1
|
Fgf10-CRISPR mosaic mutants demonstrate the gene dose-related loss of the accessory lobe and decrease in the number of alveolar type 2 epithelial cells in mouse lung. PLoS One 2020; 15:e0240333. [PMID: 33057360 PMCID: PMC7561199 DOI: 10.1371/journal.pone.0240333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022] Open
Abstract
CRISPR/Cas9-mediated gene editing often generates founder generation (F0) mice that exhibit somatic mosaicism in the targeted gene(s). It has been known that Fibroblast growth factor 10 (Fgf10)-null mice exhibit limbless and lungless phenotypes, while intermediate limb phenotypes (variable defective limbs) are observed in the Fgf10-CRISPR F0 mice. However, how the lung phenotype in the Fgf10-mosaic mutants is related to the limb phenotype and genotype has not been investigated. In this study, we examined variable lung phenotypes in the Fgf10-targeted F0 mice to determine if the lung phenotype was correlated with percentage of functional Fgf10 genotypes. Firstly, according to a previous report, Fgf10-CRISPR F0 embryos on embryonic day 16.5 (E16.5) were classified into three types: type I, no limb; type II, limb defect; and type III, normal limbs. Cartilage and bone staining showed that limb truncations were observed in the girdle, (type I), stylopodial, or zeugopodial region (type II). Deep sequencing of the Fgf10-mutant genomes revealed that the mean proportion of codons that encode putative functional FGF10 was 8.3 ± 6.2% in type I, 25.3 ± 2.7% in type II, and 54.3 ± 9.5% in type III (mean ± standard error of the mean) mutants at E16.5. Histological studies showed that almost all lung lobes were absent in type I embryos. The accessory lung lobe was often absent in type II embryos with other lobes dysplastic. All lung lobes formed in type III embryos. The number of terminal tubules was significantly lower in type I and II embryos, but unchanged in type III embryos. To identify alveolar type 2 epithelial (AECII) cells, known to be reduced in the Fgf10-heterozygous mutant, immunostaining using anti-surfactant protein C (SPC) antibody was performed: In the E18.5 lungs, the number of AECII was correlated to the percentage of functional Fgf10 genotypes. These data suggest the Fgf10 gene dose-related loss of the accessory lobe and decrease in the number of alveolar type 2 epithelial cells in mouse lung. Since dysfunction of AECII cells has been implicated in the pathogenesis of parenchymal lung diseases, the Fgf10-CRISPR F0 mouse would present an ideal experimental system to explore it.
Collapse
|
2
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
3
|
Kowalkowski A, Zaremba KM, Rogers AP, Hoffman OR, Turco AE, Nichol PF. Lack of discreet colocalization of epithelial apoptosis to the atretic precursor in the colon of the Fibroblast growth factor receptor 2IIIb mouse and staining consistent with cellular movement suggest a revised model of atresia formation. Dev Dyn 2020; 249:741-753. [PMID: 32100913 PMCID: PMC7266729 DOI: 10.1002/dvdy.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Colonic atresias in the Fibroblast growth factor receptor 2IIIb (Fgfr2IIIb) mouse model have been attributed to increased epithelial apoptosis and decreased epithelial proliferation at embryonic day (E) 10.5. We therefore hypothesized that these processes would colocalize to the distal colon where atresias occur (atretic precursor) and would be excluded or minimized from the proximal colon and small intestine. RESULTS We observed a global increase in intestinal epithelial apoptosis in Fgfr2IIIb -/- intestines from E9.5 to E10.5 that did not colocalize to the atretic precursor. Additionally, epithelial proliferations rates in Fgfr2IIIb -/- intestines were statistically indistinguishable to that of controls at E10.5 and E11.5. At E11.5 distal colonic epithelial cells in mutants failed to assume the expected pseudostratified columnar architecture and the continuity of the adjacent basal lamina was disrupted. Individual E-cadherin-positive cells were observed in the colonic mesenchyme. CONCLUSIONS Our observations suggest that alterations in proliferation and apoptosis alone are insufficient to account for intestinal atresias and that these defects may arise from both a failure of distal colonic epithelial cells to develop normally and local disruptions in basal lamina architecture.
Collapse
Affiliation(s)
- Anna Kowalkowski
- Surgery Department, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Andrew P Rogers
- Surgery Department, University of Wisconsin, Madison, Wisconsin, USA
| | - Olivia R Hoffman
- Surgery Department, University of Wisconsin, Madison, Wisconsin, USA
| | - Anne E Turco
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Peter F Nichol
- Surgery Department, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Jones MLM, Sarila G, Chapuis P, Hutson JM, King SK, Teague WJ. The Role of Fibroblast Growth Factor 10 Signaling in Duodenal Atresia. Front Pharmacol 2020; 11:250. [PMID: 32210824 PMCID: PMC7076179 DOI: 10.3389/fphar.2020.00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Duodenal atresia (DA) is a congenital bowel obstruction requiring major surgery in the first week of life. Three morphological phenotypes are described, reflecting increasing degrees of obstruction and discontinuity of the duodenum. The cause of DA is not known. Tandler’s original “solid cord” hypothesis conflicts with recent biological evidence, and is unable to account for differing DA types. In humans, a genetic etiology is supported by the association between Trisomy 21 and DA, and reports of familial inheritance patterns. Interruption of FGF10/FGFR2b signaling is the best demonstrated genetic link to DA in mice, with 35–75% of homozygous knockout embryos developing DA. Purpose This review examines the current evidence surrounding the etiology of DA. We focus on research regarding FGF10/FGFR2b signaling and its role in duodenal and other intestinal atresia. Further, we outline planned future research in this area, that we consider necessary to validate and better understand this murine model in order to successfully translate this research into clinical practice. Conclusion Determining the etiology of DA in humans is a clinical and scientific imperative. Fgf10/Fgfr2b murine models represent current science’s best key to unlocking this mystery. However, further research is required to understand the complex role of FGF10/FGFR2b signaling in DA development. Such complexity is expected, given the lethality of their associated defects makes ubiquitous interruption of either Fgf10 or Fgfr2b genes an unlikely cause of DA in humans. Rather, local or tissue-specific mutation in Fgf10, Fgfr2b, or their downstream targets, is the hypothesized basis of DA etiology.
