1
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Zhou P, Zong X, Yan S, Zhang J, Wang D, Shen J. The Wnt pathway regulates wing morph determination in Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 161:104003. [PMID: 37657610 DOI: 10.1016/j.ibmb.2023.104003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/23/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Wing dimorphism occurs in insects as a survival strategy to adapt to environmental changes. In response to environmental cues, mother aphids transmit signals to their offspring, and the offspring either emerge as winged adults or develop as wingless adults with degeneration of the wing primordia in the early instar stage. However, how the wing morph is determined in the early instar stage is still unclear. Here, we established a surgical sampling method to obtain precise wing primordium tissues for transcriptome analysis. We identified Wnt as a regulator of wing determination in the early second instar stage in the pea aphid. Inhibiting Wnt signaling via knockdown of Wnt2, Wnt11b, the Wnt receptor-encoding gene fz2 or the downstream targets vg and omb resulted in a decreased proportion of winged aphids. Activation of Wnt signaling via knockdown of miR-8, an inhibitor of the Wnt/Wg pathway, led to an increased proportion of winged aphids. Furthermore, the wing primordia of wingless nymphs underwent apoptosis in the early second instar, and cell death was activated by knockdown of fz2 under the wing-inducing condition. These results indicate that the developmental plasticity of aphid wings is modulated by the intrinsic Wnt pathway in response to environmental challenges.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xin Zong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Junzheng Zhang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Blunk S, Garcia-Verdugo H, O’Sullivan S, Camp J, Haines M, Coalter T, Williams TA, Nagy LM. Functional Divergence of the Tribolium castaneum engrailed and invected Paralogs. INSECTS 2023; 14:691. [PMID: 37623401 PMCID: PMC10455198 DOI: 10.3390/insects14080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Engrailed (en) and invected (inv) encode paralogous transcription factors found as a closely linked tandem duplication within holometabolous insects. Drosophila en mutants segment normally, then fail to maintain their segments. Loss of Drosophila inv is viable, while loss of both genes results in asegmental larvae. Surprisingly, the knockdown of Oncopeltus inv can result in the loss or fusion of the entire abdomen and en knockdowns in Tribolium show variable degrees of segmental loss. The consequence of losing or knocking down both paralogs on embryogenesis has not been studied beyond Drosophila. To further investigate the relative functions of each paralog and the mechanism behind the segmental loss, Tribolium double and single knockdowns of en and inv were analyzed. The most common cuticular phenotype of the double knockdowns was small, limbless, and open dorsally, with all but a single, segmentally iterated row of bristles. Less severe knockdowns had fused segments and reduced appendages. The Tribolium paralogs appear to act synergistically: the knockdown of either Tribolium gene alone was typically less severe, with all limbs present, whereas the most extreme single knockdowns mimic the most severe double knockdown phenotype. Morphological abnormalities unique to either single gene knockdown were not found. inv expression was not affected in the Tribolium en knockdowns, but hh expression was unexpectedly increased midway through development. Thus, while the segmental expression of en/inv is broadly conserved within insects, the functions of en and inv are evolving independently in different lineages.
Collapse
Affiliation(s)
- Summer Blunk
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Hector Garcia-Verdugo
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Sierra O’Sullivan
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - James Camp
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Michael Haines
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Tara Coalter
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Terri A. Williams
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Lisa M. Nagy
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| |
Collapse
|
4
|
Li J, Lyu B, Song Q. TGF-β Type II Receptor Punt Suppresses Antimicrobial Peptide Expression and Influences Development in Tribolium castaneum. INSECTS 2023; 14:515. [PMID: 37367331 DOI: 10.3390/insects14060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The transforming growth factor-β (TGF-β) superfamily in insects regulated various physiological events, including immune response, growth and development, and metamorphosis. This complex network of signaling pathways involves conserved cell-surface receptors and signaling co-receptors that allow for precisely coordinated cellular events. However, the roles of TGF-β receptors, particularly the type II receptor Punt, in mediating the innate immunity in insects remains unclear. In this study, we used the red flour beetle, Tribolium castaneum, as a model species to investigate the role of TGF-β type II receptor Punt in mediating antimicrobial peptide (AMP) expression. Developmental and tissue-specific transcript profiles revealed Punt was constitutively expressed throughout development, with the highest transcript level in 1-day female pupae and the lowest transcript level in 18-day larvae. Tissue specific expression profiles showed the highest transcript level of Punt was observed in the Malpighian tubule and ovary in 18-day larvae and 1-day female adults, respectively, suggesting Punt might have distinct functions in larvae and adults. Further results indicated that Punt RNAi in the 18-day larvae led to increased transcript level of AMP genes through transcription factor Relish, leading to inhibition of Escherichia coli proliferation. Knockdown of Punt in larvae also led to splitting of adult elytra and abnormal compound eyes. Furthermore, knockdown of Punt during the female pupal stage resulted in increased transcript levels of AMP genes, as well as abnormal ovary, reduced fecundity, and failure of eggs to hatch. This study deepens our understanding of the biological significance of Punt in insect TGF-β signaling and lays the groundwork for further research of its role in insect immune response, development, and reproduction.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Peng L, Zhao Y. Genome-Wide Identification and Expression Profiling of the Wnt Gene Family in Three Rice Planthoppers: Sogatella furcifera, Laodelphax striatellus, and Nilaparvata lugens. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:2. [PMID: 36082678 PMCID: PMC9459440 DOI: 10.1093/jisesa/ieac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 06/15/2023]
Abstract
The Wnt gene family plays essential roles in regulating many developmental processes, including the maintenance of stem cells, cell division, and cell migration. The number of Wnt genes varies among species. Due to the diversity and importance of their functions, the Wnt gene family has gained extensive research interest in various animal species from invertebrates to vertebrates. However, knowledge of the Wnt gene family is limited in rice planthoppers. Three planthopper species, the white-backed planthopper (Sogatella furcifera Horvath), the small brown planthopper (Laodelphax striatellus Fallén) and the brown planthopper (Nilaparvata lugens Stål) (Hemiptera: Delphacidae), are devastating specialist pests of rice and cause serious damage to rice plants. To better study the evolution and function of the Wnt gene family in rice planthoppers, we identified 8 Wnt family genes in three rice planthoppers with both genomic and extensive transcriptomic resources available. We conducted a systematic analysis of the three kinds of rice planthoppers and analyzed the dynamic patterns of gene conservation, as well as Wnt gene loss and duplication. The expression profiles in different developmental stages of S. furcifera and different adult organs and tissues of L. striatellus provide preliminary functional implications for the Wnt genes in rice planthopper. This study presents the first genome-wide study of the Wnt gene family in rice planthoppers, and our findings provide insights into Wnt function and evolution in rice planthoppers.
Collapse
Affiliation(s)
- Lei Peng
- College of Life Science, Guizhou Normal University, Guiyang, China
| | - Yan Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Mundaca-Escobar M, Cepeda RE, Sarrazin AF. The organizing role of Wnt signaling pathway during arthropod posterior growth. Front Cell Dev Biol 2022; 10:944673. [PMID: 35990604 PMCID: PMC9389326 DOI: 10.3389/fcell.2022.944673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Wnt signaling pathways are recognized for having major roles in tissue patterning and cell proliferation. In the last years, remarkable progress has been made in elucidating the molecular and cellular mechanisms that underlie sequential segmentation and axial elongation in various arthropods, and the canonical Wnt pathway has emerged as an essential factor in these processes. Here we review, with a comparative perspective, the current evidence concerning the participation of this pathway during posterior growth, its degree of conservation among the different subphyla within Arthropoda and its relationship with the rest of the gene regulatory network involved. Furthermore, we discuss how this signaling pathway could regulate segmentation to establish this repetitive pattern and, at the same time, probably modulate different cellular processes precisely coupled to axial elongation. Based on the information collected, we suggest that this pathway plays an organizing role in the formation of the body segments through the regulation of the dynamic expression of segmentation genes, via controlling the caudal gene, at the posterior region of the embryo/larva, that is necessary for the correct sequential formation of body segments in most arthropods and possibly in their common segmented ancestor. On the other hand, there is insufficient evidence to link this pathway to axial elongation by controlling its main cellular processes, such as convergent extension and cell proliferation. However, conclusions are premature until more studies incorporating diverse arthropods are carried out.
