1
|
Zhu M, Li P, Wu W, Zheng W, Huang J, Tulafu H, Lin C, Tao W, Aladaer Q. The genetic characterization of germplasm and identification of the litter size trait associated candidate genes in Dexin mutton and fine-wool sheep. Front Genet 2024; 15:1457634. [PMID: 39211736 PMCID: PMC11359847 DOI: 10.3389/fgene.2024.1457634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Xinjiang is a major province of sheep breeding in China, which plays an important role in meeting people's needs for meat products, increasing farmers' income and sustainable development of animal husbandry. However, the genetic differentiation relationship between breeds was not clear, and most sheep had low fecundity, which seriously restricted the efficient development of sheep industry. Therefore, this study used the whole genome resequencing to detect the genetic variation of Dexin mutton and fine-wool sheep, explored the selected regions and important genes of the litter size traits, analyzed the genetic mechanism of reproductive traits, and provided new insights for the high fecundity breeding of sheep. A total of 5,236.338 G genome data and 35,884,037 SNPs were obtained. Furthermore, we identified 39 selection signals spanning candidate genes, 99 genes were significantly associated related to growth, reproduction and immunity, among which, BRIP1, BMPR1B, BMP4, NGF, etc. genes, and MAKP signaling pathway, Fanconi anemia pathway and Thyroid hormone signaling pathway and other signaling pathways were significantly correlated with litter size trait. Among them, we identified NGF, TrKA and BRIP1 genes was the important genes for sheep litter size traits and the mutation frequencies of 9 SNPs in BRIP1 gene were significantly different in domestic sheep in the world. The research provided new insights for the breeding of self-cultivated meat fine-wool sheep.
Collapse
Affiliation(s)
- Mengting Zhu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Pengfei Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Wenxin Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Juncheng Huang
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Hanikzi Tulafu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Changchun Lin
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Weikun Tao
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Qi Aladaer
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
2
|
Vaishnavi Nalla S, Jayapradha P, Lalruatmawii, Nandheeswari K, Naxine P, Vigneshwaran G, Rohilla G, Dubey I, Kushwaha S. Irisin as an emerging target in the regulation of reproductive functions in health and disease. Gen Comp Endocrinol 2024; 353:114529. [PMID: 38643847 DOI: 10.1016/j.ygcen.2024.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Germ cells are highly conserved in the gonads, nurtured to either develop into a gamete or self-renew into a stem cell reserve. Preserving the germ cell pool and protecting the reproductive organs is essential for maintaining an individual's fertility. Several factors, including a sedentary lifestyle, pollutants, hormonal disruption, drugs, and a disease condition, have been shown to impair normal reproductive function. Irisin has recently been identified as an adipomyokine involved in modulating physiological functions based on the body's metabolic status. It is being studied for its role in various functions, including fertility. Findings show the localization of irisin in various parts of the reproductive axis, with the highest levels observed during puberty and pregnancy. This raises questions about its role and function in reproduction. Studies support irisin's role in protecting against disease-induced reproductive abnormalities and infertility. Therefore, the current review focuses on how irisin influences spermatogenesis and ovarian follicular development and plays a significant role in indirectly preserving the germ cell pool by protecting the gonads against oxidative stress and inflammation.
Collapse
Affiliation(s)
- Sree Vaishnavi Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - P Jayapradha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Lalruatmawii
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - K Nandheeswari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Pratik Naxine
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - G Vigneshwaran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Gaurav Rohilla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India.
| |
Collapse
|
3
|
Wang Q, Deng J, Jiang Y, Wang Z, Xia B, Chen T. A medaka gonad-specific lncRNA may act as pri-miR-202 to regulate testicular endocrine homeostasis and spermatogenesis. Theriogenology 2024; 214:273-285. [PMID: 37948817 DOI: 10.1016/j.theriogenology.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
A large number of long non-coding RNAs (lncRNAs) are expressed in animal gonads, but their functions are poorly understood. In this study, a gonad-specific lncRNA, termed lnc4, was identified and characterized in the model fish medaka (Oryzias latipes). The expression pattern and in vitro functional analyses indicated that lnc4 was likely to be a primary transcript of miR-202 (pri-miR-202). Results of single-molecule fluorescence in situ hybridization demonstrated that the precursor miR-202 (pre-miR-202) was highly expressed in the nuclei of testicular somatic cells, including Leydig and Sertoli cells, whereas only a small amount of lnc4 molecules could be detected co-expressed with pre-miR-202 in Sertoli cells due to its low expression level. Deletion of the lnc4 locus led to a significant reduction in testis size and a dramatic decrease in the number of male germ cells, as well as a reduction in sperm viability. Moreover, lnc4 knockout resulted in enhanced synthesis and secretion of testicular somatic cells and accelerated differentiation of immature male germ cells. Taken together, functional studies of lnc4 and its mature transcript miR-202 will contribute to the understanding of the important role of non-coding RNAs in animal or human reproductive disorders.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, 434024, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiajie Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yuewen Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhi Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bilin Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tiansheng Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, 361021, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Ciller I, Palanisamy S, Ciller U, Al-Ali I, Coumans J, McFarlane J. Steroidogenic enzyme gene expression and testosterone production are developmentally modulated by bone morphogenetic protein receptor-1B in mouse testis. Physiol Res 2023; 72:359-369. [PMID: 37455641 PMCID: PMC10668998 DOI: 10.33549/physiolres.935014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 08/26/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) and receptors (BMPR-1A, BMPR-1B, BMPR-2) have been shown to be vital for female reproduction, while their roles in males are poorly described. Our study was undertaken to specify the function of BMPR-1B in steroidogenic enzyme gene expression, testosterone production and reproductive development in male mice, given that Bmpr1b mRNA is expressed in mouse testis and Bmpr1b knockout results in compromised fertility. Male mice were passively immunized for 6 days with anti-BMPR-1B in the presence or absence of exogenous gonadotrophins. We then measured the effects of anti-BMPR-1B on testicular hydroxysteroid dehydrogenase isoforms (Hsd3b1, Hsd3b6, and Hsd17b3) and aromatase (Cyp19) mRNA expression, testicular and serum testosterone levels, and testis and seminal vesicle weight. In vitro testosterone production in response to anti-BMPR-1B was determined using testicular culture, and Leydig cell culture in the presence or absence of gonadotrophins. In Leydig cell culture the contribution of seminiferous tubules and Leydig cells were examined by preconditioning the media with these testicular constituents. In adult mice, anti-BMPR-1B increased testosterone and Hsd3b1 but decreased Hsd3b6 and Cyp19 mRNA. In adult testicular culture and seminiferous tubule conditioned Leydig cell culture, anti-BMPR-1B reduced testosterone, while in normal and Leydig cell conditioned Leydig cell culture it increased testosterone levels. In pubertal mice, anti-BMPR-1B reduced gonadotrophin stimulated seminal vesicle growth. In conclusion, BMPR-1B has specific developmental functions in the autocrine and paracrine regulation of testicular steroidogenic enzyme gene expression and testosterone production in adults and in the development of seminal vesicles during puberty.
Collapse
Affiliation(s)
- I Ciller
- School of Rural Medicine, University of New England, Armidale, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
5
|
Tang J, Tan M, Liao S, Pang M, Li J. Recent progress in the biology and physiology of BMP-8a. Connect Tissue Res 2023; 64:219-228. [PMID: 36594156 DOI: 10.1080/03008207.2022.2160326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE BMP-8a is a member of bone morphogenetic proteins (BMPs) and plays a regulatory role in human growth and development as a transcription regulator. This review aims to summarize the current research on the impact and mechanism of BMP-8a in female and male reproduction, formation and eruption of teeth, bone and cartilage development, tissue differentiation, disease occurrence, progression and prognosis. METHODS The phrases "BMP-8a," "BMPs," "regulator," "mechanism," "osteoblast," "cartilage," "cancer," "disease," and "inflammation" were searched in the PubMed database. The abstracts were evaluated, and a series of original publications and reviews were examined. RESULTS According to the search, BMP-8a affects the development of the uterus by inhibiting luteinization and plays an important role in late spermatogenesis. It is highly expressed in osteogenesis and differentially expressed in chondrogenesis. Furthermore, BMP-8a has a significant impact on the occurrence, development and prognosis of various diseases. CONCLUSIONS BMP-8a regulates important factors and pathways, such as SMAD2/3 and SMAD1/5/8, to promote or inhibit the developmental processes of human reproductive organs. BMP-8a is also a member of the BMP family of proteins that regulates chondrogenesis and osteogenesis. In addition to its osteoinductive capabilities, BMP-8a is involved in the progression of diverse cancers.
