1
|
Salehin N, Teranikar T, Lee J, Chuong CJ. Ventricular anisotropic deformation and contractile function of the developing heart of zebrafish in vivo. Dev Dyn 2023; 252:247-262. [PMID: 36057940 DOI: 10.1002/dvdy.536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The developing zebrafish ventricle generates higher intraventricular pressure (IVP) with increasing stroke volume and cardiac output at different developmental stages to meet the metabolic demands of the rapidly growing embryo (Salehin et al. Ann Biomed Eng, 2021;49(9): 2080-2093). To understand the changing role of the developing embryonic heart, we studied its biomechanical characteristics during in vivo cardiac cycles. By combining changes in wall strains and IVP measurements, we assessed ventricular wall stiffness during diastolic filling and the ensuing systolic IVP-generation capacity during 3-, 4-, and 5-day post fertilization (dpf). We further examined the anisotropy of wall deformation, in different regions within the ventricle, throughout a complete cardiac cycle. RESULTS We found the ventricular walls grow increasingly stiff during diastolic filling with a corresponding increase in IVP-generation capacity from 3- to 4- and 5-dpf groups. In addition, we found the corresponding increasing level of anisotropic wall deformation through cardiac cycles that favor the latitudinal direction, with the most pronounced found in the equatorial region of the ventricle. CONCLUSIONS From 3- to 4- and 5-dpf groups, the ventricular wall myocardium undergoes increasing level of anisotropic deformation. This, in combination with the increasing wall stiffness and IVP-generation capacity, allows the developing heart to effectively pump blood to meet the rapidly growing embryo's needs.
Collapse
Affiliation(s)
- Nabid Salehin
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Tanveer Teranikar
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Jen Chuong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
2
|
Nodal signaling regulates asymmetric cellular behaviors, driving clockwise rotation of the heart tube in zebrafish. Commun Biol 2022; 5:996. [PMID: 36131094 PMCID: PMC9492702 DOI: 10.1038/s42003-022-03826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clockwise rotation of the primitive heart tube, a process regulated by restricted left-sided Nodal signaling, is the first morphological manifestation of left-right asymmetry. How Nodal regulates cell behaviors to drive asymmetric morphogenesis remains poorly understood. Here, using high-resolution live imaging of zebrafish embryos, we simultaneously visualized cellular dynamics underlying early heart morphogenesis and resulting changes in tissue shape, to identify two key cell behaviors: cell rearrangement and cell shape change, which convert initially flat heart primordia into a tube through convergent extension. Interestingly, left cells were more active in these behaviors than right cells, driving more rapid convergence of the left primordium, and thereby rotating the heart tube. Loss of Nodal signaling abolished the asymmetric cell behaviors as well as the asymmetric convergence of the left and right heart primordia. Collectively, our results demonstrate that Nodal signaling regulates the magnitude of morphological changes by acting on basic cellular behaviors underlying heart tube formation, driving asymmetric deformation and rotation of the heart tube.
Collapse
|
3
|
Ebrahimi N, Osanlouy M, Bradley CP, Kubke MF, Gerneke DA, Hunter PJ. A method for investigating spatiotemporal growth patterns at cell and tissue levels during C-looping in the embryonic chick heart. iScience 2022; 25:104600. [PMID: 35800755 PMCID: PMC9253367 DOI: 10.1016/j.isci.2022.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 01/15/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nazanin Ebrahimi
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
- Corresponding author
| | - Mahyar Osanlouy
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| | - Chris P. Bradley
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| | - M. Fabiana Kubke
- University of Auckland, Anatomy and Medical Imaging, Auckland 1010, New Zealand
| | - Dane A. Gerneke
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| | - Peter J. Hunter
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Esteban I, Schmidt P, Desgrange A, Raiola M, Temiño S, Meilhac SM, Kobbelt L, Torres M. Pseudodynamic analysis of heart tube formation in the mouse reveals strong regional variability and early left-right asymmetry. NATURE CARDIOVASCULAR RESEARCH 2022; 1:504-517. [PMID: 39195950 PMCID: PMC11357989 DOI: 10.1038/s44161-022-00065-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/06/2022] [Indexed: 08/29/2024]
Abstract
Understanding organ morphogenesis requires a precise geometrical description of the tissues involved in the process. The high morphological variability in mammalian embryos hinders the quantitative analysis of organogenesis. In particular, the study of early heart development in mammals remains a challenging problem due to imaging limitations and complexity. Here, we provide a complete morphological description of mammalian heart tube formation based on detailed imaging of a temporally dense collection of mouse embryonic hearts. We develop strategies for morphometric staging and quantification of local morphological variations between specimens. We identify hot spots of regionalized variability and identify Nodal-controlled left-right asymmetry of the inflow tracts as the earliest signs of organ left-right asymmetry in the mammalian embryo. Finally, we generate a three-dimensional+t digital model that allows co-representation of data from different sources and provides a framework for the computer modeling of heart tube formation.
