1
|
Utsunomiya N, Katsube M, Yamaguchi Y, Kumakiri M, Morimoto N, Yamada S. Sella turcica and facial bones: Morphological integration in the human fetal cranium. Orthod Craniofac Res 2024; 27:938-949. [PMID: 39049695 DOI: 10.1111/ocr.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES The cranial base plays a significant role in facial growth, and closer analyses of the morphological relationship between these two regions are needed to understand the morphogenesis of the face. Here, we aimed to study morphological integration between the sella turcica (ST) and facial bones during the fetal period using geometric morphometrics. MATERIALS AND METHODS Magnetic resonance images of 47 human fetuses in the Kyoto Collection, with crown-rump lengths of 29.8-225 mm, were included in this study. Anatomical homologous landmarks and semilandmarks were registered on the facial bones and the midsagittal contour of the ST, respectively. The shape variations in the craniofacial skeleton and the ST were statistically investigated by reducing dimensionality using principal component analysis (PCA). Subsequently, the morphological integration between the facial bones and ST was investigated using two-block partial least squares (2B-PLS) analysis. RESULTS PCA showed that small specimens represented the concave facial profile, including the mandibular protrusion and maxillary retrusion. The 2B-PLS showed a strong integration (RV coefficient = 0.523, r = .79, p < .01) between the facial bones and ST. The curvature of the anterior wall of the ST was highly associated with immature facial morphology characterized by a concave profile. CONCLUSION The strong integration between the two regions suggested that the anterior ST may be associated with facial morphology. This result quantitatively confirms previous studies reporting ST deformities in facial anomalies and induces further research using postnatal subjects.
Collapse
Affiliation(s)
- Natsuko Utsunomiya
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Yamaguchi
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanori Kumakiri
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Morriss-Kay G. A journey in the world of craniofacial development: From 1968 to the future. J Anat 2024; 245:816-828. [PMID: 38760969 PMCID: PMC11547235 DOI: 10.1111/joa.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024] Open
Abstract
This article is based on my talk at the meeting "3rd Advances in Craniosynostosis: Basic Science to Clinical Practice", held at University College, London, on 25 August 2023. It describes my contribution, together with that of my research team and external collaborators, to the field of craniofacial development. This began with my PhD research on the effects of excess vitamin A in rat embryos, which led to a study of normal as well as abnormal formation of the cranial neural tube. Many techniques for analysing morphogenetic change became available to me over the years: whole embryo culture, scanning and transmission electron microscopy, cell division analysis, immunohistochemistry and biochemical analysis of the extracellular matrix. The molecular revolution of the 1980s, and key collaborations with international research teams, enabled functional interpretation of some of the earlier morphological observations and required a change of experimental species to the mouse. Interactions between the molecular and experimental analysis of craniofacial morphogenesis in my laboratory with specialists in molecular genetics and clinicians brought my research journey near to my original aim: to contribute to a better understanding of the causes of human congenital anomalies.
Collapse
Affiliation(s)
- Gillian Morriss-Kay
- Emeritus Professor of Developmental Anatomy, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Raoul‐Duval J, Ganet A, Benichi S, Baixe P, Cornillon C, Eschapasse L, Geoffroy M, Paternoster G, James S, Laporte S, Blauwblomme T, Khonsari RH, Taverne M. Geometric growth of the normal human craniocervical junction from 0 to 18 years old. J Anat 2024; 245:842-863. [PMID: 38783688 PMCID: PMC11547232 DOI: 10.1111/joa.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The craniocervical junction (CCJ) forms the bridge between the skull and the spine, a highly mobile group of joints that allows the mobility of the head in every direction. The CCJ plays a major role in protecting the inferior brainstem (bulb) and spinal cord, therefore also requiring some stability. Children are subjected to multiple constitutive or acquired diseases involving the CCJ: primary bone diseases such as in FGFR-related craniosynostoses or acquired conditions such as congenital torticollis, cervical spine luxation, and neurological disorders. To design efficient treatment plans, it is crucial to understand the relationship between abnormalities of the craniofacial region and abnormalities of the CCJ. This can be approached by the study of control and abnormal growth patterns. Here we report a model of normal skull base growth by compiling a collection of geometric models in control children. Focused analyses highlighted specific developmental patterns for each CCJ bone, emphasizing rapid growth during infancy, followed by varying rates of growth and maturation during childhood and adolescence until reaching stability by 18 years of age. The focus was on the closure patterns of synchondroses and sutures in the occipital bone, revealing distinct closure trajectories for the anterior intra-occipital synchondroses and the occipitomastoid suture. The findings, although based on a limited dataset, showcased specific age-related changes in width and closure percentages, providing valuable insights into growth dynamics within the first 2 years of life. Integration analyses revealed intricate relationships between skull and neck structures, emphasizing coordinated growth at different stages. Specific bone covariation patterns, as found between the first and second cervical vertebrae (C1 and C2), indicated synchronized morphological changes. Our results provide initial data for designing inclusive CCJ geometric models to predict normal and abnormal growth dynamics.
Collapse
Affiliation(s)
- Juliette Raoul‐Duval
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Angèle Ganet
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Sandro Benichi
- Department of Paediatric NeurosurgeryHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
- CRMR C‐MAVEM, Filière NeuroSphinx, Hôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Pauline Baixe
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Clara Cornillon
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Lou Eschapasse
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Maya Geoffroy
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
- Institut de Biomécanique Humaine Georges Charpak, Ecole Nationale Supérieure Des Arts et MétiersParisFrance
| | - Giovanna Paternoster
- Department of Paediatric NeurosurgeryHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
- CRMR C‐MAVEM, Filière NeuroSphinx, Hôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Syril James
- Department of Paediatric NeurosurgeryHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
- CRMR C‐MAVEM, Filière NeuroSphinx, Hôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Sébastien Laporte
- Institut de Biomécanique Humaine Georges Charpak, Ecole Nationale Supérieure Des Arts et MétiersParisFrance
| | - Thomas Blauwblomme
- Department of Paediatric NeurosurgeryHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Roman H. Khonsari
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
- Department of Paediatric Maxillofacial Surgery and Plastic SurgeryHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
- Faculté de MédecineUniversité Paris CitéParisFrance
- CRMR CRANIOST, Filière TeteCou, Hôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Maxime Taverne
- Craniofacial Growth and FormHôpital Necker – Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| |
Collapse
|
4
|
Yan RE, Chae JK, Dahmane N, Ciaramitaro P, Greenfield JP. The Genetics of Chiari 1 Malformation. J Clin Med 2024; 13:6157. [PMID: 39458107 PMCID: PMC11508843 DOI: 10.3390/jcm13206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Chiari malformation type 1 (CM1) is a structural defect that involves the herniation of the cerebellar tonsils through the foramen magnum, causing mild to severe neurological symptoms. Little is known about the molecular and developmental mechanisms leading to its pathogenesis, prompting current efforts to elucidate genetic drivers. Inherited genetic disorders are reported in 2-3% of CM1 patients; however, CM1, including familial forms, is predominantly non-syndromic. Recent work has focused on identifying CM1-asscoiated variants through the study of both familial cases and de novo mutations using exome sequencing. This article aims to review the current understanding of the genetics of CM1. We discuss three broad classes of CM1 based on anatomy and link them with genetic lesions, including posterior fossa-linked, macrocephaly-linked, and connective tissue disorder-linked CM1. Although the genetics of CM1 are only beginning to be understood, we anticipate that additional studies with diverse patient populations, tissue types, and profiling technologies will reveal new insights in the coming years.