Collapse
Affiliation(s)
- Jiawei Tang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Miao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Siqi Liao
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengwei Pang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Resveratrol Synergistically Promotes BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8124085. [PMID: 35923297 PMCID: PMC9343184 DOI: 10.1155/2022/8124085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Background. Mesenchymal stem cells (MSCs) differentiate into osteocytes, adipocytes, and chondrocytes. Resveratrol and bone morphogenetic protein 9 (BMP9) are known osteogenic induction factors of MSCs, but the effect of both resveratrol and BMP9 on osteogenesis is unknown. Herein, we explored whether resveratrol cooperates with BMP9 to improve osteogenic induction. Methods. The osteogenic induction of resveratrol and BMP9 on C3H10T1/2 cells was evaluated by detecting the staining and activity of the early osteogenic marker alkaline phosphatase (ALP). In addition, the late osteogenic effect was measured by the mRNA and protein levels of osteogenic markers, such as osteopontin (OPN) and osteocalcin (OCN). To assess the bone formation function of resveratrol plus BMP9 in vivo, we transplanted BMP9-infected C3H10T1/2 cells into nude mice followed by intragastric injection of resveratrol. Western blot (WB) analysis was utilized to elucidate the mechanism of resveratrol plus BMP9. Results. Resveratrol not only enhanced osteogenic induction alone but also improved BMP9-induced ALP at 3, 5, and 7 d postinduction. Both the early osteogenic markers (ALP, Runx2, and SP7) and the late osteogenic markers (OPN and OCN) were significantly increased when resveratrol was combined with BMP9. The fetal limb explant culture further verified these results. The in vivo bone formation experiment, which involved transplanting BMP9-overexpressing C3H10T1/2 cells into nude mice, also confirmed that resveratrol synergistically enhanced the BMP9-induced bone formation function. Resveratrol phosphorylated adenosine monophosphate- (AMP-) activated protein kinase (AMPK) and stimulated autophagy, but these effects were abolished by inhibiting AMPK and Beclin1 using an inhibitor or siRNA. Conclusions. Resveratrol combined with BMP9 significantly improves the osteogenic induction of C3H10T1/2 cells by activating AMPK and autophagy.
Collapse
|
7
|
Crucial Convolution: Genetic and Molecular Mechanisms of Coiling during Epididymis Formation and Development in Embryogenesis. J Dev Biol 2022; 10:jdb10020025. [PMID: 35735916 PMCID: PMC9225329 DOI: 10.3390/jdb10020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
As embryonic development proceeds, numerous organs need to coil, bend or fold in order to establish their final shape. Generally, this occurs so as to maximise the surface area for absorption or secretory functions (e.g., in the small and large intestines, kidney or epididymis); however, mechanisms of bending and shaping also occur in other structures, notably the midbrain–hindbrain boundary in some teleost fish models such as zebrafish. In this review, we will examine known genetic and molecular factors that operate to pattern complex, coiled structures, with a primary focus on the epididymis as an excellent model organ to examine coiling. We will also discuss genetic mechanisms involving coiling in the seminiferous tubules and intestine to establish the final form and function of these coiled structures in the mature organism.
Collapse
|
8
|
Overexpression of bmp4, dazl, nanos3 and sycp2 in Hu Sheep Leydig Cells Using CRISPR/dcas9 System Promoted Male Germ Cell Related Gene Expression. BIOLOGY 2022; 11:biology11020289. [PMID: 35205154 PMCID: PMC8869737 DOI: 10.3390/biology11020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Male germ cell development plays a crucial role in male reproduction, and gene expression also presents an essential regulatory role in its development. Many studies have been devoted to the induction and differentiation of pluripotent stem cells into germ cells in vitro. However, the culture system for pluripotent stem cells from domestic animals is not stable, especially in sheep. Our study attempted to transdifferentiate sheep somatic cells into germ cells in vitro by the overexpression of key germ cell related genes, with the aim of perfecting the construction of germ cell research models in vitro. Therefore, we explored the expression pattern of four crucial genes, bmp4, dazl, nanos3 and sycp2, in Hu sheep testicular development, and investigated the potential efficiency of overexpression of the four candidate genes using the CRISPR/dcas9 system in Leydig cells. We revealed that the overexpression of bmp4, dazl, nanos3 and sycp2 can promote the expression of male germ cell related genes. To the best of our knowledge, this is the first study to construct an overexpression induction system using CRISPR/dcas9 technology, and to induce sheep somatic cells into germ cells in vitro. Abstract Male germ cells directly affect the reproduction of males; however, their accurate isolation and culture in vitro is extremely challenging, hindering the study of germ cell development and function. CRISPR/dcas9, as an efficient gene reprogramming system, has been verified to promote the transdifferentiation of pluripotent stem cells into male germ cells by editing target genes. In our research, we explored the expression pattern of the germ cell related genes bmp4, dazl,nanos3 and sycp2 in Hu sheep testicular development and constructed the overexpression model using the CRISPR/dcas9 system. The results indicated that four genes showed more expression in testis tissue than in other tissues, and that bmp4, dazl and sycp2 present higher expression levels in nine-month-old sheep testes than in three-month-olds, while nanos3 expressed the opposite trend (p < 0.05). In addition, the expression of four potential genes in spermatogenic cells was slightly different, but they were all expressed in sheep Leydig cells. To verify the potential roles of the four genes in the process of inducing differentiation of male germ cells, we performed cell transfection in vitro. We found that the expression of the germ cell related genes Prdm1, Prdm14, Mvh and Sox17 were significantly increased after the overexpression of the four genes in Leydig cells, and the co-transfection effect was the most significant (p < 0.05). Our results illustrate the crucial functions of bmp4, dazl, nanos3 and sycp2 in Hu sheep testis development and verified the effectiveness of the overexpression model that was constructed using the CRISPR/dcas9 system, which provided a basis for further male germ cell differentiation in vitro.
Collapse
|
9
|
Luo Y, Yu Y. Research Advances in Gametogenesis and Embryogenesis Using Pluripotent Stem Cells. Front Cell Dev Biol 2022; 9:801468. [PMID: 35127717 PMCID: PMC8810640 DOI: 10.3389/fcell.2021.801468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
The previous studies of human gametogenesis and embryogenesis have left many unanswered questions, which hinders the understanding of the physiology of these two vital processes and the development of diagnosis and treatment strategies for related diseases. Although many results have been obtained from animal studies, particularly mouse research, the results cannot be fully applied to humans due to species differences in physiology and pathology. However, due to ethical and material limitations, the direct study of human gametes and embryos is very difficult. The emergence and rapid development of organoids allow the construction of organoid systems that simulate gametogenesis and embryogenesis in vitro, and many studies have successfully established organoid systems for some parts of or even the entire processes of gametogenesis and embryogenesis. These studies typically start with the establishment of mouse models and then modify these models to obtain human organoid models. These organoid models can be used to obtain a better understanding of the signaling pathways, molecular mechanisms, genetics, and epigenetic changes involved in gametogenesis and embryogenesis and could also be applied to clinical applications, such as drug screening. Here, we discuss the formation of primordial stem cell-like cells (PGCLCs), and in vitro-induced gametes and embryoids using pluripotent stem cells (PSCs). We also analyze their applications and limitations.