Collapse
Affiliation(s)
- Matthew L M Jones
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Gulcan Sarila
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Pierre Chapuis
- Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - John M Hutson
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Urology, The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Sebastian K King
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Warwick J Teague
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Farajihaye Qazvini F, Samadi N, Saffari M, Emami-Razavi AN, Shirkoohi R. Fibroblast growth factor-10 and epithelial-mesenchymal transition in colorectal cancer. EXCLI JOURNAL 2019; 18:530-539. [PMID: 31611737 PMCID: PMC6785779 DOI: 10.17179/excli2018-1784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
As an inducer of epithelial-mesenchymal transition (EMT), fibroblast growth factor-10 (FGF-10) has a role in cell proliferation and differentiation in the embryo in addition to invasion and metastasis during carcinogenesis. In this study, we aimed to investigate the FGF-10 gene expression in tumor tissues based on the pathological feature of tumor related to EMT and metastasis. 62 tumors were obtained from 62 colorectal cancer patients during surgery. The pathological characteristics of the patients were carefully collected and classified by Iran National Tumor Bank. To quantify FGF-10 gene expression, RNA extraction, reverse transcription-PCR and real-time PCR were respectively performed. In addition, three colorectal cancer cell lines including LS174T, SW-948 and SW-480 were collected and cultured for further molecular analysis. Consequently, FGF-10 gene expression showed increased expression level in LS174T and SW-948 while it displayed decreased level in SW-480. Considering the tumor samples, we found an upregulation of FGF-10 gene expression in 52.1 % of all tumors in stage III and only in 9.09 % of all tumors in stage I. Also, there were an upregulation of FGF-10 gene expression in 50 % of all positive lymph invasion patients. Besides, FGF-10 gene upregulation was observed in 50 % of all tumors with a size larger than 5 cm (P value < 0.05) and 69 % of all tumors located in the colon (P value < 0.05). To our knowledge, this is the first time that FGF-10 expression is reported based on pathological features of colorectal cancer.
Collapse
Affiliation(s)
- Fatemeh Farajihaye Qazvini
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Saffari
- Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Nader Emami-Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Li M, Zhang H, Liu H, Tian H, Tang X, Bai Y, Wang W. Abnormal expression of TBX4 during anorectal development in rat embryos with ethylenethiourea-induced anorectal malformations. Biol Res 2019; 52:27. [PMID: 31054579 PMCID: PMC6499952 DOI: 10.1186/s40659-019-0235-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To assess the expression of T-box transcription factor 4 (TBX4) during the anorectal development in normal and ethylenethiourea (ETU)-induced anorectal malformations (ARM) rat embryos. METHODS Anorectal malformations was induced by ETU on the 10th gestational day (E10) in rat embryos. Spatio-temporal expression of TBX4 was evaluated in normal (n = 490) and ETU-induced ARM rat embryos (n = 455) from E13 to E16 by immunohistochemical staining, Western blot analysis and real-time RT-PCR. RESULTS In the normal embryos, immunohistochemical staining revealed that TBX4 expression was detected in the epithelium of hindgut and urorectal septum (URS) on E13. TBX4-immunopositive cells were increased significantly in the epithelium of hindgut and URS, the future anal orifice part of cloacal membrane on E14. On E15, abundant stained cells were observed in the rectum, URS and dorsal cloacal membrane and the expression of positive cells reached its peak. On E16, only sporadic positive cells were distributed in the epithelium of the distal rectum. In the ARM embryos, the hindgut/rectum, URS and dorsal cloacal membrane were faint for TBX4 immunohistochemical staining. In the normal group, TBX4 protein and mRNA expression showed time-dependent changes in the hindgut/rectum from E13 to E16 on Western blot and real-time RT-PCR. On E13 and E15, the expression level of TBX4 mRNA in the ARM group was significantly lower than that in the normal group (P < 0.05). On E15, the expression level of TBX4 protein in the ARM group was significantly lower than that in the normal group (P < 0.05). CONCLUSIONS The expression of TBX4 was downregulated in ETU-induced ARM embryos, which may play important roles in the pathogenesis of anorectal development.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, No. 36 SanHao St., Heping District, Shenyang, 110004, China
| | - Hailan Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, No. 36 SanHao St., Heping District, Shenyang, 110004, China.
| | - Huiying Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, No. 36 SanHao St., Heping District, Shenyang, 110004, China
| | - Hongzhong Tian
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, No. 36 SanHao St., Heping District, Shenyang, 110004, China
| | - Xiaobing Tang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, No. 36 SanHao St., Heping District, Shenyang, 110004, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, No. 36 SanHao St., Heping District, Shenyang, 110004, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, No. 36 SanHao St., Heping District, Shenyang, 110004, China
| |
Collapse
|
7
|
Gonçalves O, Freitas R, Ferreira P, Araújo M, Zhang G, Mazan S, Cohn MJ, Castro LFC, Wilson JM. Molecular ontogeny of the stomach in the catshark Scyliorhinus canicula. Sci Rep 2019; 9:586. [PMID: 30679499 PMCID: PMC6346038 DOI: 10.1038/s41598-018-36413-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
The origin of extracellular digestion in metazoans was accompanied by structural and physiological alterations of the gut. These adaptations culminated in the differentiation of a novel digestive structure in jawed vertebrates, the stomach. Specific endoderm/mesenchyme signalling is required for stomach differentiation, involving the growth and transcription factors: 1) Shh and Bmp4, required for stomach outgrowth; 2) Barx1, Sfrps and Sox2, required for gastric epithelium development and 3) Cdx1 and Cdx2, involved in intestinal versus gastric identity. Thus, modulation of endoderm/mesenchyme signalling emerges as a plausible mechanism linked to the origin of the stomach. In order to gain insight into the ancient mechanisms capable of generating this structure in jawed vertebrates, we characterised the development of the gut in the catshark Scyliorhinus canicula. As chondrichthyans, these animals retained plesiomorphic features of jawed vertebrates, including a well-differentiated stomach. We identified a clear molecular regionalization of their embryonic gut, characterised by the expression of barx1 and sox2 in the prospective stomach region and expression of cdx1 and cdx2 in the prospective intestine. Furthermore, we show that gastric gland development occurs close to hatching, accompanied by the onset of gastric proton pump activity. Our findings favour a scenario in which the developmental mechanisms involved in the origin of the stomach were present in the common ancestor of chondrichthyans and osteichthyans.
