1
|
Cornejo MA, Linz TH. Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing. ACS Sens 2025; 10:204-212. [PMID: 39749639 DOI: 10.1021/acssensors.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform. Carboxymethyl dextran (20 kDa) was spiked into Pluronic thermal gel along with fluorescent nanoparticles (200 nm diameter) and loaded into single-channel microfluidic devices. Upon voltage application, the soluble sugar enriched into a concentrated band that induced motion of the insoluble particles as it passed. Bead displacement was tracked over time to produce electropherograms where peak areas were proportional to analyte concentrations. Key studies herein established the range of acceptable operating conditions (e.g., gel concentration, temperature) to characterize how the temperature-dependent rigidity of thermal gel influenced the analysis. Data processing strategies were then evaluated to identify conditions (e.g., exposure intervals, particle averaging, motion directionality) to maximize sensitivity. The quantitative response of the method was evaluated over a broad concentration range (0.5-5000 nM) where detection limits were found to be 520 pM for the 20 kDa sugar, providing a 106-fold superior mass LOD than a gold standard UV-vis absorbance method. Studies into the detection mechanism found that sensitivity was dependent on the molecular weight of the sugar as larger sugars produced greater responses. Collectively, these studies established best practices for integrating particle sensing into thermal gel separations for label-free polysaccharide quantitation.
Collapse
Affiliation(s)
- Mario A Cornejo
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Wells MJM, Chen JY, Bodycomb J, Wolgemuth D, Stretz HA, Zacheis GA, Bautista M, Bell KY. Multi-laser nanoparticle tracking analysis (NTA): A unique method to visualize dynamic (shear) and dynamic (Brownian motion) light scattering and quantify nonliving natural organic matter (NNOM) in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174985. [PMID: 39047837 DOI: 10.1016/j.scitotenv.2024.174985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Application of simultaneous multi-laser nanoparticle tracking analysis (NTA) to environmental water samples to investigate nonliving natural organic matter (NNOM) is introduced as an innovative method for observing particles directly in their native media. Multi-laser NTA results of particle visualization, particle number concentration, and particle size distribution elucidated particle dynamics in low and high total dissolved solids (TDS) aqueous environmental samples. A pond water sample and concentrate from a reverse osmosis (RO) treatment process (Stage 1) had 1.3 × 108 and 5.62 × 1019 particles/mL, respectively, (at time = 0) after filtration at 0.45 μm. Beyond the traditional applications for this instrument, this research presents novel evidence-based investigations that probe the existence of supramolecular structures in environmental waters during turbulence or quiescence. The pond water sample exhibited time-dependent aggregation as the volume distribution shifted to greater diameter during quiescence, compared to turbulence. Disaggregation (increased numbers of particles over time) was noted in the >250 nm to <600 nm region, and aggregation of >450 nm particles was also noted in the quiescent RO concentrate sample, indicative of depletion of small particles to form larger ones. Multi-laser NTA and dynamic light scattering (DLS) capabilities were compared and contrasted. DLS and NTA are different (complementary) particle sizing techniques. DLS yielded more information about the physical hydrogel in the NNOM hierarchy whereas multi-laser NTA better characterized meta-chemical and chemical hydrogel characteristics. Operationalization of innovation-moving from fundamental investigations to application-is supported by implementing novel analytical instrumentation as we address issues involving climate change, drought, and the scarcity of potable water. Multi-laser NTA can be used as a tool to study and optimize complex water and wastewater treatment processes. Questions about water treatment efficiencies, membrane fouling, assistance of pollutant transport, and carbon capture cycles affected by NNOM will benefit from insights from multi-laser NTA.
Collapse
Affiliation(s)
| | | | - Jeff Bodycomb
- Horiba Instruments Incorporated, Piscataway, NJ, USA
| | | | | | | | - Mario Bautista
- Water Replenishment District of Southern California, Torrance, CA, USA
| | | |
Collapse
|
3
|
Bae J, Lee C, Jung D, Yea K, Song B, Lee H, Baek M. Extracellular vesicle isolation and counting system (EVics) based on simultaneous tandem tangential flow filtration and large field-of-view light scattering. J Extracell Vesicles 2024; 13:e12479. [PMID: 38978321 PMCID: PMC11231039 DOI: 10.1002/jev2.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Although the isolation and counting of small extracellular vesicles (sEVs) are essential steps in sEV research, an integrated method with scalability and efficiency has not been developed. Here, we present a scalable and ready-to-use extracellular vesicle (EV) isolation and counting system (EVics) that simultaneously allows isolation and counting in one system. This novel system consists of (i) EVi, a simultaneous tandem tangential flow filtration (TFF)-based EV isolation component by applying two different pore-size TFF filters, and (ii) EVc, an EV counting component using light scattering that captures a large field-of-view (FOV). EVi efficiently isolated 50-200 nm-size sEVs from 15 µL to 2 L samples, outperforming the current state-of-the-art devices in purity and speed. EVc with a large FOV efficiently counted isolated sEVs. EVics enabled early observations of sEV secretion in various cell lines and reduced the cost of evaluating the inhibitory effect of sEV inhibitors by 20-fold. Using EVics, sEVs concentrations and sEV PD-L1 were monitored in a 23-day cancer mouse model, and 160 clinical samples were prepared and successfully applied to diagnosis. These results demonstrate that EVics could become an innovative system for novel findings in basic and applied studies in sEV research.
Collapse
Affiliation(s)
- Ju‐Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC)School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Chan‐Hyeong Lee
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC)School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC)School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Kyungmoo Yea
- Department of New BiologyDGISTDaeguRepublic of Korea
- New Biology Research CenterDGISTDaeguRepublic of Korea
| | - Byoung‐Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and BiophysicsNational Institute on Alcohol Abuse and Alcoholism, NIHBethesdaMarylandUSA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Moon‐Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC)School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
4
|
Tian Y, Tian D, Peng X, Qiu H. Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis. Int J Pharm 2024; 656:124097. [PMID: 38609058 DOI: 10.1016/j.ijpharm.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and ∼ 10 μl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.
Collapse
Affiliation(s)
- Youxi Tian
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Dong Tian
- Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China.
| | - Hong Qiu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
Travers T, Delhaye G, Werts MHV, Gindre D, Loumaigne M. On-chip light sheet illumination for nanoparticle tracking in microfluidic channels. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2229-2240. [PMID: 38567967 DOI: 10.1039/d3ay02290k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A simple and inexpensive method is presented to efficiently integrate light sheet illumination in a microfluidic chip for dark-field microscopic tracking and sizing of nanoparticles. The basic idea is to insert an optical fiber inside a polydimethylsiloxane (PDMS) elastomer microfluidic chip and use it as a cylindrical lens. The optical fiber is in this case no longer seen as only an optical waveguide but as a ready-made micro-optical component that is inexpensive and easy to source. Upon insertion, the optical fiber stretches the PDMS microchannel walls, which has two effects. The first effect is to tone down the intrinsic ripples in the PDMS that would otherwise create inhomogeneities in the light sheet illumination. The second effect is to remove any obliqueness of the channel wall and constrain it to be strictly perpendicular to the propagation of the illumination, avoiding the formation of a prismatic diopter. Through calculations, numerical simulations and measurements, we show that the optimal configuration consists in creating a slowly converging light sheet so that its axial thickness is almost uniform along the tracked area. The corresponding thickness was estimated at 12 μm, or 10 times the depth of field of the optical system. This leads to an at least six-fold increase in the signal-to-noise ratio compared to the case without the cylindrical lens. This original light-sheet configuration is used to track and size spherical gold nanoparticles with diameters of 80 nm and 50 nm.