Collapse
Affiliation(s)
- Yuxin Luo
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Yang Yu,
| |
Collapse
|
10
|
Chen Z, Brito LF, Luo H, Shi R, Chang Y, Liu L, Guo G, Wang Y. Genetic and Genomic Analyses of Service Sire Effect on Female Reproductive Traits in Holstein Cattle. Front Genet 2021; 12:713575. [PMID: 34539741 PMCID: PMC8446201 DOI: 10.3389/fgene.2021.713575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Fertility and reproductive performance are key drivers of dairy farm profitability. Hence, reproduction traits have been included in a large majority of worldwide dairy cattle selection indexes. The reproductive traits are lowly heritable but can be improved through direct genetic selection. However, most scientific studies and dairy cattle breeding programs have focused solely on the genetic effects of the dam (GED) on reproductive performance and, therefore, ignored the contribution of the service sire in the phenotypic outcomes. This study aimed to investigate the service sire effects on female reproductive traits in Holstein cattle from a genomic perspective. Genetic parameter estimation and genome-wide association studies (GWAS) were performed for the genetic effect of service sire (GESS) on conception rate (CR), 56-day non-return rate (NRR56), calving ease (CE), stillbirth (SB), and gestation length (GL). Our findings indicate that the additive genetic effects of both sire and dam contribute to the phenotypic variance of reproductive traits measured in females (0.0196 vs. 0.0109, 0.0237 vs. 0.0133, 0.0040 vs. 0.0289, 0.0782 vs. 0.0083, and 0.1024 vs. 0.1020 for GESS and GED heritability estimates for CR, NRR56, CE, SB, and GL, respectively), and these two genetic effects are positively correlated for SB (0.1394) and GL (0.7871). Interestingly, the breeding values for GESS on insemination success traits (CR and NRR56) are unfavorably and significantly correlated with some production, health, and type breeding values (ranging from -0.449 to 0.274), while the GESS values on calving traits (CE, SB, and GL) are usually favorably associated with those traits (ranging from -0.493 to 0.313). One hundred sixty-two significant single-nucleotide polymorphisms (SNPs) and their surrounding protein-coding genes were identified as significantly associated with GESS and GED, respectively. Six genes overlapped between GESS and GED for calving traits and 10 genes overlapped between GESS for success traits and calving traits. Our findings indicate the importance of considering the GESS when genetically evaluating the female reproductive traits in Holstein cattle.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rui Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
MiRNA-34c Regulates Bovine Sertoli Cell Proliferation, Gene Expression, and Apoptosis by Targeting the AXL Gene. Animals (Basel) 2021; 11:ani11082393. [PMID: 34438849 PMCID: PMC8388803 DOI: 10.3390/ani11082393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Fertility is one of the essential reproduction traits of bulls, and accurate prediction of fertility potential using a semen sample from a donor bull for artificial insemination is crucial to achieve consistently high reproductive efficiency. Somatic cells, such as Sertoli cells and Leydig cells, are important in testis formation and provide a nurturing and regulatory environment for spermatogenesis. Furthermore, it was suggested that non-coding RNAs, such as microRNAs, long non-coding RNAs, circular RNAs, and Piwi-interacting RNA, function as important regulators of gene expression at post-transcriptional level in spermatogenesis. In this study, microRNA-34c was verified to specifically regulate the AXL gene by targeting a sequence in the 3’ UTR; miRNA-34c can also influence the proliferation, apoptosis, and relative abundance of the transcript of male-reproduction-related genes. Therefore, microRNA-34c can be considered an essential regulator in the process of bull spermatogenesis. These results identify a key microRNA and functional genes in the process of cattle male reproduction, providing useful information for future marker-assisted selection of bulls with excellent sperm quality. Abstract MicroRNAs (miRNAs) play significant roles in mammalian spermatogenesis. Sertoli cells can provide a stable microenvironment and nutritional factors for germ cells, thus playing a vital role in spermatogenesis. However, few studies elucidate the regulation of bovine testicular Sertoli cells by miRNAs. Here, we have reported that miRNA-34c (miR-34c) regulates proliferation, apoptosis, and relative transcripts abundance gene in bovine Sertoli cells. In bovine Sertoli cells, overexpression of miR-34c inhibited proliferation and relative abundance of gene transcripts while promoting apoptosis of Sertoli cells, and the effects were the opposite when miR-34c was knocked down. Receptor tyrosine kinase (AXL) was identified as a direct target gene of miR-34c in Sertoli cells, validated by analysis of the relative abundance of AXL transcript and dual-luciferase reporter assay. The relative abundance of the transcript of genes related to male reproduction in Sertoli cells was changed after the AXL gene was overexpressed, as demonstrated by the RT2 Profiler PCR Array results. In summary, miR-34c specifically regulated the AXL gene by targeting a sequence in the 3′-UTR, which could influence proliferation, apoptosis, and relative abundance of the transcript of male reproduction-related genes. Therefore, miR-34c could be considered an essential regulator in the process of bull spermatogenesis.
Collapse
|
12
|
Tang T, Lin Q, Qin Y, Liang X, Guo Y, Cong P, Liu X, Chen Y, He Z. Effects of bone morphogenetic protein 15 (BMP15) knockdown on porcine testis morphology and spermatogenesis. Reprod Fertil Dev 2021; 32:999-1011. [PMID: 32693912 DOI: 10.1071/rd20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor-β (TGFB) superfamily that plays an essential role in mammalian ovary development, oocyte maturation and litter size. However, little is known regarding the expression pattern and biological function of BMP15 in male gonads. In this study we established, for the first time, a transgenic pig model with BMP15 constitutively knocked down by short hairpin (sh) RNA. The transgenic boars were fertile, but sperm viability was decreased. Further analysis of the TGFB/SMAD pathway and markers of reproductive capacity, namely androgen receptor and protamine 2, failed to identify any differentially expressed genes. These results indicate that, in the pig, the biological function of BMP15 in the development of male gonads is not as crucial as in ovary development. However, the role of BMP15 in sperm viability requires further investigation. This study provides new insights into the role of BMP15 in male pig reproduction.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yang Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| |
Collapse
|
13
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Yang T, Wei BH, Hao SL, Wei YL, Yang WX. Bone morphogenetic protein 2 (BMP2) mediates spermatogenesis in Chinese mitten crab Eriocheir sinensis by regulating kinesin motor KIFC1 expression. Gene 2020; 754:144848. [PMID: 32522697 DOI: 10.1016/j.gene.2020.144848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
The TGF-beta superfamily is widely involved in cell events such as cell division and differentiation, while bone morphogenetic proteins (BMPs) belong to one of the subgroups. Their functions in crustacean spermatogenesis are still unknown. In this study, we first identified the bone morphogenetic protein 2 (bmp2) from Eriocheir sinensis (E. sinensis) testis. The es-BMP2 shows high expression in E. sinensis testis. We found that es-BMP2 is expressed in spermatids. The successfully knockdown of es-BMP2 through in vivo RNAi are used for functional analysis. Compared with the control group, the proportion of abnormal nuclear cup morphology in mature spermatozoa increased significantly after es-bmp2 RNAi, suggesting that es-BMP2 plays an important role in mature sperm morphogenesis. Immunofluorescence results confirm this finding. In order to study the specific mechanism of es-BMP2 involved in spermiogenesis, we tested kinesin-14 KIFC1, which functions in the nucleus formation of spermatozoa in E. sinensis. The results showed that knockdown of es-BMP2 caused a significant decrease of es-KIFC1 expression. We further performed es-bmp2 knockdown in vitro in primary cultured testis cells. es-KIFC1 expression was significantly reduced after es-bmp2 RNAi. The above results indicate that es-BMP2 participates in maintaining the spermiogenesis of E. sinensis by regulating es-KIFC1 expression.