Collapse
Affiliation(s)
- Odete Gonçalves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), Univ. Porto, Porto, Portugal
| | - Renata Freitas
- I3S- Institute for Innovation and Health Research, Univ. Porto, Porto, Portugal. .,IBMC- Institute for Molecular and Cell Biology, Univ. Porto, Porto, Portugal.
| | - Patrícia Ferreira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), Univ. Porto, Porto, Portugal
| | - Mafalda Araújo
- I3S- Institute for Innovation and Health Research, Univ. Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Univ. Porto, Porto, Portugal
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Univ., Lafayette, USA.,Purdue Institute for Integrative Neuroscience, Purdue Univ., Lafayette, USA.,Purdue Univ. Center for Cancer, Purdue Univ., Lafayette, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue Univ., Lafayette, USA
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ. Paris, Observatoire Océanologique, Banyuls, France
| | - Martin J Cohn
- Howard Hughes Medical Institute, UF Genetics Institute, Univ. Florida, Florida, USA.,Department of Biology, UF Genetics Institute, Univ. Florida, Florida, USA.,Department of Molecular Genetics and Microbiology, UF Genetics Institute, Univ. Florida, Florida, USA
| | - L Filipe C Castro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal. .,Department of Biology, Faculty of Sciences, Univ. Porto, Porto, Portugal.
| | - Jonathan M Wilson
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal. .,Department of Biology, Wilfrid Laurier Univ., Waterloo, Canada.
| |
Collapse
|
8
|
Inhibition of Fgf signaling in short bowel syndrome increases weight loss and epithelial proliferation. Surgery 2017; 161:694-703. [DOI: 10.1016/j.surg.2016.08.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
|
9
|
Tbx5 Buffers Inherent Left/Right Asymmetry Ensuring Symmetric Forelimb Formation. PLoS Genet 2016; 12:e1006521. [PMID: 27992425 PMCID: PMC5215935 DOI: 10.1371/journal.pgen.1006521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 12/02/2016] [Indexed: 11/19/2022] Open
Abstract
The forelimbs and hindlimbs of vertebrates are bilaterally symmetric. The mechanisms that ensure symmetric limb formation are unknown but they can be disrupted in disease. In Holt-Oram Syndrome (HOS), caused by mutations in TBX5, affected individuals have left-biased upper/forelimb defects. We demonstrate a role for the transcription factor Tbx5 in ensuring the symmetric formation of the left and right forelimb. In our mouse model, bilateral hypomorphic levels of Tbx5 produces asymmetric forelimb defects that are consistently more severe in the left limb than the right, phenocopying the left-biased limb defects seen in HOS patients. In Tbx hypomorphic mutants maintained on an INV mutant background, with situs inversus, the laterality of defects is reversed. Our data demonstrate an early, inherent asymmetry in the left and right limb-forming regions and that threshold levels of Tbx5 are required to overcome this asymmetry to ensure symmetric forelimb formation. Externally, the human form appears bilaterally symmetric. For example, each of our pairs of arms and legs are the same length. This external symmetry masks many asymmetries found in internal organs. In most people the heart is found on the left side of the chest. The stomach, liver and spleen are also positioned asymmetrically. The authors of this study demonstrate, using a mouse model, that bilateral symmetry of the arms is not a default, passive state but that mechanisms are in place that ensure symmetrical formation of the left and right limbs. Bilateral symmetry of the arms is achieved by the action of a gene Tbx5 that masks the effects of signals that acted earlier during embryogenesis, many days before limb formation, and imposed asymmetries on the forming internal organs. Maintaining bilateral symmetry of the arms is important for them to carry out their normal functions but this process can go wrong. Holt-Oram syndrome patients have upper limb defects, including shortened arms. Consistently the defects are more severe in their left arm than right. This birth defect is caused by disruption of the TBX5 gene. By linking the action of Tbx5 to symmetrical limb formation, the authors provide an explanation for why Holt-Oram syndrome patients have more severe defects in the left arms than right.
Collapse
|
10
|
Yang Z, Balic A, Michon F, Juuri E, Thesleff I. Mesenchymal Wnt/β-Catenin Signaling Controls Epithelial Stem Cell Homeostasis in Teeth by Inhibiting the Antiapoptotic Effect of Fgf10. Stem Cells 2016; 33:1670-81. [PMID: 25693510 DOI: 10.1002/stem.1972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/17/2015] [Indexed: 01/05/2023]
Abstract
Continuous growth of rodent incisors relies on epithelial stem cells (SCs) located in the SC niche called labial cervical loop (LaCL). Here, we found a population of apoptotic cells residing in a specific location of the LaCL in mouse incisor. Activated Caspase 3 and Caspase 9, expressed in this location colocalized in part with Lgr5 in putative SCs. The addition of Caspase inhibitors to incisors ex vivo resulted in concentration dependent thickening of LaCL. To examine the role of Wnt signaling in regulation of apoptosis, we exposed the LaCL of postnatal day 2 (P2) mouse incisor ex vivo to BIO, a known activator of Wnt/β-catenin signaling. This resulted in marked thinning of LaCL as well as enhanced apoptosis. We found that Wnt/β-catenin signaling was intensely induced by BIO in the mesenchyme surrounding the LaCL, but, unexpectedly, no β-catenin activity was detected in the LaCL epithelium either before or after BIO treatment. We discovered that the expression of Fgf10, an essential growth factor for incisor epithelial SCs, was dramatically downregulated in the mesenchyme around BIO-treated LaCL, and that exogenous Fgf10 could rescue the thinning of the LaCL caused by BIO. We conclude that the homeostasis of the epithelial SC population in the mouse incisor depends on a proper rate of apoptosis and that this apoptosis is controlled by signals from the mesenchyme surrounding the LaCL. Fgf10 is a key mesenchymal signal limiting apoptosis of incisor epithelial SCs and its expression is negatively regulated by Wnt/β-catenin. Stem Cells 2015;33:1670-1681.