Collapse
Affiliation(s)
| | | | - Andres F. Sarrazin
- CoDe-Lab, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Long GY, Yang JP, Jin DC, Yang H, Zhou C, Wang Z, Yang XB. Silencing of Decapentaplegic (Dpp) gene inhibited the wing expansion in the white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21879. [PMID: 35247285 DOI: 10.1002/arch.21879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/21/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The Decapentaplegic gene controls wing patterning and spreading by regulating downstream genes in many insect species. However, the molecular characteristics, expression, and biological function of Dpp in Sogatella furcifera remain poorly understood. In this study, we cloned the Dpp gene from S. furcifera and examined its expression levels in different development stages, wing typed adults, and tissues. Then, the function of SfDpp gene was analyzed using an RNA interference (RNAi)-based approach. The results showed that the full-length complementary DNA of the SfDpp gene consists of 1034 bp and contains a 954-bp open reading frame encoding 317 amino acids. SfDpp has a transforming growth factor-β (TGF-β) propeptide superfamily domain and a TGF-β superfamily domain, typical of members of the TGF-β superfamily. Quantitative real-time polymerase chain reaction showed that the expression of SfDpp reached its highest expression level 40 min after eclosion. RNAi-based gene silencing inhibited transcript levels of the corresponding messenger RNA in S. furcifera nymphs injected with double-stranded RNA of SfDpp and resulted in death of 29.17% and 26.67% of 4th and 5th instar nymphs, respectively. The wing deformity rate of the adults was 74.12% and 3.41% after SfDpp gene silencing in 4th and 5th instar nymphs, respectively. Examining wing development-associated genes showed that two target genes of Dpp (Vestigial and Spalt) were both dramatically downregulated after SfDpp was silenced. Our results demonstrate that downregulated SfDpp in early development causes wing expansion failure in S. furcifera. Thus, Dpp may be a target gene for restricting the migration of rice-damaging planthoppers.
Collapse
Affiliation(s)
- Gui-Yun Long
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Jia-Peng Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Tobacco Science of Guizhou University, Guiyang, China
| | - Cao Zhou
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhao Wang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Environment and Life Sciences, Kaili University, Kaili, China
| | - Xi-Bin Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| |
Collapse
|
8
|
Chavarria RA, Game M, Arbelaez B, Ramnarine C, Snow ZK, Smith FW. Extensive loss of Wnt genes in Tardigrada. BMC Ecol Evol 2021; 21:223. [PMID: 34961481 PMCID: PMC8711157 DOI: 10.1186/s12862-021-01954-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan. Results We analyzed published genomes for two representatives of Tardigrada, Hypsibius exemplaris and Ramazzottius varieornatus. We identified single orthologs of Wnt4, Wnt5, Wnt9, Wnt11, and WntA, as well as two Wnt16 paralogs in both tardigrade genomes. We only found a Wnt2 ortholog in H. exemplaris. We could not identify orthologs of Wnt1, Wnt6, Wnt7, Wnt8, or Wnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog of arrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog of arrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes in H. exemplaris during developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes in H. exemplaris besides one of the Wnt16 paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs in H. exemplaris, rather than in broadly overlapping patterns. Conclusions Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lost Wnt1, Wnt6, Wnt7, Wnt8, and Wnt10, along with arrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01954-y.
Collapse
Affiliation(s)
- Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Briana Arbelaez
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Chloe Ramnarine
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Zachary K Snow
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA.
| |
Collapse
|
9
|
Fisher CR, Kratovil JD, Angelini DR, Jockusch EL. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods. Proc Biol Sci 2021; 288:20211808. [PMID: 34933597 PMCID: PMC8692954 DOI: 10.1098/rspb.2021.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.
Collapse
Affiliation(s)
- Cera R. Fisher
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Justin D. Kratovil
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
10
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
11
|
Ruiz-Losada M, Pérez-Reyes C, Estella C. Role of the Forkhead Transcription Factors Fd4 and Fd5 During Drosophila Leg Development. Front Cell Dev Biol 2021; 9:723927. [PMID: 34409041 PMCID: PMC8365472 DOI: 10.3389/fcell.2021.723927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Appendage development requires the coordinated function of signaling pathways and transcription factors to pattern the leg along the three main axes: the antero-posterior (AP), proximo-distal (PD), and dorso-ventral (DV). The Drosophila leg DV axis is organized by two morphogens, Decapentaplegic (Dpp), and Wingless (Wg), which direct dorsal and ventral cell fates, respectively. However, how these signals regulate the differential expression of its target genes is mostly unknown. In this work, we found that two members of the Drosophila forkhead family of transcription factors, Fd4 and Fd5 (also known as fd96Ca and fd96Cb), are identically expressed in the ventro-lateral domain of the leg imaginal disc in response to Dpp signaling. Here, we analyze the expression regulation and function of these genes during leg development. We have generated specific mutant alleles for each gene and a double fd4/fd5 mutant chromosome to study their function during development. We highlight the redundant role of the fd4/fd5 genes during the formation of the sex comb, a male specific structure that appears in the ventro-lateral domain of the prothoracic leg.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristian Pérez-Reyes
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Estella
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Setton EVW, Sharma PP. A conserved role for arrow in posterior axis patterning across Arthropoda. Dev Biol 2021; 475:91-105. [PMID: 33607111 DOI: 10.1016/j.ydbio.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Segmentation is a key characteristic of Arthropoda that is linked to the evolutionary success of this lineage. It has previously been shown in both vertebrates and short germ insects that posterior segmentation requires canonical Wnt (cWnt) signaling, which maintains the expression of Caudal and the posterior growth zone; disruption of cWnt signaling incurs posterior truncations in these lineages due to the loss of the tail bud. However, comparable datasets for Wnt signaling are limited outside of holometabolous insects, due to incomparable phenotypic spectra and inefficacy of gene misexpression methods in certain model species. We applied RNA interference (RNAi) against the Wnt co-receptor arrow (arr), a key member of the cWnt signaling pathway in holometabolous insects and vertebrates, to examine posterior axis elongation of the cobweb spider Parasteatoda tepidariorum (short germ embryogenesis; one Wnt8 homolog), the cricket Gryllus bimaculatus (intermediate germ; one Wnt8 homolog), and the milkweed bug Oncopeltus fasciatus (short germ; two Wnt8 homologs). Knockdown of arr in insects resulted in posterior truncations affecting the gnathos through the abdomen in O. fasciatus, whereas posterior truncations only affected the T3 segment through the abdomen in G. bimaculatus. Spider embryos with disrupted arr expression exhibited defects along the entire axis, including segmentation defects throughout the germband. RNA-Seq-based differential gene expression analysis of severe Ptep-arr loss-of-function phenotypes at two developmental stages was used to confirm that knockdown of Ptep-arr results in systemic disruption of the Wnt pathway. Intriguingly, we found that knockdown of arr did not abrogate Wnt8 expression in any of the three species, with cad expression additionally retained in severe loss-of-function phenotypes in the cricket and the spider. Together with data from a holometabolous insect, our results suggest that cWnt signaling is not required for maintenance of Wnt8 expression across Arthropoda. These outcomes underscore the diagnostic power of differential gene expression analyses in characterizing catastrophic phenotypes in emerging model species.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| |
Collapse
|
13
|
Bruce HS, Patel NH. Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments. Nat Ecol Evol 2020; 4:1703-1712. [PMID: 33262517 DOI: 10.1038/s41559-020-01349-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/15/2020] [Indexed: 01/06/2023]
Abstract
The origin of insect wings has long been debated. Central to this debate is whether wings are a novel structure on the body wall resulting from gene co-option, or evolved from an exite (outgrowth; for example, a gill) on the leg of an ancestral crustacean. Here, we report the phenotypes for the knockout of five leg patterning genes in the crustacean Parhyale hawaiensis and compare these with their previously published phenotypes in Drosophila and other insects. This leads to an alignment of insect and crustacean legs that suggests that two leg segments that were present in the common ancestor of insects and crustaceans were incorporated into the insect body wall, moving the proximal exite of the leg dorsally, up onto the back, to later form insect wings. Our results suggest that insect wings are not novel structures, but instead evolved from existing, ancestral structures.