Collapse
Affiliation(s)
- Tong Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Lan Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Dietrich MA, Irnazarow I, Inglot M, Adamek M, Jurecka P, Steinhagen D, Ciereszko A. Hormonal stimulation of carp is accompanied by changes in seminal plasma proteins associated with the immune and stress responses. J Proteomics 2019; 202:103369. [PMID: 31028945 DOI: 10.1016/j.jprot.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/04/2023]
Abstract
Hormonal stimulation in common carp is a routine practice to enhance sperm production and control gamete maturation. This study aimed to compare the proteome of carp seminal plasma between control and Ovopel-induced males using two-dimensional differential in-gel electrophoresis. Ovopel induction increased sperm volume, total sperm count, seminal plasma osmolality, and pH and decreased seminal plasma protein concentration. In total, 36 spots were identified (23 up- and 13 downregulated), corresponding to 23 proteins differentially abundant in seminal plasma after Ovopel induction (p < .05; fold change 1.2). The majority of proteins were associated with the immune and stress responses including the transport protein (hephaestin), antiproteases (fetuin, α2-macroglobulin, TIMP2), complement components (C3, complement factor B/C2A), regulator of the coagulation cascade (plasminogen), modulators of the innate immune response, such as intelectin, ApoA and ApoE, and the cathepsin/cystatin system, and stress response (enolase1). In addition, hormonal stimulation seems to be related to the proteins involved in lipid metabolism, signal transduction, and tissue remodeling. Our results suggest that hormonal stimulation is not just concomitant with the hydration of testis but also induces the synthesis and secretion of seminal plasma proteins involved in sperm maturation and protection against stress induced by administration of the exogenous hormone. SIGNIFICANCE: It is well known that hormonal stimulation of male fish induces the final maturation of spermatozoa. However, molecular and biochemical basis underlying hormone-induced changes in semen is unknown at present. This study for the first time reveals, using proteomic approach, that hormonal stimulation in addition to hydration of testis is accompanied by significant changes in seminal plasma proteins related mainly to immune and stress response, lipid metabolism, signal transduction and tissue remodeling. These changes are associated with gene expression and synthesis and secretion of seminal plasma proteins by reproductive tissues. Overall, our results provide a framework for understanding the molecular mechanism responsible for hormonal stimulation in the reproductive tract of fish males.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Ilgiz Irnazarow
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Michał Inglot
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Mikołaj Adamek
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Patrycja Jurecka
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Dieter Steinhagen
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
16
|
Zhao H, Nie J, Zhu X, Lu Y, Liang X, Xu H, Yang X, Zhang Y, Lu K, Lu S. In vitro differentiation of spermatogonial stem cells using testicular cells from Guangxi Bama mini-pig. J Vet Sci 2018; 19:592-599. [PMID: 29929354 PMCID: PMC6167331 DOI: 10.4142/jvs.2018.19.5.592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/28/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
In this study, we attempted to establish a culture system for in vitro spermatogenesis from spermatogonial stem cells (SSCs) of Bama mini-pig. Dissociated testicular cells from 1-month-old pigs were co-cultured to mimic in vivo spermatogenesis. The testicular cells were seeded in minimum essential medium alpha (α-MEM) supplemented with Knockout serum replacement (KSR). Three-dimensional colonies formed after 10 days of culture. The colonies showed positive staining for SSC-associated markers such as UCHL1, PLZF, THY1, OCT4, Dolichos biflorus agglutinin, and alkaline phosphatase. Induction of SSCs was performed in α-MEM + KSR supplemented with retinoic acid, bone morphogenetic protein 4, activin A, follicle-stimulating hormone, or testosterone. The results showed that STRA8, DMC1, PRM1, and TNP1 were upregulated significantly in the colonies after induction compared to that in testis from 1-month-old pigs, while expression levels of those genes were significantly low compared to those in 2-month-old testis. However, upregulation of ACROSIN was not significant. Replacement of α-MEM and KSR with Iscove's modified Dulbecco's medium and fetal bovine serum did not upregulate expression of these genes significantly. These results indicate that SSCs of Bama mini-pig could undergo differentiation and develop to a post-meiotic stage in α-MEM supplemented with KSR and induction factors.
Collapse
Affiliation(s)
- Huimin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China.,College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiangxing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
17
|
Yang C, Yao C, Tian R, Zhu Z, Zhao L, Li P, Chen H, Huang Y, Zhi E, Gong Y, Xue Y, Wang H, Yuan Q, He Z, Li Z. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:1-19. [PMID: 30513418 PMCID: PMC6280020 DOI: 10.1016/j.omtn.2018.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) play important roles in mammalian spermatogenesis, which is highly dependent on Sertoli cells. However, the functions and mechanisms of miRNAs in regulating human Sertoli cells remain largely unknown. Here, we report that hsa-miR-202-3p mediates the proliferation, apoptosis, and synthesis function of human Sertoli cells. miR-202-3p was upregulated in Sertoli cells of Sertoli cell-only syndrome (SCOS) patients compared with obstructive azoospermia (OA) patients with normal spermatogenesis. Overexpression of miR-202-3p induced Sertoli cell apoptosis and inhibited cell proliferation and synthesis, and the effects were opposite when miR-202-3p was knocked down. Lipoprotein receptor-related protein 6 (LRP6) and Cyclin D1 of the Wnt/β-catenin signaling pathway were identified as direct targets of miR-202-3p in Sertoli cells, which were validated by bioinformatics tools and dual-luciferase reporter assay. Differentially expressed LRP6 and Cyclin D1 between OA and SCOS Sertoli cells were also verified. LRP6 small interfering RNA (siRNA) interference not only mimicked the effects of miR-202-3p overexpression, but also antagonized the effects of miR-202-3p inhibition on Sertoli cells. Collectively, miR-202-3p controls the proliferation, apoptosis, and synthesis function of human Sertoli cells via targeting LRP6 and Cyclin D1 of the Wnt/β-catenin signaling pathway. This study thus provides a novel insight into fate determinations of human Sertoli cells and niche of human testis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; Nanjing Medical University, 101 Longmian Dadao, Jiangning District, Nanjing 210029, China
| | - Chencheng Yao
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Ruhui Tian
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Zijue Zhu
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Liangyu Zhao
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Huixing Chen
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yuhua Huang
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Erlei Zhi
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yuehua Gong
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yunjing Xue
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Hong Wang
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Qingqing Yuan
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai 200135, China
| | - Zuping He
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Xu YR, Wang GY, Zhou YC, Yang WX. The characterization and potential roles of bone morphogenetic protein 7 during spermatogenesis in Chinese mitten crab Eriocheir sinensis. Gene 2018; 673:119-129. [PMID: 29890312 DOI: 10.1016/j.gene.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, have been implicated in various biological and physiological processes, especially in the gonad development. However, scarce studies were focused on the roles of BMPs in the reproductive system of crustaceans. In this study, the whole gene encoding BMP7 protein was cloned and characterized firstly in Chinese mitten crab Eriocheir sinensis. The bioinformatics analysis of the deduced amino acid sequence showed that Es-BMP7 was composed of prodomain/latency-associated peptide and the TGF-β characteristic domain. The sequence conservation and phylogenetic analysis were also conducted. Quantitative real-time PCR was conducted indifferent tissues. The highest expression in testis indicated the potential role of BMP7 to male gonad development. Western blot results showed the different translational levels of BMP7 in different tissues. In-situ hybridization revealed that the expression of es-bmp7 signals presented in a bimodal manner: highest in spermatogonia, decreased in spermatocytes and stage I spermatids, disappeared in stage II spermatids, and showed up again in stage III spermatids and mature sperm. To further verify the potential roles during spermatogenesis, immunofluorescence was conducted and results showed the similar expression tendency with in situ hybridization. The protein signal was highest in the cytoplasm of spermatogonia, continued to decline in the cytoplasm of spermatocytes and the following stages, and weak signal was found in the mature sperm. Taken together, our results revealed that Es-BMP7 might play a part in testis development in Eriocheir sinensis, presumably by maintaining the self-renewal of spermatogonia and promoting the germ cell differentiation/meiotic mitosis, or facilitating the successful fertilization.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gao-Yuan Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Chao Zhou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Zhang Y, Wang Y, Zuo Q, Li D, Zhang W, Lian C, Tang B, Xiao T, Wang M, Wang K, Li B. Effects of the Transforming Growth Factor Beta Signaling Pathway on the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells. Cell Reprogram 2017; 18:401-410. [PMID: 27906584 DOI: 10.1089/cell.2016.0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The objectives of the present study were to screen for key gene and signaling pathways involved in the production of male germ cells in poultry and to investigate the effects of the transforming growth factor beta (TGF-β) signaling pathway on the differentiation of chicken embryonic stem cells (ESCs) into male germ cells. The ESCs, primordial germ cells, and spermatogonial stem cells (SSCs) were sorted using flow cytometry for RNA sequencing (RNA-seq) technology. Male chicken ESCs were induced using 40 ng/mL of bone morphogenetic protein 4 (BMP4). The effects of the TGF-β signaling pathway on the production of chicken SSCs were confirmed by morphology, quantitative real-time polymerase chain reaction, and immunocytochemistry. One hundred seventy-three key genes relevant to development, differentiation, and metabolism and 20 signaling pathways involved in cell reproduction, differentiation, and signal transduction were identified by RNA-seq. The germ cells formed agglomerates and increased in number 14 days after induction by BMP4. During the induction process, the ESCs, Nanog, and Sox2 marker gene expression levels decreased, whereas expression of the germ cell-specific genes Stra8, Dazl, integrin-α6, and c-kit increased. The results indicated that the TGF-β signaling pathway participated in the differentiation of chicken ESCs into male germ cells.
