1
|
Cheung IY, Mauguen A, Modak S, Basu EM, Feng Y, Kushner BH, Cheung NK. Long Prime-Boost Interval and Heightened Anti-GD2 Antibody Response to Carbohydrate Cancer Vaccine. Vaccines (Basel) 2024; 12:587. [PMID: 38932316 PMCID: PMC11209353 DOI: 10.3390/vaccines12060587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The carbohydrate ganglioside GD2/GD3 cancer vaccine adjuvanted by β-glucan stimulates anti-GD2 IgG1 antibodies that strongly correlate with improved progression-free survival (PFS) and overall survival (OS) among patients with high-risk neuroblastoma. Thirty-two patients who relapsed on the vaccine (first enrollment) were re-treated on the same vaccine protocol (re-enrollment). Titers during the first enrollment peaked by week 32 at 751 ± 270 ng/mL, which plateaued despite vaccine boosts at 1.2-4.5 month intervals. After a median wash-out interval of 16.1 months from the last vaccine dose during the first enrollment to the first vaccine dose during re-enrollment, the anti-GD2 IgG1 antibody rose to a peak of 4066 ± 813 ng/mL by week 3 following re-enrollment (p < 0.0001 by the Wilcoxon matched-pairs signed-rank test). Yet, these peaks dropped sharply and continually despite repeated boosts at 1.2-4.5 month intervals, before leveling off by week 20 to the first enrollment peak levels. Despite higher antibody titers, patients experienced no pain or neuropathic side effects, which were typically associated with immunotherapy using monoclonal anti-GD2 antibodies. By the Kaplan-Meier method, PFS was estimated to be 51%, and OS was 81%. The association between IgG1 titer during re-enrollment and β-glucan receptor dectin-1 SNP rs3901533 was significant (p = 0.01). A longer prime-boost interval could significantly improve antibody responses in patients treated with ganglioside conjugate cancer vaccines.
Collapse
Affiliation(s)
- Irene Y. Cheung
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Audrey Mauguen
- Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Shakeel Modak
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Ellen M. Basu
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Yi Feng
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Brian H. Kushner
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Nai Kong Cheung
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| |
Collapse
|
2
|
Oldrini D, Di Benedetto R, Carducci M, De Simone D, Massai L, Alfini R, Galli B, Brunelli B, Przedpelski A, Barbieri JT, Rossi O, Giannelli C, Rappuoli R, Berti F, Micoli F. Testing a Recombinant Form of Tetanus Toxoid as a Carrier Protein for Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:1770. [PMID: 38140177 PMCID: PMC10747096 DOI: 10.3390/vaccines11121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.
Collapse
Affiliation(s)
- Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Barbara Galli
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | | | - Amanda Przedpelski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Rino Rappuoli
- Fondazione Biotecnopolo, via Fiorentina 1, 53100 Siena, Italy;
| | - Francesco Berti
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| |
Collapse
|
3
|
Kumru OS, Sanyal M, Friedland N, Hickey JM, Joshi R, Weidenbacher P, Do J, Cheng YC, Kim PS, Joshi SB, Volkin DB. Formulation development and comparability studies with an aluminum-salt adjuvanted SARS-CoV-2 spike ferritin nanoparticle vaccine antigen produced from two different cell lines. Vaccine 2023; 41:6502-6513. [PMID: 37620203 PMCID: PMC11181998 DOI: 10.1016/j.vaccine.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.
Collapse
Affiliation(s)
- Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Natalia Friedland
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Richa Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Payton Weidenbacher
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ya-Chen Cheng
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
4
|
Kumru OS, Sanyal M, Friedland N, Hickey J, Joshi R, Weidenbacher P, Do J, Cheng YC, Kim PS, Joshi SB, Volkin DB. Formulation development and comparability studies with an aluminum-salt adjuvanted SARS-CoV-2 Spike ferritin nanoparticle vaccine antigen produced from two different cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535447. [PMID: 37066156 PMCID: PMC10103975 DOI: 10.1101/2023.04.03.535447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.
Collapse
Affiliation(s)
- Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Natalia Friedland
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - John Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Richa Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Payton Weidenbacher
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Ya-Chen Cheng
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
5
|
Chen S, Quan DH, Sam G, Ozberk V, Wang XT, Halfmann P, Pandey M, Good MF, Kawaoka Y, Britton WJ, Rehm BHA. Assembly of Immunogenic Protein Particles toward Advanced Synthetic Vaccines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205819. [PMID: 36564365 DOI: 10.1002/smll.202205819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Diana H Quan
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Xiaonan T Wang
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4215, Australia
| |
Collapse
|
6
|
High-Level Production of Soluble Cross-Reacting Material 197 in Escherichia coli Cytoplasm Due to Fine Tuning of the Target Gene's mRNA Structure. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010009. [PMID: 36648835 PMCID: PMC9844443 DOI: 10.3390/biotech12010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Cross-reacting material 197 (CRM197) is a non-toxic mutant of the diphtheria toxin and is widely used as a carrier protein in conjugate vaccines. This protein was first obtained from the supernatant of the mutant Corynebacterium diphtheriae strain. This pathogenic bacteria strain is characterized by a slow growth rate and a relatively low target protein yield, resulting in high production costs for CRM197. Many attempts have been made to establish high-yield protocols for the heterologous expression of recombinant CRM197 in different host organisms. In the present work, a novel CRM197-producing Escherichia coli strain was constructed. The target protein was expressed in the cytoplasm of SHuffle T7 E. coli cells without any additional tags and with a single potential mutation-an additional Met [-1]. The fine tuning of the mRNA structure (the disruption of the single hairpin in the start codon area) was sufficient to increase the CRM197 expression level several times, resulting in 150-270 mg/L (1.1-2.0 mg/g wet biomass) yields of pure CRM197 protein. Besides the high yield, the advantages of the obtained expression system include the absence of the necessity of CRM197 refolding or tag removal. Thus, an extensive analysis of the mRNA structure and the removal of the unwanted hairpins in the 5' area may significantly improve the target protein expression rate.