Collapse
Affiliation(s)
- Heather S Bruce
- University of California, Berkeley, Berkeley, CA, USA. .,Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Heingård M, Turetzek N, Prpic NM, Janssen R. FoxB, a new and highly conserved key factor in arthropod dorsal-ventral (DV) limb patterning. EvoDevo 2019; 10:28. [PMID: 31728178 PMCID: PMC6842170 DOI: 10.1186/s13227-019-0141-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Forkhead box (Fox) transcription factors evolved early in animal evolution and represent important components of conserved gene regulatory networks (GRNs) during animal development. Most of the researches concerning Fox genes, however, are on vertebrates and only a relatively low number of studies investigate Fox gene function in invertebrates. In addition to this shortcoming, the focus of attention is often restricted to a few well-characterized Fox genes such as FoxA (forkhead), FoxC (crocodile) and FoxQ2. Although arthropods represent the largest and most diverse animal group, most other Fox genes have not been investigated in detail, not even in the arthropod model species Drosophila melanogaster. In a general gene expression pattern screen for panarthropod Fox genes including the red flour beetle Tribolium castaneum, the pill millipede Glomeris marginata, the common house spider Parasteatoda tepidariorum, and the velvet worm Euperipatoides kanangrensis, we identified a Fox gene with a highly conserved expression pattern along the ventral ectoderm of arthropod and onychophoran limbs. Functional investigation of FoxB in Parasteatoda reveals a hitherto unrecognized important function of FoxB upstream of wingless (wg) and decapentaplegic (dpp) in the GRN orchestrating dorsal–ventral limb patterning.
Collapse
Affiliation(s)
- Miriam Heingård
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,4Present Address: Department of Geology, Faculty of Science, Lund University, Sölvegatan 12, Lund, Sweden
| | - Natascha Turetzek
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Present Address: Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,5Present Address: Bereich Allgemeine Zoologie und Entwicklungsbiologie, Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
15
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
16
|
Gosal SS, Wani SH. RNAi for Resistance Against Biotic Stresses in Crop Plants. BIOTECHNOLOGIES OF CROP IMPROVEMENT, VOLUME 2 2018. [PMCID: PMC7123769 DOI: 10.1007/978-3-319-90650-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based gene silencing has become one of the most successful strategies in not only identifying gene function but also in improving agronomical traits of crops by silencing genes of different pathogens/pests and also plant genes for improvement of desired trait. The conserved nature of RNAi pathway across different organisms increases its applicability in various basic and applied fields. Here we attempt to summarize the knowledge generated on the fundamental mechanisms of RNAi over the years, with emphasis on insects and plant-parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi research, gene regulation by small RNAs across different organisms, and application potential of RNAi for generating transgenic plants resistant to major pests. But, there are some limitations too which restrict wider applications of this technology to its full potential. Further refinement of this technology in terms of resolving these shortcomings constitutes one of the thrust areas in present RNAi research. Nevertheless, its application especially in breeding agricultural crops resistant against biotic stresses will certainly offer the possible solutions for some of the breeding objectives which are otherwise unattainable.
Collapse
Affiliation(s)
- Satbir Singh Gosal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
17
|
Cooption of an appendage-patterning gene cassette in the head segmentation of arachnids. Proc Natl Acad Sci U S A 2018; 115:E3491-E3500. [PMID: 29581309 DOI: 10.1073/pnas.1720193115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The jointed appendages of arthropods have facilitated the spectacular diversity and success of this phylum. Key to the regulation of appendage outgrowth is the Krüppel-like factor (KLF)/specificity protein (Sp) family of zinc finger transcription factors. In the fruit fly, Drosophila melanogaster, the Sp6-9 homolog is activated by Wnt-1/wingless (wg) and establishes ventral appendage (leg) fate. Subsequently, Sp6-9 maintains expression of the axial patterning gene Distal-less (Dll), which promotes limb outgrowth. Intriguingly, in spiders, Dll has been reported to have a derived role as a segmentation gap gene, but the evolutionary origin and regulation of this function are not understood because functional investigations of the appendage-patterning regulatory network are restricted to insects. We tested the evolutionary conservation of the ancestral appendage-patterning network of arthropods with a functional approach in the spider. RNAi-mediated knockdown of the spider Sp6-9 ortholog resulted in diminution or loss of Dll expression and truncation of appendages, as well as loss of the two body segments specified by the early Dll function. In reciprocal experiments, Dll is shown not to be required for Sp6-9 expression. Knockdown of arrow (Wnt-1 coreceptor) disrupted segmentation and appendage development but did not affect the early Sp6-9 expression domain. Ectopic appendages generated in the spider "abdomen" by knockdown of the Hox gene Antennapedia-1 (Antp-1) expressed Sp6-9 comparably to wild-type walking legs. Our results support (i) the evolutionary conservation of an appendage-patterning regulatory network that includes canonical Wnt signaling, Sp6-9, and Dll and (ii) the cooption of the Sp6-9/Dll regulatory cassette in arachnid head segmentation.