Collapse
Affiliation(s)
- Zheqiong Yang
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, Hubei, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Al Alam D, Danopoulos S, Schall K, Sala FG, Almohazey D, Fernandez GE, Georgia S, Frey MR, Ford HR, Grikscheit T, Bellusci S. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2015; 308:G678-90. [PMID: 25721301 PMCID: PMC4398841 DOI: 10.1152/ajpgi.00158.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 02/12/2015] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine.
Collapse
Affiliation(s)
- Denise Al Alam
- Keck School of Medicine, University of Southern California, Los Angeles, California; Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Soula Danopoulos
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Kathy Schall
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Frederic G. Sala
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Dana Almohazey
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - G. Esteban Fernandez
- 1Keck School of Medicine, University of Southern California, Los Angeles, California;
| | - Senta Georgia
- 2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Mark R. Frey
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Henri R. Ford
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Tracy Grikscheit
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Saverio Bellusci
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California; ,3Department of Internal Medicine II, University of Giessen Lung Center and Member of the German Lung Center, Giessen, Germany; and ,4Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
12
|
Sinagoga KL, Wells JM. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J 2015; 34:1149-63. [PMID: 25792515 DOI: 10.15252/embj.201490686] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host-parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
13
|
Celli J. Genetics of gastrointestinal atresias. Eur J Med Genet 2014; 57:424-39. [DOI: 10.1016/j.ejmg.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/21/2014] [Indexed: 01/04/2023]
|
14
|
Gredler ML, Sanger TJ, Cohn MJ. Development of the Cloaca, Hemipenes, and Hemiclitores in the Green Anole, Anolis carolinensis. Sex Dev 2014; 9:21-33. [DOI: 10.1159/000363757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Torashima Y, Levin DE, Barthel ER, Speer AL, Sala FG, Hou X, Grikscheit TC. Fgf10 overexpression enhances the formation of tissue-engineered small intestine. J Tissue Eng Regen Med 2013; 10:132-9. [PMID: 23468377 DOI: 10.1002/term.1720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/30/2012] [Accepted: 01/05/2013] [Indexed: 12/26/2022]
Abstract
Short bowel syndrome (SBS) is a morbid and mortal condition characterized in most patients by insufficient intestinal surface area. Current management strategies are inadequate, but tissue-engineered small intestine (TESI) offers a potential therapy. A barrier to translation of TESI is the generation of scalable mucosal surface area to significantly increase nutritional absorption. Fibroblast growth factor 10 (Fgf10) is a critical growth factor essential for the development of the gastrointestinal tract. We hypothesized that overexpression of Fgf10 would improve the generation of TESI. Organoid units, the multicellular donor tissue that forms TESI, were derived from Rosa26(rtTA/+), tet(o)Fgf10/(-) or Fgf10(Mlc-nlacZ-v24) (hereafter called Fgf10(lacZ)) mice. These were implanted into the omentum of NOD/SCID γ-chain-deficient mice and induced with doxycycline in the case of tet(o)Fgf10/(-). Resulting TESI were explanted at 4 weeks and studied by histology, quantitative RT-PCR and immunofluorescence. Four weeks after implantation, Fgf10 overexpressing TESI was larger and weighed more than the control tissues. Within the mucosa, the villus height was significantly longer and crypts contained a greater percentage of proliferating epithelial cells. A fully differentiated intestinal epithelium with enterocytes, goblet cells, enteroendocrine cells and Paneth cells was identified in the Fgf10-overexpressing TESI, comparable to native small intestine. β-Galactosidase expression was found in both the epithelium and the mesenchyme of the TESI derived from the Fgf10(LacZ) duodenum. However, this was not the case with TESI generated from jejunum and ileum. We conclude that Fgf10 enhances the formation of TESI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tracy C Grikscheit
- Children's Hospital Los Angeles, Saban Research Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Fibroblast growth factor receptor 2c signaling is required for intestinal cell differentiation in zebrafish. PLoS One 2013; 8:e58310. [PMID: 23484013 PMCID: PMC3590179 DOI: 10.1371/journal.pone.0058310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022] Open
Abstract
Background There are four cell lineages derived from intestinal stem cells that are located at the crypt and villus in the mammalian intestine the non-secretory absorptive enterocytes, and the secretory cells, which include mucous-secreting goblet cells, regulatory peptide-secreting enteroendocrine cells and antimicrobial peptide-secreting Paneth cells. Although fibroblast growth factor (Fgf) signaling is important for cell proliferation and differentiation in various tissues, its role in intestinal differentiation is less well understood. Methodology/Principal Findings We used a loss of function approach to investigate the importance of Fgf signaling in intestinal cell differentiation in zebrafish; abnormal differentiation of goblet cells was observed when Fgf signaling was inhibited using SU5402 or in the Tg(hsp70ldnfgfr1-EGFP) transgenic line. We identified Fgfr2c as an important receptor for cell differentiation. The number of goblet cells and enteroendocrine cells was reduced in fgfr2c morphants. In addition to secretory cells, enterocyte differentiation was also disrupted in fgfr2c morphants. Furthermore, proliferating cells were increased in the morphants. Interestingly, the loss of fgfr2c expression repressed secretory cell differentiation and increased cell proliferation in the mibta52b mutant that had defective Notch signaling. Conclusions/Significance In conclusion, we found that Fgfr2c signaling derived from mesenchymal cells is important for regulating the differentiation of zebrafish intestine epithelial cells by promoting cell cycle exit. The results of Fgfr2c knockdown in mibta52b mutants indicated that Fgfr2c signaling is required for intestinal cell differentiation. These findings provide new evidences that Fgf signaling is required for the differentiation of intestinal cells in the zebrafish developing gut.