Collapse
Affiliation(s)
- Théo Travers
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, Univ Angers, SFR MATRIX, 2 Bd Lavoisier, 49000 Angers, France.
| | - Gaétan Delhaye
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, Univ Angers, SFR MATRIX, 2 Bd Lavoisier, 49000 Angers, France.
| | | | - Denis Gindre
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, Univ Angers, SFR MATRIX, 2 Bd Lavoisier, 49000 Angers, France.
| | - Matthieu Loumaigne
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, Univ Angers, SFR MATRIX, 2 Bd Lavoisier, 49000 Angers, France.
| |
Collapse
|
6
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Zhang F, Zhang L, Yu H. Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes. Curr Stem Cell Res Ther 2024; 19:1195-1209. [PMID: 38523514 DOI: 10.2174/011574888x311270240319084835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.
Collapse
Affiliation(s)
- Fan Zhang
- Faculty of Life Sciences and Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Leisheng Zhang
- Science and Technology Innovation Center, The Fourth People's Hospital of Jinan (The Third Affiliated Hospital of Shandong First Medical University), Jinan, 250031, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hao Yu
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Onizuka Y, Fujita K, Ide S, Naito T, Kaji N. Antioxidants encapsulated milk-derived exosomes for functional food development. ANAL SCI 2023; 39:705-712. [PMID: 36738404 DOI: 10.1007/s44211-023-00278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species are known to be involved in various diseases, and antioxidant ingredients are expected to essentially prevent diseases and contribute to improving health. However, antioxidants are easily degraded by enzymes before being absorbed in the intestine, so a means of transport that prevents their degradation in the body is necessary. Exosomes, which play an important role in communication between individual cells, have attracted attention as a new transport carrier of miRNA and DNA, but not yet fully exploited in food research. More recently, exosomes extracted from bovine milk began to be widely used as a cost-effective transport carrier not in clinical medicine but also in functional food materials. To develop practical applications as carriers for functional foods, systematic studies are necessary to clarify the introduction efficiency and the properties of encapsulated substances. In this study, we applied electroporation and incubation to encapsulate antioxidants into the exosomes and studied the encapsulation efficiency into the exosomes and the anticancer activity.
Collapse
Affiliation(s)
- Yuhei Onizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Kazuya Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Sachiko Ide
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Toyohiro Naito
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal Chim Acta 2022; 1204:339633. [DOI: 10.1016/j.aca.2022.339633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
|
10
|
Das TK, Chou DK, Jiskoot W, Arosio P. Nucleation in protein aggregation in biotherapeutic development: a look into the heart of the event. J Pharm Sci 2022; 111:951-959. [DOI: 10.1016/j.xphs.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
|
11
|
Yahata S, Hirose M, Ueno T, Nagumo H, Sakai-Kato K. Effect of Sample Concentration on Nanoparticle Tracking Analysis of Small Extracellular Vesicles and Liposomes Mimicking the Physicochemical Properties of Exosomes. Chem Pharm Bull (Tokyo) 2021; 69:1045-1053. [PMID: 34719585 DOI: 10.1248/cpb.c21-00452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For quantitative analysis, data should be obtained at a sample concentration that is within the range of linearity. We examined the effect of sample concentration on nanoparticle tracking analysis (NTA) of small extracellular vesicles (sEVs), including exosomes, by comparing NTA results of sEVs with those obtained for polystyrene nanoparticles (PSN) and liposomes, which mimic lipid composition and physicochemical properties of exosomes. Initially, NTA of PSN at different concentrations was performed and the particle sizes determined were validated by dynamic light scattering. The major peak maxima for PSN mixtures of different sizes at the higher particle numbers were similar, with some fluctuation of the minor peak maxima observed at the lower particle number, which was also observed for sEVs. Sample concentration is critical for obtaining reproducible data for liposomes and exosomes and increasing the sample concentration caused an increase in data variability because of particle interactions. The inter-day repeatability of particles sizes and concentration for sEVs were 7.47 and 4.51%, respectively. Analysis of the linearity range revealed that this was narrower for sEVs when compared with that of liposomes. Owing to the use of liposomes that mimic the lipid composition and physicochemical properties of exosomes and proteinase-treated sEVs, it was demonstrated that these different analytical results could be possibly caused by the protein corona of sEVs. Consideration of the sample concentration and linearity range is important for obtaining reproducible and reliable data of sEVs.
Collapse
|
12
|
Hoffmann WH, Mulkerns NMC, Hall SR, Gersen H. Laser-induced convection shifts size distributions in nanoparticle tracking analysis. NANOSCALE ADVANCES 2021; 3:5694-5702. [PMID: 34604699 PMCID: PMC8478152 DOI: 10.1039/d1na00572c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
This work discusses the effects of increasing laser power on the size data derived from NTA for particles of known size and scatterers in solutions of flufenamic acid in ethanol. We find that whilst a higher laser power reveals more particles as expected, their residence time changes due to laser-induced convection. This reduced residence time decreases the number of tracks available for individual particle size determination, shifting the size distribution to smaller values. This problem is overcome by using a shutter to inhibit the development of convection currents, increasing particle residence time and reducing the error on the size distribution. The detailed understanding of laser-induced convection permits more robust size characterisation of mesoscopic organic clusters, which play a key role in two-step nucleation theory.
Collapse
Affiliation(s)
- William H Hoffmann
- H. H. Wills Physics Laboratory, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
- Bristol Centre for Functional Nanomaterials, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Niall M C Mulkerns
- H. H. Wills Physics Laboratory, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
- Bristol Centre for Functional Nanomaterials, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
| | - Simon R Hall
- Bristol Centre for Functional Nanomaterials, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Henkjan Gersen
- H. H. Wills Physics Laboratory, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
- Bristol Centre for Functional Nanomaterials, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
| |
Collapse
|
13
|
Klijn ME, Hubbuch J. Application of ultraviolet, visible, and infrared light imaging in protein-based biopharmaceutical formulation characterization and development studies. Eur J Pharm Biopharm 2021; 165:319-336. [PMID: 34052429 DOI: 10.1016/j.ejpb.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Imaging is increasingly more utilized as analytical technology in biopharmaceutical formulation research, with applications ranging from subvisible particle characterization to thermal stability screening and residual moisture analysis. This review offers a comprehensive overview of analytical imaging for scientists active in biopharmaceutical formulation research and development, where it presents the unique information provided by the ultraviolet (UV), visible (Vis), and infrared (IR) sections in the electromagnetic spectrum. The main body of this review consists of an outline of UV, Vis, and IR imaging techniques for several (bio)physical properties that are commonly determined during protein-based biopharmaceutical formulation characterization and development studies. The review concludes with a future perspective of applied imaging within the field of biopharmaceutical formulation research.