Collapse
Affiliation(s)
- Rachel E. Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - John K. Chae
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Palma Ciaramitaro
- Neuroscience Department, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy;
| | - Jeffrey P. Greenfield
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| |
Collapse
|
5
|
Yue YY, Lai CZ, Guo XS, Yang CS, Wang Y, Song GD, Jin XL. New CRISPR/Cas9-based Fgfr2 C361Y/+ mouse model of Crouzon syndrome exhibits skull and behavioral abnormalities. J Mol Med (Berl) 2024; 102:1255-1266. [PMID: 39158595 DOI: 10.1007/s00109-024-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Crouzon syndrome (CS), a syndromic craniosynostosis, is a craniofacial developmental deformity caused by mutations in fibroblast growth factor receptor 2 (FGFR2). Previous CS mouse models constructed using traditional gene editing techniques faced issues such as low targeting efficiency, extended lineage cycles, and inconsistent and unstable phenotypes. In this study, a CRISPR/Cas9-mediated strategy was employed to induce a functional augmentation of the Fgfr2 point mutation in mice. Various techniques, including bone staining, micro-CT, histological methods, and behavioral experiments, were employed to systematically examine and corroborate phenotypic disparities between mutant mice (Fgfr2C361Y/+) and their wild-type littermates. Confirmed via PCR-Sanger sequencing, we successfully induced the p.Cys361Tyr missense mutation in the Fgfr2 IIIc isoform of the extracellular domain (corresponding to the p.Cys342Tyr mutation in humans) based on Fgfr2-215 transcript (ENSMUST00000122054.8). Fgfr2C361Y/+ mice exhibited characteristics consistent with the phenotypic features associated with CS, including skull-vault craniosynostosis, skull deformity, shallow orbits accompanied by exophthalmos, midface hypoplasia with malocclusion, and shortened skull base, notably without any apparent limb defects. Furthermore, mutant mice displayed behavioral abnormalities encompassing deficits in learning and memory, social interaction, and motor dysfunction, without anxiety-related disorders. Histopathological examination of the hippocampal region revealed structural abnormalities, suggesting possible brain development impairment secondary to craniosynostosis. In conclusion, we constructed a novel gene-edited Fgfr2C361Y/+ mice strain based on CRISPR/Cas9, which displayed skull and behavioral abnormalities, serving as a new model for studying genetic molecular mechanisms and exploring treatments for CS. KEY MESSAGES: CRISPR/Cas9 crafted a Crouzon model by enhancing Fgfr2-C361Y in mice. Fgfr2C361Y/+ mice replicate CS phenotypes-craniosynostosis and midface anomalies. Mutant mice show diverse behavioral abnormalities, impacting learning and memory. Fgfr2C361Y/+ mice offer a novel model for cranial suture studies and therapeutic exploration.
Collapse
Affiliation(s)
- Ying Ying Yue
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen-Zhi Lai
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Shuang Guo
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang-Sheng Yang
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Wang
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guo-Dong Song
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Lei Jin
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Kishinchand R, Boyce M, Vyas H, Sewell L, Mohi A, Brengartner L, Miller R, Gorr MW, Wold LE, Cray J. In Utero Exposure to Maternal Electronic Nicotine Delivery System use Demonstrate Alterations to Craniofacial Development. Cleft Palate Craniofac J 2024; 61:1389-1397. [PMID: 36916055 DOI: 10.1177/10556656231163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVE Develop a model for the study of Electronic Nicotine Device (ENDS) exposure on craniofacial development. DESIGN Experimental preclinical design followed as pregnant murine dams were randomized and exposed to filtered air exposure, carrier exposure consisting of 50% volume of propylene glycol and vegetable glycine (ENDS Carrier) respectively, or carrier exposure with 20 mg/ml of nicotine added to the liquid vaporizer (ENDS carrier with nicotine). SETTING Preclinical murine model exposure using the SciReq exposure system. PARTICIPANTS C57BL6 adult 8 week old female pregnant mice and exposed in utero litters. INTERVENTIONS Exposure to control filtered air, ENDS carrier or ENDS carrier with nicotine added throughout gestation at 1 puff/minute, 4 h/day, five days a week. MAIN OUTCOME MEASURES Cephalometric measures of post-natal day 15 pups born as exposed litters. RESULTS Data suggests alterations to several facial morphology parameters in the developing offspring, suggesting electronic nicotine device systems may alter facial growth if used during pregnancy. CONCLUSIONS Future research should concentrate on varied formulations and exposure regimens of ENDS to determine timing windows of exposures and ENDS formulations that may be harmful to craniofacial development.
Collapse
Affiliation(s)
- Rajiv Kishinchand
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mark Boyce
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Heema Vyas
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Leslie Sewell
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Amr Mohi
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Lexie Brengartner
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Roy Miller
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew W Gorr
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Loren E Wold
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Li D, Jiang X, Xiao J, Liu C. A novel perspective of calvarial development: the cranial morphogenesis and differentiation regulated by dura mater. Front Cell Dev Biol 2024; 12:1420891. [PMID: 38979034 PMCID: PMC11228331 DOI: 10.3389/fcell.2024.1420891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
There are lasting concerns on calvarial development because cranium not only accommodates the growing brain, but also safeguards it from exogenous strikes. In the past decades, most studies attributed the dynamic expansion and remodeling of cranium to the proliferation of osteoprecursors in cranial primordium, and the proliferation of osteoprogenitors at the osteogenic front of cranial suture mesenchyme. Further investigations identified series genes expressed in suture mesenchymal cells as the markers of the progenitors, precursors and postnatal stem cells in cranium. However, similar to many other organs, it is suggested that the reciprocal interactions among different tissues also play essential roles in calvarial development. Actually, there are increasing evidence indicating that dura mater (DM) is indispensable for the calvarial morphogenesis and osteogenesis by secreting multiple growth factors, cytokines and extracellular matrix (ECM). Thus, in this review, we first briefly introduce the development of cranium, suture and DM, and then, comprehensively summarize the latest studies exploring the involvement of ECM in DM and cranium development. Eventually, we discussed the reciprocal interactions between calvarium and DM in calvarial development. Actually, our review provides a novel perspective for cranium development by integrating previous classical researches with a spotlight on the mutual interplay between the developing DM and cranium.
Collapse
Affiliation(s)
| | | | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Guyodo H, Rizzo A, Diab F, Noury F, Mironov S, de Tayrac M, David V, Odent S, Dubourg C, Dupé V. Impact of Sonic Hedgehog-dependent sphenoid bone defect on craniofacial growth. Clin Exp Dent Res 2024; 10:e861. [PMID: 38558491 PMCID: PMC10982674 DOI: 10.1002/cre2.861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES The main objective of this study was to evaluate how an apparently minor anomaly of the sphenoid bone, observed in a haploinsufficient mouse model for Sonic Hedgehog (Shh), affects the growth of the adult craniofacial region. This study aims to provide valuable information to orthodontists when making decisions regarding individuals carrying SHH mutation. MATERIALS AND METHODS The skulls of embryonic, juvenile and adult mice of two genotypes (Shh heterozygous and wild type) were examined and measured using landmark-based linear dimensions. Additionally, we analysed the clinical characteristics of a group of patients and their relatives with SHH gene mutations. RESULTS In the viable Shh+/ - mouse model, bred on a C57BL/6J background, we noted the presence of a persistent foramen at the midline of the basisphenoid bone. This particular anomaly was attributed to the existence of an ectopic pituitary gland. We discovered that this anomaly led to premature closure of the intrasphenoidal synchondrosis and contributed to craniofacial deformities in adult mice, including a longitudinally shortened skull base. This developmental anomaly is reminiscent of that commonly observed in human holoprosencephaly, a disorder resulting from a deficiency in SHH activity. However, sphenoid morphogenesis is not currently monitored in individuals carrying SHH mutations. CONCLUSION Haploinsufficiency of Shh leads to isolated craniofacial skeletal hypoplasia in adult mouse. This finding highlights the importance of radiographic monitoring of the skull base in all individuals with SHH gene mutations.