Collapse
|
18
|
Sharma PP. Chelicerates and the Conquest of Land: A View of Arachnid Origins Through an Evo-Devo Spyglass. Integr Comp Biol 2018; 57:510-522. [PMID: 28957520 DOI: 10.1093/icb/icx078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The internal phylogeny of Chelicerata and the attendant evolutionary scenario of arachnid terrestrialization have a long and contentious history. Previous studies of developmental gene expression data have suggested that respiratory systems of spiders, crustaceans, and insects are all serially homologous structures derived from the epipods (outer appendage rami) of the arthropod ancestor, corresponding to an ancestral gill. A separate body of evidence has suggested that the respiratory systems of arachnids are modified, inverted telopods (inner rami, or legs). Here I review these dissonant homology statements and compare the developmental genetic basis for respiratory system development in insects and arachnids. I show that the respiratory primordia of arachnids are not positionally homologous to those of insects. I further demonstrate that candidate genes critical to tracheal fate specification in Drosophila melanogaster are expressed very differently in arachnid exemplars. Taken together, these data suggest that mechanisms of respiratory system development are not derived from homologous structures or mechanisms in insects and arachnids, and that different terrestrial arthropod lineages have solved the challenge of aerial respiration using different developmental mechanisms.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
19
|
Jockusch EL. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages. Integr Comp Biol 2017; 57:533-545. [DOI: 10.1093/icb/icx063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
20
|
Janssen R. Gene expression reveals evidence for EGFR-dependent proximal-distal limb patterning in a myriapod. Evol Dev 2017; 19:124-135. [PMID: 28444830 DOI: 10.1111/ede.12222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evolution of segmented limbs is one of the key innovations of Arthropoda, allowing development of functionally specific specialized head and trunk appendages, a major factor behind their unmatched evolutionary success. Proximodistal limb patterning is controlled by two regulatory networks in the vinegar fly Drosophila melanogaster, and other insects. The first is represented by the function of the morphogens Wingless (Wg) and Decapentaplegic (Dpp); the second by the EGFR-signaling cascade. While the role of Wg and Dpp has been studied in a wide range of arthropods representing all main branches, that is, Pancrustacea (= Hexapoda + Crustacea), Myriapoda and Chelicerata, investigation of the potential role of EGFR-signaling is restricted to insects (Hexapoda). Gene expression analysis of Egfr, its potential ligands, and putative downstream factors in the pill millipede Glomeris marginata (Myriapoda: Diplopoda), reveals that-in at least mandibulate arthropods-EGFR-signaling is likely a conserved regulatory mechanism in proximodistal limb patterning.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Liu H, Liu Q, Zhou X, Huang Y, Zhang Z. Genome Editing of Wnt-1, a Gene Associated with Segmentation, via CRISPR/Cas9 in the Pine Caterpillar Moth, Dendrolimus punctatus. Front Physiol 2017; 7:666. [PMID: 28111552 PMCID: PMC5216022 DOI: 10.3389/fphys.2016.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023] Open
Abstract
The pine caterpillar moth, Dendrolimus punctatus, is a devastating forest pest. Genetic manipulation of this insect pest is limited due to the lack of genomic and functional genomic toolsets. Recently, CRISPR/Cas9 technology has been demonstrated to be a promising approach to modify the genome. To investigate gene functions during the embryogenesis, we introduced CRISPR/Cas9 system in D. punctatus to precisely and effectively manipulate gene expressions inmutant embryos. Compared to controls, knocking out of DpWnt-1, a gene well known for its role in the early body planning, led to high embryonic mortality. Among these mutants, 32.9% of the embryos and larvae showed an abnormal development. DpWnt-1 mutants predominantly exhibited abnormal posterior segments. In addition, multiple phenotypes were observed, including the loss of limbs and the head deformation, suggesting that DpWnt-1 signaling pathway is necessary for anterior segmentation and appendage development. Overall, our results demonstrate that CRISPR/Cas9 system is feasible and efficient in inducing mutations at a specific locus in D. punctatus. This study not only lays the foundation for characterizing gene functions in a non-model species, but also facilitates the future development of pest control alternatives for a major defoliator.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| | - Qun Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky Lexington, KY, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| |
Collapse
|
22
|
Al-Ayedh H, Rizwan-Ul-Haq M, Hussain A, Aljabr AM. Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). PEST MANAGEMENT SCIENCE 2016; 72:2118-2127. [PMID: 26822903 DOI: 10.1002/ps.4242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Palm trees around the world are prone to notorious Rhynchophorus ferrugineus, which causes heavy losses of palm plantations. In Middle Eastern countries, this pest is a major threat to date palm orchards. Conventional pest control measures with the major share of synthetic insecticides have resulted in insect resistance and environmental issues. Therefore, in order to explore better alternatives, the RNAi approach was employed to knock down the catalase gene in fifth and tenth larval instars with different dsRNA application methods, and their insecticidal potency was studied. RESULTS dsRNA of 444 bp was prepared to knock down catalase in R. ferrugineus. Out of the three dsRNA application methods, dsRNA injection into larvae was the most effective, followed by dsRNA application by artificial feeding. Both methods resulted in significant catalase knockdown in various tissues, especially the midgut. As a result, the highest growth inhibition of 123.49 and 103.47% and larval mortality of 80 and 40% were observed in fifth-instar larvae, whereas larval growth inhibition remained at 86.83 and 69.08% with larval mortality at 30 and 10% in tenth-instar larvae after dsRNA injection and artificial diet treatment. The topical application method was the least efficient, with the lowest larval growth inhibition of 57.23 and 45.61% and 0% mortality in fifth- and tenth-instar larvae. Generally, better results were noted at the high dsRNA dose of 5 µL. CONCLUSION Catalase enzyme is found in most insect body tissues, and thus its dsRNA can cause broad-scale gene knockdown within the insect body, depending upon the application method. Significant larval mortality and growth inhibition after catalase knockdown in R. ferrugineus confirms its insecticidal potency and suggests a bright future for RNAi-based bioinsecticides in pest control. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hassan Al-Ayedh
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Muhammad Rizwan-Ul-Haq
- Department of Arid Land Agriculture, College of Agriculture and Food Science, King Faisal University, Hofuf, Saudi Arabia
| | - Abid Hussain
- Department of Arid Land Agriculture, College of Agriculture and Food Science, King Faisal University, Hofuf, Saudi Arabia
| | - Ahmed M Aljabr
- Department of Arid Land Agriculture, College of Agriculture and Food Science, King Faisal University, Hofuf, Saudi Arabia.
| |
Collapse
|
23
|
Constantinou SJ, Pace RM, Stangl AJ, Nagy LM, Williams TA. Wntrepertoire and developmental expression patterns in the crustaceanThamnocephalus platyurus. Evol Dev 2016; 18:324-341. [DOI: 10.1111/ede.12204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ryan M. Pace
- Department of Molecular and Cellular Biology; University of Arizona; Tucson AZ 85721 USA
| | - A. J. Stangl
- Department of Molecular and Cellular Biology; University of Arizona; Tucson AZ 85721 USA
| | - Lisa M. Nagy
- Department of Molecular and Cellular Biology; University of Arizona; Tucson AZ 85721 USA
| | | |
Collapse
|
24
|
Rebijith KB, Asokan R, Ranjitha HH, Rajendra Prasad BS, Krishna V, Krishna Kumar NK. Diet-Delivered dsRNAs for Juvenile Hormone-Binding Protein and Vacuolar ATPase-H Implied Their Potential in the Management of the Melon Aphid (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2016; 45:268-75. [PMID: 26645766 DOI: 10.1093/ee/nvv178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
RNA interference is a sequence-specific gene silencing mechanism mediated by double-stranded RNA (dsRNA), which has been harnessed as a useful tool in devising novel insect pest management strategies for various pests such as melon aphid, Aphis gossypii (Glover). In the current study, we cloned and sequenced juvenile hormone-binding protein (JHBP) and vacuolar ATPase subunit H (V-ATPase-H) from A. gossypii. We also showed the effectiveness of diet-mediated delivery of dsRNA for JHBP and V-ATPase-H, which silenced the above genes and resulted in mortality. The extent of silencing and mortality were similar for both genes up until 96 h. Bioassay results revealed that the target genes were silenced variably, 1.0 µg/µl concentration having a more profound effect than 0.5 and 0.25 µg/µl concentration in reducing the cognate mRNA transcript level. Results indicated a 9.56–73.21% down regulation (across time and concentrations for both the genes) that resulted in the mortality of A. gossypii. Mortality was in the range of 10–63% for both these genes. Thus, the current study demonstrated the potentiality of both JHBP and V-ATPase-H as excellent targets for the management of A. gossypii.