Collapse
|
7
|
Scaria PV, Rowe CG, Chen BB, Dickey TH, Renn JP, Lambert LE, Barnafo EK, Rausch KM, Tolia NH, Duffy PE. Protein-protein conjugation enhances the immunogenicity of SARS-CoV-2 receptor-binding domain (RBD) vaccines. iScience 2022; 25:104739. [PMID: 35846379 PMCID: PMC9270177 DOI: 10.1016/j.isci.2022.104739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Several effective SARS-CoV-2 vaccines have been developed using different technologies. Although these vaccines target the isolates collected early in the pandemic, many have protected against serious illness from newer variants. Nevertheless, efficacy has diminished against successive variants and the need for effective and affordable vaccines persists especially in the developing world. Here, we adapted our protein-protein conjugate vaccine technology to generate a vaccine based on receptor-binding domain (RBD) antigen. RBD was conjugated to a carrier protein, EcoCRM®, to generate two types of conjugates: crosslinked and radial conjugates. In the crosslinked conjugate, antigen and carrier are chemically crosslinked; in the radial conjugate, the antigen is conjugated to the carrier by site-specific conjugation. With AS01 adjuvant, both conjugates showed enhanced immunogenicity in mice compared to RBD, with a Th1 bias. In hACE2 binding inhibition and pseudovirus neutralization assays, sera from mice vaccinated with the radial conjugate demonstrated strong functional activity.
Collapse
Affiliation(s)
- Puthupparampil V. Scaria
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Chris G. Rowe
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Beth B. Chen
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Thayne H. Dickey
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Jonathan P. Renn
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Lynn E. Lambert
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Emma K. Barnafo
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Niraj H. Tolia
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903, USA
| |
Collapse
|
8
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
9
|
Chang MJ, Ollivault-Shiflett M, Schuman R, Ngoc Nguyen S, Kaltashov IA, Bobst C, Rajagopal SP, Przedpelski A, Barbieri JT, Lees A. Genetically detoxified tetanus toxin as a vaccine and conjugate carrier protein. Vaccine 2022; 40:5103-5113. [PMID: 35871872 DOI: 10.1016/j.vaccine.2022.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Tetanus toxoid (TTxd), developed over 100 years ago, is a clinically effective, legacy vaccine against tetanus. Due to the extreme potency of native tetanus toxin, manufacturing and regulatory efforts often focus on TTxd production, standardization, and safety, rather than product modernization. Recently, a genetically detoxified, full-length tetanus toxin protein (8MTT) was reported as a tetanus vaccine alternative to TTxd (Przedpelski et al. mBio, 2020). Here we describe the production of 8MTT in Gor/MetTM E. coli, a strain engineered to have an oxidative cytoplasm, allowing for the expression of soluble, disulfide-bonded proteins. The strain was also designed to efficiently cleave N-terminal methionine, the obligatory start amino acid for E. coli expressed proteins. 8MTT was purified as a soluble protein from the cytoplasm in a two-column protocol to > 99 % purity, yielding 0.5 g of purified 8MTT/liter of fermentation broth with low endotoxin contamination, and antigenic purity of 3500 Lf/mg protein nitrogen. Mouse immunizations showed 8MTT to be an immunogenic vaccine and effective as a carrier protein for peptide and polysaccharide conjugates. These studies validate 8MTT as commercially viable and, unlike the heterogenous tetanus toxoid, a uniform carrier protein for conjugate vaccines. The development of a recombinant, genetically detoxified toxin produced in E. coli aligns the tetanus vaccine with modern manufacturing, regulatory, standardization, and safety requirements.
Collapse
Affiliation(s)
- Min-Ju Chang
- Fina Biosolutions LLC, 9430 Key West Ave, Suite 200, Rockville, MD 20850, United States
| | | | - Richard Schuman
- Antibody and Immunoassay Consultants, 9430 Key West Ave, Suite 201, Rockville, MD 20850, United States
| | - Son Ngoc Nguyen
- University of Massachusetts, 240 Thatcher Way, Life Science Laboratories N369, Amherst, MA 01003, United States
| | - Igor A Kaltashov
- University of Massachusetts, 240 Thatcher Way, Life Science Laboratories N369, Amherst, MA 01003, United States
| | - Cedric Bobst
- University of Massachusetts, 240 Thatcher Way, Life Science Laboratories N369, Amherst, MA 01003, United States
| | - Shalini P Rajagopal
- National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Amanda Przedpelski
- Medical College of Wisconsin, 8701 Watertown Plank Rd., Microbiology and Immunology BSB-2830, Milwaukee, WI 53226, United States
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 Watertown Plank Rd., Microbiology and Immunology BSB-2830, Milwaukee, WI 53226, United States
| | - Andrew Lees
- Fina Biosolutions LLC, 9430 Key West Ave, Suite 200, Rockville, MD 20850, United States
| |
Collapse
|
10
|
Intranasal administration of BReC-CoV-2 COVID-19 vaccine protects K18-hACE2 mice against lethal SARS-CoV-2 challenge. NPJ Vaccines 2022; 7:36. [PMID: 35288576 PMCID: PMC8921182 DOI: 10.1038/s41541-022-00451-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM®). The vaccine is adjuvanted with Bacterial Enzymatic Combinatorial Chemistry (BECC), BECC470. Intranasal (IN) administration of BreC-CoV-2 in K18-hACE2 mice induced a strong systemic and localized immune response in the respiratory tissues which provided protection against the Washington strain of SARS-CoV-2. Protection provided after IN administration of BReC-CoV-2 was associated with decreased viral RNA copies in the lung, robust RBD IgA titers in the lung and nasal wash, and induction of broadly neutralizing antibodies in the serum. We also observed that BReC-CoV-2 vaccination administered using an intramuscular (IM) prime and IN boost protected mice from a lethal challenge dose of the Delta variant of SARS-CoV-2. IN administration of BReC-CoV-2 provided better protection than IM only administration to mice against lethal challenge dose of SARS-CoV-2. These data suggest that the IN route of vaccination induces localized immune responses that can better protect against SARS-CoV-2 than the IM route in the upper respiratory tract.