Collapse
Affiliation(s)
- Hélène Guyodo
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Aurélie Rizzo
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Farah Diab
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), “Maladies génétiques d'expression pédiatrique”ParisFrance
| | - Fanny Noury
- Faculté des Sciences Pharmaceutiques et BiologiquesUniv Rennes, INSERM, LTSI ‐ UMR 1099RennesFrance
| | - Svetlana Mironov
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
- Service de Génétique Moléculaire et Génomique, CHURennesFrance
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
- Service de Génétique Clinique, CHURennesFrance
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
- Service de Génétique Moléculaire et Génomique, CHURennesFrance
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| |
Collapse
|
9
|
Greer SE, Haller SJ, Lee D, Dudley AT. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol Biol Cell 2024; 35:ar49. [PMID: 38294852 PMCID: PMC11064670 DOI: 10.1091/mbc.e23-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spatial and temporal regulation of chondrocyte maturation in the growth plate drives growth of many bones. One essential event to generate the ordered cell array characterizing growth plate cartilage is the formation of chondrocyte columns in the proliferative zone via 90-degree rotation of daughter cells to align with the long axis of the bone. Previous studies have suggested crucial roles for cadherins and integrin β1 in column formation. The purpose of this study was to determine the relative contributions of cadherin- and integrin-mediated cell adhesion in column formation. Here we present new mechanistic insights generated by application of live time-lapse confocal microscopy of cranial base explant cultures, robust genetic mouse models, and new quantitative methods to analyze cell behavior. We show that conditional deletion of either the cell-cell adhesion molecule Cdh2 or the cell-matrix adhesion molecule Itgb1 disrupts column formation. Compound mutants were used to determine a potential reciprocal regulatory interaction between the two adhesion surfaces and identified that defective chondrocyte rotation in a N-cadherin mutant was restored by a heterozygous loss of integrin β1. Our results support a model for which integrin β1, and not N-cadherin, drives chondrocyte rotation and for which N-cadherin is a potential negative regulator of integrin β1 function.
Collapse
Affiliation(s)
- Sydney E. Greer
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephen J. Haller
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Donghee Lee
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
10
|
Ortiz García IM, Rodríguez Valero P, Jorques Infante AM, Cordero Tous N, Expósito Hernández J, Olivares Granados G. Long-term Experience of LINAC Single-Dose Radiosurgery for Skull Base Meningiomas: A Retrospective Single-Center Study of 241 Cases. Oper Neurosurg (Hagerstown) 2023; 25:529-537. [PMID: 37655877 DOI: 10.1227/ons.0000000000000887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Stereotactic radiosurgery (SRS) is increasingly applied to treat meningiomas, attributable to their increased incidence in older individuals at greater surgical risk. To evaluate the effectiveness of treatment with linear accelerator (LINAC)-based stereotactic radiosurgery in skull base meningiomas as either primary treatment or postresection adjuvant therapy. METHODS This study included 241 patients diagnosed with skull base meningiomas treated by single-dose SRS, with a median age of 59 years. SRS was primary treatment in 68.1% (n = 164) and adjuvant treatment in 31.9% (n = 77), using LINAC (Varian 600, 6 MeV). The median tumor volume was 3.2 cm 3 , and the median coverage dose was 14 Gy. Bivariate and multivariate analyses were performed to determine predictive factors for tumor progression, clinical deterioration, and complications. Kaplan-Meier analysis was used for survival analysis. RESULTS After the median follow-up of 102 months, the tumor control rate was 91.2% (n = 220). Progression-free survival rates were 97.07%, 90.1%, and 85.7% at 5, 10, and 14 years, respectively. Clinical improvement was observed in 56 patients (23.2%). In multivariate analysis, previous surgery (hazard ratio 3.8 [95%CI 1.136-12.71], P = .030) and selectivity (hazard ratio .21 [95%CI 0.066-0.677], P = .009) were associated with tumor progression and increased maximum dose (odds ratio [OR] 4.19 [95% CI 1.287-13.653], P = .017) with clinical deterioration. The permanent adverse radiation effect rate was 6.2% (n = 15) and associated with maximum brainstem dose >12.5 Gy (OR 3.36 [95% CI .866-13.03], P = .08) and cerebellopontine angle localization (OR 3.93 [95% CI 1.29-11.98], P = .016). CONCLUSION Treatment of skull base meningiomas with single-dose SRS using LINAC is effective over the long term. Superior tumor control is obtained in patients without previous surgery. Adverse effects are related to localization in the cerebellopontine angle, and maximum brainstem radiation dose was >12.5 Gy.
Collapse
Affiliation(s)
- Isabel M Ortiz García
- Department of Neurological Surgery, "Virgen de las Nieves" University Hospital, Granada , Spain
| | - Paula Rodríguez Valero
- Department of Neurological Surgery, "Virgen de las Nieves" University Hospital, Granada , Spain
| | - Ana M Jorques Infante
- Department of Neurological Surgery, "Virgen de las Nieves" University Hospital, Granada , Spain
| | - Nicolás Cordero Tous
- Department of Neurological Surgery, "Virgen de las Nieves" University Hospital, Granada , Spain
| | - José Expósito Hernández
- Department of Radiotherapy and Oncology, "Virgen de las Nieves" University Hospital, Granada , Spain
| | | |
Collapse
|
11
|
da Cunha JI, Barauna AMD, Garcez RC. Prechordal structures act cooperatively in early trabeculae development of gnathostome skull. Cells Dev 2023; 176:203879. [PMID: 37844659 DOI: 10.1016/j.cdev.2023.203879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The vertebrate skull is formed by mesoderm and neural crest (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of prechordal plate (PCP), ventral midline (VM) cells of the diencephalon, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving SIX3 and GLI1. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of SOX9 in NC cells. BMP7 and SHH secreted by PCP induce NKX2.1 expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.