Collapse
|
25
|
Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Dev Biol 2015; 408:164-77. [DOI: 10.1016/j.ydbio.2015.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022]
|
26
|
Rebijith KB, Asokan R, Hande HR, Kumar NKK, Krishna V, Vinutha J, Bakthavatsalam N. RNA Interference of Odorant-Binding Protein 2 (OBP2) of the Cotton Aphid, Aphis gossypii (Glover), Resulted in Altered Electrophysiological Responses. Appl Biochem Biotechnol 2015; 178:251-66. [DOI: 10.1007/s12010-015-1869-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
|
27
|
Zhang Z, Aslam AFM, Liu X, Li M, Huang Y, Tan A. Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:73-79. [PMID: 26070541 DOI: 10.1016/j.jinsphys.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/07/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Recently established, custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system provide attractive genome editing tools. Targeted gene mutagenesis using the CRISPR/Cas9 system has been achieved in several orders of insects. However, outside of studies on Drosophila melanogaster and the lepidopteron model insect Bombyx mori, little success has been reported, which is largely due to a lack of effective genetic manipulation tools that can be used in other insect orders. To create a simple and effective method of gene knockout analysis, especially for dissecting gene functioning during insect embryogenesis, we performed a functional analysis of the Bombyx Wnt1 (BmWnt1) gene using Cas9/sgRNA-mediated gene mutagenesis. The Wnt1 gene is required for embryonic patterning in various organisms, and its crucial roles during embryogenesis have been demonstrated in several insect orders. Direct injection of Cas9 mRNA and BmWnt1-specific sgRNA into Bombyx embryos induced a typical Wnt-deficient phenotype: injected embryos could not hatch and exhibited severe defects in body segmentation and pigmentation in a dose-dependent manner. Quantitative real-time PCR (qRT-PCR) analysis revealed that Hox genes were down-regulated after BmWnt1 depletion. Furthermore, large deletion, up to 18Kb, ware generated. The current study demonstrates that using the CRISPR/Cas9 system is a promising approach to achieve targeted gene mutagenesis during insect embryogenesis.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Abu F M Aslam
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaojing Liu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
28
|
Li J, Li X, Bai R, Shi Y, Tang Q, An S, Song Q, Yan F. RNA interference of the P450 CYP6CM1 gene has different efficacy in B and Q biotypes of Bemisia tabaci. PEST MANAGEMENT SCIENCE 2015; 71:1175-1181. [PMID: 25200527 DOI: 10.1002/ps.3903] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cytochrome P450 monooxygenases have been proven to be associated with high resistance in Bemisia tabaci B biotype (Middle East-Asia Minor 1 genetic group) and Q biotype (Mediterranean genetic group) to the neonicotinoid class of insecticides. In this study, the RNA interference (RNAi) effects on P450 CYP6CM1 gene expression, mortality and pesticide-detoxifying ability between B. tabaci B and Q biotypes were compared in an attempt to provide a basis for potential RNAi application in management of this pest. RESULTS Double-stranded RNAs (dsRNAs) of P450 CYP6CM1 genes corresponding to the B and Q biotypes were synthesised using specific primers and introduced into the insect body of B. tabaci adults through membrane feeding. The results showed that dsRNAs significantly silenced the target genes in B. tabaci with dsRNA concentration or treatment time, and silencing was more effective in B biotype than in Q biotype. Feeding dsRNAs led to high mortality in both biotypes, with higher mortality in B biotype (up to 85.88%) than in Q biotype (up to 56.40%). In addition, ability to detoxify imidacloprid and nicotine was inhibited in dsRNA-treated adults of both biotypes, more efficiently in B biotype than in Q biotype. CONCLUSION RNA interference of the P450 CYP6CM1 gene reduced gene expression, increased mortality, and inhibited the ability to detoxify a pesticide or a plant secondary metabolite in both biotypes of B. tabaci, with better efficacy in B biotype than in Q biotype.
Collapse
Affiliation(s)
- Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Xiaomin Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Rune Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Qingbo Tang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Qisheng Song
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
29
|
Nödl MT, Fossati SM, Domingues P, Sánchez FJ, Zullo L. The making of an octopus arm. EvoDevo 2015; 6:19. [PMID: 26052417 PMCID: PMC4458049 DOI: 10.1186/s13227-015-0012-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Most of our current findings on appendage formation and patterning stem from studies on chordate and ecdysozoan model organisms. However, in order to fully understand the evolution of animal appendages, it is essential to include information on appendage development from lophotrochozoan representatives. Here, we examined the basic dynamics of the Octopus vulgaris arm's formation and differentiation - as a highly evolved member of the lophotrochozoan super phylum - with a special focus on the formation of the arm's musculature. RESULTS The octopus arm forms during distinct phases, including an early outgrowth from an epithelial thickening, an elongation, and a late differentiation into mature tissue types. During early arm outgrowth, uniform proliferation leads to the formation of a rounded bulge, which subsequently elongates along its proximal-distal axis by means of actin-mediated epithelial cell changes. Further differentiation of all tissue layers is initiated but end-differentiation is postponed to post-hatching stages. Interestingly, muscle differentiation shows temporal differences in the formation of distinct muscle layers. Particularly, first myocytes appear in the area of the future transverse prior to the longitudinal muscle layer, even though the latter represents the more dominant muscle type at hatching stage. Sucker rudiments appear as small epithelial outgrowths with a mesodermal and ectodermal component on the oral part of the arm. During late differentiation stages, cell proliferation becomes localized to a distal arm region termed the growth zone of the arm. CONCLUSIONS O. vulgaris arm formation shows both, similarities to known model species as well as species-specific patterns of arm formation. Similarities include early uniform cell proliferation and actin-mediated cell dynamics, which lead to an elongation along the proximal-distal axis. Furthermore, the switch to an adult-like progressive distal growth mode during late differentiation stages is reminiscent of the vertebrate progress zone. However, tissue differentiation shows a species-specific delay, which is correlated to a paralarval pelagic phase after hatching and concomitant emerging behavioral modifications. By understanding the general dynamics of octopus arm formation, we established a basis for further studies on appendage patterning, growth, and differentiation in a representative of the lophotrochozoan super phylum.
Collapse
Affiliation(s)
- Marie-Therese Nödl
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sara M Fossati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Pedro Domingues
- Centro Oceanografico de Vigo, Instituto Español de Oceanografia, Subida Radio Faro, 50 36390 Vigo, Spain
| | - Francisco J Sánchez
- Centro Oceanografico de Vigo, Instituto Español de Oceanografia, Subida Radio Faro, 50 36390 Vigo, Spain
| | - Letizia Zullo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
30
|
Key patterning genes contribute to leg elongation in water striders. EvoDevo 2015; 6:14. [PMID: 25973169 PMCID: PMC4429320 DOI: 10.1186/s13227-015-0015-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How adaptive phenotypes are shaped by the action of key developmental genes during ontogeny remains poorly understood. Water striders, a group of hemipteran insects, present a unique example of adaptation to life on the fluid water surface substrate. The group has undergone a set of leg modifications allowing them to efficiently move on the water surface and hence invade a variety of niches from ponds to open oceans. The elongated legs of water striders play a key role in generating efficient movement on the fluid by acting as propelling oars. RESULTS To determine the developmental mechanisms underlying leg elongation, we examined the function of the key developmental genes decapentaplegic (dpp), wingless (wg), epidermal growth factor receptor (egfr), and hedgehog (hh) during embryonic development in the water strider Limnoporus dissortis. By analyzing expression patterns and RNAi knockdown phenotypes, we uncover the role of these genes in leg growth and patterning during embryogenesis. Our results indicate that wg and egfr contribute to the elongation of all the three segments of all thoracic legs, whereas hh specifies distal leg segments. CONCLUSIONS Together, our results suggest that key patterning genes contribute to the dramatic elongation of thoracic appendages in water striders.