Collapse
|
11
|
Aw R, Ashik MR, Islam AAZM, Khan I, Mainuddin M, Islam MA, Ahasan MM, Polizzi KM. Production and purification of an active CRM197 in Pichia pastoris and its immunological characterization using a Vi-typhoid antigen vaccine. Vaccine 2021; 39:7379-7386. [PMID: 34774362 DOI: 10.1016/j.vaccine.2021.10.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
CRM197 is a commonly used glycoconjugate carrier that improves the immunogenicity of vaccines, particularly in infants. Despite the advantages of this diphtheria toxoid mutant, low yields, production in inclusion bodies, and the requirement for specific growth conditions have limited the breadth of successful recombinant protein expression platforms available for its expression. We evaluated Pichia pastoris as a production host, using the methanol inducible AOX1 promoter and a modified α-mating factor signal peptide for secretion into the supernatant. Final purified yields >100 mg L-1 culture were achieved when produced in a bioreactor, which is equivalent to the productivity obtained from bioprocesses using the native Corynebacterium diphtheriae host. Recombinant CRM197 was purified to ≥95% homogeneity and showed the expected endonuclease activity. Furthermore, mice immunized with a Salmonella enterica serovar Typhi capsular Vi antigen conjugated to our recombinant CRM197 showed greater than 5-fold increase in immune response. Overall, the results demonstrate that Pichia pastoris is a suitable expression host for the production of high quality CRM197 for vaccine applications.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, SW7 2AZ, UK
| | | | | | - Imran Khan
- Incepta Vaccine Ltd, Savar, Dhaka 1341, Bangladesh
| | | | | | | | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Pullagurla SR, Kumar P, Ogun O, Kumru OS, Hamidi A, Hoeksema F, Yallop C, Bines JE, Volkin DB, Joshi SB. Modeling the long-term 2-8 °C stability profiles of a live, rotavirus vaccine candidate (RV3-BB) in various liquid formulations via extrapolations of real-time and accelerated stability data. Biologicals 2021; 75:21-28. [PMID: 34924260 DOI: 10.1016/j.biologicals.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
To accelerate the formulation development of live-virus vaccine (LVV) candidates, more rapid approaches to rank-order formulations and estimate their real-time storage stability losses are needed. In this case-study, we utilize new and previously described stability data of a live, rotavirus vaccine candidate (RV3-BB) in three different liquid formulations to model and compare predicted vs. experimental RV3-BB stability profiles. Linear-regression extrapolations of limited real-time (2-8 °C) stability data and Arrhenius modeling of accelerated (15, 25, 37 °C) stability data provided predictions of RV3-BB real-time stability profiles (2-8 °C, 24 months). Good correlations of modeled versus experimental stability data to rank-order the RV3-BB formulations were achieved by employing (1) a high-throughput RT-qPCR assay to measure viral titers, (2) additional assay replicates and stability time-points, and (3) a -80 °C control for each formulation to benchmark results at each stability time-point and temperature. Instead of accumulating two-year, 2-8 °C storage stability data, the same rank-ordering of the three RV3-BB formulations could have been achieved by modeling 37°, 25°, 15° (and 2-8 °C) stability data over 1, 3 and 12 months, respectively. The results of this case-study are discussed in the context of accelerating LVV formulation development by expeditiously identifying stable formulations, estimating their shelf-lives, and determining vaccine vial monitoring (VVM) designations.
Collapse
Affiliation(s)
- Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Oluwadara Ogun
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Ahd Hamidi
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL Leiden, the Netherlands
| | - Femke Hoeksema
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL Leiden, the Netherlands
| | - Christopher Yallop
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL Leiden, the Netherlands
| | - Julie E Bines
- Murdoch Children's Research Institute, Department of Paediatrics University of Melbourne, Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia, 3052
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States.
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States.
| |
Collapse
|
13
|
Shatat SM, Al-Ghobashy MA, Fathalla FA, Abbas SS, Eltanany BM. Coupling of Trastuzumab chromatographic profiling with machine learning tools: A complementary approach for biosimilarity and stability assessment. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122976. [PMID: 34656909 DOI: 10.1016/j.jchromb.2021.122976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Biosimilar products present a growing opportunity to improve the global healthcare systems. The amount of accepted variability during the comparative assessments of biosimilar products introduces a significant challenge for both the biosimilar developers and the regulatory authorities. The aim of this study was to explore unsupervised machine learning tools as a mathematical aid for the interpretation and visualization of such comparability under control and stress conditions using data extracted from high throughput analytical techniques. For this purpose, a head-to-head analysis of the physicochemical characteristics of three Trastuzumab (TTZ) approved biosimilars and the originator product (Herceptin®) was performed. The studied quality attributes included the primary structure and identity by peptide mapping (PM) with reversed-phase chromatography-UV detection, size and charge profiles by stability-indicating size exclusion and cation exchange chromatography. Stress conditions involved pH and thermal stress. Principal component analysis (PCA) and two of the widely used cluster analysis tools, namely, K-means and Density-based Spatial Clustering of Applications with Noise (DBSCAN), were explored for clustering and feature representation of varied analytical datasets. It has been shown that the clustering patterns delineated by the used algorithms changed based on the included chromatographic profiles. The applied data analysis tools were found effective in revealing patterns of similarity and variability between i) intact and stressed as well as ii) originator and biosimilar samples.