Collapse
Affiliation(s)
- Isaac Esteban
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Patrick Schmidt
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Audrey Desgrange
- Unit of Heart Morphogenesis, Université de Paris, Imagine - Institut Pasteur, INSERM UMR1163, Paris, France
| | - Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sigolène M Meilhac
- Unit of Heart Morphogenesis, Université de Paris, Imagine - Institut Pasteur, INSERM UMR1163, Paris, France
| | - Leif Kobbelt
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
5
|
Ebrahimi N, Bradley C, Hunter P. An integrative multiscale view of early cardiac looping. WIREs Mech Dis 2022; 14:e1535. [PMID: 35023324 DOI: 10.1002/wsbm.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
The heart is the first organ to form and function during the development of an embryo. Heart development consists of a series of events believed to be highly conserved in vertebrates. Development of heart begins with the formation of the cardiac fields followed by a linear heart tube formation. The straight heart tube then undergoes a ventral bending prior to further bending and helical torsion to form a looped heart. The looping phase is then followed by ballooning, septation, and valve formation giving rise to a four-chambered heart in avians and mammals. The looping phase plays a central role in heart development. Successful looping is essential for proper alignment of the future cardiac chambers and tracts. As aberrant looping results in various congenital heart diseases, the mechanisms of cardiac looping have been studied for several decades by various disciplines. Many groups have studied anatomy, biology, genetics, and mechanical processes during heart looping, and have proposed multiple mechanisms. Computational modeling approaches have been utilized to examine the proposed mechanisms of the looping process. Still, the exact underlying mechanism(s) controlling the looping phase remain poorly understood. Although further experimental measurements are obviously still required, the need for more integrative computational modeling approaches is also apparent in order to make sense of the vast amount of experimental data and the complexity of multiscale developmental systems. Indeed, there needs to be an iterative interaction between experimentation and modeling in order to properly find the gap in the existing data and to validate proposed hypotheses. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Nazanin Ebrahimi
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Christopher Bradley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Rahman T, Zhang H, Fan J, Wan LQ. Cell chirality in cardiovascular development and disease. APL Bioeng 2020; 4:031503. [PMID: 32903894 PMCID: PMC7449703 DOI: 10.1063/5.0014424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular system demonstrates left-right (LR) asymmetry: most notably, the LR asymmetric looping of the bilaterally symmetric linear heart tube. Similarly, the orientation of the aortic arch is asymmetric as well. Perturbations to the asymmetry have been associated with several congenital heart malformations and vascular disorders. The source of the asymmetry, however, is not clear. Cell chirality, a recently discovered and intrinsic LR asymmetric cellular morphological property, has been implicated in the heart looping and vascular barrier function. In this paper, we summarize recent advances in the field of cell chirality and describe various approaches developed for studying cell chirality at multi- and single-cell levels. We also examine research progress in asymmetric cardiovascular development and associated malformations. Finally, we review evidence connecting cell chirality to cardiac looping and vascular permeability and provide thoughts on future research directions for cell chirality in the context of cardiovascular development and disease.
Collapse
Affiliation(s)
- Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jie Fan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
8
|
Wang K, Man K, Liu J, Liu Y, Chen Q, Zhou Y, Yang Y. Microphysiological Systems: Design, Fabrication, and Applications. ACS Biomater Sci Eng 2020; 6:3231-3257. [PMID: 33204830 PMCID: PMC7668566 DOI: 10.1021/acsbiomaterials.9b01667] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microphysiological systems, including organoids, 3-D printed tissue constructs and organ-on-a-chips (organ chips), are physiologically relevant in vitro models and have experienced explosive growth in the past decades. Different from conventional, tissue culture plastic-based in vitro models or animal models, microphysiological systems recapitulate key microenvironmental characteristics of human organs and mimic their primary functions. The advent of microphysiological systems is attributed to evolving biomaterials, micro-/nanotechnologies and stem cell biology, which enable the precise control over the matrix properties and the interactions between cells, tissues and organs in physiological conditions. As such, microphysiological systems have been developed to model a broad spectrum of organs from microvasculature, eye, to lung and many others to understand human organ development and disease pathology and facilitate drug discovery. Multiorgans-on-a-chip systems have also been developed by integrating multiple associated organ chips in a single platform, which allows to study and employ the organ function in a systematic approach. Here we first discuss the design principles of microphysiological systems with a focus on the anatomy and physiology of organs, and then review the commonly used fabrication techniques and biomaterials for microphysiological systems. Subsequently, we discuss the recent development of microphysiological systems, and provide our perspectives on advancing microphysiological systems for preclinical investigation and drug discovery of human disease.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yang Liu
- North Texas Eye Research Institute, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Qi Chen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhou
- Department of Emergency, Xinqiao Hospital, Chongqing 400037, China
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
9
|
Mandrycky CJ, Williams NP, Batalov I, El-Nachef D, de Bakker BS, Davis J, Kim DH, DeForest CA, Zheng Y, Stevens KR, Sniadecki NJ. Engineering Heart Morphogenesis. Trends Biotechnol 2020; 38:835-845. [PMID: 32673587 DOI: 10.1016/j.tibtech.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
Recent advances in stem cell biology and tissue engineering have laid the groundwork for building complex tissues in a dish. We propose that these technologies are ready for a new challenge: recapitulating cardiac morphogenesis in vitro. In development, the heart transforms from a simple linear tube to a four-chambered organ through a complex process called looping. Here, we re-examine heart tube looping through the lens of an engineer and argue that the linear heart tube is an advantageous starting point for tissue engineering. We summarize the structures, signaling pathways, and stresses in the looping heart, and evaluate approaches that could be used to build a linear heart tube and guide it through the process of looping.
Collapse
Affiliation(s)
- Christian J Mandrycky
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nisa P Williams
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ivan Batalov
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Danny El-Nachef
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA
| | - Bernadette S de Bakker
- Clinical Anatomy and Embryology, Department of Medical Biology, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer Davis
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA
| | - Deok-Ho Kim
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine/Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cole A DeForest
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kelly R Stevens
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nathan J Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Kawahira N, Ohtsuka D, Kida N, Hironaka KI, Morishita Y. Quantitative Analysis of 3D Tissue Deformation Reveals Key Cellular Mechanism Associated with Initial Heart Looping. Cell Rep 2020; 30:3889-3903.e5. [DOI: 10.1016/j.celrep.2020.02.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 08/01/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
|
11
|
Sherrid MV, Männer J, Swistel DG, Olivotto I, Halpern DG. On the Cardiac Loop and Its Failing: Left Ventricular Outflow Tract Obstruction. J Am Heart Assoc 2020; 9:e014857. [PMID: 31986992 PMCID: PMC7033877 DOI: 10.1161/jaha.119.014857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Mark V. Sherrid
- Hypertrophic CardiomyopathyNew York University School of MedicineNew YorkNY
| | - Jörg Männer
- Department of Anatomy and EmbryologyGeorg‐August University of GöttingenGöttingenGermany
| | - Daniel G. Swistel
- Department of Cardiothoracic SurgeryNew York University School of MedicineNew YorkNY
| | | | - Dan G. Halpern
- Adult Congenital Heart Disease ProgramNew York University School of MedicineNew YorkNY
| |
Collapse
|
12
|
Honda H, Abe T, Fujimori T. The Chiral Looping of the Embryonic Heart Is Formed by the Combination of Three Axial Asymmetries. Biophys J 2019; 118:742-752. [PMID: 31952803 DOI: 10.1016/j.bpj.2019.11.3397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 01/14/2023] Open
Abstract
In mammals and birds, embryonic development of the heart involves conversion of a straight tubular structure into a three-dimensional helical loop, which is a chiral structure. We investigated theoretically the mechanism of helical loop formation of the mouse embryonic heart, especially focusing on determination of left-/right-handedness of the helical loop. In geometrical terms, chirality is the result of the combination of three axial asymmetries in three-dimensional space. We hypothesized the following correspondences between axial asymmetries and morphogenesis (bending and displacement): the dorsal-ventral asymmetry by ventral bending of a straight tube of the initial heart and the left-right and anterior-posterior asymmetries, the left-right asymmetry by rightward displacement of the heart tube, which is confined to the anterior region of the tube. Morphogenesis of chiral looping of the embryonic heart is a large-scaled event of the multicellular system in which substantial physical force operates dynamically. Using computer simulations with a cell-based physico-mechanical model and experiments with mouse embryos, we confirmed the hypothesis. We conclude that rightward displacement of the tube determines the left-handed screw of the loop. The process of helix loop formation consists of three steps: 1) the left-right biasing system involving Nodal-related signals that leads to left-right asymmetry in the embryonic body; 2) the rightward displacement of the tube; and finally 3) the left-handed helical looping. Step 1 is already established. Step 3 is elucidated by our study, which highlights the need for step 2 to be clarified; namely, we explore how the left-right asymmetry in the embryonic body leads to the rightward displacement of the heart tube.