Collapse
Affiliation(s)
- Jaqueline Isoppo da Cunha
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Alessandra Maria Duarte Barauna
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ricardo Castilho Garcez
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
12
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
13
|
Toader C, Ples H, Covache-Busuioc RA, Costin HP, Bratu BG, Dumitrascu DI, Glavan LA, Ciurea AV. Decoding Chiari Malformation and Syringomyelia: From Epidemiology and Genetics to Advanced Diagnosis and Management Strategies. Brain Sci 2023; 13:1658. [PMID: 38137106 PMCID: PMC10741770 DOI: 10.3390/brainsci13121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Chiari Malformation and Syringomyelia are neurosurgical entities that have been the subject of extensive research and clinical interest. Globally prevalent, these disorders vary demographically and have witnessed evolving temporal trends. Chiari Malformation impacts the normal cerebrospinal fluid flow, consequently affecting overall health. Key observations from canine studies offer pivotal insights into the pathogenesis of Syringomyelia and its extrapolation to human manifestations. Genetics plays a pivotal role; contemporary knowledge identifies specific genes, illuminating avenues for future exploration. Clinically, these disorders present distinct phenotypes. Diagnostically, while traditional methods have stood the test of time, innovative neurophysiological techniques are revolutionizing early detection and management. Neuroradiology, a cornerstone in diagnosis, follows defined criteria. Advanced imaging techniques are amplifying diagnostic precision. In therapeutic realms, surgery remains primary. For Chiari 1 Malformation, surgical outcomes vary based on the presence of Syringomyelia. Isolated Syringomyelia demands a unique surgical approach, the effectiveness of which is continually being optimized. Post-operative long-term prognosis and quality of life measures are crucial in assessing intervention success. In conclusion, this review amalgamates existing knowledge, paving the way for future research and enhanced clinical strategies in the management of Chiari Malformation and Syringomyelia.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (L.A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Horia Ples
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology 6 (NeuroPsy-Cog), 300736 Timișoara, Romania
- Department of Neurosurgery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (L.A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (L.A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (L.A.G.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (L.A.G.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (L.A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (L.A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
14
|
Ohkura N, Nam HK, Liu F, Hatch N. Cranial Neural Crest Specific Deletion of Alpl (TNAP) via P0-Cre Causes Abnormal Chondrocyte Maturation and Deficient Cranial Base Growth. Int J Mol Sci 2023; 24:15401. [PMID: 37895082 PMCID: PMC10607232 DOI: 10.3390/ijms242015401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Bone growth plate abnormalities and skull shape defects are seen in hypophosphatasia, a heritable disorder in humans that occurs due to the deficiency of tissue nonspecific alkaline phosphatase (TNAP, Alpl) enzyme activity. The abnormal development of the cranial base growth plates (synchondroses) and abnormal skull shapes have also been demonstrated in global Alpl-/- mice. To distinguish local vs. systemic effects of TNAP on skull development, we utilized P0-Cre to knockout Alpl only in cranial neural crest-derived tissues using Alpl flox mice. Here, we show that Alpl deficiency using P0-Cre in cranial neural crest leads to skull shape defects and the deficient growth of the intersphenoid synchondrosis (ISS). ISS chondrocyte abnormalities included increased proliferation in resting and proliferative zones with decreased apoptosis in hypertrophic zones. ColX expression was increased, which is indicative of premature differentiation in the absence of Alpl. Sox9 expression was increased in both the resting and prehypertrophic zones of mutant mice. The expression of Parathyroid hormone related protein (PTHrP) and Indian hedgehog homolog (IHH) were also increased. Finally, cranial base organ culture revealed that inorganic phosphate (Pi) and pyrophosphate (PPi) have specific effects on cell signaling and phenotype changes in the ISS. Together, these results demonstrate that the TNAP expression downstream of Alpl in growth plate chondrocytes is essential for normal development, and that the mechanism likely involves Sox9, PTHrP, IHH and PPi.
Collapse
Affiliation(s)
- Naoto Ohkura
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| | - Fei Liu
- Department of Biomaterials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| |
Collapse
|
15
|
Umar M, Dong C, He F. Characterizing expression pattern of Six2Cre during mouse craniofacial development. Genesis 2023; 61:e23516. [PMID: 36999646 PMCID: PMC10527692 DOI: 10.1002/dvg.23516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023]
Abstract
Craniofacial development is a complex process involving diverse cell populations. Various transgenic Cre lines have been developed to facilitate studying gene function in specific tissues. In this study, we have characterized the expression pattern of Six2Cre mice at multiple stages during craniofacial development. Our data revealed that Six2Cre lineage cells are predominantly present in frontal bone, mandible, and secondary palate. Using immunostaining method, we found that Six2Cre triggered reporter is co-expressed with Runx2. In summary, our data showed Six2Cre can be used to study gene function during palate development and osteogenesis in mouse models.
Collapse
Affiliation(s)
- Meenakshi Umar
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Chunmin Dong
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Fenglei He
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
16
|
Pitirri MK, Richtsmeier JT, Kawasaki M, Coupe AP, Perrine SM, Kawasaki K. Come together over me: Cells that form the dermatocranium and chondrocranium in mice. Anat Rec (Hoboken) 2023:10.1002/ar.25295. [PMID: 37497849 PMCID: PMC10818014 DOI: 10.1002/ar.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Most bone develops either by intramembranous ossification where bone forms within a soft connective tissue, or by endochondral ossification by way of a cartilage anlagen or model. Bones of the skull can form endochondrally or intramembranously or represent a combination of the two types of ossification. Contrary to the classical definition of intramembranous ossification, we have previously described a tight temporo-spatial relationship between cranial cartilages and dermal bone formation and proposed a mechanistic relationship between chondrocranial cartilage and dermal bone. Here, we further investigate this relationship through an analysis of how cells organize to form cranial cartilages and dermal bone. Using Wnt1-Cre2 and Mesp1-Cre transgenic mice, we determine the derivation of cells that comprise cranial cartilages from either cranial neural crest (CNC) or paraxial mesoderm (PM). We confirm a previously determined CNC-PM boundary that runs through the hypophyseal fenestra in the cartilaginous braincase floor and identify four additional CNC-PM boundaries in the chondrocranial lateral wall, including a boundary that runs along the basal and apical ends of the hypochiasmatic cartilage. Based on the knowledge that as osteoblasts differentiate from CNC- and PM-derived mesenchyme, the differentiating cells express the transcription factor genes RUNX2 and osterix (OSX), we created a new transgenic mouse line called R2Tom. R2Tom mice carry a tdTomato reporter gene joined with an evolutionarily well-conserved enhancer sequence of RUNX2. R2Tom mice crossed with Osx-GFP mice yield R2Tom;Osx-GFP double transgenic mice in which various stages of osteoblasts and their precursors are detected with different fluorescent reporters. We use the R2Tom;Osx-GFP mice, new data on the cell derivation of cranial cartilages, histology, immunohistochemistry, and detailed morphological observations combined with data from other investigators to summarize the differentiation of cranial mesenchyme as it forms condensations that become chondrocranial cartilages and associated dermal bones of the lateral cranial wall. These data advance our previous findings of a tendency of cranial cartilage and dermal bone development to vary jointly in a coordinated manner, promoting a role for cranial cartilages in intramembranous bone formation.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Susan Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
18
|