Collapse
|
17
|
Speer AL, Alam DA, Sala FG, Ford HR, Bellusci S, Grikscheit TC. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis. PLoS One 2012; 7:e49127. [PMID: 23133671 PMCID: PMC3486796 DOI: 10.1371/journal.pone.0049127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022] Open
Abstract
The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.
Collapse
Affiliation(s)
- Allison L. Speer
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Denise Al Alam
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Frederic G. Sala
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Henri R. Ford
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Saverio Bellusci
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- University of Giessen Lung Center, Department of Internal Medicine II, Giessen, Germany
| | - Tracy C. Grikscheit
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Greenow K, Clarke AR. Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways. Physiol Rev 2012; 92:75-99. [PMID: 22298652 DOI: 10.1152/physrev.00040.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the realization that embryonic stem cells are maintained in a pluripotent state through the interplay of a number of key signal transduction pathways, it is becoming increasingly clear that stemness and pluripotency are defined by the complex molecular convergence of these pathways. Perhaps this has most clearly been demonstrated by the capacity to induce pluripotency in differentiated cell types, so termed iPS cells. We are therefore building an understanding of how cells may be maintained in a pluripotent state, and how we may manipulate cells to drive them between committed and pluripotent compartments. However, it is less clear how cells normally pass in and out of the stem cell compartment under normal and diseased physiological states in vivo, and indeed, how important these pathways are in these settings. It is also clear that there is a potential "dark side" to manipulating the stem cell compartment, as deregulation of somatic stem cells is being increasingly implicated in carcinogenesis and the generation of "cancer stem cells." This review explores these relationships, with a particular focus on the role played by key molecular regulators of stemness in tissue repair, and the possibility that a better understanding of this control may open the door to novel repair strategies in vivo. The successful development of such strategies has the potential to replace or augment intervention-based strategies (cell replacement therapies), although it is clear they must be developed with a full understanding of how such approaches might also influence tumorigenesis.
Collapse
Affiliation(s)
- Kirsty Greenow
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
19
|
Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn 2011; 240:501-20. [PMID: 21246663 DOI: 10.1002/dvdy.22540] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
|
20
|
Sala FG, Del Moral PM, Tiozzo C, Alam DA, Warburton D, Grikscheit T, Veltmaat JM, Bellusci S. FGF10 controls the patterning of the tracheal cartilage rings via Shh. Development 2011; 138:273-82. [PMID: 21148187 PMCID: PMC3005603 DOI: 10.1242/dev.051680] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2010] [Indexed: 12/19/2022]
Abstract
During embryonic development, appropriate dorsoventral patterning of the trachea leads to the formation of periodic cartilage rings from the ventral mesenchyme and continuous smooth muscle from the dorsal mesenchyme. In this work, we have investigated the role of two crucial morphogens, fibroblast growth factor 10 and sonic hedgehog, in the formation of periodically alternating cartilaginous and non-cartilaginous domains in the ventral mesenchyme. Using a combination of gain- and loss-of-function approaches for FGF10 and SHH, we demonstrate that precise spatio-temporal patterns and appropriate levels of expression of these two signaling molecules in the ventral area are crucial between embryonic day 11.5 and 13.5 for the proper patterning of the cartilage rings. We conclude that the expression level of FGF10 in the mesenchyme has to be within a critical range to allow for periodic expression of Shh in the ventral epithelium, and consequently for the correct patterning of the cartilage rings. We propose that disturbed balances of Fgf10 and Shh may explain a subset of human tracheomalacia without tracheo-esophageal fistula or tracheal atresia.
Collapse
Affiliation(s)
- Frédéric G. Sala
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Pierre-Marie Del Moral
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Caterina Tiozzo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tracy Grikscheit
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jacqueline M. Veltmaat
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Saverio Bellusci
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, Department of Internal Medicine II, Klinikstrasse 36, 35392 Giessen, Germany
| |
Collapse
|
21
|
Lade AG, Monga SPS. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2010; 240:486-500. [PMID: 21337461 DOI: 10.1002/dvdy.22522] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling cascade that plays key roles in development and adult tissue homeostasis and is aberrantly activated in many tumors. Over a decade of work in mouse, chick, xenopus, and zebrafish models has uncovered multiple functions of this pathway in hepatic pathophysiology. Specifically, beta-catenin, the central component of the canonical Wnt pathway, is implicated in the regulation of liver regeneration, development, and carcinogenesis. Wnt-independent activation of beta-catenin by receptor tyrosine kinases has also been observed in the liver. In liver development across various species, through regulation of cell proliferation, differentiation, and maturation, beta-catenin directs foregut endoderm specification, hepatic specification of the foregut, and hepatic morphogenesis. Its role has also been defined in adult hepatic progenitors or oval cells especially in their expansion and differentiation. Thus, beta-catenin undergoes tight temporal regulation to exhibit pleiotropic effects during hepatic development and in hepatic progenitor biology.
Collapse
|
22
|
Nyeng P, Bjerke MA, Norgaard GA, Qu X, Kobberup S, Jensen J. Fibroblast growth factor 10 represses premature cell differentiation during establishment of the intestinal progenitor niche. Dev Biol 2010; 349:20-34. [PMID: 20883684 DOI: 10.1016/j.ydbio.2010.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/29/2010] [Accepted: 09/20/2010] [Indexed: 11/30/2022]
Abstract
Spatio-temporal regulation of the balance between cell renewal and cell differentiation is of vital importance for embryonic development and adult homeostasis. Fibroblast growth factor signaling relayed from the mesenchyme to the epithelium is necessary for progenitor maintenance during organogenesis of most endoderm-derived organs, but it is still ambiguous whether the signal is exclusively mitogenic. Furthermore, the downstream mechanisms are largely unknown. In order to elucidate these questions we performed a complementary analysis of fibroblast growth factor 10 (Fgf10), gain-of-function and loss-of-function in the embryonic mouse duodenum, where the progenitor niche is clearly defined and differentiation proceeds in a spatially organized manner. In agreement with a role in progenitor maintenance, FGF10 is expressed in the duodenal mesenchyme during early development while the cognate receptor FGFR2b is expressed in the epithelial progenitor niche. Fgf10 gain-of-function in the epithelium leads to spatial expansion of the progenitor niche and repression of cell differentiation, while loss-of-function results in premature cell differentiation and subsequent epithelial hypoplasia. We conclude that FGF10 mediated mesenchymal-to-epithelial signaling maintains the progenitor niche in the embryonic duodenum primarily by repressing cell differentiation, rather than through mitogenic signaling. Furthermore, we demonstrate that FGF10-signaling targets include ETS-family transcription factors, which have previously been shown to regulate epithelial maturation and tumor progression.