Collapse
Affiliation(s)
- Hisao Honda
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Chūō-ku, Kobe, Hyogo, Japan.
| | - Takaya Abe
- Laboratories for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Chūō-ku, Kobe, Hyogo, Japan; Laboratories for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chūō-ku, Kobe, Hyogo, Japan
| | - Toshihiko Fujimori
- Laboratories for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chūō-ku, Kobe, Hyogo, Japan; Division of Embryology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
13
|
Lombardo VA, Heise M, Moghtadaei M, Bornhorst D, Männer J, Abdelilah-Seyfried S. Morphogenetic control of zebrafish cardiac looping by Bmp signaling. Development 2019; 146:dev.180091. [PMID: 31628109 DOI: 10.1242/dev.180091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Cardiac looping is an essential and highly conserved morphogenetic process that places the different regions of the developing vertebrate heart tube into proximity of their final topographical positions. High-resolution 4D live imaging of mosaically labelled cardiomyocytes reveals distinct cardiomyocyte behaviors that contribute to the deformation of the entire heart tube. Cardiomyocytes acquire a conical cell shape, which is most pronounced at the superior wall of the atrioventricular canal and contributes to S-shaped bending. Torsional deformation close to the outflow tract contributes to a torque-like winding of the entire heart tube between its two poles. Anisotropic growth of cardiomyocytes based on their positions reinforces S-shaping of the heart. During cardiac looping, bone morphogenetic protein pathway signaling is strongest at the future superior wall of the atrioventricular canal. Upon pharmacological or genetic inhibition of bone morphogenetic protein signaling, myocardial cells at the superior wall of the atrioventricular canal maintain cuboidal cell shapes and S-shaped bending is impaired. This description of cellular rearrangements and cardiac looping regulation may also be relevant for understanding the etiology of human congenital heart defects.
Collapse
Affiliation(s)
- Verónica A Lombardo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina .,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Melina Heise
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Motahareh Moghtadaei
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Jörg Männer
- Institute of Anatomy and Embryology, UMG, Göttingen University, D-37075 Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany .,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| |
Collapse
|
14
|
Peng R, Zheng J, Xie HN, He M, Lin MF. Genetic anomalies in fetuses with tetralogy of Fallot by using high-definition chromosomal microarray analysis. Cardiovasc Ultrasound 2019; 17:8. [PMID: 31060568 PMCID: PMC6503353 DOI: 10.1186/s12947-019-0159-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background The etiology of TOF is complex and the genesis of TOF has been associated with environmental factors and genetic disorders, including chromosomal anomalies, aneuploidies, 22q11.2 deletion and single-gene disease. Previous literatures have shown that a chromosome alteration in about 30% patients with TOF and recently published articles reported that 22q11.2 deletion syndrome accounts for 16% cases with TOF diagnosed postnatally. CMA now is considered as gold standard for detecting genetic anomalies in fetuses with congenital malformations. CMA could detect a 6.6–25% incremental yield of CNVs in CHDs. The aim of this study was to assess the genetic anomalies in fetal tetralogy of Fallot (TOF) by using high-definition CMA. Methods This retrospective study reviewed all the fetuses diagnosed with TOF between 2013 and 2018. Prenatal ultrasongraphic findings, including cardiac angle, and the findings of CMA using Affymetrix CytoScan HD array were collected. Results Ninety-six fetuses with TOF and known genetic results were enrolled. Right aortic arch was the most common associated anomalies (22.9%). One fetus with trisomy 18, one with 46, XX, t (7;10)(q36;q22), one with 47, XYY and five with trisomy 21 were identified. Clinically significant CNVs occurred in 6.8% and uncertain significant CNVs in 3.4% fetal TOF with normal karyotype. A total of four cases with 22q11.2 microdeletion and two fetuses with Yq11.223q11.23 microduplication have been identified. Genetic anomalies, including chromosomal aberrations and pathogenic CNVs, were significantly higher in the TOF with extracardiac anomaly group than in the TOF without extracardiac anomaly group (P = 0.005). Abnormal cardiac angle was noticed in 24.0% fetal TOF. Genetic anomalies were more common in the TOF with abnormal cardiac angle than with normal cardiac angle (P = 0.001). On the other hand, abnormal cardiac angle was noticed in 64.3% fetal TOF with genetic anomalies while abnormal cardiac angle occurred in 17.1% fetal TOF with normal genetic results (P = 0.001). Conclusions Genetic testing should be offered, specially using microarray analysis, for the fetal TOF with abnormal cardiac angle or extracardiac defects.
Collapse
Affiliation(s)
- Ruan Peng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| | - Ju Zheng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China.
| | - Miao He
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| | - Mei-Fang Lin
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Ramasubramanian A, Capaldi X, Bradner S, Gangi L. On the Biomechanics of Cardiac S-looping: insights from modeling and perturbation studies. J Biomech Eng 2019; 141:2728068. [PMID: 30840031 DOI: 10.1115/1.4043077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 12/14/2022]
Abstract
Cardiac looping is an important embryonic developmental stage where the primitive heart tube (HT) twists into a configuration that more closely resembles the mature heart. Improper looping leads to congenital defects. We study cardiac s-looping wherein the primitive ventricle which lay superior to the atrium now assumes its definitive position inferior to it. This process results in a heart loop that is no longer planar with the inflow and outflow tracts now lying in adjacent planes. We investigate the biomechanics of s-looping and use modeling to understand the nonlinear and time variant morphogenetic shape changes. We developed physical and finite element models and validated the models using perturbation studies. The results from experiments and models show how force actuators such as bending of the embryonic dorsal wall (cervical flexure), rotation around the body axis (embryo torsion), and HT growth interact to produce the heart loop. Using model-based and experimental data, we present an improved hypothesis for early cardiac s-looping.
