A, Breuil B, Saulnier-Blache JS, Denis C, Voelkl J, Glorieux G, Hobson S, Arefin S, Rahman A, Kublickiene K, Stenvinkel P, Bascands JL, Faguer S, Valdivielso JM, Schanstra JP, Klein J. Calprotectin is a contributor to and potential therapeutic target for vascular calcification in chronic kidney disease. Sci Transl Med 2023; 15:eabn5939. [PMID: 37672568 DOI: 10.1126/scitranslmed.abn5939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality. This was confirmed in an additional cohort of 170 patients with CKD from Sweden, where increased serum calprotectin concentrations correlated with increased vascular calcification. In primary human VSMCs and mouse aortic rings, calprotectin exacerbated calcification. Treatment with paquinimod, a calprotectin inhibitor, as well as pharmacological inhibition of the receptor for advanced glycation end products and Toll-like receptor 4 inhibited the procalcifying effect of calprotectin. Paquinimod also ameliorated calcification induced by the sera of uremic patients in primary human VSMCs. Treatment with paquinimod prevented vascular calcification in mice with chronic renal failure induced by subtotal nephrectomy and in aged apolipoprotein E-deficient mice as well. These observations identified calprotectin as a key contributor of vascular calcification, and increased circulating calprotectin was strongly and independently associated with calcification, CV outcome, and mortality in patients with CKD. Inhibition of calprotectin might therefore be a promising strategy to prevent vascular calcification in patients with CKD.
Collapse
Affiliation(s)
- Ana Amaya-Garrido
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Manon Brunet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Alexis Piedrafita
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Lucile Grzesiak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Ezechiel Agbegbo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Arnaud Del Bello
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Inés Ferrandiz
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Serban Ardeleanu
- AURAR Saint Louis Dialysis Center, 97421 Saint Louis, La Réunion, France
| | - Marcelino Bermudez-Lopez
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Camille Fedou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Jean Massines
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Awahan Rahman
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97491 Sainte Clotilde, La Réunion, France
| | - Stanislas Faguer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - José M Valdivielso
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| |
Collapse
|
10
|
Duan Y, Peng Z, Zhong S, Huang H, He Z. Association between subclinical left ventricular ejection fraction and platelet-to-lymphocyte ratio in patients with peritoneal dialysis. Front Med (Lausanne) 2022; 9:961453. [DOI: 10.3389/fmed.2022.961453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
BackgroundReduced left ventricular ejection function (LVEF) was associated with increased mortality in patients with peritoneal dialysis (PD) in Asia and the United States of America. The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were correlated with LVEF in PD. However, little information is available regarding the relationship between monocyte-to-lymphocyte ratio (MLR), left ventricular ejection fraction (LVEF), and the use of NLR, PLR, and MLR in predicting left ventricular systolic dysfunction (LVSD) in patients with PD.MethodsAll 181 patients with PD were enrolled between 2014 and 2021 from the Nephrology Department of the First Affiliated Hospital of the University of South China. Demographic features, clinical characteristics, laboratory values, and echocardiographic parameters were collected.ResultsThe mean age of patients with PD was 47.4 ± 12.6, and 90 (49.7%) of the patients were men. LVEF showed a negative correlation with PLR (r = −0.200, p = 0.007) and MLR (r = −0.146, p = 0.049). The levels of NLR, PLR, and MLR were elevated in patients with PD with LVSD compared with those without (all p < 0.05). PLR (OR 4.331, 95% CI: 1.223, 15.342) and albumin (OR 13.346, 95% CI: 3.928, 45.346) were significantly associated with LVSD patients with PD in the multivariate logistic analysis. For differentiating patients with PD with LVSD, optimal cutoffs of NLR, PLR, MLR, and albumin were 4.5 (sensitivity: 76.7%, specificity: 55.0%, and overall accuracy: 58%), 202.6 (sensitivity: 66.7%, specificity: 69.5%, and overall accuracy: 69%), 0.483 (sensitivity: 53.3%, specificity: 72.8%, and overall accuracy: 30%), and 34.6 (sensitivity: 72.2%), respectively.ConclusionsOur results revealed that PLR was better than NLR, MLR, and albumin in predicting LVSD in PD.