Collapse
Affiliation(s)
- Sara M Shatat
- National Organization for Research and Control of Biologicals, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, Newgiza University, Egypt
| | - Faten A Fathalla
- National Organization for Research and Control of Biologicals, Egypt
| | - Samah S Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Basma M Eltanany
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
14
|
Bolgiano B, Moran E, Beresford NJ, Gao F, Care R, Desai T, Nordgren IK, Rudd TR, Feavers IM, Bore P, Patni S, Gavade V, Mallya A, Kale S, Sharma P, Goel SK, Gairola S, Hattarki S, Avalaskar N, Sarma AD, LaForce M, Ravenscroft N, Khandke L, Alderson MR, Dhere RM, Pisal SS. Evaluation of Critical Quality Attributes of a Pentavalent (A, C, Y, W, X) Meningococcal Conjugate Vaccine for Global Use. Pathogens 2021; 10:928. [PMID: 34451392 PMCID: PMC8400332 DOI: 10.3390/pathogens10080928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Towards achieving the goal of eliminating epidemic outbreaks of meningococcal disease in the African meningitis belt, a pentavalent glycoconjugate vaccine (NmCV-5) has been developed to protect against Neisseria meningitidis serogroups A, C, Y, W and X. MenA and X polysaccharides are conjugated to tetanus toxoid (TT) while MenC, Y and W polysaccharides are conjugated to recombinant cross reactive material 197 (rCRM197), a non-toxic genetic variant of diphtheria toxin. This study describes quality control testing performed by the manufacturer, Serum Institute of India Private Limited (SIIPL), and the independent control laboratory of the U.K. (NIBSC) on seven clinical lots of the vaccine to ensure its potency, purity, safety and consistency of its manufacturing. In addition to monitoring upstream-manufactured components, samples of drug substance, final drug product and stability samples were evaluated. This paper focuses on the comparison of the vaccine's critical quality attributes and reviews key indicators of its stability and immunogenicity. Comparable results were obtained by the two laboratories demonstrating sufficient levels of polysaccharide O-acetylation, consistency in size of the bulk conjugate molecules, integrity of the conjugated saccharides in the drug substance and drug product, and acceptable endotoxin content in the final drug product. The freeze-dried vaccine in 5-dose vials was stable based on molecular sizing and free saccharide assays. Lot-to-lot manufacturing consistency was also demonstrated in preclinical studies for polysaccharide-specific IgG and complement-dependent serum bactericidal activity for each serogroup. This study demonstrates the high quality and stability of NmCV-5, which is now undergoing Phase 3 clinical trials in Africa and India.
Collapse
Affiliation(s)
- Barbara Bolgiano
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Eilís Moran
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Nicola J. Beresford
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Fang Gao
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Rory Care
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Trusha Desai
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Ida Karin Nordgren
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Timothy R. Rudd
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Prashant Bore
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sushil Patni
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Vinay Gavade
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Asha Mallya
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sameer Kale
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Pankaj Sharma
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sunil K. Goel
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sunil Gairola
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Suhas Hattarki
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Nikhil Avalaskar
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Annamraju D. Sarma
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Marc LaForce
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa;
| | - Lakshmi Khandke
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (L.K.); (M.R.A.)
| | - Mark R. Alderson
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (L.K.); (M.R.A.)
| | - Rajeev M. Dhere
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sambhaji S. Pisal
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| |
Collapse
|
15
|
Stone AE, Scheuermann SE, Haile CN, Cuny GD, Velasquez ML, Linhuber JP, Duddupudi AL, Vigliaturo JR, Pravetoni M, Kosten TA, Kosten TR, Norton EB. Fentanyl conjugate vaccine by injected or mucosal delivery with dmLT or LTA1 adjuvants implicates IgA in protection from drug challenge. NPJ Vaccines 2021; 6:69. [PMID: 33986280 PMCID: PMC8119695 DOI: 10.1038/s41541-021-00329-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fentanyl is a major contributor to the devastating increase in overdose deaths from substance use disorders (SUD). A vaccine targeting fentanyl could be a powerful immunotherapeutic. Here, we evaluated adjuvant and delivery strategies for conjugate antigen vaccination with fentanyl-based haptens. We tested adjuvants derived from the heat-labile toxin of E. coli including dmLT and LTA1 by intramuscular, sublingual or intranasal delivery. Our results show anti-fentanyl serum antibodies and antibody secreting cells in the bone-marrow after vaccination with highest levels observed with an adjuvant (alum, dmLT, or LTA1). Vaccine adjuvanted with LTA1 or dmLT elicited the highest levels of anti-fentanyl antibodies, whereas alum achieved highest levels against the carrier protein. Vaccination with sublingual dmLT or intranasal LTA1 provided the most robust blockade of fentanyl-induced analgesia and CNS penetration correlating strongly to anti-FEN IgA. In conclusion, this study demonstrates dmLT or LTA1 adjuvant as well as mucosal delivery may be attractive strategies for improving the efficacy of vaccines against SUD.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah E Scheuermann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Colin N Haile
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Marcela Lopez Velasquez
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joshua P Linhuber
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anantha L Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.,Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
16
|
Bellone ML, Puglisi A, Dal Piaz F, Hochkoeppler A. Production in Escherichia coli of recombinant COVID-19 spike protein fragments fused to CRM197. Biochem Biophys Res Commun 2021; 558:79-85. [PMID: 33906110 PMCID: PMC8057744 DOI: 10.1016/j.bbrc.2021.04.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 01/22/2023]
Abstract
During 2020, the COVID-19 pandemic affected almost 108 individuals. Quite a number of vaccines against COVID-19 were therefore developed, and a few recently received authorization for emergency use. Overall, these vaccines target specific viral proteins by antibodies whose synthesis is directly elicited or indirectly triggered by nucleic acids coding for the desired targets. Among these targets, the receptor binding domain (RBD) of COVID-19 spike protein (SP) does frequently occur in the repertoire of candidate vaccines. However, the immunogenicity of RBD per se is limited by its low molecular mass, and by a structural rearrangement of full-length SP accompanied by the detachment of RBD. Here we show that the RBD of COVID-19 SP can be conveniently produced in Escherichia coli when fused to a fragment of CRM197, a variant of diphtheria toxin currently used for a number of conjugated vaccines. In particular, we show that the CRM197-RBD chimera solubilized from inclusion bodies can be refolded and purified to a state featuring the 5 native disulphide bonds of the parental proteins, the competence in binding angiotensin-converting enzyme 2, and a satisfactory stability at room temperature. Accordingly, our observations provide compulsory information for the development of a candidate vaccine directed against COVID-19.