Collapse
Affiliation(s)
- Yani Zhang
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Yingjie Wang
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Qisheng Zuo
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Dong Li
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Wenhui Zhang
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Chao Lian
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Beibei Tang
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Tianrong Xiao
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Man Wang
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| | - Kehua Wang
- 3 Poultry Institute , Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Bichun Li
- 1 College of Animal Science and Technology, Yangzhou University , Yangzhou, China .,2 Key Laboratory for Animal Genetics , Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, China
| |
Collapse
|
20
|
Dynamic expression and regulatory mechanism of TGF-β signaling in chicken embryonic stem cells differentiating into spermatogonial stem cells. Biosci Rep 2017; 37:BSR20170179. [PMID: 28495881 PMCID: PMC6434085 DOI: 10.1042/bsr20170179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/13/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the dynamic expression and regulatory mechanism of transforming growth factor β (TGF-β) signaling involved in embryonic stem cells (ESCs) differentiation into male germ cells. Candidate genes involved in TGF-β signaling pathway were screened from RNA-sequencing (RNA-seq), which were further validated by quantitative real-time PCR (qRT-PCR). Bone morphogenetic protein 4 (BMP4) was used to induce differentiation of ESCs in vitro. Inhibition of TGF-β signaling pathway was reflected by Western blot of SMAD2 and SMAD5 expression. Differentiating efficiency of germ cells was evaluated by immunofluorescence and fluorescence-activated cell sorting (FACS). Germ cell marker genes were assessed by qRT-PCR in the differentiation process, with activation or inhibition of TGF-β signaling pathway. In the process of in vitro induction, SMAD2 and SMAD5 were found to significantly up-regulated in BMP4 group versus the control and inhibition groups after 4 and 14 days. Expression of CKIT, CVH, DAZL, STRA8, and INTEGRIN α6 were significantly increased in the BMP4 group compared with the control group, while down-regulated in the inhibition groups. The proportion of germ cell-like cells was decreased from 17.9% to 2.2% after 4 days induction, and further decreased from 14.1% to 2.1% after 14 days induction. Correspondingly, expression of marker genes in germ cells was significantly lower. In vivo inhibition of TGF-β signaling pathway reduced germ cells formation from 5.5% to 1.6%, and down-regulated the expression of CKIT, CVH, DAZL, STRA8, and INTEGRIN α6. In conclusion, our study reveals the mechanism regulating spermatogonial stem cells (SSCs) and lays the basis for further understanding of the regulatory network.
Collapse
|
21
|
Fattahi A, Latifi Z, Ghasemnejad T, Nejabati HR, Nouri M. Insights into in vitro spermatogenesis in mammals: Past, present, future. Mol Reprod Dev 2017; 84:560-575. [DOI: 10.1002/mrd.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Amir Fattahi
- Institute for Stem Cell and Regenerative Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zeinab Latifi
- Department of Clinical Biochemistry, Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
22
|
Yang S, Yuan Q, Niu M, Hou J, Zhu Z, Sun M, Li Z, He Z. BMP4 promotes mouse iPS cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2. Reproduction 2016; 153:211-220. [PMID: 27864336 DOI: 10.1530/rep-16-0292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/27/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Generation of male germ cells from pluripotent cells could provide male gametes for treating male infertility and offer an ideal model for unveiling molecular mechanisms of spermatogenesis. However, the influence and exact molecular mechanisms, especially downstream effectors of BMP4 signaling pathways, in male germ cell differentiation of the induce pluripotent stem (iPS) cells, remain unknown. This study was designed to explore the role and mechanism of BMP4 signaling in the differentiation of mouse iPS cells to male germ cells. Embryoid body (EB) formation and recombinant BMP4 or Noggin were utilized to evaluate the effect of BMP4 on male germ cell generation from mouse iPS cells. Germ cell-specific genes and proteins as well as the downstream effectors of BMP4 signaling pathway were assessed using real-time PCR and Western blots. We found that BMP4 ligand and its multiple receptors, including BMPR1a, BMPR1b and BMPR2, were expressed in mouse iPS cells. Real-time PCR and Western blots revealed that BMP4 could upregulate the levels of genes and proteins for germ cell markers in iPS cells-derived EBs, whereas Noggin decreased their expression in these cells. Moreover, Smad1/5 phosphorylation, Gata4 transcription and the transcripts of Id1 and Id2 were enhanced by BMP4 but decreased when exposed to Noggin. Collectively, these results suggest that BMP4 promotes the generation of male germ cells from iPS cells via Smad1/5 pathway and the activation of Gata4, Id1 and Id2 This study thus offers novel insights into molecular mechanisms underlying male germ cell development.
Collapse
Affiliation(s)
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, Shanghai, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, Shanghai, China
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, Shanghai, China
| | - Zijue Zhu
- Department of AndrologyUrologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, Shanghai, China
| | - Zheng Li
- Department of AndrologyUrologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, Shanghai, China .,Department of UrologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai, China.,Shanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai, China.,Shanghai Key Laboratory of Reproductive MedicineShanghai, China
| |
Collapse
|
23
|
BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia. Stem Cells Int 2016; 2016:9536192. [PMID: 27795714 PMCID: PMC5067322 DOI: 10.1155/2016/9536192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/28/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo.
Collapse
|
24
|
CILLER IM, PALANISAMY SKA, CILLER UA, MCFARLANE JR. Postnatal Expression of Bone Morphogenetic Proteins and Their Receptors in the Mouse Testis. Physiol Res 2016; 65:673-682. [DOI: 10.33549/physiolres.933193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
TGF-β superfamily members including bone morphogenetic proteins (BMPs) and their receptors (BMPR-1A, -1B and -2) have been shown to be important for reproductive function in both males and females, while information on the role of BMPs in males is limited. Functional studies on select BMPs and BMP receptors have demonstrated vital roles for these proteins in somatic and germ cell proliferation, steroidogenesis and overall fertility. In order to gain insight into the importance of these genes during postnatal reproductive development in males, our study was undertaken to specify the distribution of BMP and BMPR mRNA in male reproductive and steroidogenic tissues and quantify these genes in the testis using the mouse as our model. We screened testis at two, four, six and eight weeks of age for the expression of ten BMPs and three BMP receptors using RT-qPCR. All three BMP receptor mRNAs – Bmpr1a, Bmpr1b and Bmpr2, and ten BMP mRNAs – Bmp2, Bmp3, Bmp3b, Bmp4, Bmp5, Bmp6, Bmp7, Bmp8a, Bmp8b and Bmp15 were expressed in mouse testis at all stages screened. Testicular expression of genes varied within age groups and at specific developmental stages. Our study establishes an extensive BMP system in mouse reproductive and steroidogenic tissues.