Collapse
|
11
|
Extracellular DNA concentrations in various aetiologies of acute kidney injury. Sci Rep 2022; 12:16812. [PMID: 36207374 PMCID: PMC9546839 DOI: 10.1038/s41598-022-21248-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular DNA (ecDNA) in plasma is a non-specific biomarker of tissue damage. Urinary ecDNA, especially of mitochondrial origin, is a potential non-invasive biomarker of kidney damage. Despite prominent tissue damage, ecDNA has not yet been comprehensively analysed in acute kidney injury (AKI). We analysed different fractions of ecDNA, i.e. total, nuclear and mitochondrial, in plasma and urine of children, and different animal models of AKI. We also analysed the activity of the deoxyribonuclease (DNase), which is contributes to the degradation of ecDNA. Patients with AKI had higher total and nuclear ecDNA in both, plasma and urine (sixfold and 12-fold in plasma, and 800-fold in urine, respectively), with no difference in mitochondrial ecDNA. This was mainly found for patients with AKI due to tubulointerstitial nephritis and atypical haemolytic uremic syndrome. Increased plasma ecDNA was also found in animal models of AKI, including adenine nephropathy (fivefold), haemolytic uremic syndrome (fourfold), and ischemia–reperfusion injury (1.5-fold). Total urinary ecDNA was higher in adenine nephropathy and ischemia–reperfusion injury (1300-fold and twofold, respectively). DNase activity in urine was significantly lower in all animal models of AKI in comparison to controls. In conclusion, plasma total and nuclear ecDNA and urinary total ecDNA is increased in patients and animals with particular entities of AKI, suggesting a mechanism-dependent release of ecDNA during AKI. Further studies should focus on the dynamics of ecDNA and its potential role in the pathogenesis of AKI.
Collapse
|
12
|
Immune System Dysfunction and Inflammation in Hemodialysis Patients: Two Sides of the Same Coin. J Clin Med 2022; 11:jcm11133759. [PMID: 35807042 PMCID: PMC9267256 DOI: 10.3390/jcm11133759] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biocompatibility in hemodialysis (HD) has considerably improved in recent decades, but remains an open issue to be solved, appearing essential to reduce systemic inflammation and enhance patients’ clinical outcomes. Clotting prevention, reduction in complement and leukocyte activation, and improvement of antioxidant effect represent the main goals. This review aims to analyze the different pathways involved in HD patients, leading to immune system dysfunction and inflammation. In particular, we mostly review the evidence about thrombogenicity, which probably represents the most important characteristic of bio-incompatibility. Platelet activation is one of the first steps occurring in HD patients, determining several events causing chronic sub-clinical inflammation and immune dysfunction involvement. Moreover, oxidative stress processes, resulting from a loss of balance between pro-oxidant factors and antioxidant mechanisms, have been described, highlighting the link with inflammation. We updated both innate and acquired immune system dysfunctions and their close link with uremic toxins occurring in HD patients, with several consequences leading to increased mortality. The elucidation of the role of immune dysfunction and inflammation in HD patients would enhance not only the understanding of disease physiopathology, but also has the potential to provide new insights into the development of therapeutic strategies.
Collapse
|
13
|
Steiger S, Rossaint J, Zarbock A, Anders HJ. Secondary Immunodeficiency Related to Kidney Disease (SIDKD)-Definition, Unmet Need, and Mechanisms. J Am Soc Nephrol 2022; 33:259-278. [PMID: 34907031 PMCID: PMC8819985 DOI: 10.1681/asn.2021091257] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kidney disease is a known risk factor for poor outcomes of COVID-19 and many other serious infections. Conversely, infection is the second most common cause of death in patients with kidney disease. However, little is known about the underlying secondary immunodeficiency related to kidney disease (SIDKD). In contrast to cardiovascular disease related to kidney disease, which has triggered countless epidemiologic, clinical, and experimental research activities or interventional trials, investments in tracing, understanding, and therapeutically targeting SIDKD have been sparse. As a call for more awareness of SIDKD as an imminent unmet medical need that requires rigorous research activities at all levels, we review the epidemiology of SIDKD and the numerous aspects of the abnormal immunophenotype of patients with kidney disease. We propose a definition of SIDKD and discuss the pathogenic mechanisms of SIDKD known thus far, including more recent insights into the unexpected immunoregulatory roles of elevated levels of FGF23 and hyperuricemia and shifts in the secretome of the intestinal microbiota in kidney disease. As an ultimate goal, we should aim to develop therapeutics that can reduce mortality due to infections in patients with kidney disease by normalizing host defense to pathogens and immune responses to vaccines.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| |
Collapse
|
14
|
Biomaterial and cellular implants:foreign surfaces where immunity and coagulation meet. Blood 2021; 139:1987-1998. [PMID: 34415324 DOI: 10.1182/blood.2020007209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure of blood to a foreign surface in the form of a diagnostic or therapeutic biomaterial device or implanted cells or tissues, elicits an immediate, evolutionarily conserved thrombo-inflammatory response by the host. Primarily designed to protect against invading organisms following an injury, this innate response features instantaneous activation of several blood-borne, highly interactive and well-orchestrated cascades and cellular events that limit bleeding, destroy and eliminate the foreign substance/cells, and promote healing and a return to homeostasis via delicately balanced regenerative processes. In the setting of blood-contacting synthetic or natural biomaterials and implantation of foreign cells/tissues, innate responses are robust, albeit highly context-specific. Unfortunately, they tend to be less than adequately regulated by the host's natural anti-coagulant/anti-inflammatory pathways, thereby jeopardizing the functional integrity of the device, as well as the health of the host. Strategies to achieve biocompatibility with a sustained return to homeostasis, particularly while the device remains in situ and functional, continue to elude scientists and clinicians. In this review, some of the complex mechanisms by which biomaterials and cellular transplants provide a "hub" for activation and amplification of coagulation and immunity - thrombo-inflammation - will be discussed, with a view toward the development of innovative means of overcoming the innate challenges.