Collapse
Affiliation(s)
- Pia Nyeng
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, 1775 N Ursula St. B140, 80045 Aurora, CO, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Emami CN, Petrosyan M, Giuliani S, Williams M, Hunter C, Prasadarao NV, Ford HR. Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surg Infect (Larchmt) 2010; 10:407-17. [PMID: 19943775 DOI: 10.1089/sur.2009.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a devastating disease that affects primarily the intestine of premature infants. Despite recent advances in neonatology, NEC remains a major cause of morbidity and mortality in neonates. Neonatal mucosal defenses and adherence of bacterial pathogens may play an important role in the pathogenesis of NEC. METHODS Review and synthesis of pertinent literature. RESULTS Putative factors that have been implicated in the pathogenesis of NEC include abnormal patterns of gut colonization by bacteria, immaturity of the host immune system and mucosal defense mechanisms, intestinal ischemia, formula feeding, and loss of intestinal epithelial barrier integrity. CONCLUSION Host defenses and intestinal microbial ecology are believed to play important roles in the pathogenesis of NEC. Commensal bacteria and probiotic therapy may be of therapeutic utility in the maintenance of the gut epithelial barrier.
Collapse
Affiliation(s)
- Claudia N Emami
- Department of Surgery, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, California 90027, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatic stem cells and liver development. Methods Mol Biol 2010; 640:181-236. [PMID: 20645053 DOI: 10.1007/978-1-60761-688-7_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | |
Collapse
|
25
|
Abstract
Congenital hypothyroidism is mainly due to structural defects of the thyroid gland, collectively known as thyroid dysgenesis. The two most prevalent forms of this condition are abnormal localization of differentiated thyroid tissue (thyroid ectopia) and total absence of the gland (athyreosis). The clinical picture of thyroid dysgenesis suggests that impaired specification, proliferation and survival of thyroid precursor cells and loss of concerted movement of these cells in a distinct spatiotemporal pattern are major causes of malformation. In normal development the thyroid primordium is first distinguished as a thickening of the anterior foregut endoderm at the base of the prospective tongue. Subsequently, this group of progenitors detaches from the endoderm, moves caudally and ultimately differentiates into hormone-producing units, the thyroid follicles, at a distant location from the site of specification. In higher vertebrates later stages of thyroid morphogenesis are characterized by shape remodeling into a bilobed organ and the integration of a second type of progenitors derived from the caudal-most pharyngeal pouches that will differentiate into C-cells. The present knowledge of thyroid developmental dynamics has emerged from embryonic studies mainly in chicken, mouse and more recently also in zebrafish. This review will highlight the key morphogenetic steps of thyroid organogenesis and pinpoint which crucial regulatory mechanisms are yet to be uncovered. Considering the co-incidence of thyroid dysgenesis and congenital heart malformations the possible interactions between thyroid and cardiovascular development will also be discussed.
Collapse
|
26
|
Walker MR, Brown SL, Riehl TE, Stenson WF, Stappenbeck TS. Growth factor regulation of prostaglandin-endoperoxide synthase 2 (Ptgs2) expression in colonic mesenchymal stem cells. J Biol Chem 2009; 285:5026-39. [PMID: 20018844 DOI: 10.1074/jbc.m109.032672] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously found that a population of colonic stromal cells that constitutively express high levels of prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox-2) altered their location in the lamina propria in response to injury in a Myd88-dependent manner (Brown, S. L., Riehl, T. E., Walker, M. R., Geske, M. J., Doherty, J. M., Stenson, W. F., and Stappenbeck, T. S. (2007) J. Clin. Invest. 117, 258-269). At the time of this study, the identity of these cells and the mechanism by which they expressed high levels of Ptgs2 were unknown. Here we found that these colonic stromal cells were mesenchymal stem cells (MSCs). These colonic MSCs expressed high Ptgs2 levels not through interaction with bacterial products but instead as a consequence of mRNA stabilization downstream of Fgf9 (fibroblast growth factor 9), a growth factor that is constitutively expressed by the intestinal epithelium. This stabilization was mediated partially through a mechanism involving endogenous CUG-binding protein 2 (CUGbp2). These studies suggest that Fgf9 is an important factor in the regulation of Ptgs2 in colonic MSCs and may be a factor involved in its constitutive expression in vivo.
Collapse
Affiliation(s)
- Monica R Walker
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
27
|
Tai CC, Curtis JL, Sala FG, Del Moral PM, Chokshi N, Kanard RJ, Al Alam D, Wang J, Burns RC, Ford HR, Grishin A, Wang KS, Bellusci S. Induction of fibroblast growth factor 10 (FGF10) in the ileal crypt epithelium after massive small bowel resection suggests a role for FGF10 in gut adaptation. Dev Dyn 2009; 238:294-301. [PMID: 18773490 DOI: 10.1002/dvdy.21667] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously reported that fibroblast growth factor 10 (FGF10) is crucial for the survival and proliferation of progenitor cells during embryonic gastrointestinal development. We sought to characterize the potential role of FGF10 signaling in the adaptive response following small bowel resection. Adult wild-type and Fgf10(LacZ) mice underwent 50% small bowel resection (SBR) or sham operation. Tissues were harvested 24 or 48 hr after surgery for histology, immunohistochemistry, and in situ hybridization. After SBR, Fgf10 expression was demonstrated in the epithelium at the base of the crypts. Moreover, there was a statistically significant increase in proliferating cells and goblet cells after SBR. In vitro studies using rat intestinal epithelial crypt (IEC-6) cells exposed to medium with or without recombinant FGF10 showed increased proliferation and phosphorylation of Raf and AKT with the addition of FGF10. Our results suggest that FGF10 may play a therapeutic role in diseases involving intestinal failure.