Collapse
Affiliation(s)
| | - Xavier Capaldi
- Department of Physics, Union College, Schenectady, NY 12308
| | - Sarah Bradner
- Bioengineering Program, Union College, Schenectady, NY 12308
| | - Lianna Gangi
- Bioengineering Program, Union College, Schenectady, NY 12308
| |
Collapse
|
16
|
Ray P, Chin AS, Worley KE, Fan J, Kaur G, Wu M, Wan LQ. Intrinsic cellular chirality regulates left-right symmetry breaking during cardiac looping. Proc Natl Acad Sci U S A 2018; 115:E11568-E11577. [PMID: 30459275 PMCID: PMC6294912 DOI: 10.1073/pnas.1808052115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vertebrate body plan is overall symmetrical but left-right (LR) asymmetric in the shape and positioning of internal organs. Although several theories have been proposed, the biophysical mechanisms underlying LR asymmetry are still unclear, especially the role of cell chirality, the LR asymmetry at the cellular level, on organ asymmetry. Here with developing chicken embryos, we examine whether intrinsic cell chirality or handedness regulates cardiac C looping. Using a recently established biomaterial-based 3D culture platform, we demonstrate that chick cardiac cells before and during C looping are intrinsically chiral and exhibit dominant clockwise rotation in vitro. We further show that cells in the developing myocardium are chiral as evident by a rightward bias of cell alignment and a rightward polarization of the Golgi complex, correlating with the direction of cardiac tube rotation. In addition, there is an LR polarized distribution of N-cadherin and myosin II in the myocardium before the onset of cardiac looping. More interestingly, the reversal of cell chirality via activation of the protein kinase C signaling pathway reverses the directionality of cardiac looping, accompanied by a reversal in cellular biases on the cardiac tube. Our results suggest that myocardial cell chirality regulates cellular LR symmetry breaking in the heart tube and the resultant directionality of cardiac looping. Our study provides evidence of an intrinsic cellular chiral bias leading to LR symmetry breaking during directional tissue rotation in vertebrate development.
Collapse
Affiliation(s)
- Poulomi Ray
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Amanda S Chin
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Kathryn E Worley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Jie Fan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Gurleen Kaur
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180;
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
17
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
18
|
Aleksandrova A, Filla MB, Kosa E, Little CD, Petersen A, Rongish BJ. Altered VEGF Signaling Leads to Defects in Heart Tube Elongation and Omphalomesenteric Vein Fusion in Quail Embryos. Anat Rec (Hoboken) 2018; 302:175-185. [PMID: 30299585 DOI: 10.1002/ar.23948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/11/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Formation of the endocardial and myocardial heart tubes involves precise cardiac progenitor sorting and tissue displacements from the primary heart field to the embryonic midline-a process that is dependent on proper formation of conjoining great vessels, including the omphalomesenteric veins (OVs) and dorsal aortae. Using a combination of vascular endothelial growth factor (VEGF) over- and under-activation, fluorescence labeling of cardiac progenitors (endocardial and myocardial), and time-lapse imaging, we show that altering VEGF signaling results in previously unreported myocardial, in addition to vascular and endocardial phenotypes. Resultant data show: (1) exogenous VEGF leads to truncated endocardial and myocardial heart tubes and grossly dilated OVs; (2) decreased levels of VEGF receptor 2 tyrosine kinase signaling result in a severe abrogation of the endocardial tube, dorsal aortae, and OVs. Surprisingly, only slightly altered myocardial tube fusion and morphogenesis is observed. We conclude that VEGF has direct effects on the VEGF receptor 2-bearing endocardial and endothelial precursors, and that altered vascular morphology of the OVs also indirectly results in altered myocardial tube formation. Anat Rec, 302:175-185, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anastasiia Aleksandrova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Michael B Filla
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Edina Kosa
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Alan Petersen
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas
| |
Collapse
|
19
|
Li Y, Grover H, Dai E, Yang K, Chen Z. Probing the Roles of Physical Forces in Early Chick Embryonic Morphogenesis. J Vis Exp 2018. [PMID: 29939170 DOI: 10.3791/57150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Embryonic development is traditionally studied from the perspective of biomolecular genetics, but the fundamental importance of mechanics in morphogenesis is becoming increasingly recognized. In particular, the embryonic chick heart and brain tube, which undergo drastic morphological changes as they develop, are among the prime candidates to study the role of physical forces in morphogenesis. Progressive ventral bending and rightward torsion of the tubular embryonic chick brain happen at the earliest stage of organ-level left-right asymmetry in chick embryonic development. The vitelline membrane (VM) constrains the dorsal side of the embryo and has been implicated in providing the force necessary to induce torsion of the developing brain. Here we present a combination of new ex-ovo experiments and physical modeling to identify the mechanics of brain torsion. At Hamburger-Hamilton stage 11, embryos are harvested and cultured ex ovo (in media). The VM is subsequently removed using a pulled capillary tube. By controlling the level of the fluid and subjecting the embryo to a fluid-air interface, the fluid surface tension of the media can be used to replace the mechanical role of the VM. Microsurgery experiments were also performed to alter the position of the heart to find the resultant change in the chirality of brain torsion. Results from this protocol illustrate the fundamental roles of mechanics in driving morphogenesis.