Collapse
|
15
|
Sutherland TE, Shaw TN, Lennon R, Herrick SE, Rückerl D. Ongoing Exposure to Peritoneal Dialysis Fluid Alters Resident Peritoneal Macrophage Phenotype and Activation Propensity. Front Immunol 2021; 12:715209. [PMID: 34386014 PMCID: PMC8353194 DOI: 10.3389/fimmu.2021.715209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peritoneal dialysis (PD) is a more continuous alternative to haemodialysis, for patients with chronic kidney disease, with considerable initial benefits for survival, patient independence and healthcare costs. However, long-term PD is associated with significant pathology, negating the positive effects over haemodialysis. Importantly, peritonitis and activation of macrophages is closely associated with disease progression and treatment failure. However, recent advances in macrophage biology suggest opposite functions for macrophages of different cellular origins. While monocyte-derived macrophages promote disease progression in some models of fibrosis, tissue resident macrophages have rather been associated with protective roles. Thus, we aimed to identify the relative contribution of tissue resident macrophages to PD induced inflammation in mice. Unexpectedly, we found an incremental loss of homeostatic characteristics, anti-inflammatory and efferocytic functionality in peritoneal resident macrophages, accompanied by enhanced inflammatory responses to external stimuli. Moreover, presence of glucose degradation products within the dialysis fluid led to markedly enhanced inflammation and almost complete disappearance of tissue resident cells. Thus, alterations in tissue resident macrophages may render long-term PD patients sensitive to developing peritonitis and consequently fibrosis/sclerosis.
Collapse
Affiliation(s)
- Tara E. Sutherland
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Tovah N. Shaw
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah E. Herrick
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Vega-Roman C, Leal-Cortes C, Portilla-de Buen E, Gomez-Navarro B, Melo Z, Franco-Acevedo A, Medina-Perez M, Jalomo-Martinez B, Martinez-Martinez P, Evangelista-Carrillo LA, Cerrillos-Gutierrez JI, Andrade-Sierra J, Nieves JJ, Gone-Vazquez I, Escobedo-Ruiz A, Jave-Suarez LF, Luquin S, Echavarria R. Impact of transplantation on neutrophil extracellular trap formation in patients with end-stage renal disease: A single-center, prospective cohort study. Medicine (Baltimore) 2021; 100:e26595. [PMID: 34232209 PMCID: PMC8270590 DOI: 10.1097/md.0000000000026595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Increased neutrophil extracellular trap (NET) formation associates with high cardiovascular risk and mortality in patients with end-stage renal disease (ESRD). However, the effect of transplantation on NETs and its associated markers remains unclear. This study aimed to characterize circulating citrullinated Histone H3 (H3cit) and Peptidyl Arginase Deiminase 4 (PAD4) in ESRD patients undergoing transplantation and evaluate the ability of their neutrophils to release NETs.This prospective cohort study included 80 healthy donors and 105 ESRD patients, out of which 95 received a transplant. H3cit and PAD4 circulating concentration was determined by enzyme-linked immunosorbent assay in healthy donors and ESRD patients at the time of enrollment. An additional measurement was carried out within the first 6 months after transplant surgery. In vitro NET formation assays were performed in neutrophils isolated from healthy donors, ESRD patients, and transplant recipients.H3cit and PAD4 levels were significantly higher in ESRD patients (H3cit, 14.38 ng/mL [5.78-27.13]; PAD4, 3.22 ng/mL [1.21-6.82]) than healthy donors (H3cit, 6.45 ng/mL [3.30-11.65], P < .0001; PAD4, 2.0 ng/mL [0.90-3.18], P = .0076). H3cit, but not PAD4, increased after transplantation, with 44.2% of post-transplant patients exhibiting high levels (≥ 27.1 ng/mL). In contrast, NET release triggered by phorbol 12-myristate 13-acetate was higher in neutrophils from ESRD patients (70.0% [52.7-94.6]) than healthy donors (32.2% [24.9-54.9], P < .001) and transplant recipients (19.5% [3.5-65.7], P < .05).The restoration of renal function due to transplantation could not reduce circulating levels of H3cit and PAD4 in ESRD patients. Furthermore, circulating H3cit levels were significantly increased after transplantation. Neutrophils from transplant recipients exhibit a reduced ability to form NETs.
Collapse
Affiliation(s)
- Citlalin Vega-Roman
- Physiology Department, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Caridad Leal-Cortes
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Eliseo Portilla-de Buen
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Benjamín Gomez-Navarro
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | | - Miguel Medina-Perez
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Basilio Jalomo-Martinez
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Petra Martinez-Martinez
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | | | | - Jorge Andrade-Sierra
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Juan J. Nieves
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Isis Gone-Vazquez
- Clinical Laboratory, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Araceli Escobedo-Ruiz
- Clinical Laboratory, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Luis Felipe Jave-Suarez
- Immunology Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Sonia Luquin
- Neuroscience Department, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| |
Collapse
|