Collapse
Affiliation(s)
- I. M. CILLER
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | | | | | | |
Collapse
|
25
|
Domeniconi RF, Souza ACF, Xu B, Washington AM, Hinton BT. Is the Epididymis a Series of Organs Placed Side By Side? Biol Reprod 2016; 95:10. [PMID: 27122633 PMCID: PMC5029429 DOI: 10.1095/biolreprod.116.138768] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian epididymis is more than a highly convoluted tube divided into four regions: initial segment, caput, corpus and cauda. It is a highly segmented structure with each segment expressing its own and overlapping genes, proteins, and signal transduction pathways. Therefore, the epididymis may be viewed as a series of organs placed side by side. In this review we discuss the contributions of septa that divide the epididymis into segments and present hypotheses as to the mechanism by which septa form. The mechanisms of Wolffian duct segmentation are likened to the mechanisms of segmentation of the renal nephron and somites. The renal nephron may provide valuable clues as to how the Wolffian duct is patterned during development, whereas somitogenesis may provide clues as to the timing of the development of each segment. Emphasis is also placed upon how segments are differentially regulated, in support of the idea that the epididymis can be considered a series of multiple organs placed side by side. One region in particular, the initial segment, which consists of 2 or 4 segments in mice and rats, respectively, is unique with respect to its regulation and vascularity compared to other segments; loss of development of these segments leads to male infertility. Different ways of thinking about how the epididymis functions may provide new directions and ideas as to how sperm maturation takes place.
Collapse
Affiliation(s)
- Raquel F Domeniconi
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia
| | | | | | | | | |
Collapse
|
26
|
Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, Feng G, Shi Q, Zhao XY, Sha J, Zhou Q. Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro. Cell Stem Cell 2016; 18:330-40. [PMID: 26923202 DOI: 10.1016/j.stem.2016.01.017] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
In vitro generation of functional gametes is a promising approach for treating infertility, although faithful replication of meiosis has proven to be a substantial obstacle to deriving haploid gamete cells in culture. Here we report complete in vitro meiosis from embryonic stem cell (ESC)-derived primordial germ cells (PGCLCs). Co-culture of PGCLCs with neonatal testicular somatic cells and sequential exposure to morphogens and sex hormones reproduced key hallmarks of meiosis, including erasure of genetic imprinting, chromosomal synapsis and recombination, and correct nuclear DNA and chromosomal content in the resulting haploid cells. Intracytoplasmic injection of the resulting spermatid-like cells into oocytes produced viable and fertile offspring, showing that this robust stepwise approach can functionally recapitulate male gametogenesis in vitro. These findings provide a platform for investigating meiotic mechanisms and the potential generation of human haploid spermatids in vitro.
Collapse
Affiliation(s)
- Quan Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of the Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuepeng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haifeng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Anhui University of China, Hefei 230601, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Ying Zheng
- Department of Histology and Embryology, Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiao-Yang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
27
|
Meng C, Liu W, Huang H, Wang Y, Chen B, Freeman GJ, Schneyer A, Lin HY, Xia Y. Repulsive Guidance Molecule b (RGMb) Is Dispensable for Normal Gonadal Function in Mice. Biol Reprod 2016; 94:78. [PMID: 26911425 DOI: 10.1095/biolreprod.115.135921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays an important role in spermatogenesis and follicle development. Our previous studies have shown that repulsive guidance molecule b (RGMb, also known as Dragon) is a coreceptor that enhances BMP2 and BMP4 signaling in several cell types and that RGMb is expressed in spermatocytes and spermatids in the testis and in oocytes of the secondary follicles in the ovary. Here, we demonstrated that specific deletion of Rgmb in germ cells in the testis and ovary did not alter Smad1/5/8 phosphorylation, gonadal structures, and fertility. In addition, ovaries from postnatal global Rgmb knockout mice showed similar structures to the wild-type ovaries. Our results suggest that RGMb is not essential for normal gonadal function.
Collapse
Affiliation(s)
- Chenling Meng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjing Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huihui Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Binbin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan Schneyer
- Pioneer Valley Life Science Institute and Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Herbert Y Lin
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yin Xia
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
28
|
Abstract
The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.
Collapse
Affiliation(s)
- Chad M. Teven
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Sean Fisher
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Tong-Chuan He
- Department of Orthopedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R. Reid
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
29
|
La Rosa I. Bone Morphogenetic Proteins in Preimplantation Embryos. BONE MORPHOGENIC PROTEIN 2015; 99:223-48. [DOI: 10.1016/bs.vh.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Abstract
p70 S6 kinase (p70S6K), a member of the AGC serine/threonine kinase family, was initially identified as a key player, together with its downstream effector S6, in the regulation of cellular growth and survival. The p70S6K protein has emerged in recent years as a multifunctional protein which also regulates the actin cytoskeleton and thus plays a role in cell migration. This new function is through two important activities of p70S6K, namely actin cross-linking and Rac1 and Cdc42 activation. The testis is critically dependent on an intricate balance of fundamental cellular processes such as adhesion, migration, and differentiation. It is increasingly evident that Rho GTPases and actin binding proteins play fundamental roles in regulating spermatogenesis within the testis. In this review, we will discuss current findings of p70S6K in the control of actin cytoskeleton dynamics. In addition, the potential role of p70S6K in spermatogenesis and testicular function will be highlighted.
Collapse
Affiliation(s)
- Carman K M Ip
- School of Biological Sciences; University of Hong Kong; Hong Kong, China
| | | |
Collapse
|
31
|
Nie X, Arend LJ. Novel roles of Pkd2 in male reproductive system development. Differentiation 2014; 87:161-71. [PMID: 24951251 DOI: 10.1016/j.diff.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 01/26/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited genetic diseases, caused by mutations in PKD1 and/ or PKD2. Infertility and reproductive tract abnormalities in male ADPKD patients are very common and have higher incidence than in the general population. In this work, we reveal novel roles of Pkd2 for male reproductive system development. Disruption of Pkd2 caused dilation of mesonephric tubules/efferent ducts, failure of epididymal coiling, and defective testicular development. Deletion of Pkd2 in the epithelia alone was sufficient to cause reproductive tract defects seen in Pkd2(-/-) mice, suggesting that epithelial Pkd2 plays a pivotal role for development and maintenance of the male reproductive tract. In the testis, Pkd2 also plays a role in interstitial tissue and testicular cord development. In-depth analysis of epithelial-specific knockout mice revealed that Pkd2 is critical to maintain cellular phenotype and developmental signaling in the male reproductive system. Taken together, our data for the first time reveal novel roles for Pkd2 in male reproductive system development and provide new insights in male reproductive system abnormality and infertility in ADPKD patients.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Pathology, Johns Hopkins University, Ross 632 E, 720 Rutland Ave, Baltimore, MD 21205, USA.
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University, Ross 632 E, 720 Rutland Ave, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Hai Y, Hou J, Liu Y, Liu Y, Yang H, Li Z, He Z. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol 2014; 29:66-75. [DOI: 10.1016/j.semcdb.2014.04.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 01/15/2023]
|
33
|
Li Y, Zhang Y, Zhang X, Sun J, Hao J. BMP4/Smad Signaling Pathway Induces the Differentiation of Mouse Spermatogonial Stem Cells via Upregulation of Sohlh2. Anat Rec (Hoboken) 2014; 297:749-57. [DOI: 10.1002/ar.22891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/10/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Yi Li
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
- Obstetric Genetic Disease Laboratory; Maternal and Child Health Hospital of Zibo City; Zibo 255029 People's Republic of China
| | - Yuecun Zhang
- Department of Gynaecology and Obstetrics; Qilu Hospital, Shandong University; Jinan 250012 People's Republic of China
| | - Xiaoli Zhang
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
| | - Jinhao Sun
- Department of Human Anatomy; School of Medicine; Shandong University; Jinan 250012 People's Republic of China
| | - Jing Hao
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
| |
Collapse
|
34
|
Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. BMP signaling in mesenchymal stem cell differentiation and bone formation. JOURNAL OF BIOMEDICAL SCIENCE AND ENGINEERING 2013; 6:32-52. [PMID: 26819651 PMCID: PMC4725591 DOI: 10.4236/jbise.2013.68a1004] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and have diverse functions during development and organogenesis. BMPs play a major role in skeletal development and bone formation, and disruptions in BMP signaling cause a variety of skeletal and extraskeletal anomalies. Several knockout models have provided insight into the mechanisms responsible for these phenotypes. Proper bone formation requires the differentiation of osteoblasts from mesenchymal stem cell (MSC) precursors, a process mediated in part by BMP signaling. Multiple BMPs, including BMP2, BMP6, BMP7 and BMP9, promote osteoblastic differentiation of MSCs both in vitro and in vivo. BMP9 is one of the most osteogenic BMPs yet is a poorly characterized member of the BMP family. Several studies demonstrate that the mechanisms controlling BMP9-mediated osteogenesis differ from other osteogenic BMPs, but little is known about these specific mechanisms. Several pathways critical to BMP9-mediated osteogenesis are also important in the differentiation of other cell lineages, including adipocytes and chondrocytes. BMP9 has also demonstrated translational promise in spinal fusion and bone fracture repair. This review will summarize our current knowledge of BMP-mediated osteogenesis, with a focus on BMP9, by presenting recently completed work which may help us to further elucidate these pathways.