Collapse
Affiliation(s)
- Marieke E Klijn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
14
|
Moore C, Wing R, Pham T, Jokerst JV. Multispectral Nanoparticle Tracking Analysis for the Real-Time and Label-Free Characterization of Amyloid-β Self-Assembly In Vitro. Anal Chem 2020; 92:11590-11599. [PMID: 32786456 PMCID: PMC8411845 DOI: 10.1021/acs.analchem.0c01048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The deposition of amyloid β (Aβ) plaques and fibrils in the brain parenchyma is a hallmark of Alzheimer's disease (AD), but a mechanistic understanding of the role Aβ plays in AD has remained unclear. One important reason could be the limitations of current tools to size and count Aβ fibrils in real time. Conventional techniques from molecular biology largely use ensemble averaging; some microscopy analyses have been reported but suffer from low throughput. Nanoparticle tracking analysis is an alternative approach developed in the past decade for sizing and counting particles according to their Brownian motion; however, it is limited in sensitivity to polydisperse solutions because it uses only one laser. More recently, multispectral nanoparticle tracking analysis (MNTA) was introduced to address this limitation; it uses three visible wavelengths to quantitate heterogeneous particle distributions. Here, we used MNTA as a label-free technique to characterize the in vitro kinetics of Aβ1-42 aggregation by measuring the size distributions of aggregates during self-assembly. Our results show that this technology can monitor the aggregation of 106-108 particles/mL with a temporal resolution between 15 and 30 min. We corroborated this method with the fluorescent Thioflavin-T assay and transmission electron microscopy (TEM), showing good agreement between the techniques (Pearson's r = 0.821, P < 0.0001). We also used fluorescent gating to examine the effect of ThT on the aggregate size distribution. Finally, the biological relevance was demonstrated via fibril modulation in the presence of a polyphenolic Aβ disruptor. In summary, this approach measures Aβ assembly similar to ensemble-type measurements but with per-fibril resolution.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryan Wing
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Timothy Pham
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Shearn AIU, Aday S, Ben-Aicha S, Carnell-Morris P, Siupa A, Angelini GD, Clayton A, Boulanger C, Punjabi P, Emanueli C, Biglino G. Analysis of Neat Biofluids Obtained During Cardiac Surgery Using Nanoparticle Tracking Analysis: Methodological Considerations. Front Cell Dev Biol 2020; 8:367. [PMID: 32528952 PMCID: PMC7262431 DOI: 10.3389/fcell.2020.00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/24/2020] [Indexed: 01/15/2023] Open
Abstract
Small extracellular vesicles (sEVs) are those nanovesicles 30-150 nm in size with a role in cell signalling and potential as biomarkers of disease. Nanoparticle tracking analysis (NTA) techniques are commonly used to measure sEV concentration in biofluids. However, this quantification technique can be susceptible to sample handing and machine settings. Moreover, some classes of lipoproteins are of similar sizes and could therefore confound sEV quantification, particularly in blood-derived preparations, such serum and plasma. Here we have provided methodological information on NTA measurements and systematically investigated potential factors that could interfere with the reliability and repeatability of results obtained when looking at neat biofluids (i.e., human serum and pericardial fluid) obtained from patients undergoing cardiac surgery and from healthy controls. Data suggest that variables that can affect vesicle quantification include the level of contamination from lipoproteins, number of sample freeze/thaw cycles, sample filtration, using saline-based diluents, video length and keeping the number of particles per frame within defined limits. Those parameters that are of less concern include focus, the "Maximum Jump" setting and the number of videos recorded. However, if these settings are clearly inappropriate the results obtained will be spurious. Similarly, good experimental practice suggests that multiple videos should be recorded. In conclusion, NTA is a perfectible, but still commonly used system for sEVs analyses. Provided users handle their samples with a highly robust and consistent protocol, and accurately report these aspects, they can obtain data that could potentially translate into new clinical biomarkers for diagnosis and monitoring of cardiovascular disease.
Collapse
Affiliation(s)
- Andrew I. U. Shearn
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Sezin Aday
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Soumaya Ben-Aicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Gianni D. Angelini
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Aled Clayton
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chantal Boulanger
- Cardiovascular Research Center, INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Prakash Punjabi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Costanza Emanueli
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Giovanni Biglino
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Gast M, Sobek H, Mizaikoff B. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. Hum Gene Ther Methods 2020; 30:235-244. [PMID: 31760805 DOI: 10.1089/hgtb.2019.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The detailed characterization of biological nanoparticles is of paramount importance for various industrial sectors, as for production of viral therapeutics. More recently, technologies that allow real-time quantification with simultaneous sizing and determination of surface potentials of virus particles in solution have been developed. In this study, nanoparticle tracking analysis (NTA) was applied to determine the size and the zeta potential of human adenovirus type 5 (AdV5), one the most frequently used therapeutic/oncolytic agents and viral vectors. Virus aggregation was detected, and the kinetics of the dissolution of virus aggregates were studied in real time. In addition, advanced fluorescence detection of AdV5 was performed enabling the measurements in matrices and discrimination of viral subpopulations. It was shown that NTA is an efficient approach for investigating infectious viruses in a live viewing mode. Consequently, NTA provides a promising methodology for virus particle detection and analysis in real time beyond assays requiring nucleic acids or infectivity.
Collapse
Affiliation(s)
- Manuela Gast
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Ochsenhausen, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
17
|
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, Yi YW, Cho BS. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells 2020; 9:E1157. [PMID: 32392899 PMCID: PMC7290908 DOI: 10.3390/cells9051157] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized vesicles that serve as mediators for cell-to-cell communication. With their unique nucleic acids, proteins, and lipids cargo compositions that reflect the characteristics of producer cells, exosomes can be utilized as cell-free therapeutics. Among exosomes derived from various cellular origins, mesenchymal stem cell-derived exosomes (MSC-exosomes) have gained great attention due to their immunomodulatory and regenerative functions. Indeed, many studies have shown anti-inflammatory, anti-aging and wound healing effects of MSC-exosomes in various in vitro and in vivo models. In addition, recent advances in the field of exosome biology have enabled development of specific guidelines and quality control methods, which will ultimately lead to clinical application of exosomes. This review highlights recent studies that investigate therapeutic potential of MSC-exosomes and relevant mode of actions for skin diseases, as well as quality control measures required for development of exosome-derived therapeutics.