Collapse
Affiliation(s)
- Yan Li
- Thayer School of Engineering, Dartmouth College
| | | | - Eric Dai
- Department of Bioengineering, University of Pennsylvania
| | - Kevin Yang
- Thayer School of Engineering, Dartmouth College
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College;
| |
Collapse
|
20
|
Kumar A, Placone JK, Engler AJ. Understanding the extracellular forces that determine cell fate and maintenance. Development 2017; 144:4261-4270. [PMID: 29183939 DOI: 10.1242/dev.158469] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells interpret signals from their microenvironment while simultaneously modifying the niche through secreting factors and exerting mechanical forces. Many soluble stem cell cues have been determined over the past century, but in the past decade, our molecular understanding of mechanobiology has advanced to explain how passive and active forces induce similar signaling cascades that drive self-renewal, migration, differentiation or a combination of these outcomes. Improvements in stem cell culture methods, materials and biophysical tools that assess function have improved our understanding of these cascades. Here, we summarize these advances and offer perspective on ongoing challenges.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Pearl EJ, Li J, Green JBA. Cellular systems for epithelial invagination. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0526. [PMID: 28348256 PMCID: PMC5379028 DOI: 10.1098/rstb.2015.0526] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/24/2022] Open
Abstract
Epithelial invagination is a fundamental module of morphogenesis that iteratively occurs to generate the architecture of many parts of a developing organism. By changing the physical properties such as the shape and/or position of a population of cells, invagination drives processes ranging from reconfiguring the entire body axis during gastrulation, to forming the primordia of the eyes, ears and multiple ducts and glands, during organogenesis. The epithelial bending required for invagination is achieved through a variety of mechanisms involving systems of cells. Here we provide an overview of the different mechanisms, some of which can work in combination, and outline the circumstances in which they apply. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’.
Collapse
Affiliation(s)
- Esther J Pearl
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jingjing Li
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
22
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
23
|
Le Garrec JF, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E, Bangham JA, Torres M, Coen E, Mohun TJ, Meilhac SM. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 2017; 6:28951. [PMID: 29179813 PMCID: PMC5705212 DOI: 10.7554/elife.28951] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/15/2017] [Indexed: 01/14/2023] Open
Abstract
How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects.
Collapse
Affiliation(s)
- Jean-François Le Garrec
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Jorge N Domínguez
- Department of Experimental Biology, University of Jaén, CU Las Lagunillas, Jaén, Spain
| | - Audrey Desgrange
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Kenzo D Ivanovitch
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Etienne Raphaël
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | | | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrico Coen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sigolène M Meilhac
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| |
Collapse
|
24
|
Pai VP, Willocq V, Pitcairn EJ, Lemire JM, Paré JF, Shi NQ, McLaughlin KA, Levin M. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner. Biol Open 2017; 6:1445-1457. [PMID: 28818840 PMCID: PMC5665463 DOI: 10.1242/bio.025957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Emily J Pitcairn
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Joan M Lemire
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Jean-François Paré
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Nian-Qing Shi
- Department of Medicine at University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kelly A McLaughlin
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
25
|
Zhao Y, Edington S, Fleenor J, Sinkovskaya E, Porche L, Abuhamad A. Fetal cardiac axis in tetralogy of Fallot: associations with prenatal findings, genetic anomalies and postnatal outcome. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2017; 50:58-62. [PMID: 27302537 DOI: 10.1002/uog.15998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To compare prenatal findings, associated genetic anomalies and postnatal outcome in fetuses with tetralogy of Fallot (TOF) with normal cardiac axis (CAx) and those with abnormal CAx. METHODS In this retrospective cohort study, 85 cases diagnosed with TOF by prenatal ultrasound at our clinic between 2005 and 2015 were reviewed. Follow-up ultrasound and postnatal outcome were available for 68 cases. One case complicated with absent pulmonary valve syndrome and a further seven cases diagnosed postnatally with anomalies other than TOF were excluded from the study. The remaining 60 cases of postnatally confirmed TOF were divided according to CAx into two groups: those with normal CAx (n = 33) and those with abnormal CAx (n = 27). CAx was defined as the angle between the interventricular septum and midline of the fetal thorax at the level of the four-chamber view. CAx > 65° or < 25° was considered abnormal. Prenatal sonographic findings, associated genetic anomalies and postnatal outcome were compared between the two groups. RESULTS Fetuses with TOF and abnormal CAx were more likely to have pulmonary atresia (40.7% vs 15.2%; P = 0.026) and right-sided aortic arch (48.1% vs 21.2%; P = 0.028) than those with normal CAx. Postnatal death occurred in 30.4% of infants with abnormal CAx vs 6.5% with normal CAx (P = 0.028). Incidence of tested genetic anomalies was similar between the two groups. CONCLUSION In fetuses with TOF, abnormal CAx is associated with the presence of pulmonary atresia, right-sided aortic arch and a higher risk of postnatal death. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Y Zhao
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - S Edington
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - J Fleenor
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - E Sinkovskaya
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - L Porche
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - A Abuhamad
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
26
|
Hosseini HS, Garcia KE, Taber LA. A new hypothesis for foregut and heart tube formation based on differential growth and actomyosin contraction. Development 2017; 144:2381-2391. [PMID: 28526751 DOI: 10.1242/dev.145193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/10/2017] [Indexed: 01/14/2023]
Abstract
For decades, it was commonly thought that the bilateral heart fields in the early embryo fold directly towards the midline, where they meet and fuse to create the primitive heart tube. Recent studies have challenged this view, however, suggesting that the heart fields fold diagonally. As early foregut and heart tube morphogenesis are intimately related, this finding also raises questions concerning the traditional view of foregut formation. Here, we combine experiments on chick embryos with computational modeling to explore a new hypothesis for the physical mechanisms of heart tube and foregut formation. According to our hypothesis, differential anisotropic growth between mesoderm and endoderm drives diagonal folding. Then, active contraction along the anterior intestinal portal generates tension to elongate the foregut and heart tube. We test this hypothesis using biochemical perturbations of cell proliferation and contractility, as well as computational modeling based on nonlinear elasticity theory including growth and contraction. The present results generally support the view that differential growth and actomyosin contraction drive formation of the foregut and heart tube in the early chick embryo.