Collapse
Affiliation(s)
- Maureen Beederman
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Joseph D Lamplot
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinhua Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Shui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongyu Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Stephanie H Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jiye Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuhan Kong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sahitya Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Mary Rose Rogers
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Abdullah Pratt
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Jovito Angeles
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Itman C, Loveland KL. Smads and cell fate: Distinct roles in specification, development, and tumorigenesis in the testis. IUBMB Life 2013; 65:85-97. [DOI: 10.1002/iub.1115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 11/11/2022]
|
36
|
Seachrist DD, Johnson E, Magee C, Clay CM, Graham JK, Veeramachaneni DNR, Keri RA. Overexpression of follistatin in the mouse epididymis disrupts fluid resorption and sperm transit in testicular excurrent ducts. Biol Reprod 2012; 87:41. [PMID: 22649074 DOI: 10.1095/biolreprod.111.097527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activin is a well-established modulator of male and female reproduction that stimulates the synthesis and secretion of follicle-stimulating hormone. Nonpituitary effects of activin have also been reported, although the paracrine actions of this growth factor in several reproductive tissues are not well understood. To identify the paracrine functions of activin during mammary gland morphogenesis and tumor progression, we produced transgenic mice that overexpress follistatin (FST), an intrinsic inhibitor of activin, under control of the mouse mammary tumor virus (MMTV) promoter. Although the MMTV-Fst mice were constructed to assess the role of activin in females, expression of the transgene was also observed in the testes and epididymides of males. While all 17 transgenic founder males exhibited copulatory behavior and produced vaginal plugs in females, only one produced live offspring. In contrast, transgenic females were fertile, permitting expansion of transgenic mouse lines. Light and transmission electron microscopic examination of the transgenic testes and epididymides revealed impairment of fluid resorption and sperm transit in the efferent ducts and initial segment of the epididymis, as indicated by accumulation of fluid and sperm stasis. Consequently, a variety of degenerative lesions were observed in the seminiferous epithelium, such as vacuolation and early stages of mineralization and fibrosis. Sperm collected from the caudae epididymidis of MMTV-Fst males had detached heads and were immotile. Together, these data reveal that activin signaling is essential for normal testicular excurrent duct function and that its blockade impairs fertility. These results also suggest that selective inhibitors of activin signaling may provide a useful approach for the development of male contraceptives without compromising androgen synthesis and actions.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Matzuk MM, Burns KH. Genetics of Mammalian Reproduction: Modeling the End of the Germline. Annu Rev Physiol 2012; 74:503-28. [DOI: 10.1146/annurev-physiol-020911-153248] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin M. Matzuk
- Departments of Pathology and Immunology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030;
| | - Kathleen H. Burns
- Departments of Pathology and Oncology, McKusick-Nathans Institute of Genetic Medicine, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
38
|
Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AMM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1838-50. [PMID: 22366765 DOI: 10.1016/j.bbadis.2012.02.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is a complex developmental process that ultimately generates mature spermatozoa. This process involves a phase of proliferative expansion, meiosis, and cytodifferentiation. Mouse models have been widely used to study spermatogenesis and have revealed many genes and molecular mechanisms that are crucial in this process. Although meiosis is generally considered as the most crucial phase of spermatogenesis, mouse models have shown that pre-meiotic and post-meiotic phases are equally important. Using knowledge generated from mouse models and in vitro studies, the current review provides an overview of the molecular control of rodent spermatogenesis. Finally, we briefly relate this knowledge to fertility problems in humans and discuss implications for future research. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
Affiliation(s)
- Sabrina Z Jan
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A. SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 2011; 361:301-12. [PMID: 22056784 DOI: 10.1016/j.ydbio.2011.10.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
Abstract
Spermatogonial self-renewal and differentiation are essential for male fertility and reproduction. We discovered that germ cell specific genes Sohlh1 and Sohlh2, encode basic helix-loop-helix (bHLH) transcriptional regulators that are essential in spermatogonial differentiation. Sohlh1 and Sohlh2 individual mouse knockouts show remarkably similar phenotypes. Here we show that SOHLH1 and SOHLH2 proteins are co-expressed in the entire spermatogonial population except in the GFRA1(+) spermatogonia, which includes spermatogonial stem cells (SSCs). SOHLH1 and SOHLH2 are expressed in both KIT negative and KIT positive spermatogonia, and overlap Ngn3/EGFP and SOX3 expression. SOHLH1 and SOHLH2 heterodimerize with each other in vivo, as well as homodimerize. The Sohlh1/Sohlh2 double mutant phenocopies single mutants, i.e., spermatogonia continue to proliferate but do not differentiate properly. Further analysis revealed that GFRA1(+) population was increased, while meiosis commenced prematurely in both single and double knockouts. Sohlh1 and Sohlh2 double deficiency has a synergistic effect on gene expression patterns as compared to the single knockouts. SOHLH proteins affect spermatogonial development by directly regulating Gfra1, Sox3 and Kit gene expression. SOHLH1 and SOHLH2 suppress genes involved in SSC maintenance, and induce genes important for spermatogonial differentiation.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Fan YS, Hu YJ, Yang WX. TGF-β superfamily: how does it regulate testis development. Mol Biol Rep 2011; 39:4727-41. [DOI: 10.1007/s11033-011-1265-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022]
|
41
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
42
|
Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A 2011; 108:13153-8. [PMID: 21775673 DOI: 10.1073/pnas.1102311108] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Germ-cell tumors (GCTs), which arise from pluripotent embryonic germ cells, exhibit a wide range of histologic differentiation states with varying clinical behaviors. Although testicular GCT is the most common cancer of young men, the genes controlling the development and differentiation of GCTs remain largely unknown. Through a forward genetic screen, we previously identified a zebrafish mutant line, tgct, which develops spontaneous GCTs consisting of undifferentiated germ cells [Neumann JC, et al. (2009) Zebrafish 6:319-327]. Using positional cloning we have identified an inactivating mutation in alk6b, a type IB bone morphogenetic protein (BMP) receptor, as the cause of the zebrafish GCT phenotype. Alk6b is expressed in spermatogonia and early oocytes, and alk6b mutant gonads display impaired BMP signal transduction, altered expression of BMP target genes, and abnormal germ-cell differentiation. We find a similar absence of BMP signaling in undifferentiated human GCTs, such as seminomas and embryonal carcinoma, but not in normal testis or in differentiated GCTs. These results indicate a germ-cell-autonomous role for BMP signal transduction in germ-cell differentiation, and highlight the importance of the BMP pathway in human GCTs.