Collapse
|
31
|
Janssen R, Jörgensen M, Prpic NM, Budd GE. Aspects of dorso-ventral and proximo-distal limb patterning in onychophorans. Evol Dev 2015; 17:21-33. [DOI: 10.1111/ede.12107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology; Uppsala University; Villavägen 16 75236 Uppsala Sweden
| | - Mette Jörgensen
- Department of Earth Sciences, Palaeobiology; Uppsala University; Villavägen 16 75236 Uppsala Sweden
| | - Nikola-Michael Prpic
- Abteilung für Entwicklungsbiologie; Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie; Georg-August-Universität Göttingen; GZMB; Ernst-Caspari-Haus; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Graham E. Budd
- Department of Earth Sciences, Palaeobiology; Uppsala University; Villavägen 16 75236 Uppsala Sweden
| |
Collapse
|
32
|
Pace RM, Eskridge PC, Grbić M, Nagy LM. Evidence for the plasticity of arthropod signal transduction pathways. Dev Genes Evol 2014; 224:209-22. [PMID: 25213332 PMCID: PMC10492230 DOI: 10.1007/s00427-014-0479-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 01/23/2023]
Abstract
Metazoans are known to contain a limited, yet highly conserved, set of signal transduction pathways that instruct early developmental patterning mechanisms. Genomic surveys that have compared gene conservation in signal transduction pathways between various insects and Drosophila support the conclusion that these pathways are conserved in evolution. However, the degree to which individual components of signal transduction pathways vary among more divergent arthropods is not known. Here, we report our results of a survey of the genome of the two-spotted spider mite Tetranychus urticae, using a set of 294 Drosophila orthologs of genes that function in signal transduction. We find a third of all genes surveyed absent from the spider mite genome. We also identify several novel duplications that have not been previously reported for a chelicerate. In comparison with previous insect surveys, Tetranychus contains a decrease in overall gene conservation, as well as an unusual ratio of ligands to receptors and other modifiers. These findings suggest that gene loss and duplication among components of signal transduction pathways are common among arthropods and suggest that signal transduction pathways in arthropods are more evolutionarily labile than previously hypothesized.
Collapse
Affiliation(s)
- Ryan M Pace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
33
|
Luan Q, Chen Q, Friedrich M. The Pax6 genes eyeless and twin of eyeless are required for global patterning of the ocular segment in the Tribolium embryo. Dev Biol 2014; 394:367-81. [PMID: 25149513 DOI: 10.1016/j.ydbio.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 06/23/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023]
Abstract
The transcription factor gene Pax6 is widely considered a master regulator of eye development in bilaterian animals. However, the existence of visual organs that develop without Pax6 input and the considerable pleiotropy of Pax6 outside the visual system dictate further studies into defining ancestral functions of this important regulator. Previous work has shown that the combinatorial knockdown of the insect Pax6 orthologs eyeless (ey) and twin of eyeless (toy) perturbs the development of the visual system but also other areas of the larval head in the red flour beetle Tribolium castaneum. To elucidate the role of Pax6 during Tribolium head development in more detail, we studied head cuticle morphology, brain anatomy, embryonic head morphogenesis, and developmental marker gene expression in combinatorial ey and toy knockdown animals. Our experiments reveal that Pax6 is broadly required for patterning the anterior embryonic head. One of the earliest detectable roles is the formation of the embryonic head lobes, which originate from within the ocular segment and give rise to large parts of the supraesophageal brain including the mushroom body, a part of the posterior head capsule cuticle, and the visual system. We present further evidence that toy continues to be required for the development of the larval eyes after formation of the embryonic head lobes in cooperation with the eye developmental transcription factor dachshund (dac). The sum of our findings suggests that Pax6 functions as a competence factor throughout the development of the insect ocular segment. Comparative evidence identifies this function as an ancestral aspect of bilaterian head development.
Collapse
Affiliation(s)
- Qing Luan
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
34
|
Stansbury MS, Moczek AP. The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern. Proc Biol Sci 2014; 281:20133333. [PMID: 24648226 PMCID: PMC3973271 DOI: 10.1098/rspb.2013.3333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/20/2014] [Indexed: 02/04/2023] Open
Abstract
Uncovering the mechanisms underlying the evolution of novel traits is a central challenge in biology. The lanterns of fireflies are complex traits that lack even remote homology to structures outside luminescent beetle families. Representing unambiguous novelties by the strictest definition, their developmental underpinnings may provide clues to their origin and offer insights into the mechanisms of innovation in developmental evolution. Lanterns develop within the context of abdominal Hox expression domains, and we hypothesized that lantern formation may be instructed in part by these highly conserved transcription factors. We show that transcript depletion of Abdominal-B in Photuris fireflies results in extensive disruption of the adult lantern, suggesting that the evolution of adult lanterns involved the acquisition of a novel regulatory role for this Hox gene. Using the same approach, we show that the Hox gene abdominal-A may control important secondary aspects of lantern development. Lastly, we hypothesized that lantern evolution may have involved the recruitment of dormant abdominal appendage-patterning domains; however, transcript depletion of two genes, Distal-less and dachshund, suggests that they do not contribute to lantern development. Our results suggest that complex novelties can arise within the confines of ancestral regulatory landscapes through acquisition of novel targets without compromising ancestral functions.
Collapse
Affiliation(s)
- Matthew S. Stansbury
- Center for Insect Science, University of Arizona, 1007 East Lowell Street, PO Box 210106, Tucson, AZ 85721-0106, USA
- Department of Biology, Indiana University, 1001 East 3rd St., Jordan Hall 142, Bloomington, IN 47405-7005, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, 1001 East 3rd St., Jordan Hall 142, Bloomington, IN 47405-7005, USA
| |
Collapse
|
35
|
Hogvall M, Schönauer A, Budd GE, McGregor AP, Posnien N, Janssen R. Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation. EvoDevo 2014; 5:14. [PMID: 24708787 PMCID: PMC4021614 DOI: 10.1186/2041-9139-5-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Onychophora are a probable sister group to Arthropoda, one of the most intensively studied animal phyla from a developmental perspective. Pioneering work on the fruit fly Drosophila melanogaster and subsequent investigation of other arthropods has revealed important roles for Wnt genes during many developmental processes in these animals. RESULTS We screened the embryonic transcriptome of the onychophoran Euperipatoides kanangrensis and found that at least 11 Wnt genes are expressed during embryogenesis. These genes represent 11 of the 13 known subfamilies of Wnt genes. CONCLUSIONS Many onychophoran Wnt genes are expressed in segment polarity gene-like patterns, suggesting a general role for these ligands during segment regionalization, as has been described in arthropods. During early stages of development, Wnt2, Wnt4, and Wnt5 are expressed in broad multiple segment-wide domains that are reminiscent of arthropod gap and Hox gene expression patterns, which suggests an early instructive role for Wnt genes during E. kanangrensis segmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, 75236, Sweden.
| |
Collapse
|
36
|
Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli. Gene Expr Patterns 2013; 13:384-94. [DOI: 10.1016/j.gep.2013.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
37
|
Li J, Wang XP, Wang MQ, Ma WH, Hua HX. Advances in the use of the RNA interference technique in Hemiptera. INSECT SCIENCE 2013; 20:31-9. [PMID: 23955823 DOI: 10.1111/j.1744-7917.2012.01550.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) suppresses the expression of target genes by post-transcriptional regulation. Because double-stranded RNA (dsRNA) mediated gene silencing is a conserved mechanism in many eukaryotes, RNAi has become a valuable tool for unveiling gene function in many model insects. Recent research has also shown that RNAi can also be effective in the downregulation of target genes in Hemiptera. In this review, we discuss the use of the RNAi technique in gene functional analysis in hemipterans, highlighting the methods of dsRNA uptake by these insects and discuss the knock-down efficiency of these techniques. Although the RNAi technique has disadvantages, our primary goal here is to determine whether it can be exploited further in the discovery of new gene functions, and as a pest control strategy, in some important Hemipteran pests.