Collapse
Affiliation(s)
- Maria Laura Bellone
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Andrea Puglisi
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
17
|
Zhao J, Hu G, Huang Y, Huang Y, Wei X, Shi J. Polysaccharide conjugate vaccine: A kind of vaccine with great development potential. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Duffy PE. Transmission-Blocking Vaccines: Harnessing Herd Immunity for Malaria Elimination. Expert Rev Vaccines 2021; 20:185-198. [PMID: 33478283 PMCID: PMC11127254 DOI: 10.1080/14760584.2021.1878028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Transmission-blocking vaccines (TBV) prevent community spread of malaria by targeting mosquito sexual stage parasites, a life-cycle bottleneck, and will be used in elimination programs. TBV rely on herd immunity to reduce mosquito infections and thereby new infections in both vaccine recipients and non-recipients, but do not provide protection once an individual receives an infectious mosquito bite which complicates clinical development. AREAS COVERED Here, we describe the concept and biology behind TBV, and we provide an update on clinical development of the leading vaccine candidate antigens. Search terms 'malaria vaccine,' 'sexual stages,' 'transmission blocking vaccine,' 'VIMT' and 'SSM-VIMT' were used for PubMed queries to identify relevant literature. EXPERT OPINION Candidates targeting P. falciparum zygote surface antigen Pfs25, and its P. vivax orthologue Pvs25, induced functional activity in humans that reduced mosquito infection in surrogate assays, but require increased durability to be useful in the field. Candidates targeting gamete surface antigens Pfs230 and Pfs48/45, respectively, are in or nearing clinical trials. Nanoparticle platforms and adjuvants are being explored to enhance immunogenicity. Efficacy trials require special considerations, such as cluster-randomized designs to measure herd immunity that reduces human and mosquito infection rates, while addressing human and mosquito movements as confounding factors.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Kamerzell TJ, Middaugh CR. Prediction Machines: Applied Machine Learning for Therapeutic Protein Design and Development. J Pharm Sci 2020; 110:665-681. [PMID: 33278409 DOI: 10.1016/j.xphs.2020.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
The rapid growth in technological advances and quantity of scientific data over the past decade has led to several challenges including data storage and analysis. Accurate models of complex datasets were previously difficult to develop and interpret. However, improvements in machine learning algorithms have since enabled unparalleled classification and prediction capabilities. The application of machine learning can be seen throughout diverse industries due to their ease of use and interpretability. In this review, we describe popular machine learning algorithms and highlight their application in pharmaceutical protein development. Machine learning models have now been applied to better understand the nonlinear concentration dependent viscosity of protein solutions, predict protein oxidation and deamidation rates, classify sub-visible particles and compare the physical stability of proteins. We also applied several machine learning algorithms using previously published data and describe models with improved predictions and classification. The authors hope that this review can be used as a resource to others and encourage continued application of machine learning algorithms to problems in pharmaceutical protein development.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA; Division of Internal Medicine, HCA MidWest Health, Overland Park, KS, USA.
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
20
|
Scaria PV, Chen BB, Rowe CG, Alani N, Muratova OV, Barnafo EK, Lambert LE, Zaidi IU, Lees A, Rausch KM, Narum DL, Duffy PE. Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230. Vaccine 2020; 38:5480-5489. [PMID: 32600913 PMCID: PMC11127250 DOI: 10.1016/j.vaccine.2020.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.
Collapse
Affiliation(s)
- Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher G Rowe
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nada Alani
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga V Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Irfan U Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Malik A, Steinbeis F, Carillo MA, Seeberger PH, Lepenies B, Varón Silva D. Immunological Evaluation of Synthetic Glycosylphosphatidylinositol Glycoconjugates as Vaccine Candidates against Malaria. ACS Chem Biol 2020; 15:171-178. [PMID: 31573796 DOI: 10.1021/acschembio.9b00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids present on the surfaces of Plasmodium parasites that may act as toxins during the progression of malaria. GPIs can activate the immune system during infection and induce the formation of anti-GPI antibodies that neutralize their activity. Therefore, an antitoxic vaccine based on GPI glycoconjugates may prevent malaria pathogenesis. To evaluate the role of three key modifications on Plasmodium GPI glycan in the activity of these glycolipids, we synthesized and investigated six structurally distinct GPI fragments from Plasmodium falciparum. The synthetic glycans were conjugated to the CRM197 carrier protein and were tested for immunogenicity and efficacy as antimalarial vaccine candidates in an experimental cerebral malaria model using C57BL/6JRj mice. Protection may be dependent on both the antibody and the cellular immune response to GPIs, and the elicited immune response depends on the orientation of the glycan, the number of mannoses in the structure, and the presence of the phosphoethanolamine and inositol units. This study provides insights into the epitopes in GPIs and contributes to the development of GPI-based antitoxin vaccine candidates against cerebral malaria.