Collapse
|
43
|
Di Giovanni V, Alday A, Chi L, Mishina Y, Rosenblum ND. Alk3 controls nephron number and androgen production via lineage-specific effects in intermediate mesoderm. Development 2011; 138:2717-27. [PMID: 21613322 DOI: 10.1242/dev.059030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian kidney and male reproductive system are both derived from the intermediate mesoderm. The spatial and temporal expression of bone morphogenetic protein (BMP) 2 and BMP4 and their cognate receptor, activin like kinase 3 (ALK3), suggests a functional role for BMP-ALK3 signaling during formation of intermediate mesoderm-derivative organs. Here, we define cell autonomous functions for Alk3 in the kidney and male gonad in mice with CRE-mediated Alk3 inactivation targeted to intermediate mesoderm progenitors (Alk3(IMP null)). Alk3-deficient mice exhibit simple renal hypoplasia characterized by decreases in both kidney size and nephron number but normal tissue architecture. These defects are preceded by a decreased contribution of Alk3-deleted cells to the metanephric blastema and reduced expression of Osr1 and SIX2, which mark nephron progenitor cells. Mutant mice are also characterized by defects in intermediate mesoderm-derived genital tissues with fewer mesonephric tubules and testicular Leydig cells, epithelial vacuolization in the postnatal corpus epididymis, and decreased serum testosterone levels and reduced fertility. Analysis of ALK3-dependent signaling effectors revealed lineage-specific reduction of phospho-p38 MAPK in metanephric mesenchyme and phospho-SMAD1/5/8 in the testis. Together, these results demonstrate a requirement for Alk3 in distinct progenitor cell populations derived from the intermediate mesoderm.
Collapse
Affiliation(s)
- Valeria Di Giovanni
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
44
|
Carrell DT, Aston KI. The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility. Syst Biol Reprod Med 2011; 57:17-26. [PMID: 21208142 DOI: 10.3109/19396368.2010.521615] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding the genetic basis of idiopathic male infertility has long been the focus of many researchers. Numerous recent studies have attempted to identify relevant single nucleotide polymorphisms (SNPs) through medical re-sequencing studies in which candidate genes are sequenced in large numbers of cases and controls in the search for risk or causative polymorphisms. Two major characteristics have limited the utility of the re-sequencing studies. First, reported SNPs have only accounted for a small percentage of idiopathic male infertility. Second, SNPs reported to have an association with male infertility based on gene re-sequencing studies often fail validation in follow-up studies. Recent advances in the tools available for genetic studies have enabled interrogation of the entire genome in search of common, and more recently, rare variants. In this review, we discuss the progress of studies on genetic and epigenetic variants of male infertility as well as future directions that we predict will be the most productive in identifying the genetic basis for male factor infertility based on our current state of knowledge in this field as well as lessons learned about the genetic basis for complex diseases from other disease models.
Collapse
Affiliation(s)
- Douglas T Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA.
| | | |
Collapse
|
45
|
Polymorphism of bone morphogenetic protein 4 gene and its relationship with litter size of Jining Grey goats. Mol Biol Rep 2010; 38:4315-20. [PMID: 21140226 DOI: 10.1007/s11033-010-0556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Two pairs of primers (P1 and P2) were designed to detect single nucleotide polymorphisms of exon 2 and intron 2 of bone morphogenetic protein 4 (BMP4) gene in both high fecundity breed (Jining Grey goat) and low fecundity breeds (Boer, Angora and Inner Mongolia Cashmere goats) by single strand conformation polymorphism. Results showed that no polymorphism was detected for exon 2 (primer P1) of BMP4 gene in four goat breeds. For intron 2 (primer P2), three genotypes (AA, AB and BB) were detected in Jining Grey and Inner Mongolia Cashmere goats, two genotypes (AB and BB) in Angora goats, and only one genotype (AA) in Boer goats. Sequencing revealed one mutation (2203G>A) of BMP4 gene in the genotype BB in comparison to the genotype AA. The differences of litter size between AA, AB and BB genotypes were not significant (P > 0.05) in Jining Grey goats. A pair of primer (P3) was designed to detect polymorphism in the 3' flanking region of BMP4 gene that contained dinucleotide repeated sequence (CA) in the four goat breeds by microsatellite analysis. For primer P3, three genotypes (CC, CD and DD) were detected in four goat breeds. Sequencing revealed one more CA dinucleotide in genotype DD than in genotype CC. The Jining Grey does with genotype CC had 0.55 (P < 0.05) or 0.72 (P < 0.05) kids more than those with genotype CD or DD. These results preliminarily indicated that allele C of BMP4 gene is a potential DNA marker for improving litter size in goats.
Collapse
|
46
|
Chui K, Trivedi A, Cheng CY, Cherbavaz DB, Dazin PF, Huynh ALT, Mitchell JB, Rabinovich GA, Noble-Haeusslein LJ, John CM. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant 2010; 20:619-35. [PMID: 21054948 DOI: 10.3727/096368910x536563] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2'-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility, reproductive toxicology, testicular cancer, and spermatogenesis, and due to their unique biological properties potentially could be useful in cell therapy.
Collapse
Affiliation(s)
- Kitty Chui
- MandalMed, Inc., San Francisco, CA 94107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Carlomagno G, van Bragt MP, Korver CM, Repping S, de Rooij DG, van Pelt AM. BMP4-Induced Differentiation of a Rat Spermatogonial Stem Cell Line Causes Changes in Its Cell Adhesion Properties1. Biol Reprod 2010; 83:742-9. [DOI: 10.1095/biolreprod.110.085456] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
48
|
Hamzeh M, Robaire B. Identification of early response genes and pathway activated by androgens in the initial segment and caput regions of the regressed rat epididymis. Endocrinology 2010; 151:4504-14. [PMID: 20660069 DOI: 10.1210/en.2010-0023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To identify the initial response to androgens and estrogens in the orchidectomized, regressed epididymis, we determined the gene expression changes triggered by the administration of either of two metabolites of testosterone, 5alpha-dihydrotestosterone (DHT) or 17beta-estradiol (E2), in the regressed rat epididymis. Adult rats were orchidectomized and 8 d later implanted with either empty implants (control), DHT-filled-, or E2-filled-polydioxanone implants. Rats were euthanized 12 h, 1 d, and 7 d later, and RNA was extracted and probed on Rat230-2.0 Affymetrix arrays. Probe sets that respond to DHT or E2 were identified at early time points; although the expression of some was repressed, the expression of many others was either transiently or chronically elevated. Nerve growth factor receptor (Ngfr) and S100 calcium binding protein G (S100g) were two E2 up-regulated genes detected at 12 h. Among the genes that showed a dramatic early response to DHT were endothelin 1 (Edn1), bone morphogenetic protein 4 (Bmp4), and IGF binding protein 3 (Igfbp3), which were suppressed, and IGF-I (Igf1), which was induced. Genes that were up- or down-regulated by DHT were classified based on biological function. Using PathwayStudio 4.0, we identified genes that were linked and directly influenced either the expression or regulation of one another. Epidermal growth factor and IGF-I play an important role in the pathway due to their function in regulation and expression of many other genes. These results provide novel insights into the impact of androgen action on the expression of genes that are important for epididymal function.
Collapse
Affiliation(s)
- Mahsa Hamzeh
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6
| | | |
Collapse
|
49
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
50
|
He Z, Kokkinaki M, Dym M. Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc Res Tech 2009; 72:586-95. [PMID: 19263492 DOI: 10.1002/jemt.20698] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells (SSCs) into mature spermatozoa. SSCs are a subpopulation of type A spermatogonia resting on the basement membrane in the mammalian testis. Self-renewal and differentiation of SSCs are the foundation of normal spermatogenesis, and thus a better understanding of molecular mechanisms and signaling pathways in the SSCs is of paramount importance for the regulation of spermatogenesis and may eventually lead to novel targets for male contraception as well as for gene therapy of male infertility and testicular cancer. Uncovering the molecular mechanisms is also of great interest to a better understanding of SSC aging and for developing novel therapeutic strategies for degenerative diseases in view of the recent work demonstrating the pluripotent potential of the SSC. Progress has recently been made in elucidating the signaling molecules and pathways that determine cell fate decisions of SSCs. In this review, we first address the morphological features, phenotypic characteristics, and the potential of SSCs, and then we focus on the recent advances in defining the key signaling molecules and crucial signaling pathways regulating self-renewal and differentiation of SSCs. The association of aberrant expression of signaling molecules and cascades with abnormal spermatogenesis and testicular cancer are also discussed. Finally, we point out potential future directions to pursue in research on signaling pathways of SSCs.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|