Collapse
Affiliation(s)
- Jie Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
38
|
Grossmann D, Prpic NM. Egfr signaling regulates distal as well as medial fate in the embryonic leg of Tribolium castaneum. Dev Biol 2012; 370:264-72. [DOI: 10.1016/j.ydbio.2012.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/18/2012] [Accepted: 08/10/2012] [Indexed: 11/30/2022]
|
39
|
Namigai EKO, Suzuki Y. Functional conservation and divergence of BMP ligands in limb development and lipid homeostasis of holometabolous insects. Evol Dev 2012; 14:296-310. [PMID: 23017077 DOI: 10.1111/j.1525-142x.2012.546.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic protein (BMP) ligands play key roles in regulating morphological and physiological traits. To investigate how the functions of BMP ligands have evolved among insects, the roles of two key BMP ligands, decapentaplegic (dpp) and glass bottom boat (gbb), were studied in the flour beetle, Tribolium castaneum. RNA interference-mediated knockdown revealed that the role of dpp in establishing limb segmentation is conserved among insects. Based on the expression pattern of dpp in the presumptive leg tarsal segments, we propose that the function of dpp has evolved through heterochronic changes during the evolution of complete metamorphosis. Gbb1 was found to be necessary for sculpting the tarsal segment morphology characteristic of beetles. Knockdown of Dpp and Gbb1 expression also resulted in transparent larvae and reduced triglyceride levels, indicating their critical roles in maintaining lipid homeostasis. Both knockdown phenotypes were mediated by larval translucida. Because only Gbb regulates lipid metabolism in Drosophila, regulation of lipid homeostasis appears to have evolved by developmental systems drift. Thus, developmental systems drift may underlie evolution of both morphology and physiological processes.
Collapse
Affiliation(s)
- Erica K O Namigai
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | | |
Collapse
|
40
|
Hadrys H, Simon S, Kaune B, Schmitt O, Schöner A, Jakob W, Schierwater B. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate. PLoS One 2012; 7:e34682. [PMID: 22685537 PMCID: PMC3369913 DOI: 10.1371/journal.pone.0034682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 01/10/2023] Open
Abstract
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.
Collapse
Affiliation(s)
- Heike Hadrys
- ITZ, Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. G3-GENES GENOMES GENETICS 2012; 2:235-48. [PMID: 22384402 PMCID: PMC3284331 DOI: 10.1534/g3.111.001537] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023]
Abstract
Serial homologs are similar structures that develop at different positions within a body plan. These structures share some, but not all, aspects of developmental patterning, and their evolution is thought to be constrained by shared, pleiotropic gene functions. Here we describe the functions of 17 developmental genes during metamorphic development of the legs in the red flour beetle, Tribolium castaneum. This study provides informative comparisons between appendage development in Drosophila melanogaster and T. castaneum, between embryonic and adult development in T. castaneum, and between the development of serially homologous appendages. The leg gap genes Distal-less and dachshund are conserved in function. Notch signaling, the zinc-finger transcription factors related to odd-skipped, and bric-à-brac have conserved functions in promoting joint development. homothorax knockdown alters the identity of proximal leg segments but does not reduce growth. Lim1 is required for intermediate leg development but not distal tarsus and pretarsus development as in D. melanogaster. Development of the tarsus requires decapentaplegic, rotund, spineless, abrupt, and bric-à-brac and the EGF ligand encoded by Keren. Metathoracic legs of T. castaneum have four tarsomeres, whereas other legs have five. Patterns of gene activity in the tarsus suggest that patterning in the middle of the tarsal region, not the proximal- or distal-most areas, is responsible for this difference in segment number. Through comparisons with other recent studies of T. castaneum appendage development, we test hypotheses for the modularity or interdependence of development during evolution of serial homologs.
Collapse
|
42
|
Wasik BR, Moczek AP. Pangolin expression influences the development of a morphological novelty: beetle horns. Genesis 2011; 50:404-14. [PMID: 21998033 DOI: 10.1002/dvg.20814] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/28/2011] [Accepted: 10/06/2011] [Indexed: 01/29/2023]
Abstract
Morphological diversity arises during development through the actions and interactions of diverse developmental pathways. Among those, the Wnt pathway is known to contribute to diverse developmental processes such as segmentation and the morphogenesis of appendages. Here, we characterize a transcription factor in the Wnt pathway, pangolin (pan), to investigate the role of Wnt signaling in the development of evolutionarily novel body structures: the horns of beetles. Beetle horns are highly diverse in size, shape, and number and develop principally from two major body regions: the head and prothorax. We investigate horns in two species of the genus Onthophagus using comparative in situ hybridization, larval RNA interference, and allometric measurements to analyze whether horn formation is regulated by pan and by extension the Wnt pathway. Our results illustrate that pan expression affects beetle horn growth in a species-, sex-, and location-specific manner in two morphologically distinct, yet closely-related, Onthophagus species.
Collapse
Affiliation(s)
- Bethany R Wasik
- Department of Biology, Indiana University, Bloomington, Indiana, USA.
| | | |
Collapse
|
43
|
Bao R, Fischer T, Bolognesi R, Brown SJ, Friedrich M. Parallel duplication and partial subfunctionalization of β-catenin/armadillo during insect evolution. Mol Biol Evol 2011; 29:647-62. [PMID: 21890476 DOI: 10.1093/molbev/msr219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
β-Catenin is a multifunctional scaffolding protein with roles in Wnt signaling, cell adhesion, and centrosome separation. Here, we report on independent duplications of the insect β-Catenin ortholog armadillo (arm) in the red flour beetle Tribolium castaneum and the pea aphid Acyrthosiphon pisum. Detailed sequence analysis shows that in both species, one paralog lost critical residues of the α-Catenin binding domain, which is essential for cell adhesion, and accumulated a dramatically higher number of amino acid substitutions in the central Arm repeat domain. Residues associated with aspects of Wnt signaling, however, are conserved in both paralogs. Consistent with these molecular signatures, the effects of specific and combinatorial knockdown experiments in the Tribolium embryo indicate that the duplication resulted in redundant involvement in Wnt signaling of both β-Catenin paralogs but differential inheritance of the ancestral cell adhesion and centrosome separation functions. We conclude that the duplicated pea aphid and flour beetle β-catenin genes experienced partial subfunctionalization, which appears to be evolutionarily favored. Providing first evidence of genetic separability of the cell adhesion and centrosome separation functions, the duplicated Tribolium and Acyrthosiphon arm paralogs offer new inroads for context-specific analyses of β-Catenin. Our data also revealed the conservation of a C-terminally truncated Arm isoform in both singleton and duplicated homologs, suggesting an as yet unexplored role in Wnt signaling.