Collapse
Affiliation(s)
- Ankita Malik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Fridolin Steinbeis
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Maria Antonietta Carillo
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
22
|
Identification of Formaldehyde-Induced Modifications in Diphtheria Toxin. J Pharm Sci 2019; 109:543-557. [PMID: 31678246 DOI: 10.1016/j.xphs.2019.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023]
Abstract
Diphtheria toxoid is produced by detoxification of diphtheria toxin with formaldehyde. This study was performed to elucidate the chemical nature and location of formaldehyde-induced modifications in diphtheria toxoid. Diphtheria toxin was chemically modified using 4 different reactions with the following reagents: (1) formaldehyde and NaCNBH3, (2) formaldehyde, (3) formaldehyde and NaCNBH3 followed by formaldehyde and glycine, and (4) formaldehyde and glycine. The modifications were studied by SDS-PAGE, primary amino group determination, and liquid chromatography-electrospray mass spectrometry of chymotryptic digests. Reaction 1 resulted in quantitative dimethylation of all lysine residues. Reaction 2 caused intramolecular cross-links, including the NAD+-binding cavity and the receptor-binding site. Moreover, A fragments and B fragments were cross-linked by formaldehyde on part of the diphtheria toxoid molecules. Reaction 3 resulted in formaldehyde-glycine attachments, including in shielded areas of the protein. The detoxification reaction typically used for vaccine preparation (reaction 4) resulted in a combination of intramolecular cross-links and formaldehyde-glycine attachments. Both the NAD+-binding cavity and the receptor-binding site of diphtheria toxin were chemically modified. Although CD4+ T-cell epitopes were affected to some extent, one universal CD4+ T-cell epitope remained almost completely unaltered by the treatment with formaldehyde and glycine.
Collapse
|
23
|
Agarwal S, Hickey JM, Sahni N, Toth RT, Robertson GA, Sitrin R, Cryz S, Joshi SB, Volkin DB. Recombinant Subunit Rotavirus Trivalent Vaccine Candidate: Physicochemical Comparisons and Stability Evaluations of Three Protein Antigens. J Pharm Sci 2019; 109:380-393. [PMID: 31400347 PMCID: PMC6941226 DOI: 10.1016/j.xphs.2019.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Although live attenuated Rotavirus (RV) vaccines are available globally to provide protection against enteric RV disease, efficacy is substantially lower in low- to middle-income settings leading to interest in alternative vaccines. One promising candidate is a trivalent nonreplicating RV vaccine, comprising 3 truncated RV VP8 subunit proteins fused to the P2 CD4+ epitope from tetanus toxin (P2-VP8-P[4/6/8]). A wide variety of analytical techniques were used to compare the physicochemical properties of these 3 recombinant fusion proteins. Various environmental stresses were used to evaluate antigen stability and elucidate degradation pathways. P2-VP8-P[4] and P2-VP8-P[6] displayed similar physical stability profiles as function of pH and temperature while P2-VP8-P[8] was relatively more stable. Forced degradation studies revealed similar chemical stability profiles with Met1 most susceptible to oxidation, the single Cys residue (at position 173/172) forming intermolecular disulfide bonds (P2-VP8-P[6] was most susceptible), and Asn7 undergoing the highest levels of deamidation. These results are visualized in a structural model of the nonreplicating RV antigens. The establishment of key structural attributes of each antigen, along with corresponding stability-indicating methods, have been applied to vaccine formulation development efforts (see companion paper), and will be utilized in future analytical comparability assessments.
Collapse
Affiliation(s)
- Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas 66047
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas 66047
| | - Neha Sahni
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas 66047
| | - Ronald T Toth
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas 66047
| | - George A Robertson
- The Center for Vaccine Innovation and Access, PATH, Washington, District of Columbia 20001
| | - Robert Sitrin
- The Center for Vaccine Innovation and Access, PATH, Washington, District of Columbia 20001
| | - Stanley Cryz
- The Center for Vaccine Innovation and Access, PATH, Washington, District of Columbia 20001
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
24
|
Bravo-Bautista N, Hoang H, Joshi A, Travis J, Wooten M, Wymer NJ. Investigating the Deoxyribonuclease Activity of CRM197 with Site-Directed Mutagenesis. ACS OMEGA 2019; 4:11987-11992. [PMID: 31460310 PMCID: PMC6682014 DOI: 10.1021/acsomega.9b00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/13/2019] [Indexed: 05/10/2023]
Abstract
The protein cross-reactive material 197 (CRM197) is known to catalyze the hydrolytic cleavage of DNA (DNase activity). A suspected metal-binding site (S109, T111, and E112) and suspected DNA-binding motif (T89, K90, and V91) were predicted within the CRM197 protein X-ray crystal structure (4AE0) using METSITE and DNABindProt, respectively. Between these two predicted sites is a groove (K103, E116, T120, E122, F123, and R126) that may assist in DNase activity. Alanine scanning was performed at these sites to determine which amino acids might be important for DNase activity. These mutations individually or in combination either maintained or increased the overall DNase activity compared to the unmodified CRM197. Mutation at the suspected metal-binding site showed similar fluctuations to the overall DNase activity whether the DNase assays were run with Mg2+ and Ca2+ or Mn2+. However, many of the mutations within the suspected DNA-binding motif saw significant differences depending on which metal was used. Only some of the improvements in DNase activity could be attributed to improved folding of the mutants compared to the unmodified CRM197. This study should provide a basis for further mutagenesis studies to remove the DNase activity of CRM197.