Collapse
Affiliation(s)
- Cindy C Tai
- Department of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tai CC, Sala FG, Ford HR, Wang KS, Li C, Minoo P, Grikscheit TC, Bellusci S. Wnt5a knock-out mouse as a new model of anorectal malformation. J Surg Res 2009; 156:278-82. [PMID: 19577771 DOI: 10.1016/j.jss.2009.03.087] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/13/2009] [Accepted: 03/31/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND Anorectal malformations (ARM) represent a variety of congenital disorders that involve abnormal termination of the anorectum. Mutations in Shh signaling and Fgf10 produce a variety of ARM phenotypes. Wnt signaling has been shown to be crucial during gastrointestinal development. We therefore hypothesized that Wnt5a may play a role in anorectal development. METHODS Wild type (WT), Wnt5a(+/-) and Wnt5a(-/-) embryos were harvested from timed pregnant mice from E15.5 to E18.5, and analyzed for anorectal phenotype. Tissues were processed for whole-mount in situ hybridization and histology. RESULTS Wnt5a is expressed in the embryonic WT colon and rectum. Wnt5a(-/-) mutants exhibit multiple deformities including anorectal malformation. A fistula between the urinary and intestinal tracts can be identified as early as E15.5. By E18.5, the majority of the Wnt5a(-/-) mutants display a blind-ending pouch of the distal gut. CONCLUSIONS The expression pattern of Wnt5a and the ARM phenotype seen in Wnt5a(-/-) mutants demonstrate the critical role of Wnt5a during anorectal development. This study establishes a new model of ARM involving the Wnt5a pathway.
Collapse
Affiliation(s)
- Cindy C Tai
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Geske MJ, Zhang X, Patel KK, Ornitz DM, Stappenbeck TS. Fgf9 signaling regulates small intestinal elongation and mesenchymal development. Development 2008; 135:2959-68. [PMID: 18653563 DOI: 10.1242/dev.020453] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Short bowel syndrome is an acquired condition in which the length of the small intestine is insufficient to perform its normal absorptive function. Current therapies are limited as the developmental mechanisms that normally regulate elongation of the small intestine are poorly understood. Here, we identify Fgf9 as an important epithelial-to-mesenchymal signal required for proper small intestinal morphogenesis. Mouse embryos that lack either Fgf9 or the mesenchymal receptors for Fgf9 contained a disproportionately shortened small intestine, decreased mesenchymal proliferation, premature differentiation of fibroblasts into myofibroblasts and significantly elevated Tgfbeta signaling. These findings suggest that Fgf9 normally functions to repress Tgfbeta signaling in these cells. In vivo, a small subset of mesenchymal cells expressed phospho-Erk and the secreted Tgfbeta inhibitors Fst and Fstl1 in an Fgf9-dependent fashion. The p-Erk/Fst/Fstl1-expressing cells were most consistent with intestinal mesenchymal stem cells (iMSCs). We found that isolated iMSCs expressed p-Erk, Fst and Fstl1, and could repress the differentiation of intestinal myofibroblasts in co-culture. These data suggest a model in which epithelial-derived Fgf9 stimulates iMSCs that in turn regulate underlying mesenchymal fibroblast proliferation and differentiation at least in part through inhibition of Tgfbeta signaling in the mesenchyme. Taken together, the interaction of FGF and TGFbeta signaling pathways in the intestinal mesenchyme could represent novel targets for future short bowel syndrome therapies.
Collapse
Affiliation(s)
- Michael J Geske
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
30
|
Walker MR, Stappenbeck TS. Deciphering the 'black box' of the intestinal stem cell niche: taking direction from other systems. Curr Opin Gastroenterol 2008; 24:115-20. [PMID: 18301259 DOI: 10.1097/mog.0b013e3282f4954f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Study of developmental signaling pathways suggests that the intestinal stem cell niche regulates the activity of the crypt-based epithelial progenitors during homeostasis and injury states. The cellular origin of these signals, however, remains poorly defined. Here, we examine the current state of knowledge regarding intestinal epithelial progenitor niches and highlight applicable lessons learned from other systems. RECENT FINDINGS Cell-cell contact, regulatory factor delivery, stem cell polarity, and mesenchymal stem cells are considered. SUMMARY Based on the findings in other niche systems as well as the overall complexity and unique organization of the intestinal progenitor niche, future studies will focus on defining peri-cryptal architecture, cellular sources of regulatory factors, and the dynamic nature of the niche during homeostasis and injury repair. These insights may lead to novel cell-based therapies for a variety of conditions that damage the mucosal lining of the gut.