Collapse
Affiliation(s)
- Hadi S Hosseini
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.,Department of Physics, Washington University, St Louis, MO 63130, USA
| | - Kara E Garcia
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
27
|
Holló G. Demystification of animal symmetry: symmetry is a response to mechanical forces. Biol Direct 2017; 12:11. [PMID: 28514948 PMCID: PMC5436448 DOI: 10.1186/s13062-017-0182-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
ᅟ Symmetry is an eye-catching feature of animal body plans, yet its causes are not well enough understood. The evolution of animal form is mainly due to changes in gene regulatory networks (GRNs). Based on theoretical considerations regarding fundamental GRN properties, it has recently been proposed that the animal genome, on large time scales, should be regarded as a system which can construct both the main symmetries – radial and bilateral – simultaneously; and that the expression of any of these depends on functional constraints. Current theories explain biological symmetry as a pattern mostly determined by phylogenetic constraints, and more by chance than by necessity. In contrast to this conception, I suggest that physical effects, which in many cases act as proximate, direct, tissue-shaping factors during ontogenesis, are also the ultimate causes – i.e. the indirect factors which provide a selective advantage – of animal symmetry, from organs to body plan level patterns. In this respect, animal symmetry is a necessary product of evolution. This proposition offers a parsimonious view of symmetry as a basic feature of the animal body plan, suggesting that molecules and physical forces act in a beautiful harmony to create symmetrical structures, but that the concert itself is directed by the latter. Reviewers This article was reviewed by Eugene Koonin, Zoltán Varga and Michaël Manuel.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology, University of Debrecen, H-4002, Debrecen, P.O. Box 400, Hungary.
| |
Collapse
|
28
|
Ferreira RR, Vermot J. The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis. Mech Dev 2017; 144:71-80. [DOI: 10.1016/j.mod.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
|
29
|
Chen Z, Guo Q, Dai E, Forsch N, Taber LA. How the embryonic chick brain twists. J R Soc Interface 2016; 13:20160395. [PMID: 28334695 PMCID: PMC5134006 DOI: 10.1098/rsif.2016.0395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain.
Collapse
Affiliation(s)
- Zi Chen
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350108, People's Republic of China
| | - Eric Dai
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Nickolas Forsch
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
30
|
Andrés-Delgado L, Mercader N. Interplay between cardiac function and heart development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1707-16. [PMID: 26952935 PMCID: PMC4906158 DOI: 10.1016/j.bbamcr.2016.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022]
Abstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease. This requires cardiomyocytes to be mechanically durable and able to mount coordinated responses to a variety of environmental signals on different time scales, including cardiac pressure loading and electrical and hemodynamic forces. During physiological growth, myocytes, endocardial and epicardial cells have to adaptively remodel to these mechanical forces. Here we review some of the recent advances in the understanding of how mechanical forces influence cardiac development, with a focus on fluid flow forces. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Nadia Mercader
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
31
|
Vigneswaran TV, Kametas NA, Zinevich Y, Bataeva R, Allan LD, Zidere V. Assessment of cardiac angle in fetuses with congenital heart disease at risk of 22q11.2 deletion. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 46:695-699. [PMID: 25720805 DOI: 10.1002/uog.14832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES To evaluate fetal cardiac angle as a screening tool for 22q11.2 deletion among cases with cardiac anomalies known to be associated with this genetic condition, to examine the correlation of fetal cardiac angle with thymic-thoracic (TT)-ratio, and to assess the performance of TT ratio as a covariate in screening for 22q11.2 deletion. METHODS This was a retrospective cohort study that reviewed the records of 74 cases with cardiac anomalies known to be associated with 22q11.2 deletion (tetralogy of Fallot, common arterial trunk, interrupted aortic arch and right aortic arch) that were diagnosed between 2007 and 2013. The karyotype was known in all cases. The fetal cardiac angle and TT-ratio were measured using stored three-dimensional spatiotemporal image correlation volume datasets and compared in those with del.22q11.2 and those without. RESULTS Of the 74 cases reviewed, 16 had 22q11.2 deletion. The mean cardiac angle was larger in the cases with 22q11.2 deletion than in those without (68.6° vs 58.7°, respectively; P = 0.02). Multivariate regression analysis showed an association between cardiac angle and TT-ratio in fetuses with 22q11.2 deletion (r(2) = 0.33; P = 0.02) but not in those with a normal karyotype (P = 0.4). Logistic regression analysis demonstrated that fetal cardiac angle, but not TT-ratio, is an independent predictor of 22q11.2 deletion among fetuses with 22q11.2 deletion-associated cardiac anomalies (P = 0.02; area under the receiver-operating characteristics curve = 0.69). CONCLUSIONS An enlarged fetal cardiac angle is an independent predictor of 22q11.2 deletion among fetuses with 22q11.2 deletion-associated cardiac anomalies. However, its performance as a single variable in a screening model is not sufficient to guide management decisions regarding invasive testing.
Collapse
Affiliation(s)
- T V Vigneswaran
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, London, UK
| | - N A Kametas
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | - Y Zinevich
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | - R Bataeva
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | - L D Allan
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | - V Zidere
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, London, UK
| |
Collapse
|
32
|
Shi Y, Varner VD, Taber LA. Why is cytoskeletal contraction required for cardiac fusion before but not after looping begins? Phys Biol 2015; 12:016012. [PMID: 25635663 DOI: 10.1088/1478-3975/12/1/016012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytoskeletal contraction is crucial to numerous morphogenetic processes, but its role in early heart development is poorly understood. Studies in chick embryos have shown that inhibiting myosin-II-based contraction prior to Hamburger-Hamilton (HH) stage 10 (33 h incubation) impedes fusion of the mesodermal heart fields that create the primitive heart tube (HT), as well as the ensuing process of cardiac looping. If contraction is inhibited at or after looping begins at HH10, however, fusion and looping proceed relatively normally. To explore the mechanisms behind this seemingly fundamental change in behavior, we measured spatiotemporal distributions of tissue stiffness, stress, and strain around the anterior intestinal portal (AIP), the opening to the foregut where contraction and cardiac fusion occur. The results indicate that stiffness and tangential tension decreased bilaterally along the AIP with distance from the embryonic midline. The gradients in stiffness and tension, as well as strain rate, increased to peaks at HH9 (30 h) and decreased afterward. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that they are mainly generated by active cytoskeletal contraction, and finite-element modeling indicates that the measured mechanical gradients are consistent with a relatively uniform contraction of the endodermal layer in conjunction with constraints imposed by the attached mesoderm. Taken together, our results suggest that, before HH10, endodermal contraction pulls the bilateral heart fields toward the midline where they fuse to create the HT. By HH10, however, the fusion process is far enough along to enable apposing cardiac progenitor cells to keep 'zipping' together during looping without the need for continued high contractile forces. These findings should shed new light on a perplexing question in early heart development.