Collapse
Affiliation(s)
- Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Joon Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | | | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwasweong-si, Gyeonggi-do 18450, Korea;
| | | | | | | | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Sumi Sung
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| |
Collapse
|
18
|
Geppert M, Schwarz A, Stangassinger LM, Wenger S, Wienerroither LM, Ess S, Duschl A, Himly M. Interactions of TiO 2 Nanoparticles with Ingredients from Modern Lifestyle Products and Their Effects on Human Skin Cells. Chem Res Toxicol 2020; 33:1215-1225. [PMID: 32088960 PMCID: PMC7238409 DOI: 10.1021/acs.chemrestox.9b00428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The
number of consumer products containing nanoparticles (NPs)
experienced a rapid increase during the past decades. However, most
studies of nanosafety have been conducted using only pure NPs produced
in the laboratory, while the interactions with other ingredients in
consumer products have rarely been considered so far. In the present
study, we investigated such interactions—with a special focus
on modern lifestyle products (MLPs) used by adolescents. An extensive
survey was undertaken at different high schools all over Austria to
identify MLPs that either contain NPs or that could come easily in
contact with NPs from other consumer products (such as TiO2 from sunscreens). Based on the results from a survey among secondary
schools students, we focused on ingredients from Henna tattoos (2-hydroxy-1,4-naphtoquinone,
HNQ, and p-phenylenediamine, PPD), fragrances (butylphenyl
methylpropional, known as Lilial), cosmetics and skin-care products
(four different parabens). As a cellular model, we decided to use
neonatal normal human dermal fibroblasts (nNHDF), since skin contact
is the main route of exposure for these compounds. TiO2 NPs interacted with these compounds as evidenced by alterations
in their hydrodynamic diameter observed by nanoparticle tracking analysis.
Combinations of TiO2 NPs with the different MLP components
did not show altered cytotoxicity profiles compared to MLP components
without TiO2 NPs. Nevertheless, altered cellular glutathione
contents were detected after incubation of the cells with Lilial.
This effect was independent of the presence of TiO2 NPs.
Testing mixtures of NPs with other compounds from consumer products
is an important approach to achieve a more reliable safety assessment.
Collapse
Affiliation(s)
- Mark Geppert
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Alexandra Schwarz
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Lea Maria Stangassinger
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Susanna Wenger
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Lisa Maria Wienerroither
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Stefanie Ess
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Albert Duschl
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Martin Himly
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
19
|
Highton PJ, Goltz FR, Martin N, Stensel DJ, Thackray AE, Bishop NC. Microparticle Responses to Aerobic Exercise and Meal Consumption in Healthy Men. Med Sci Sports Exerc 2020; 51:1935-1943. [PMID: 30889043 DOI: 10.1249/mss.0000000000001985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Microparticles (MP) are shed extracellular vesicles that express the prothrombotic tissue factor (TF). Aerobic exercise may reduce MP count and TF expression. This study investigated the impact of acute running or rest followed by standardized meal consumption on MP phenotypes and TF expression. METHODS Fifteen males (age, 22.9 ± 3.3 yr; body mass, 81.9 ± 11.4 kg; V˙O2max, 54.9 ± 6.5 mL·kg·min; mean ± SD) completed 1 h of running (70% V˙O2max) or rest at 9:00 AM and consumed a standardized meal (1170 kcal, 43% CHO, 17% PRO, 40% fat) at 10:45 AM. Venous blood samples were taken at 9:00 AM, 10:00 AM, and 11:30 AM. The MP concentration, diameter, phenotypes, and TF expression were assessed using nanoparticle tracking analysis and flow cytometry. RESULTS Nanoparticle tracking analysis identified no changes in MP concentration or diameter in response to time or trial. Flow cytometry revealed total MP count increased from 9:00 AM to 10:00 AM (1.62 ± 2.28 to 1.74 ± 2.61 × 10 L, P = 0.016, effect size (η) = 0.105), but was unaffected by trial. TF platelet-derived MP % reduced from 9:00 AM to 10:00 AM (44.0% ± 21.2% to 21.5% ± 9.3%, P = 0.001, η = 0.582) after exercise only (control, 36.8% ± 18.2% to 34.9% ± 11.9%; P = 0.972). TF neutrophil-derived MP percentage reduced from 9:00 AM to 11:30 AM (42.3% ± 17.2% to 25.1% ± 14.9%; P = 0.048, η = 0.801) in the exercise trial only (control, 28.5% ± 15.7% to 32.2% ± 9.6%; P = 0.508). CONCLUSIONS Running induced a significant reduction in %TF platelet and neutrophil MP, suggesting a transient reduction in cardiovascular risk via reduced TF-stimulated thrombosis. This requires further investigation over longer periods in cardiovascular disease populations.
Collapse
Affiliation(s)
- Patrick J Highton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UNITED KINGDOM
| | - Fernanda R Goltz
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Naomi Martin
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UNITED KINGDOM.,Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UNITED KINGDOM
| | - David J Stensel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UNITED KINGDOM
| | - Alice E Thackray
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UNITED KINGDOM
| | - Nicolette C Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UNITED KINGDOM.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UNITED KINGDOM
| |
Collapse
|
20
|
Hubert M, Yang DT, Kwok SC, Rios A, Das TK, Patel A, Wuchner K, Antochshuk V, Junge F, Bou-Assaf GM, Cao S, Saggu M, Montrond L, Afonina N, Kolhe P, Loladze V, Narhi L. A Multicompany Assessment of Submicron Particle Levels by NTA and RMM in a Wide Range of Late-Phase Clinical and Commercial Biotechnology-Derived Protein Products. J Pharm Sci 2020; 109:830-844. [DOI: 10.1016/j.xphs.2019.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023]
|
21
|
Turner C, Donose BC, Birkett G, Pratt S. Silica fouling during groundwater RO treatment: The effect of colloids' radius of curvature on dissolution and polymerisation. WATER RESEARCH 2020; 168:115135. [PMID: 31622911 DOI: 10.1016/j.watres.2019.115135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Silica fouling during groundwater reverse osmosis (RO) treatment can have a significant impact on filtration performance. To better understand this phenomenon, the equilibrium kinetics of amorphous colloidal silica were studied at conditions relevant to RO of silica-rich alkaline groundwater. The impact of particle size was investigated using synthetic monodisperse silica nanoparticles. Bench scale experiments were conducted by monitoring dissolved silica concentration of aqueous suspensions of colloids of 100 and 300 nm diameter and pH 8.5 to 9.5. The equilibrium data was determined from existing established rate law equations. This study concluded that surface energy has a major impact on silica dissolution rate constant, particularly for colloidal silica. Observations of Ostwald ripening in bidisperse silica dispersions further confirmed these results, which indicate that dissolution and redeposition is responsible for the problematic silica fouling behaviour during RO treatment. 2D modelling based on inferred equilibrium data allows visualization of scale layer growth in agreement with cross-sectional scanning electron micrographs of autopsied membranes.