Collapse
Affiliation(s)
- Nathalie Bravo-Bautista
- Department
of Chemistry and Biochemistry, Department of Biological and Biomedical
Sciences, and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Hieu Hoang
- Department
of Chemistry and Biochemistry, Department of Biological and Biomedical
Sciences, and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Anusha Joshi
- Department
of Chemistry and Biochemistry, Department of Biological and Biomedical
Sciences, and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Jennifer Travis
- Department
of Chemistry and Biochemistry, Department of Biological and Biomedical
Sciences, and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Melissa Wooten
- Department
of Chemistry and Biochemistry, Department of Biological and Biomedical
Sciences, and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Nathan J. Wymer
- Department
of Chemistry and Biochemistry, Department of Biological and Biomedical
Sciences, and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- E-mail:
| |
Collapse
|
25
|
Limpikirati P, Hale JE, Hazelbaker M, Huang Y, Jia Z, Yazdani M, Graban EM, Vaughan RC, Vachet RW. Covalent labeling and mass spectrometry reveal subtle higher order structural changes for antibody therapeutics. MAbs 2019; 11:463-476. [PMID: 30636503 PMCID: PMC6512938 DOI: 10.1080/19420862.2019.1565748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 01/26/2023] Open
Abstract
Monoclonal antibodies are among the fastest growing therapeutics in the pharmaceutical industry. Detecting higher-order structure changes of antibodies upon storage or mishandling, however, is a challenging problem. In this study, we describe the use of diethylpyrocarbonate (DEPC)-based covalent labeling (CL) - mass spectrometry (MS) to detect conformational changes caused by heat stress, using rituximab as a model system. The structural resolution obtained from DEPC CL-MS is high enough to probe subtle conformation changes that are not detectable by common biophysical techniques. Results demonstrate that DEPC CL-MS can detect and identify sites of conformational changes at the temperatures below the antibody melting temperature (e.g., 55 ᴼC). The observed labeling changes at lower temperatures are validated by activity assays that indicate changes in the Fab region. At higher temperatures (e.g., 65 ᴼC), conformational changes and aggregation sites are identified from changes in CL levels, and these results are confirmed by complementary biophysical and activity measurements. Given the sensitivity and simplicity of DEPC CL-MS, this method should be amenable to the structural investigations of other antibody therapeutics.
Collapse
Affiliation(s)
| | | | - Mark Hazelbaker
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Yongbo Huang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Robert C. Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
26
|
Miura K, Deng B, Wu Y, Zhou L, Pham TP, Diouf A, Wu CK, Lee SM, Plieskatt JL, Morin MJ, Long CA. ELISA units, IgG subclass ratio and avidity determined functional activity of mouse anti-Pfs230 antibodies judged by a standard membrane-feeding assay with Plasmodium falciparum. Vaccine 2019; 37:2073-2078. [PMID: 30850239 DOI: 10.1016/j.vaccine.2019.02.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
The standard membrane-feeding assay (SMFA) is a functional assay that has been used to inform the development of transmission-blocking vaccines (TBV) against Plasmodium falciparum malaria. For Pfs230, a lead target antigen for TBV development, a few studies have tested either a single anti-Pfs230 polyclonal or monoclonal antibody (one antibody per study) at serial dilutions and showed a dose-dependent response. Further, there have been reports that the SMFA activity of anti-Pfs230 polyclonal and monoclonal antibodies were enhanced in the presence of complement. However, no analysis has been performed with multiple samples, and the impact of anti-Pfs230 antibody titers, IgG subclass profile and avidity were evaluated together in relation to transmission-reducing activity (TRA) by SMFA. In this report, a total of 39 unique anti-Pfs230 IgGs from five different mouse immunization studies were assessed for their ELISA units (EU), IgG2/IgG1 ratio and avidity by ELISA, and the functionality (% transmission-reducing activity, %TRA) by SMFA. The mice were immunized with Pfs230 alone, Pfs230 conjugated to CRM197, or a mixture of unconjugated Pfs230 and CRM197 proteins using Alhydrogel or Montanide ISA720 adjuvants. In all studies, the Pfs230 antigen was from the same source. There was a significant correlation between EU and %TRA (p < 0.0001 by a Spearman rank test) for the anti-Pfs230 IgGs. Notably, multiple linear regression analyses showed that both IgG2/IgG1 ratio and avidity significantly affected %TRA (p = 0.003 to p = 0.014, depending on the models) after adjusting for EU. The results suggest that in addition to antibody titers, IgG2/IgG1 ratio and avidity should each be evaluated to predict the biological activity of anti-Pfs230 antibodies for future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yimin Wu
- PATH's Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Chia-Kuei Wu
- PATH's Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | | | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
27
|
Baruffaldi F, Kelcher AH, Laudenbach M, Gradinati V, Limkar A, Roslawski M, Birnbaum A, Lees A, Hassler C, Runyon S, Pravetoni M. Preclinical Efficacy and Characterization of Candidate Vaccines for Treatment of Opioid Use Disorders Using Clinically Viable Carrier Proteins. Mol Pharm 2018; 15:4947-4962. [PMID: 30240216 DOI: 10.1021/acs.molpharmaceut.8b00592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vaccines may offer a new treatment strategy for opioid use disorders and opioid-related overdoses. To speed translation, this study evaluates opioid conjugate vaccines containing components suitable for pharmaceutical manufacturing and compares analytical assays for conjugate characterization. Three oxycodone-based haptens (OXY) containing either PEGylated or tetraglycine [(Gly)4] linkers were conjugated to a keyhole limpet hemocyanin (KLH) carrier protein via carbodiimide (EDAC) or maleimide chemistry. The EDAC-conjugated OXY(Gly)4-KLH was most effective in reducing oxycodone distribution to the brain in mice. Vaccine efficacy was T cell-dependent. The lead OXY hapten was conjugated to the KLH, tetanus toxoid, diphtheria cross-reactive material (CRM), as well as the E. coli-expressed CRM (EcoCRM) and nontoxic tetanus toxin heavy chain fragment C (rTTHc) carrier proteins. All vaccines induced early hapten-specific B cell expansion and showed equivalent efficacy against oxycodone in mice. However, some hapten-protein conjugates were easier to characterize for molecular weight and size. Finally, heroin vaccines formulated with either EcoCRM or KLH were equally effective in reducing heroin-induced antinociception and distribution to the brain of heroin and its metabolites in mice. This study identifies vaccine candidates and vaccine components for further development.