Koyabu D. Evolution, conservatism and overlooked homologies of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220081. [PMID: 37183902 PMCID: PMC10184252 DOI: 10.1098/rstb.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/22/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, studies integrating palaeontology, embryology and experimental developmental biology have markedly altered our homological understanding of the mammalian skull. Indeed, new evidence suggests that we should revisit and restructure the conventional anatomical terminology applied to the components of the mammalian skull. Notably, these are classical problems that have remained unresolved since the ninteenth century. In this review, I offer perspectives on the overlooked problems associated with the homology, development, and conservatism of the mammalian skull, aiming to encourage future studies in these areas. I emphasise that ossification patterns, bone fusion, cranial sutures and taxon-specific neomorphic bones in the skull are virtually unexplored, and further studies would improve our homological understanding of the mammalian skull. Lastly, I highlight that overlooked bones may exist in the skull that are not yet known to science and suggest that further search is needed. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
19
|
Kyomen S, Murillo-Rincón AP, Kaucká M. Evolutionary mechanisms modulating the mammalian skull development. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220080. [PMID: 37183900 PMCID: PMC10184257 DOI: 10.1098/rstb.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Stella Kyomen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Andrea P Murillo-Rincón
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| |
Collapse
|
20
|
Hall BK, Hanken J. Modularity, homology, heterochrony: Gavin de Beer's legacy to the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220078. [PMID: 37183898 PMCID: PMC10184244 DOI: 10.1098/rstb.2022.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Modularity (segmentation), homology and heterochrony were essential concepts embraced by Gavin de Beer in his studies of the development and evolution of the vertebrate skull. While his pioneering contributions have stood the test of time, our understanding of the biological processes that underlie each concept has evolved. We assess de Beer's initial training as an experimental embryologist; his switch to comparative and descriptive studies of skulls, jaws and middle ear ossicles; and his later research on the mammalian skull, including his approach to head segmentation. The role of cells of neural crest and mesodermal origin in skull development, and developmental, palaeontological and molecular evidence for the origin of middle ear ossicles in the evolutionary transition from reptiles to mammals are used to illustrate our current understanding of modularity, homology and heterochrony. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - James Hanken
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Vakharia VN, Toescu S, Copp AJ, Thompson DNP. A topographical analysis of encephalocele locations: generation of a standardised atlas and cluster analysis. Childs Nerv Syst 2023; 39:1911-1920. [PMID: 36897404 PMCID: PMC7614697 DOI: 10.1007/s00381-023-05883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Encephaloceles are considered to result from defects in the developing skull through which meninges, and potentially brain tissue, herniate. The pathological mechanism underlying this process is incompletely understood. We aimed to describe the location of encephaloceles through the generation of a group atlas to determine whether they occur at random sites or clusters within distinct anatomical regions. METHODS Patients diagnosed with cranial encephaloceles or meningoceles were identified from a prospectively maintained database between 1984 and 2021. Images were transformed to atlas space using non-linear registration. The bone defect, encephalocele and herniated brain contents were manually segmented allowing for a 3-dimensional heat map of encephalocele locations to be generated. The centroids of the bone defects were clustered utilising a K-mean clustering machine learning algorithm in which the elbow method was used to identify the optimal number of clusters. RESULTS Of the 124 patients identified, 55 had volumetric imaging in the form of MRI (48/55) or CT (7/55) that could be used for atlas generation. Median encephalocele volume was 14,704 (IQR 3655-86,746) mm3 and the median surface area of the skull defect was 679 (IQR 374-765) mm2. Brain herniation into the encephalocele was found in 45% (25/55) with a median volume of 7433 (IQR 3123-14,237) mm3. Application of the elbow method revealed 3 discrete clusters: (1) anterior skull base (22%; 12/55), (2) parieto-occipital junction (45%; 25/55) and (3) peri-torcular (33%; 18/55). Cluster analysis revealed no correlation between the location of the encephalocele with gender (χ2 (2, n = 91) = 3.86, p = 0.15). Compared to expected population frequencies, encephaloceles were relatively more common in Black, Asian and Other compared to White ethnicities. A falcine sinus was identified in 51% (28/55) of cases. Falcine sinuses were more common (χ2 (2, n = 55) = 6.09, p = 0.05) whilst brain herniation was less common (χ2 (2, n = 55) = .16.24, p < 0.0003) in the parieto-occipital location. CONCLUSION This analysis revealed three predominant clusters for the location of encephaloceles, with the parieto-occipital junction being the most common. The stereotypic location of encephaloceles into anatomically distinct clusters and the coexistence of distinct venous malformations at certain sites suggests that their location is not random and raises the possibility of distinct pathogenic mechanisms unique to each of these regions.
Collapse
Affiliation(s)
| | - Sebastien Toescu
- Department of Neurosurgery, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Andrew J Copp
- Department of Neurosurgery, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dominic N P Thompson
- Department of Neurosurgery, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Couldwell M, Chaiyamoon A, Cardona JJ, Iwanaga J, Ezra D, Suwannakhan A, Dumont AS, Tubbs RS. Twenty Intracranial Skull Base Variations in the Same Specimen. Cureus 2023; 15:e40096. [PMID: 37425550 PMCID: PMC10328379 DOI: 10.7759/cureus.40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Anatomists and clinicians often encounter single bony anatomical variations in dry skulls and on imaging. However, a constellation of 20 such variants some that, to our knowledge, have not been previously described is noteworthy. Here, we describe an adult skull with multiple bony variations, and these are detailed and discussed. These included clival canals, an interclinoid bar with resultant foramen at the uppermost aspect of the clivus, middle clinoid process, posterior petroclinoid ligament, pterygoalar plate, septated hypoglossal canal, foramen through the anterior clinoid process, septated foramen ovale, shortened superior orbital fissure, and crista muscularis. Knowledge of individual differences in the structure of the skull may be of use to both anatomists and clinicians in the treatment of intracranial procedures as well as cranial imaging studies. Taken together, such a unique specimen is of archival value.
Collapse
Affiliation(s)
- Mitchell Couldwell
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, THA
| | - Juan J Cardona
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
| | - Joe Iwanaga
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
| | - David Ezra
- School of Nursing Science, The Academic College of Tel Aviv-Yaffo, Yaffo, ISR
| | | | - Aaron S Dumont
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, USA
- Department of Anatomical Sciences, St. George's University, St. George's, GRD
- Department of Surgery, Tulane University School of Medicine, New Orleans, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, USA
- Department of Neurosurgery, Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, USA
| |
Collapse
|
23
|
Yoshioka H, Kagawa K, Minamizaki T, Nakano M, Aubin JE, Kozai K, Tsuga K, Yoshiko Y. Developmental impairments of craniofacial bone and cartilage in transgenic mice expressing FGF10. Bone Rep 2023; 18:101692. [PMID: 37275784 PMCID: PMC10236464 DOI: 10.1016/j.bonr.2023.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Mutations in a common extracellular domain of fibroblast growth factor receptor (FGFR)-2 isoforms (type IIIb and IIIc) cause craniosynostosis syndrome and chondrodysplasia syndrome. FGF10, a major ligand for FGFR2-IIIb and FGFR1-IIIb, is a key participant in the epithelial-mesenchymal interactions required for morphogenetic events. FGF10 also regulates preadipocyte differentiation and early chondrogenesis in vitro, suggesting that FGF10-FGFR signaling may be involved in craniofacial skeletogenesis in vivo. To test this hypothesis, we used a tet-on doxycycline-inducible transgenic mouse model (FGF10 Tg) to overexpress Fgf10 from embryonic day 12.5. Fgf10 expression was 73.3-fold higher in FGF10 Tg than in wild-type mice. FGF10 Tg mice exhibited craniofacial anomalies, such as a short rostrum and mandible, an underdeveloped (cleft) palate, and no tympanic ring. Opposite effects on chondrogenesis in different anatomical regions were seen, e.g., hyperplasia in the nasal septum and hypoplasia in the mandibular condyle. We found an alternative splicing variant of Fgfr2-IIIb with a predicted translation product lacking the transmembrane domain, and suggesting a soluble form of FGFR2-IIIb (sFGFR2-IIIb), differentially expressed in some of the craniofacial bones and cartilages. Thus, excessive FGF10 may perturb signal transduction of the FGF-FGFR, leading to craniofacial skeletal abnormalities in FGF10 Tg mice.