Collapse
Affiliation(s)
- Christopher Turner
- School of Chemical Engineering, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| | - Bogdan C Donose
- School of Chemical Engineering, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Greg Birkett
- School of Chemical Engineering, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St Lucia, 4072, Queensland, Australia
| |
Collapse
|
22
|
Wälchli R, Vermeire PJ, Massant J, Arosio P. Accelerated Aggregation Studies of Monoclonal Antibodies: Considerations for Storage Stability. J Pharm Sci 2019; 109:595-602. [PMID: 31676272 DOI: 10.1016/j.xphs.2019.10.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Aggregation of mAbs is a crucial concern with respect to their safety and efficacy. Among the various properties of protein aggregates, it is emerging that their size can potentially impact their immunogenicity. Therefore, stability studies of antibody formulations should not only evaluate the rate of monomer loss but also determine the size distribution of the protein aggregates, which in turn depends on the aggregation mechanism. Here, we study the aggregation behavior of different formulations of 2 monoclonal immunoglobulins (IgGs) in the temperature range from 5°C to 50°C over 52 weeks of storage. We show that the aggregation kinetics of both antibodies follow non-Arrhenius behavior and that the aggregation mechanisms change between 40°C and 5°C, leading to different types of aggregates. Specifically, for a given monomer conversion, dimer formation dominates at low temperatures, while larger aggregates are formed at higher temperatures. We further show that the stability ranking of different molecules as well as of different formulations is drastically different at 40°C and 5°C while it correlates better between 30°C and 5°C. Our findings have implications for the level of information provided by accelerated aggregation studies with respect to protein stability under storage conditions.
Collapse
Affiliation(s)
- Ruben Wälchli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Pieter-Jan Vermeire
- UCB Pharma, BioTech Sciences, Formulation Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Jan Massant
- UCB Pharma, BioTech Sciences, Formulation Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| |
Collapse
|
23
|
Hoover BM, Murphy RM. Evaluation of Nanoparticle Tracking Analysis for the Detection of Rod-Shaped Particles and Protein Aggregates. J Pharm Sci 2019; 109:452-463. [PMID: 31604086 DOI: 10.1016/j.xphs.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Nanoparticle tracking analysis (NTA) is an important technique for measuring hydrodynamic size of globular biological particles including liposomes and viruses. Less attention has been paid to NTA of rod-like particles, despite their considerable interest. For example, amyloid fibrils and protofibrils are protein aggregates with rod-like morphology, diameters of 2-15 nm, and lengths from 50 nm to 1 μm, and linked to diseases including Alzheimer's and Parkinson's. We used NTA to measure the concentration and hydrodynamic size of gold nanorods (10 nm diameter, 35-250 nm length) and myosin (2 nm diameter, 160 nm length), as models of rod-like particles. Measured hydrodynamic diameters of gold nanorods were consistent with theoretical calculations, as long as particle concentration and solution conditions were controlled. Myosin monomers were invisible by NTA, but a small population of aggregates was detected. We combined NTA results with other light scattering data to gain insight into number and size distribution of protein solutions containing both monomer and aggregates. Finally, we demonstrated the utility of NTA and its limitations by characterizing aggregates of alpha-synuclein. Of note is the use of NTA to detect a change in morphology from compact to elongated by analyzing the ratio of hydrodynamic size to intensity.
Collapse
Affiliation(s)
- Brandon M Hoover
- Biophysics Program, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
24
|
Pai RV, Monpara JD, Vavia PR. Exploring molecular dynamics simulation to predict binding with ocular mucin: An in silico approach for screening mucoadhesive materials for ocular retentive delivery systems. J Control Release 2019; 309:190-202. [DOI: 10.1016/j.jconrel.2019.07.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023]
|
25
|
Analysis of extracellular vesicles generated from monocytes under conditions of lytic cell death. Sci Rep 2019; 9:7538. [PMID: 31101910 PMCID: PMC6525174 DOI: 10.1038/s41598-019-44021-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are an important class of membrane-bound structures that have been widely investigated for their roles in intercellular communication in the contexts of tumor progression, vascular function, immunity and regenerative medicine. Much of the current knowledge on the functions of EVs pertains to those derived from viable cells (e.g. exosomes and microvesicles) or apoptotic cells (e.g. apoptotic bodies) whilst the generation of EVs from dying cells under non-apoptotic conditions remains poorly characterized. Herein, the release of EVs from THP-1 monocytes under conditions of primary necrosis, secondary necrosis and pyroptosis, was investigated. A comprehensive analysis of THP-1-derived EVs revealed that cells undergoing lytic forms of cell death generated a high number of EVs compared with viable or apoptotic cells in vitro. Differential centrifugation via 16,000 g and 100,000 g revealed that dying THP-1 cells release both medium and small EVs, respectively, consistent with the known characteristics of microvesicles and/or exosomes. In addition, large EVs isolated via 2000 g centrifugation were also present in all samples. These findings suggest that lytic cell death under both sterile and non-sterile inflammatory conditions induces monocytes to generate EVs, which could potentially act as mediators of cell-to-cell communication.
Collapse
|
26
|
Bachurski D, Schuldner M, Nguyen PH, Malz A, Reiners KS, Grenzi PC, Babatz F, Schauss AC, Hansen HP, Hallek M, Pogge von Strandmann E. Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles 2019. [DOI: 78495111110.1080/20013078.2019.1596016' target='_blank'>'"<>78495111110.1080/20013078.2019.1596016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1080/20013078.2019.1596016','', '10.1016/j.xphs.2016.08.009')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
78495111110.1080/20013078.2019.1596016" />
Affiliation(s)
- Daniel Bachurski
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maximiliane Schuldner
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexandra Malz
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Katrin S Reiners
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Patricia C Grenzi
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Felix Babatz
- CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, University of Cologne, Cologne, Germany
| | - Astrid C Schauss
- CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, University of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
27
|
Bachurski D, Schuldner M, Nguyen PH, Malz A, Reiners KS, Grenzi PC, Babatz F, Schauss AC, Hansen HP, Hallek M, Pogge von Strandmann E. Extracellular vesicle measurements with nanoparticle tracking analysis - An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles 2019; 8:1596016. [PMID: 30988894 PMCID: PMC6450530 DOI: 10.1080/20013078.2019.1596016] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/14/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods to characterize single EVs. Nanoparticle Tracking Analysis (NTA) is commonly used to determine EV concentration and diameter. As the EV field is lacking methods to easily confirm and validate NTA data, questioning the reliability of measurements remains highly important. In this regard, a comparison addressing measurement quality between different NTA devices such as Malvern’s NanoSight NS300 or Particle Metrix’ ZetaView has not yet been conducted. To evaluate the accuracy and repeatability of size and concentration determinations of both devices, we employed comparative methods including transmission electron microscopy (TEM) and single particle interferometric reflectance imaging sensing (SP-IRIS) by ExoView. Multiple test measurements with nanospheres, liposomes and ultracentrifuged EVs from human serum and cell culture supernatant were performed. Additionally, serial dilutions and freeze-thaw cycle-dependent EV decrease were measured to determine the robustness of each system. Strikingly, NanoSight NS300 exhibited a 2.0–2.1-fold overestimation of polystyrene and silica nanosphere concentration. By measuring serial dilutions of EV samples, we demonstrated higher accuracy in concentration determination by ZetaView (% BIAS range: 2.7–8.5) in comparison with NanoSight NS300 (% BIAS range: 32.9–36.8). The concentration measurements by ZetaView were also more precise (% CV range: 0.0–4.7) than measurements by NanoSight NS300 (% CV range: 5.4–10.7). On the contrary, quantitative TEM imaging indicated more accurate EV sizing by NanoSight NS300 (% DTEM range: 79.5–134.3) compared to ZetaView (% DTEM range: 111.8–205.7), while being equally repeatable (NanoSight NS300% CV range: 0.8–6.7; ZetaView: 1.4–7.8). However, both devices failed to report a peak EV diameter below 60 nm compared to TEM and SP-IRIS. Taken together, NTA devices differ strongly in their hardware and software affecting measuring results. ZetaView provided a more accurate and repeatable depiction of EV concentration, whereas NanoSight NS300 supplied size measurements of higher resolution.