Collapse
Affiliation(s)
- Yunfei Shi
- Department of Biomedical Engineering, Washington University, Saint Louis, MO 63130, USA
| | | | | |
Collapse
|
33
|
Shi Y, Yao J, Xu G, Taber LA. Bending of the looping heart: differential growth revisited. J Biomech Eng 2015; 136:1829834. [PMID: 24509638 DOI: 10.1115/1.4026645] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/06/2014] [Indexed: 01/27/2023]
Abstract
In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.
Collapse
|
34
|
Alford PW. Elasticity-based targeted growth models of morphogenesis. Methods Mol Biol 2015; 1189:339-350. [PMID: 25245704 DOI: 10.1007/978-1-4939-1164-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Embryonic tissue mechanics play an important role in regulating morphogenesis during organ formation, both in a bottom-up sense, where changes in gene expression drive mechanical shape changes, and in a top-down sense, where perturbations in tissue mechanics feed back to drive changes in gene expression. In growing tissues that can generate internal forces and have complex geometries, like those in the embryo, it can often be difficult to empirically determine the mechanical state of the tissue, let alone the relationships between gene expression and mechanical behavior. Mathematical models can be used to fill this gap. Here, we discuss elasticity-based models for growing tissues with a specific focus on targeted growth in embryonic tissues.
Collapse
Affiliation(s)
- Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, 312 Church Street, SE 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA,
| |
Collapse
|
35
|
Young JL, Kretchmer K, Ondeck MG, Zambon AC, Engler AJ. Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation. Sci Rep 2014; 4:6425. [PMID: 25236849 PMCID: PMC4168277 DOI: 10.1038/srep06425] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Cells secrete and assemble extracellular matrix throughout development, giving rise to time-dependent, tissue-specific stiffness. Mimicking myocardial matrix stiffening, i.e. ~10-fold increase over 1 week, with a hydrogel system enhances myofibrillar organization of embryonic cardiomyocytes compared to static hydrogels, and thus we sought to identify specific mechanosensitive proteins involved. Expression and/or phosphorylation state of 309 unique protein kinases were examined in embryonic cardiomyocytes plated on either dynamically stiffening or static mature myocardial stiffness hydrogels. Gene ontology analysis of these kinases identified cardiogenic pathways that exhibited time-dependent up-regulation on dynamic versus static matrices, including PI3K/AKT and p38 MAPK, while GSK3β, a known antagonist of cardiomyocyte maturation, was down-regulated. Additionally, inhibiting GSK3β on static matrices improved spontaneous contraction and myofibril organization, while inhibiting agonist AKT on dynamic matrices reduced myofibril organization and spontaneous contraction, confirming its role in mechanically-driven maturation. Together, these data indicate that mechanically-driven maturation is at least partially achieved via active mechanosensing at focal adhesions, affecting expression and phosphorylation of a variety of protein kinases important to cardiomyogenesis.
Collapse
Affiliation(s)
- Jennifer L. Young
- Department of Bioengineering, University of California, San Diego, CA 92093
| | - Kyle Kretchmer
- Department of Bioengineering, University of California, San Diego, CA 92093
| | - Matthew G. Ondeck
- Department of Material Science Program, University of California, San Diego, CA 92093
| | | | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, CA 92093
- Department of Material Science Program, University of California, San Diego, CA 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
36
|
Abstract
Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
37
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
38
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
39
|
Shi Y, Yao J, Young JM, Fee JA, Perucchio R, Taber LA. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry. Front Physiol 2014; 5:297. [PMID: 25161623 PMCID: PMC4129494 DOI: 10.3389/fphys.2014.00297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022] Open
Abstract
The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.
Collapse
Affiliation(s)
- Yunfei Shi
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| | - Jiang Yao
- Dassault Systemes Simulia Corp. Providence, RI, USA
| | | | - Judy A Fee
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| | - Renato Perucchio
- Department of Mechanical Engineering, University of Rochester Rochester, NY, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| |
Collapse
|
40
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 PMCID: PMC4117980 DOI: 10.3389/fphys.2014.00287] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
41
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 DOI: 10.3389/fphys.2014.00287/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 05/25/2023] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
42
|
Taber LA. Morphomechanics: transforming tubes into organs. Curr Opin Genet Dev 2014; 27:7-13. [PMID: 24791687 PMCID: PMC4125444 DOI: 10.1016/j.gde.2014.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 01/05/2023]
Abstract
After decades focusing on the molecular and genetic aspects of organogenesis, researchers are showing renewed interest in the physical mechanisms that create organs. This review deals with the mechanical processes involved in constructing the heart and brain, concentrating primarily on cardiac looping, shaping of the primitive brain tube, and folding of the cerebral cortex. Recent studies suggest that differential growth drives large-scale shape changes in all three problems, causing the heart and brain tubes to bend and the cerebral cortex to buckle. Relatively local changes in form involve other mechanisms such as differential contraction. Understanding the mechanics of organogenesis is central to determining the link between genetics and the biophysical creation of form and structure.
Collapse
Affiliation(s)
- Larry A Taber
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
43
|
Bayraktar M, Männer J. Cardiac looping may be driven by compressive loads resulting from unequal growth of the heart and pericardial cavity. Observations on a physical simulation model. Front Physiol 2014; 5:112. [PMID: 24772086 PMCID: PMC3983514 DOI: 10.3389/fphys.2014.00112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/05/2014] [Indexed: 01/22/2023] Open
Abstract
The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling) to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops) in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process toward the generation of only D- or L-loops, respectively. Our data are discussed with respect to observations made in biological “models.” We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces toward a biased generation of D- or L-loops.