Collapse
Affiliation(s)
- Hirotaka Yoshioka
- Department of Anatomy, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuko Kagawa
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Nakano
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatric Dentistry, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Jane E. Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
25
|
Redhead Y, Gibbins D, Lana-Elola E, Watson-Scales S, Dobson L, Krause M, Liu KJ, Fisher EMC, Green JBA, Tybulewicz VLJ. Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes. Development 2023; 150:dev201077. [PMID: 37102702 PMCID: PMC10163349 DOI: 10.1242/dev.201077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.
Collapse
Affiliation(s)
- Yushi Redhead
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | - Lisa Dobson
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Karen J. Liu
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | | - Jeremy B. A. Green
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
26
|
Baldwin MC, Zarudnaya D, Liu ZJ, Herring SW. The nasal septum and midfacial growth. Anat Rec (Hoboken) 2023. [PMID: 36965023 DOI: 10.1002/ar.25214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
The nasal septum is the only element of the chondrocranium which never completely ossifies. The persistence of this nonarticular cartilage has given rise to a variety of theories concerning cranial mechanics and growth of the midface. Previously, using pigs, we demonstrated that the septum is not a strut supporting the snout and that septal growth seems capable of stretching the overlying nasofrontal suture, a major contributor to snout elongation. Here we investigate whether abnormalities of the septum are implicated in cases of midfacial hypoplasia, in which growth of the midface is inadequate. Mild midfacial hypoplasia is common in domestic pig breeds and often severe in the Yucatan minipig, a popular laboratory breed. Normal-snouted and midfacial hypoplastic heads of standard (farm mixed breed) and minipigs ranging in age from perinatal to 12 months were dissected, imaged by CT, and/or prepared for histology. Even at birth, Yucatan minipigs with midfacial hypoplasia exhibited greater caudal ossification than normal; the ventral cartilaginous sphenoidal "tail" was diminished or missing. In addition, cells that morphologically appeared to have divided recently were less numerous than in newborn standard pigs. Juvenile Yucatan minipigs lacked caudal cartilaginous growth zones almost completely. In standard newborns, the ventral caudal septum was more replicative than the dorsal, but this trend was not seen in Yucatan newborns. In conclusion, accelerated maturation of the caudal septum was associated with midfacial hypoplasia, a further indication that the septum, particularly its ventral portion, is important for midfacial elongation.
Collapse
Affiliation(s)
- Michael C Baldwin
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Diana Zarudnaya
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Zi-Jun Liu
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| | - Susan W Herring
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| |
Collapse
|
27
|
Onai T, Aramaki T, Takai A, Kakiguchi K, Yonemura S. Cranial cartilages: Players in the evolution of the cranium during evolution of the chordates in general and of the vertebrates in particular. Evol Dev 2023; 25:197-208. [PMID: 36946416 DOI: 10.1111/ede.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
The present contribution is chiefly a review, augmented by some new results on amphioxus and lamprey anatomy, that draws on paleontological and developmental data to suggest a scenario for cranial cartilage evolution in the phylum chordata. Consideration is given to the cartilage-related tissues of invertebrate chordates (amphioxus and some fossil groups like vetulicolians) as well as in the two major divisions of the subphylum Vertebrata (namely, agnathans, and gnathostomes). In the invertebrate chordates, which can be considered plausible proxy ancestors of the vertebrates, only a viscerocranium is present, whereas a neurocranium is absent. For this situation, we examine how cartilage-related tissues of this head region prefigure the cellular cartilage types in the vertebrates. We then focus on the vertebrate neurocranium, where cyclostomes evidently lack neural-crest derived trabecular cartilage (although this point needs to be established more firmly). In the more complex gnathostome, several neural-crest derived cartilage types are present: namely, the trabecular cartilages of the prechordal region and the parachordal cartilage the chordal region. In sum, we present an evolutionary framework for cranial cartilage evolution in chordates and suggest aspects of the subject that should profit from additional study.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, School of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Toshihiro Aramaki
- Laboratory for Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Akira Takai
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics, Research, Osaka, Japan
| | - Kisa Kakiguchi
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics, Research, Hyogo, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics, Research, Hyogo, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima, Japan
| |
Collapse
|
28
|
Smith TD, Ruf I, DeLeon VB. Ontogenetic transformation of the cartilaginous nasal capsule in mammals, a review with new observations on bats. Anat Rec (Hoboken) 2023. [PMID: 36647334 DOI: 10.1002/ar.25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The nasal capsule, as the most rostral part of the chondrocranium, is a critical point of connection with the facial skeleton. Its fate may influence facial form, and the varied fates of cartilage may be a vehicle contributing to morphological diversity. Here, we review ontogenetic changes in the cartilaginous nasal capsule of mammals, and make new observations on perinatal specimens of two chiropteran species of different suborders. Our observations reveal some commonalities between Rousettus leschenaultii and Desmodus rotundus, such as perinatal ossification of the first ethmoturbinal. However, in Rousettus, ossification of turbinals is demonstrated as either perichondrial or endochondral. In Desmodus, perichondrial and endochondral ossification of the posterior nasal cupula is observed at birth, a part of the nasal capsule previously shown to persist as cartilage into infancy in Rousettus. Combined with prior findings on cranial cartilages we identify several diverse transformational mechanisms by which cartilage as a tissue type may contribute to morphological diversity of the cranium. First, cartilage differentiates in an iterative fashion to increase nasal complexity, but still retains the capacity for later elaboration via de novo bone emanating outward before or after cartilage ossifies. Second, cartilage acts as a driver of growth at growth centers, or via interstitial growth (e.g., septal cartilage). Finally, cartilage as a tissue may influence the timing of ossification and union of the facial and basicranial skeleton. In particular, cartilage at certain points of ontogeny may "model" via selective resorption, showing some similarity to bone.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Kuroda S, Adachi N, Kuratani S. A detailed redescription of the mesoderm/neural crest cell boundary in the murine orbitotemporal region integrates the mammalian cranium into a pan-amniote cranial configuration. Evol Dev 2023; 25:32-53. [PMID: 35909296 DOI: 10.1111/ede.12411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 01/13/2023]
Abstract
The morphology of the mammalian chondrocranium appears to differ significantly from those of other amniotes, since the former possesses uniquely developed brain and cranial sensory organs. In particular, a question has long remained unanswered as to the developmental and evolutionary origins of a cartilaginous nodule called the ala hypochiasmatica. In this study, we investigated the embryonic origin of skeletal elements in the murine orbitotemporal region by combining genetic cell lineage analysis with detailed morphological observation. Our results showed that the mesodermal embryonic environment including the ala hypochiasmatica, which appeared as an isolated mesodermal distribution in the neural crest-derived prechordal region, is formed as a part of the mesoderm that continued from the chordal region during early chondrocranial development. The mesoderm/neural crest cell boundary in the head mesenchyme is modified through development, resulting in the secondary mesodermal expansion to invade into the prechordal region. We thus revealed that the ala hypochiasmatica develops as the frontier of the mesodermal sheet stretched along the cephalic flexure. These results suggest that the mammalian ala hypochiasmatica has evolved from a part of the mesodermal primary cranial wall in ancestral amniotes. In addition, the endoskeletal elements in the orbitotemporal region, such as the orbital cartilage, suprapterygoid articulation of the palatoquadrate, and trabecula, some of which were once believed to represent primitive traits of amniotes and to be lost in the mammalian lineage, have been confirmed to exist in the mammalian cranium. Consequently, the mammalian chondrocranium can now be explained in relation to the pan-amniote cranial configuration.