Collapse
Affiliation(s)
- Daniel Bachurski
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maximiliane Schuldner
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexandra Malz
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Katrin S Reiners
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Patricia C Grenzi
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Felix Babatz
- CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', University of Cologne, Cologne, Germany
| | - Astrid C Schauss
- CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', University of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
28
|
Li J, Krause ME, Chen X, Cheng Y, Dai W, Hill JJ, Huang M, Jordan S, LaCasse D, Narhi L, Shalaev E, Shieh IC, Thomas JC, Tu R, Zheng S, Zhu L. Interfacial Stress in the Development of Biologics: Fundamental Understanding, Current Practice, and Future Perspective. AAPS J 2019; 21:44. [PMID: 30915582 PMCID: PMC6435788 DOI: 10.1208/s12248-019-0312-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022] Open
Abstract
Biologic products encounter various types of interfacial stress during development, manufacturing, and clinical administration. When proteins come in contact with vapor-liquid, solid-liquid, and liquid-liquid surfaces, these interfaces can significantly impact the protein drug product quality attributes, including formation of visible particles, subvisible particles, or soluble aggregates, or changes in target protein concentration due to adsorption of the molecule to various interfaces. Protein aggregation at interfaces is often accompanied by changes in conformation, as proteins modify their higher order structure in response to interfacial stresses such as hydrophobicity, charge, and mechanical stress. Formation of aggregates may elicit immunogenicity concerns; therefore, it is important to minimize opportunities for aggregation by performing a systematic evaluation of interfacial stress throughout the product development cycle and to develop appropriate mitigation strategies. The purpose of this white paper is to provide an understanding of protein interfacial stability, explore methods to understand interfacial behavior of proteins, then describe current industry approaches to address interfacial stability concerns. Specifically, we will discuss interfacial stresses to which proteins are exposed from drug substance manufacture through clinical administration, as well as the analytical techniques used to evaluate the resulting impact on the stability of the protein. A high-level mechanistic understanding of the relationship between interfacial stress and aggregation will be introduced, as well as some novel techniques for measuring and better understanding the interfacial behavior of proteins. Finally, some best practices in the evaluation and minimization of interfacial stress will be recommended.
Collapse
Affiliation(s)
- Jinjiang Li
- Pharmaceutical Development, Wolfe Labs, 19 Presidential Way, Woburn, Massachusetts, 01801, USA.
| | - Mary E Krause
- Drug Product Science and Technology, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey, 08901, USA.
| | - Xiaodong Chen
- Drug Product Science and Technology, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey, 08901, USA
| | - Yuan Cheng
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, 10591, USA
| | - Weiguo Dai
- Large Molecule Drug Product Development, Janssen Research & Development, LLC, Johnson and Johnson, Malvern, Pennsylvania, 19355, USA
| | - John J Hill
- BioProcess Technology Consultants, Woburn, Massachusetts, 01801, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Min Huang
- Biotherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, 01810, USA
| | - Susan Jordan
- Pharma Excipients, The Dow Chemical Company, Collegeville, Pennsylvania, 19426, USA
| | - Daniel LaCasse
- Biotherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, 01810, USA
| | - Linda Narhi
- Process Development, Amgen, Inc., Thousand Oaks, California, 91362, USA
| | - Evgenyi Shalaev
- Pharmaceutical Development, Allergan Inc., Irvine, California, 92612, USA
| | - Ian C Shieh
- Late Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, California, 94080, USA
| | - Justin C Thomas
- Bioproduct Research & Development, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Raymond Tu
- Department of Chemical Engineering, The City College of New York-CUNY, New York, New York, 10031, USA
| | - Songyan Zheng
- Drug Product Science and Technology, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey, 08901, USA
| | - Lily Zhu
- Technical Operations, CRISPR Therapeutics, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
29
|
Zepeda-Cervantes J, Cruz-Reséndiz A, Sampieri A, Carreón-Nápoles R, Sánchez-Betancourt JI, Vaca L. Incorporation of ORF2 from Porcine Circovirus Type 2(PCV2) into genetically encoded nanoparticles as a novel vaccine using a self-aggregating peptide. Vaccine 2019; 37:1928-1937. [PMID: 30824359 DOI: 10.1016/j.vaccine.2019.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Porcine Circovirus Type 2 (PCV2) is one of the most important pathogens in pigs around the world. PCV2 is a non-enveloped virus and its capsid is formed by a single protein known as open reading frame 2 (ORF2). The aim of this study was to evaluate the antigenicity and immunogenicity of genetically-encoded protein nanoparticles (NPs) containing ORF2 from PCV2 fused to the first 110 amino acids of the N-terminus of polyhedrin from the insect virus Autographa californica nucleopolyhedrovirus (PH(1 -1 1 0)). Our group has previously described that some polyhedrin fragments self-aggregate forming polyhedra-like particles. We identified a self-aggregating signal within the first 110 amino acids from polyhedrin (PH(1 -1 1 0)). Fusing the ORF2 from PCV2 to the carboxyl terminus from PH(1 -1 1 0) results in the formation of NPs which incorporate the antigen of interest. Using this system we synthesized NPs containing PH(1 -1 1 0) fused to ORF2 (PH(1 -1 1 0)PCV2) and purify them to immunize pigs and evaluate the humoral immune response generated by these NPs comparing them to a commercially available vaccine. Pigs immunized with PH(1 -1 1 0)PCV2 NPs produced antibodies against ORF2 from PCV2 as indicated by western blot and ELISA analysis. Antibodies obtained with PH(1 -1 1 0)PCV2 NPs were comparable to those obtained using a commercial PCV2 vaccine. These antibodies neutralized the infection of a recombinant PCV2 expressing the green fluorescent protein (GFP). These results together suggest that the self-aggregating peptide PH(1 -1 1 0) can be used for the synthesis of subunit vaccines against PCV2.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, CDMX, Coyoacán 04510, Mexico
| | - Adolfo Cruz-Reséndiz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico
| | - Alicia Sampieri
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico.
| | - Rosalba Carreón-Nápoles
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico.