Collapse
Affiliation(s)
- Monica R Walker
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | | |
Collapse
|
31
|
Parsa S, Ramasamy SK, De Langhe S, Gupte VV, Haigh JJ, Medina D, Bellusci S. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev Biol 2008; 317:121-31. [PMID: 18381212 DOI: 10.1016/j.ydbio.2008.02.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 01/31/2023]
Abstract
We previously demonstrated that Fibroblast Growth Factor 10 (FGF10) and its receptor FGFR2b play a key role in controlling the very early stages of mammary gland development during embryogenesis [Mailleux, A.A., Spencer-Dene, B., Dillon, C., Ndiaye, D., Savona-Baron, C., Itoh, N., Kato, S., Dickson, C., Thiery, J.P., and Bellusci, S. (2002). Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129, 53-60. Veltmaat, J. M., Relaix, F., Le, L.T., Kratochwil, K., Sala, F.G., van Veelen, W., Rice, R., Spencer-Dene, B., Mailleux, A.A., Rice, D.P., Thiery, J.P., and Bellusci, S. (2006). Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133, 2325-35.]. However, the role of FGFR2b signaling in postnatal mammary gland development is still elusive. We show that FGF10 is expressed at high level throughout the adipose tissue in the mammary gland of young virgin female mice whereas its main receptor FGFR2 is found mostly in the epithelium. Using a rtTA transactivator/tetracycline promoter approach allowing inducible and reversible attenuation of the FGFR2b signaling throughout the adult mouse, we are now reporting that FGFR2b signaling is also critical during postnatal mammary gland development. Ubiquitous attenuation of FGFR2b signaling in the postnatal mouse for 6 weeks starting immediately after birth is not lethal and leads to minor defects in the animal. Upon dissection of the mammary glands, a 40% reduction in size compared to the WT control is observed. Further examination shows a rudimentary mammary epithelial tree with completely absent terminal end buds (TEBs), compared to a well-branched structure observed in wild type. Transplantation of mammary gland explants into cleared fat pad of wild type mouse recipients indicates that the observed abnormal branching results from defective FGFR2b signaling in the epithelium. We also demonstrate that this rudimentary tree reforms TEBs and resumes branching upon removal of doxycycline suggesting that the regenerative capacities of the mammary epithelial progenitor cells were still functional despite long-term inactivation of the FGFR2b pathway. At the cellular level, upon FGFR2b attenuation, we show an increase in apoptosis associated with a decrease in the proliferation of the mammary luminal epithelium. We conclude that during puberty, there is a differential requirement for FGFR2b signaling in ductal vs. TEBs epithelium. FGFR2b signaling is crucial for the survival and proliferation of the mammary luminal epithelial cells, but does not affect the regenerative potential of the mammary epithelial progenitor cells.
Collapse
Affiliation(s)
- Sara Parsa
- Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Arnaud-Dabernat S, Yadav D, Sarvetnick N. FGFR3 contributes to intestinal crypt cell growth arrest. J Cell Physiol 2008; 216:261-8. [DOI: 10.1002/jcp.21401] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Berg T, Rountree CB, Lee L, Estrada J, Sala FG, Choe A, Veltmaat JM, De Langhe S, Lee R, Tsukamoto H, Crooks GM, Bellusci S, Wang KS. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via beta-catenin activation. Hepatology 2007; 46:1187-97. [PMID: 17668871 PMCID: PMC3494299 DOI: 10.1002/hep.21814] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Fibroblast growth factor (FGF) signaling and beta-catenin activation have been shown to be crucial for early embryonic liver development. This study determined the significance of FGF10-mediated signaling in a murine embryonic liver progenitor cell population as well as its relation to beta-catenin activation. We observed that Fgf10(-/-) and Fgfr2b(-/-) mouse embryonic livers are smaller than wild-type livers; Fgf10(-/-) livers exhibit diminished proliferation of hepatoblasts. A comparison of beta-galactosidase activity as a readout of Fgf10 expression in Fgf10(+/LacZ) mice and of beta-catenin activation in TOPGAL mice, demonstrated peak Fgf10 expression from E9 to E13.5 coinciding with peak beta-catenin activation. Flow cytometric isolation and marker gene expression analysis of LacZ(+) cells from E13.5 Fgf10(+/LacZ) and TOPGAL livers, respectively, revealed that Fgf10 expression and beta-catenin signaling occur distinctly in stellate/myofibroblastic cells and hepatoblasts, respectively. Moreover, hepatoblasts express Fgfr2b, which strongly suggests they can respond to recombinant FGF10 produced by stellate cells. Fgfr2b(-/-)/TOPGAL(+/+) embryonic livers displayed less beta-galactosidase activity than livers of Fgfr2b(+/+)/TOPGAL(+/+) littermates. In addition, cultures of whole liver explants in Matrigel or cell in suspension from E12.5 TOPGAL(+/+)mice displayed a marked increase in beta-galactosidase activity and cell survival upon treatment with recombinant FGF10, indicating that FGFR (most likely FGFR2B) activation is upstream of beta-catenin signaling and promote hepatoblast survival. CONCLUSION Embryonic stellate/myofibroblastic cells promote beta-catenin activation in and survival of hepatoblasts via FGF10-mediated signaling. We suggest a role for stellate/myofibroblastic FGF10 within the liver stem cell niche in supporting the proliferating hepatoblast.
Collapse
Affiliation(s)
- Tove Berg
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | - Lily Lee
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | | | - Andrea Choe
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | | | - Rene Lee
- Saban Research Institute, Childrens Hospital Los Angeles
| | - Hide Tsukamoto
- Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gay M. Crooks
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | - Kasper S. Wang
- Saban Research Institute, Childrens Hospital Los Angeles
- Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
34
|
Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, Del Moral PM, De Langhe S, Parsa S, Kelly LK, Kelly R, Shia W, Keshet E, Minoo P, Warburton D, Bellusci S. Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol 2007; 307:237-47. [PMID: 17560563 PMCID: PMC3714306 DOI: 10.1016/j.ydbio.2007.04.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 01/08/2023]
Abstract
The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression. In this paper, we have generated an allelic series to determine the impact of Fgf10 dosage on lung development. We report that 80% of the newborn Fgf10 hypomorphic mice die within 24 h of birth due to respiratory failure. These mutant mouse lungs display severe hypoplasia, dilation of the distal airways and large hemorrhagic areas. Epithelial differentiation and proliferation studies indicate a specific decrease in TTF1 and SP-B expressing cells correlating with reduced epithelial cell proliferation and associated with a decrease in activation of the canonical Wnt signaling in the epithelium. Analysis of vascular development shows a reduction in PECAM expression at E14.5, which is associated with a simplification of the vascular tree at E18.5. We also show a decrease in alpha-SMA expression in the respiratory airway suggesting defective smooth muscle cell formation. At the molecular level, these defects are associated with decrease in Vegfa and Pdgfa expression likely resulting from the decrease of the epithelial/mesenchymal ratio in the Fgf10 hypomorphic lungs. Thus, our results indicate that FGF10 plays a pivotal role in maintaining epithelial progenitor cell proliferation as well as coordinating alveolar smooth muscle cell formation and vascular development.
Collapse
Affiliation(s)
- Suresh K Ramasamy
- Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|