Collapse
Affiliation(s)
- Federico Baruffaldi
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - April Huseby Kelcher
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Megan Laudenbach
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Valeria Gradinati
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Dipartimento di Chimica e Tecnologie Farmaceutiche, Socrates Program , Universitá degli Studi di Milano , Milan 20122 , Italy
| | - Ajinkya Limkar
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | - Angela Birnbaum
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Andrew Lees
- Fina Biosolutions, LLC , Rockville , Maryland 20850 , United States
| | - Carla Hassler
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Scott Runyon
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Marco Pravetoni
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Departments of Medicine and Pharmacology, Center for Immunology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
28
|
Structural and immunological characterization of E. coli derived recombinant CRM 197 protein used as carrier in conjugate vaccines. Biosci Rep 2018; 38:BSR20180238. [PMID: 29875175 PMCID: PMC6153374 DOI: 10.1042/bsr20180238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
It is established that the immunogenicity of polysaccharides is enhanced by coupling them to carrier proteins. Cross reacting material (CRM197), a nontoxic variant of diphtheria toxin (DT) is widely used carrier protein for polysaccharide conjugate vaccines. Conventionally, CRM197 is isolated by fermentation of Corynebacterium diphtheriae C7 (β197) cultures, which often suffers from low yield. Recently, several recombinant approaches have been reported with robust processes and higher yields, which will improve the affordability of CRM197-based vaccines. Vaccine manufacturers require detailed analytical information to ensure that the CRM197 meets quality standards and regulatory requirements. In the present manuscript we have described detailed structural characteristics of Escherichia coli based recombinant CRM197 (rCRM197) carrier protein. The crystal structure of the E. coli based rCRM197 was found to be identical with the reported crystal structure of the C7 CRM197 produced in C. diphtheriae C7 strain (Protein Data Bank (PDB) ID: 4EA0). The crystal structure of rCRM197 was determined at 2.3 Å resolution and structure was submitted to the PDB with accession number ID 5I82. This is the first report of a crystal structure of E. coli derived recombinant CRM197 carrier protein. Furthermore, the rCRM197 was conjugated to Vi polysaccharide to generate Typhoid conjugate vaccine (Vi-rCRM197) and its immunogenicity was evaluated in Balb/C Mice. The Vi-rCRM197 conjugate vaccine was found to generate strong primary α-Vi antibody response and also showed a booster response after subsequent vaccination in mice. Overall data suggest that E. coli based recombinant CRM197 exhibits structural and immunological similarity with the C7 CRM197 and can be used as a carrier protein in conjugate vaccine development.
Collapse
|
29
|
Micoli F, Adamo R, Costantino P. Protein Carriers for Glycoconjugate Vaccines: History, Selection Criteria, Characterization and New Trends. Molecules 2018; 23:E1451. [PMID: 29914046 PMCID: PMC6100388 DOI: 10.3390/molecules23061451] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Currently licensed glycoconjugate vaccines are composed of a carbohydrate moiety covalently linked to a protein carrier. Polysaccharides are T-cell independent antigens able to directly stimulate B cells to produce antibodies. Disease burden caused by polysaccharide-encapsulated bacteria is highest in the first year of life, where plain polysaccharides are not generally immunogenic, limiting their use as vaccines. This limitation has been overcome by covalent coupling carbohydrate antigens to proteins that provide T cell epitopes. In addition to the protein carriers currently used in licensed glycoconjugate vaccines, there is a search for new protein carriers driven by several considerations: (i) concerns that pre-exposure or co-exposure to a given carrier can lead to immune interference and reduction of the anti-carbohydrate immune response; (ii) increasing interest to explore the dual role of proteins as carrier and protective antigen; and (iii) new ways to present carbohydrates antigens to the immune system. Protein carriers can be directly coupled to activated glycans or derivatized to introduce functional groups for subsequent conjugation. Proteins can be genetically modified to pre-determine the site of glycans attachment by insertion of unnatural amino acids bearing specific functional groups, or glycosylation consensus sequences for in vivo expression of the glycoconjugate. A large portion of the new protein carriers under investigation are recombinant ones, but more complex systems such as Outer Membrane Vesicles and other nanoparticles are being investigated. Selection criteria for new protein carriers are based on several aspects including safety, manufacturability, stability, reactivity toward conjugation, and preclinical evidence of immunogenicity of corresponding glycoconjugates. Characterization panels of protein carriers include tests before conjugation, after derivatization when applicable, and after conjugation. Glycoconjugate vaccines based on non-covalent association of carrier systems to carbohydrates are being investigated with promising results in animal models. The ability of these systems to convert T-independent carbohydrate antigens into T-dependent ones, in comparison to traditional glycoconjugates, needs to be assessed in humans.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy.
| | | | | |
Collapse
|