| | - José Iván Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán 04510, Mexico.
| |
Collapse
|
30
|
Turner KB, Dean SN, Walper SA. Bacterial bioreactors: Outer membrane vesicles for enzyme encapsulation. Methods Enzymol 2019; 617:187-216. [PMID: 30784402 DOI: 10.1016/bs.mie.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial membrane vesicles, whether naturally occurring or engineered for enhanced functionality, have significant potential as tools for bioremediation, enzyme catalysis, and the development of therapeutics such as vaccines and adjuvants. In many instances, the vesicles themselves and the naturally occurring proteins are sufficient to lend functionality. Alternatively, additional function can be conveyed to these biological nanoparticles through the directed packaging of peptides and proteins, specifically recombinant enzymes chosen to mediate a specific reaction or facilitate a controlled response. Here we will detail mechanisms for directing the packaging of recombinant proteins and peptides into the nascent membrane vesicles (MVs) of Gram-negative bacteria with a focus on both active and passive packaging using both cellular machinery and engineered molecular systems. Additionally, we detail some of the more common methods for bacterial MVs purification, quantitation, and characterization as these methods are requisite for any subsequent experimentation or processing of MV reagents.
Collapse
Affiliation(s)
| | - Scott N Dean
- National Research Council Postdoctoral Fellow, Washington, DC, United States
| | - Scott A Walper
- U.S. Naval Research Laboratory, Washington, DC, United States.
| |
Collapse
|
31
|
Gesicle-Mediated Delivery of CRISPR/Cas9 Ribonucleoprotein Complex for Inactivating the HIV Provirus. Mol Ther 2018; 27:151-163. [PMID: 30389355 DOI: 10.1016/j.ymthe.2018.10.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Investigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a "gesicle" to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression. Using both NanoSight particle and western blot analysis, we verified production of Cas9-containing gesicles by HEK293FT cells. Application of gesicles to CHME-5 microglia resulted in rapid but transient transfer of Cas9 by western blot, which is present at 1 hr, but is undetectable by 24 hr post-treatment. Gesicle delivery of Cas9 protein preloaded with guide RNA targeting the HIV LTR to HIV-NanoLuc CHME-5 cells generated mutations within the LTR region and copy number loss. Finally, we demonstrated that this treatment resulted in reduced proviral activity under basal conditions and after stimulation with pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). These data suggest that gesicles are a viable alternative approach to deliver CRISPR/Cas9 technology.
Collapse
|
32
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
33
|
Grabarek AD, Weinbuch D, Jiskoot W, Hawe A. Critical Evaluation of Microfluidic Resistive Pulse Sensing for Quantification and Sizing of Nanometer- and Micrometer-Sized Particles in Biopharmaceutical Products. J Pharm Sci 2018; 108:563-573. [PMID: 30176253 DOI: 10.1016/j.xphs.2018.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
The objective was to evaluate performance, strengths, and limitations of the microfluidic resistive pulse sensing (MRPS) technique for the characterization of particles in the size range from about 50 to 2000 nm. MRPS, resonant mass measurement (RMM), nanoparticle tracking analysis (NTA) and dynamic light scattering were compared for the analysis of nanometer-sized polystyrene (PS) beads, liposomes, bacteria, and protein aggregates. An electrical conductivity of at least 3 mS/cm (equivalent to 25 mM NaCl) was determined as a key requirement for reliable analysis with MRPS. Particle size distributions of PS beads determined by MRPS, NTA, and RMM correlated well. However, counting precision varied significantly among the techniques and was best for RMM followed by MRPS and NTA. As determined by measuring single and mixed PS bead populations, MRPS showed the highest peak resolution for sizing. RMM and MRPS were superior over dynamic light scattering and NTA for the characterization of stressed protein samples. Finally, MRPS proved to be the only analytical technique able to characterize both bacteria and liposomes. In conclusion, MRPS is an orthogonal technique alongside other established techniques for a comprehensive analysis of a samples particle size distribution and particle concentration.
Collapse
Affiliation(s)
- Adam D Grabarek
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, The Netherlands
| | - Daniel Weinbuch
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany
| | - Wim Jiskoot
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, The Netherlands
| | - Andrea Hawe
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany.
| |
Collapse
|
34
|
Biophysical virus particle specific characterization to sharpen the definition of virus stability. Eur J Pharm Biopharm 2018; 132:62-69. [PMID: 30118752 DOI: 10.1016/j.ejpb.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Vaccine thermostability is key to successful global immunization programs as it may have a significant impact on the continuous cold-chain maintenance logistics, as well as affect vaccine potency. Modern biological and biophysical techniques were combined to in-depth characterize the thermostability of a formulated rabies virus (RABV) in terms of antigenic and genomic titer, virus particle count and aggregation state. Tunable resistive pulse sensing (TRPS) and nanoparticle tracking analysis (NTA) were used to count virus particles while simultaneously determining their size distribution. RABV antigenicity was assessed by NTA using a monoclonal antibody that recognize a rabies glycoprotein (G protein) conformational epitope, enabling to specifically count antigenic rabies viruses. Agreement between antigenicity results from NTA and conventional method, as ELISA, was demonstrated. Additionally, NTA and ELISA showed mirrored loss of RABV antigenicity during forced degradation studies performed between 5 °C and 45 °C temperature exposure for one month. Concomitant with decreased antigenicity, emergence of RABV particle populations larger than those expected for rabies family viruses was observed, suggesting RABV aggregation induced by thermal stress. Finally, using a kinetic-based modeling approach to explore forced degradation antigenicity data (NTA, ELISA), a two-step model accurately describing antigenicity loss was identified. This model predicted a RABV shelf-life of more than 3 years at 5 °C; significant loss of antigenicity was predicted for samples maintained several months at ambient temperature. This thorough characterization of RABV forced degradation study originally provided a time-temperature mapping of RABV stability.
Collapse
|
35
|
Kijanka G, Bee JS, Korman SA, Wu Y, Roskos LK, Schenerman MA, Slütter B, Jiskoot W. Submicron Size Particles of a Murine Monoclonal Antibody Are More Immunogenic Than Soluble Oligomers or Micron Size Particles Upon Subcutaneous Administration in Mice. J Pharm Sci 2018; 107:2847-2859. [PMID: 30003898 DOI: 10.1016/j.xphs.2018.06.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/16/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Protein aggregates are one of the several risk factors for undesired immunogenicity of biopharmaceuticals. However, it remains unclear which features determine whether aggregates will trigger an unwanted immune response. The aim of this study was to determine the effect of aggregates' size on their relative immunogenicity. A monoclonal murine IgG1 was stressed by exposure to low pH and elevated temperature followed by stirring to obtain aggregates widely differing in size. Aggregate fractions enriched in soluble oligomers, submicron size particles and micron size particles were isolated via centrifugation or size-exclusion chromatography and characterized physicochemically. The secondary and tertiary structures of aggregates were altered in a similar way for all the fractions, while no substantial chemical degradation was observed. Development of anti-drug antibodies was measured after subcutaneous administration of each enriched fraction to BALB/c mice. Among all tested fractions, the most immunogenic was the one highly enriched in submicron size particles (∼100-1000 nm). Fractions composed of micron size (>1-100 μm) particles or soluble oligomers (<100 nm) were not immunogenic under the dosing regimen studied in this work. These results show that aggregate size is an important factor for protein immunogenicity.