Collapse
Affiliation(s)
- Shunya Kuroda
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan.,Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.,Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research (CPR), Kobe, Hyogo, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| |
Collapse
|
30
|
Rose CS. The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs. PLoS One 2023; 18:e0277110. [PMID: 36634116 PMCID: PMC9836273 DOI: 10.1371/journal.pone.0277110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/19/2022] [Indexed: 01/13/2023] Open
Abstract
As the first and sometimes only skeletal tissue to appear, cartilage plays a fundamental role in the development and evolution of vertebrate body shapes. This is especially true for amphibians whose largely cartilaginous feeding skeleton exhibits unparalleled ontogenetic and phylogenetic diversification as a consequence of metamorphosis. Fully understanding the evolutionary history, evolvability and regenerative potential of cartilage requires in-depth analysis of how chondrocytes drive growth and shape change. This study is a cell-level description of the larval growth and postembryonic shape change of major cartilages of the feeding skeleton of a metamorphosing amphibian. Histology and immunohistochemistry are used to describe and quantify patterns and trends in chondrocyte size, shape, division, death, and arrangement, and in percent matrix from hatchling to froglet for the lower jaw, hyoid and branchial arch cartilages of Xenopus laevis. The results are interpreted and integrated into programs of cell behaviors that account for the larval growth and histology, and metamorphic remodeling of each element. These programs provide a baseline for investigating hormone-mediated remodeling, cartilage regeneration, and intrinsic shape regulating mechanisms. These programs also contain four features not previously described in vertebrates: hypertrophied chondrocytes being rejuvenated by rapid cell cycling to a prechondrogenic size and shape; chondrocytes dividing and rearranging to reshape a cartilage; cartilage that lacks a perichondrium and grows at single-cell dimensions; and an adult cartilage forming de novo in the center of a resorbing larval one. Also, the unexpected superimposition of cell behaviors for shape change onto ones for larval growth and the unprecedented exploitation of very large and small cell sizes provide new directions for investigating the development and evolution of skeletal shape and metamorphic ontogenies.
Collapse
Affiliation(s)
- Christopher S. Rose
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
32
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
|
33
|
Hallett SA, Zhou A, Herzog C, Arbiv A, Ono W, Ono N. Cranial Base Synchondrosis Lacks PTHrP-Expressing Column-Forming Chondrocytes. Int J Mol Sci 2022; 23:7873. [PMID: 35887221 PMCID: PMC9315528 DOI: 10.3390/ijms23147873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The cranial base contains a special type of growth plate termed the synchondrosis, which functions as the growth center of the skull. The synchondrosis is composed of bidirectional opposite-facing layers of resting, proliferating, and hypertrophic chondrocytes, and lacks the secondary ossification center. In long bones, the resting zone of the epiphyseal growth plate houses a population of parathyroid hormone-related protein (PTHrP)-expressing chondrocytes that contribute to the formation of columnar chondrocytes. Whether PTHrP+ chondrocytes in the synchondrosis possess similar functions remains undefined. Using Pthrp-mCherry knock-in mice, we found that PTHrP+ chondrocytes predominantly occupied the lateral wedge-shaped area of the synchondrosis, unlike those in the femoral growth plate that reside in the resting zone within the epiphysis. In vivo cell-lineage analyses using a tamoxifen-inducible Pthrp-creER line revealed that PTHrP+ chondrocytes failed to establish columnar chondrocytes in the synchondrosis. Therefore, PTHrP+ chondrocytes in the synchondrosis do not possess column-forming capabilities, unlike those in the resting zone of the long bone growth plate. These findings support the importance of the secondary ossification center within the long bone epiphysis in establishing the stem cell niche for PTHrP+ chondrocytes, the absence of which may explain the lack of column-forming capabilities of PTHrP+ chondrocytes in the cranial base synchondrosis.
Collapse
Affiliation(s)
- Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (A.Z.); (A.A.)
| | - Annabelle Zhou
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (A.Z.); (A.A.)
| | - Curtis Herzog
- Department of Oral and Maxillofacial Surgery, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA;
| | - Ariel Arbiv
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (A.Z.); (A.A.)
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA;
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA
| |
Collapse
|
34
|
Hallett SA, Ono W, Franceschi RT, Ono N. Cranial Base Synchondrosis: Chondrocytes at the Hub. Int J Mol Sci 2022; 23:7817. [PMID: 35887171 PMCID: PMC9317907 DOI: 10.3390/ijms23147817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/04/2023] Open
Abstract
The cranial base is formed by endochondral ossification and functions as a driver of anteroposterior cranial elongation and overall craniofacial growth. The cranial base contains the synchondroses that are composed of opposite-facing layers of resting, proliferating and hypertrophic chondrocytes with unique developmental origins, both in the neural crest and mesoderm. In humans, premature ossification of the synchondroses causes midfacial hypoplasia, which commonly presents in patients with syndromic craniosynostoses and skeletal Class III malocclusion. Major signaling pathways and transcription factors that regulate the long bone growth plate-PTHrP-Ihh, FGF, Wnt, BMP signaling and Runx2-are also involved in the cranial base synchondrosis. Here, we provide an updated overview of the cranial base synchondrosis and the cell population within, as well as its molecular regulation, and further discuss future research opportunities to understand the unique function of this craniofacial skeletal structure.
Collapse
Affiliation(s)
- Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA;
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA
| |
Collapse
|
35
|
Matula J, Polakova V, Salplachta J, Tesarova M, Zikmund T, Kaucka M, Adameyko I, Kaiser J. Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images. Sci Rep 2022; 12:8728. [PMID: 35610276 PMCID: PMC9130254 DOI: 10.1038/s41598-022-12329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of cartilaginous skeletal elements in animal models of developmental diseases.
Collapse
Affiliation(s)
- Jan Matula
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Veronika Polakova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Jakub Salplachta
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Ploen, Germany
| | - Igor Adameyko
- Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic.
| |
Collapse
|
36
|
Singh N, Heuzé Y, Holmes G. Processes and Patterns: Insights On Cranial Covariation from An Apert Syndrome Mouse Model. Dev Dyn 2022; 251:1684-1697. [PMID: 35582939 DOI: 10.1002/dvdy.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Major cell-to-cell signaling pathways, such as the fibroblast growth factors and their four receptors (FGF/FGFR), are conserved across a variety of animal forms. FGF/FGFRs are necessary to produce several "vertebrate-specific" structures, including the vertebrate head. Here, we examine the effects of the FGFR2 S252W mutation associated with Apert syndrome on patterns of cranial integration. Our data comprise micro-computed tomography images of newborn mouse skulls, bred to express the Fgfr2 S252W mutation exclusively in either neural crest or mesoderm-derived tissues, and mice that express the Fgfr2 S252W mutation ubiquitously. RESULTS Procrustes-based methods and partial least squares analysis were used to analyze craniofacial integration patterns. We found that deviations in the direction and degree of integrated shape change across the mouse models used in our study were potentially driven by the modular variation generated by differing expression of the Fgfr2 mutation in cranial tissues. CONCLUSIONS Our overall results demonstrate that covariation patterns can be biased by the spatial distribution and magnitude of variation produced by underlying developmental-genetic mechanisms that often impact the phenotype in disproportionate ways. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nandini Singh
- Department of Anthropology, California State University, Sacramento, CA
| | - Yann Heuzé
- Université de Bordeaux, CNRS, MC, PACEA, Pessac, France
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
37
|
Micro-computed tomography assessment of bone structure in aging mice. Sci Rep 2022; 12:8117. [PMID: 35581227 PMCID: PMC9114112 DOI: 10.1038/s41598-022-11965-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
High-resolution computed tomography (CT) is widely used to assess bone structure under physiological and pathological conditions. Although the analytic protocols and parameters for micro-CT (μCT) analyses in mice are standardized for long bones, vertebrae, and the palms in aging mice, they have not yet been established for craniofacial bones. In this study, we conducted a morphometric assessment of craniofacial bones, in comparison with long bones, in aging mice. Although age-related changes were observed in the microarchitecture of the femur, tibia, vertebra, and basisphenoid bone, and were more pronounced in females than in males, the microarchitecture of both the interparietal bone and body of the mandible, which develop by intramembranous ossification, was less affected by age and sex. By contrast, the condyle of the mandible was more affected by aging in males compared to females. Taken together, our results indicate that mouse craniofacial bones are uniquely affected by age and sex.