Collapse
Affiliation(s)
- Meriç Bayraktar
- Group Cardio-Embryology, Institute for Anatomy and Embryology, UMG, Georg-August-University of Göttingen Göttingen, Germany
| | - Jörg Männer
- Group Cardio-Embryology, Institute for Anatomy and Embryology, UMG, Georg-August-University of Göttingen Göttingen, Germany
| |
Collapse
|
44
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
45
|
Kim HY, Varner VD, Nelson CM. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 2013; 140:3146-55. [PMID: 23824575 DOI: 10.1242/dev.093682] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Branching morphogenesis sculpts the airway epithelium of the lung into a tree-like structure to conduct air and promote gas exchange after birth. In the avian lung, a series of buds emerges from the dorsal surface of the primary bronchus via monopodial branching to form the conducting airways; anatomically, these buds are similar to those formed by domain branching in the mammalian lung. Here, we show that monopodial branching is initiated by apical constriction of the airway epithelium, and not by differential cell proliferation, using computational modeling and quantitative imaging of embryonic chicken lung explants. Both filamentous actin and phosphorylated myosin light chain were enriched at the apical surface of the airway epithelium during monopodial branching. Consistently, inhibiting actomyosin contractility prevented apical constriction and blocked branch initiation. Although cell proliferation was enhanced along the dorsal and ventral aspects of the primary bronchus, especially before branch formation, inhibiting proliferation had no effect on the initiation of branches. To test whether the physical forces from apical constriction alone are sufficient to drive the formation of new buds, we constructed a nonlinear, three-dimensional finite element model of the airway epithelium and used it to simulate apical constriction and proliferation in the primary bronchus. Our results suggest that, consistent with the experimental results, apical constriction is sufficient to drive the early stages of monopodial branching whereas cell proliferation is dispensable. We propose that initial folding of the airway epithelium is driven primarily by apical constriction during monopodial branching of the avian lung.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
46
|
Ramasubramanian A, Chu-Lagraff QB, Buma T, Chico KT, Carnes ME, Burnett KR, Bradner SA, Gordon SS. On the role of intrinsic and extrinsic forces in early cardiac S-looping. Dev Dyn 2013; 242:801-16. [PMID: 23553909 DOI: 10.1002/dvdy.23968] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Looping is a crucial phase during heart development when the initially straight heart tube is transformed into a shape that more closely resembles the mature heart. Although the genetic and biochemical pathways of cardiac looping have been well studied, the biophysical mechanisms that actually effect the looping process remain poorly understood. Using a combined experimental (chick embryo) and computational (finite element modeling) approach, we study the forces driving early s-looping when the primitive ventricle moves to its definitive position inferior to the common atrium. RESULTS New results from our study indicate that the primitive heart has no intrinsic ability to form an s-loop and that extrinsic forces are necessary to effect early s-looping. They support previous studies that established an important role for cervical flexure in causing early cardiac s-looping. Our results also show that forces applied by the splanchnopleure cannot be ignored during early s-looping and shed light on the role of cardiac jelly. Using available experimental data and computer modeling, we successfully developed and tested a hypothesis for the force mechanisms driving s-loop formation. CONCLUSIONS Forces external to the primitive heart tube are necessary in the later stages of cardiac looping. Experimental and model results support our proposed hypothesis for forces driving early s-looping.
Collapse
Affiliation(s)
- Ashok Ramasubramanian
- Department of Mechanical Engineering, Union College, Schenectady, New York 12309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Männer J. On the form problem of embryonic heart loops, its geometrical solutions, and a new biophysical concept of cardiac looping. Ann Anat 2013; 195:312-323. [PMID: 23602789 DOI: 10.1016/j.aanat.2013.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cardiac looping is an essential process in the morphogenesis of embryonic hearts. Unfortunately, relatively little is known about the form and biophysics of embryonic heart loops. Thompson regarded the form of an object as "a 'diagram of forces' … from it we can … deduce the forces that are acting or have acted upon it." Therefore, the present study was conducted to uncover the best geometrical solution of the form problem of embryonic heart loops. This approach may help to identify the biophysics of cardiac looping. RESULTS Analysis of the tendrils of climbing plants disclosed striking resemblance between the configurations of embryonic heart loops and a form motif named helical perversion. Helical perversion occurs in helically wound objects where they connect two helical segments of opposite handedness (two-handed helix). Helical perversion evolves in living and non-living filamentary objects such as the tendrils of climbing plants and helical telephone cords. CONCLUSIONS Helical perversion may be the best geometrical solution of the form problem of embryonic heart loops. The dynamics and mechanics of the emergence of helical perversions are relatively well known. The behavior of looping embryonic hearts may be interpreted in light of this knowledge.
Collapse
Affiliation(s)
- Jörg Männer
- Department of Anatomy and Embryology, Georg-August-University of Göttingen, Germany.
| |
Collapse
|
48
|
Abstract
Differentiated adult cardiomyocytes (CMs) lack significant regenerative potential, which is one reason why degenerative heart diseases are the leading cause of death in the western world. For future cardiac repair, stem cell-based therapeutic strategies may become alternatives to donor heart transplantation. The principle of reprogramming adult terminally differentiated cells (iPSC) had a major impact on stem cell biology. One can now generate autologous pluripotent cells that highly resemble embryonic stem cells (ESC) and that are ethically inoffensive as opposed to human ESC. Yet, due to genetic and epigenetic aberrations arising during the full reprogramming process, it is questionable whether iPSC will enter the clinic in the near future. Therefore, the recent achievement of directly reprogramming fibroblasts into cardiomyocytes via a milder approach, thereby avoiding an initial pluripotent state, may become of great importance. In addition, various clinical scenarios will depend on the availability of specific cardiac cellular subtypes, for which a first step was achieved via our own programming approach to achieve cardiovascular cell subtypes. In this review, we discuss recent progress in the cardiovascular stem cell field addressing the above mentioned aspects.
Collapse
Affiliation(s)
- Robert David
- 1st Medical Department, University of Munich, Campus Grosshadern, Munich, Germany
| | | |
Collapse
|
49
|
Wyczalkowski MA, Chen Z, Filas BA, Varner VD, Taber LA. Computational models for mechanics of morphogenesis. ACTA ACUST UNITED AC 2012; 96:132-52. [PMID: 22692887 DOI: 10.1002/bdrc.21013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the developing embryo, tissues differentiate, deform, and move in an orchestrated manner to generate various biological shapes driven by the complex interplay between genetic, epigenetic, and environmental factors. Mechanics plays a key role in regulating and controlling morphogenesis, and quantitative models help us understand how various mechanical forces combine to shape the embryo. Models allow for the quantitative, unbiased testing of physical mechanisms, and when used appropriately, can motivate new experimentaldirections. This knowledge benefits biomedical researchers who aim to prevent and treat congenital malformations, as well as engineers working to create replacement tissues in the laboratory. In this review, we first give an overview of fundamental mechanical theories for morphogenesis, and then focus on models for specific processes, including pattern formation, gastrulation, neurulation, organogenesis, and wound healing. The role of mechanical feedback in development is also discussed. Finally, some perspectives aregiven on the emerging challenges in morphomechanics and mechanobiology.
Collapse
|
50
|
Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 2012; 11:1187-204. [PMID: 22760547 DOI: 10.1007/s10237-012-0414-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|