Collapse
Affiliation(s)
- Grzegorz Kijanka
- Division of BioTherapeutics, Leiden University, Leiden, The Netherlands
| | - Jared S Bee
- Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Samuel A Korman
- Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Yuling Wu
- Clinical Pharmacology and DMPK, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Lorin K Roskos
- Clinical Pharmacology and DMPK, MedImmune LLC, Gaithersburg, Maryland 20878
| | | | - Bram Slütter
- Division of BioTherapeutics, Leiden University, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
36
|
Baunsgaard D, Nielsen AD, Nielsen PF, Henriksen A, Kristensen AK, Bagger HW, Ezban M. A comparative analysis of heterogeneity in commercially available recombinant factor VIII products. Haemophilia 2018; 24:880-887. [DOI: 10.1111/hae.13497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - A. Henriksen
- Global Research; Novo Nordisk A/S; Måløv Denmark
| | | | - H. W. Bagger
- Global Research; Novo Nordisk A/S; Måløv Denmark
| | - M. Ezban
- Global Research; Novo Nordisk A/S; Måløv Denmark
| |
Collapse
|
37
|
Coty JB, Vauthier C. Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success. J Control Release 2018; 275:254-268. [DOI: 10.1016/j.jconrel.2018.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
|
38
|
Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches. Pharm Res 2018; 35:58. [DOI: 10.1007/s11095-017-2306-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
39
|
Defante AP, Vreeland WN, Benkstein KD, Ripple DC. Using Image Attributes to Assure Accurate Particle Size and Count Using Nanoparticle Tracking Analysis. J Pharm Sci 2017; 107:1383-1391. [PMID: 29277640 DOI: 10.1016/j.xphs.2017.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
Abstract
Nanoparticle tracking analysis (NTA) obtains particle size by analysis of particle diffusion through a time series of micrographs and particle count by a count of imaged particles. The number of observed particles imaged is controlled by the scattering cross-section of the particles and by camera settings such as sensitivity and shutter speed. Appropriate camera settings are defined as those that image, track, and analyze a sufficient number of particles for statistical repeatability. Here, we test if image attributes, features captured within the image itself, can provide measurable guidelines to assess the accuracy for particle size and count measurements using NTA. The results show that particle sizing is a robust process independent of image attributes for model systems. However, particle count is sensitive to camera settings. Using open-source software analysis, it was found that a median pixel area, 4 pixels2, results in a particle concentration within 20% of the expected value. The distribution of these illuminated pixel areas can also provide clues about the polydispersity of particle solutions prior to using a particle tracking analysis. Using the median pixel area serves as an operator-independent means to assess the quality of the NTA measurement for count.
Collapse
Affiliation(s)
- Adrian P Defante
- Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899.
| | - Wyatt N Vreeland
- Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Kurt D Benkstein
- Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Dean C Ripple
- Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| |
Collapse
|
40
|
Atay S, Wilkey DW, Milhem M, Merchant M, Godwin AK. Insights into the Proteome of Gastrointestinal Stromal Tumors-Derived Exosomes Reveals New Potential Diagnostic Biomarkers. Mol Cell Proteomics 2017; 17:495-515. [PMID: 29242380 DOI: 10.1074/mcp.ra117.000267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/21/2017] [Indexed: 12/13/2022] Open
Abstract
Developing tumors continuously release nano-sized vesicles that represent circulating "fingerprints" of the tumor's identity. In gastrointestinal stromal tumor (GIST), we have previously reported that these tumors release "oncosomes" carrying the constitutively activated tyrosine kinase (TK) receptor KIT. Despite the clinical utility of TK inhibitors, such as imatinib mesylate (IM), recurrence and metastasis are clinical problems that urge the need to identify new tumor-derived molecules. To this aim, we performed the first high quality proteomic study of GIST-derived exosomes (GDEs) and identified 1,060 proteins composing the core GDE proteome (cGDEp). The cGDEp was enriched in diagnostic markers (e.g. KIT, CD34, ANO1, PROM1, PRKCQ, and ENG), as well as proteins encoded by genes previously reported expressed in GIST (e.g. DPP4, FHL1, CDH11, and KCTD12). Many of these proteins were validated using cell lines, patient-derived KIT+ exosomes, and GIST tissues. We further show that in vitro and in vivo-derived GDE, carry proteins associated with IM response, such as Sprouty homolog 4 (SPRY4), surfeit 4 (SURF4), ALIX, and the cGMP-dependent 3',5'-cyclic phosphodiesterase 2A (PDE2A). Additionally, we report that the total exosome levels and exosome-associated KIT and SPRY4 protein levels have therapeutic values. In fact, molecular characterization of in vivo-derived KIT+ exosomes indicate significant sorting of p-KITTyr719, total KIT, and SPRY4 after IM-treatment of metastatic patients as compared with the pre-IM levels. Our data suggest that analysis of circulating exosomes levels and molecular markers of IM response in GIST patients with primary and metastatic disease is suitable to develop liquid based biopsies for the diagnosis, prognosis, and monitoring of response to treatment of these tumors. In summary, these findings provide the first insight into the proteome of GIST-derived oncosomes and offers a unique opportunity to further understand their oncogenic elements which contribute to tumorigenesis and drug resistance. Data are available via ProteomeXchange with identifier PXD007997.
Collapse
Affiliation(s)
- Safinur Atay
- From the ‡Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., 4005 WHE, MS3040, Kansas City, Kansas 66160;
| | - Daniel W Wilkey
- §University of Louisville Room 209, Donald Baxter Research Building, 570 S. Preston Street, Louisville, Kentucky 40202
| | - Mohammed Milhem
- ¶Division of Hematology, Oncology, Blood and Marrow Transplantation 200 Hawkins Drive, C32 GH Iowa City, Iowa 52242
| | - Michael Merchant
- §University of Louisville Room 209, Donald Baxter Research Building, 570 S. Preston Street, Louisville, Kentucky 40202
| | - Andrew K Godwin
- From the ‡Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., 4005 WHE, MS3040, Kansas City, Kansas 66160.,‖University of Kansas Cancer Center, 3901 Rainbow Blvd., 4005 WHE, MS3040, Kansas City, Kansas 66160
| |
Collapse
|
41
|
Taraban MB, DePaz RA, Lobo B, Yu YB. Water Proton NMR: A Tool for Protein Aggregation Characterization. Anal Chem 2017; 89:5494-5502. [DOI: 10.1021/acs.analchem.7b00464] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marc B. Taraban
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Roberto A. DePaz
- Formulation
Sciences, MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Brian Lobo
- Formulation
Sciences, MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Y. Bruce Yu
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|