Collapse
Affiliation(s)
- Riyue Bao
- Department of Biological Sciences, Wayne State University, USA
| | | | | | | | | |
Collapse
|
44
|
Beermann A, Prühs R, Lutz R, Schröder R. A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect. Development 2011; 138:2793-805. [PMID: 21652652 DOI: 10.1242/dev.063644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Short germ embryos elongate their primary body axis by consecutively adding segments from a posteriorly located growth zone. Wnt signalling is required for axis elongation in short germ arthropods, including Tribolium castaneum, but the precise functions of the different Wnt receptors involved in this process are unclear. We analysed the individual and combinatorial functions of the three Wnt receptors, Frizzled-1 (Tc-Fz1), Frizzled-2 (Tc-Fz2) and Frizzled-4 (Tc-Fz4), and their co-receptor Arrow (Tc-Arr) in the beetle Tribolium. Knockdown of gene function and expression analyses revealed that Frizzled-dependent Wnt signalling occurs anteriorly in the growth zone in the presegmental region (PSR). We show that simultaneous functional knockdown of the Wnt receptors Tc-fz1 and Tc-fz2 via RNAi resulted in collapse of the growth zone and impairment of embryonic axis elongation. Although posterior cells of the growth zone were not completely abolished, Wnt signalling within the PSR controls axial elongation at the level of pair-rule patterning, Wnt5 signalling and FGF signalling. These results identify the PSR in Tribolium as an integral tissue required for the axial elongation process, reminiscent of the presomitic mesoderm in vertebrates. Knockdown of Tc-fz1 alone interfered with the formation of the proximo-distal and the dorso-ventral axes during leg development, whereas no effect was observed with single Tc-fz2 or Tc-fz4 RNAi knockdowns. We identify Tc-Arr as an obligatory Wnt co-receptor for axis elongation, leg distalisation and segmentation. We discuss how Wnt signalling is regulated at the receptor and co-receptor levels in a dose-dependent fashion.
Collapse
Affiliation(s)
- Anke Beermann
- Universität Rostock, Institut für Biowissenschaften/Abt. Genetik, D-18059 Rostock, Germany.
| | | | | | | |
Collapse
|
45
|
Bhatia V, Uniyal PL, Bhattacharya R. Aphid resistance in Brassica crops: challenges, biotechnological progress and emerging possibilities. Biotechnol Adv 2011; 29:879-88. [PMID: 21802504 DOI: 10.1016/j.biotechadv.2011.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
Abstract
Aphids, (Hemiptera: Aphidoidea) a nefarious insect pest of Brassicaceae members including major vegetable and oilseed crops have coevolved with their host plant and emerged as most economically important insect pest of crop Brassicas. Their atypical feeding mechanism and unusual reproductive biology made them intractable to control below economic threshold level of damage to the crops. To a large extent aphid infestation is controlled by spraying agrochemicals of systemic mode of action and rarely by biological control. Use of systemic insecticides is highly cost intensive as well poses bigger threat of their incorporation in dietary chain. Breeding for genetic resistance against aphids has not been possible owing to the non-availability of resistance source within the crossable germplasms and lack of knowledge of the genetics of the trait. Genetic engineering with insect resistant transgenes seems to be the only potential avenue to address this difficult-to-accomplish breeding objective. Some success had been achieved in terms of developing aphid resistant cultivars through genetic engineering however, commercial utilization of such crops are still awaited. Thus protection of crops against aphids necessarily requires more research to identify either more effective insecticidal transgenes or biological phenomenon that can usher to new mechanism of resistance. The present review is an attempt to highlight the current status and possible avenues to develop aphid resistance in Brassicaceae crops.
Collapse
Affiliation(s)
- Varnika Bhatia
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
| | | | | |
Collapse
|
46
|
Shah MV, Namigai EKO, Suzuki Y. The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Mech Dev 2011; 128:342-58. [PMID: 21801833 DOI: 10.1016/j.mod.2011.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022]
Abstract
Many organisms across the Metazoa have regenerative abilities with potentially conserved genetic mechanisms that can enlighten both medicine and evolutionary studies. Here, the role of canonical Wnt signaling was examined in the red flour beetle Tribolium castaneum in order to explore its role during metamorphosis and larval leg regeneration. Double-stranded RNA mediated silencing of Wnt-1 signaling resulted in a loss of wings and appendages with a dramatic reduction in width, indicating that the Wnt-1 signaling pathway is necessary for proper post-embryonic appendage development in T. castaneum. Furthermore, disruption of canonical Wnt signaling led to the complete impairment of limb regeneration in T. castaneum. Our findings suggest that Wnt-1 signaling is a conserved mechanism for appendage development across all holometabolous insects and indicate that the role of Wnt-1 signaling in limb regeneration has been retained across all insects as various modes of limb development evolved. Importantly, this study shows that the availability of the genome sequence and the ease of performing leg ablations make Tribolium an excellent holometabolous insect model for studying regeneration.
Collapse
Affiliation(s)
- Mita V Shah
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, United States
| | | | | |
Collapse
|
47
|
Murat S, Hopfen C, McGregor AP. The function and evolution of Wnt genes in arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:446-452. [PMID: 20685345 DOI: 10.1016/j.asd.2010.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution.
Collapse
Affiliation(s)
- Sophie Murat
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna, Austria
| | | | | |
Collapse
|
48
|
Pechmann M, Khadjeh S, Sprenger F, Prpic NM. Patterning mechanisms and morphological diversity of spider appendages and their importance for spider evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:453-467. [PMID: 20696272 DOI: 10.1016/j.asd.2010.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/07/2010] [Accepted: 07/27/2010] [Indexed: 05/29/2023]
Abstract
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.
Collapse
Affiliation(s)
- Matthias Pechmann
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | | | | | | |
Collapse
|
49
|
JAK-STAT signalling is required throughout telotrophic oogenesis and short-germ embryogenesis of the beetle Tribolium. Dev Biol 2010; 350:169-82. [PMID: 20974121 DOI: 10.1016/j.ydbio.2010.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 12/16/2022]
Abstract
In Drosophila, the JAK-STAT signalling pathway regulates a broad array of developmental functions including segmentation and oogenesis. Here we analysed the functions of Tribolium JAK-STAT signalling factors and of Suppressor Of Cytokine Signalling (SOCS) orthologues, which are known to function as negative regulators of JAK-STAT signalling, during telotrophic oogenesis and short-germ embryogenesis. The beetle Tribolium features telotrophic ovaries, which differ fundamentally from the polytrophic ovary of Drosophila. While we found the requirement for JAK-STAT signalling in specifying the interfollicular stalk to be principally conserved, we demonstrate that these genes also have early and presumably telotrophic specific functions. Moreover, we show that the SOCS genes crucially contribute to telotrophic Tribolium oogenesis, as their inactivation by RNAi results in compound follicles. During short-germ embryogenesis, JAK-STAT signalling is required in the maintenance of segment primordia, indicating that this signalling cascade acts in the framework of the segment-polarity network. In addition, we demonstrate that JAK-STAT signalling crucially contributes to early anterior patterning. We posit that this signalling cascade is involved in achieving accurate levels of expression of individual pair-rule and gap gene domains in early embryonic patterning.
Collapse
|
50
|
Nunes da Fonseca R, van der Zee M, Roth S. Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Dev Biol 2010; 345:80-93. [PMID: 20510683 DOI: 10.1016/j.ydbio.2010.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/09/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.
Collapse
Affiliation(s)
- Rodrigo Nunes da Fonseca
- Institute of Developmental Biology, University of Cologne, Cologne, Gyrhofstrasse 17, D-50931, Germany
| | | | | |
Collapse
|