Collapse
|
38
|
Utsunomiya N, Katsube M, Yamaguchi Y, Yoneyama A, Morimoto N, Yamada S. The first 3D analysis of the sphenoid morphogenesis during the human embryonic period. Sci Rep 2022; 12:5259. [PMID: 35347174 PMCID: PMC8960892 DOI: 10.1038/s41598-022-08972-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The sphenoid has a complicated shape, and its morphogenesis during early development remains unknown. We aimed to elucidate the detailed morphogenesis of the sphenoid and to visualize it three-dimensionally using histological section (HS) and phase-contrast X-ray CT (PCX-CT). We examined 54 specimens using HS and 57 specimens using PCX-CT, and summarized the initial morphogenesis of the sphenoid during Carnegie stage (CS) 17 to 23. The 3D models reconstructed using PCX-CT demonstrated that some neural foramina have the common process of "neuro-advanced" formation and revealed that shape change in the anterior sphenoid lasts longer than that of the posterior sphenoid, implying that the anterior sphenoid may have plasticity to produce morphological variations in the human face. Moreover, we measured the cranial base angle (CBA) in an accurate midsagittal section acquired using PCX-CT and found that the CBA against CS was largest at CS21. Meanwhile, CBA against body length showed no striking peak, suggesting that the angulation during the embryonic period may be related to any developmental events along the progress of stages rather than to a simple body enlargement. Our study elucidated the normal growth of the embryonic sphenoid, which has implications for the development and evolution of the human cranium.
Collapse
Affiliation(s)
- Natsuko Utsunomiya
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yutaka Yamaguchi
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Hur MS, Lee S, Jung HS, Schneider RA. Anatomical connections among the depressor supercilii, levator labii superioris alaeque nasi, and inferior fibers of orbicularis oculi: Implications for variation in human facial expressions. PLoS One 2022; 17:e0264148. [PMID: 35231048 PMCID: PMC8887774 DOI: 10.1371/journal.pone.0264148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to determine how the depressor supercilii (DS) connects to the levator labii superioris alaeque nasi (LLSAN) and inferior fibers of the orbicularis oculi (OOc INF) in the human midface. While grimacing, contraction of the DS with fibers connecting to the LLSAN and OOc INF can assist in pulling the medial eyebrow downward more than when these connecting fibers are not present. Contraction of these distinct connecting fibers between the DS and the LLSAN can also slightly elevate the nasal ala and upper lip. The DS was examined in 44 specimens of embalmed adult Korean cadavers. We found that the DS connected to the LLSAN or the OOc INF by muscle fibers or thin aponeuroses in 33 (75.0%) of the 44 specimens. The DS was connected to both the LLSAN and OOc INF by muscle fibers or aponeuroses and had no connection to either in 5 (11.4%) and 11 (25.0%) specimens, respectively. The DS was connected to the LLSAN by the muscle fibers and thin aponeuroses in 6 (13.6%) and 4 (9.1%) specimens, respectively. The DS was connected to the OOc INF by the muscle fibers and thin aponeuroses in 5 (11.4%) and 23 (52.3%) specimens, respectively. Our findings regarding the anatomical connections of the glabellar region DS to the midface LLSAN and OOc INF provide insights on the dynamic balance between the brow depressors such as the DS and brow-elevating muscle and contribute to understanding the anatomical origins of individual variation in facial expressions. These results can also improve the safety, predictability, and aesthetics of treatments for the glabellar region with botulinum toxin type A and can be helpful when performing electromyography.
Collapse
Affiliation(s)
- Mi-Sun Hur
- Department of Anatomy, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Seunggyu Lee
- Division of Applied Mathematical Sciences, Korea University, Sejong, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
40
|
Kitazawa T, Minoux M, Ducret S, Rijli FM. Different Ectopic Hoxa2 Expression Levels in Mouse Cranial Neural Crest Cells Result in Distinct Craniofacial Anomalies and Homeotic Phenotypes. J Dev Biol 2022; 10:jdb10010009. [PMID: 35225962 PMCID: PMC8883995 DOI: 10.3390/jdb10010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Providing appropriate positional identity and patterning information to distinct rostrocaudal subpopulations of cranial neural crest cells (CNCCs) is central to vertebrate craniofacial morphogenesis. Hox genes are not expressed in frontonasal and first pharyngeal arch (PA1) CNCCs, whereas a single Hox gene, Hoxa2, is necessary to provide patterning information to second pharyngeal arch (PA2) CNCCs. In frog, chick and mouse embryos, ectopic expression of Hoxa2 in Hox-negative CNCCs induced hypoplastic phenotypes of CNCC derivatives of variable severity, associated or not with homeotic transformation of a subset of PA1 structures into a PA2-like identity. Whether these different morphological outcomes are directly related to distinct Hoxa2 overexpression levels is unknown. To address this issue, we selectively induced Hoxa2 overexpression in mouse CNCCs, using a panel of mouse lines expressing different Hoxa2 ectopic expression levels, including a newly generated Hoxa2 knocked-in mouse line. While ectopic Hoxa2 expression at only 60% of its physiological levels was sufficient for pinna duplication, ectopic Hoxa2 expression at 100% of its normal level was required for complete homeotic repatterning of a subset of PA1 skeletal elements into a duplicated set of PA2-like elements. On the other hand, ectopic Hoxa2 overexpression at non-physiological levels (200% of normal levels) led to an almost complete loss of craniofacial skeletal structures. Moreover, ectopic Hoxa5 overexpression in CNCCs, while also resulting in severe craniofacial defects, did not induce homeotic changes of PA1-derived CNCCs, indicating Hoxa2 specificity in repatterning a subset of Hox-negative CNCCs. These results reconcile some discrepancies in previously published experiments and indicate that distinct subpopulations of CNCCs are differentially sensitive to ectopic levels of Hox expression.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
- INSERM UMR 1121, Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67 000 Strasbourg, France
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
- Departement Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- Correspondence:
| |
Collapse
|
41
|
Zhang H, Louie KW, Kulkarni AK, Zapien‐Guerra K, Yang J, Mishina Y. The Posterior Part Influences the Anterior Part of the Mouse Cranial Base Development. JBMR Plus 2021; 6:e10589. [PMID: 35229066 PMCID: PMC8861986 DOI: 10.1002/jbm4.10589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The cranial base is a critical structure in the head, which is composed of endoskeletal and dermal skeletal. The braincase floor, part of the cranial base, is a midline structure of the head. Because it is a midline structure connecting the posterior skull with the facial region, braincase floor is critical for the orientation of the facial structure. Shortened braincase floor leads to mid‐facial hypoplasia and malocclusions. During embryonic development, elongation of the braincase floor occurs through endochondral ossification in the parachordal cartilage, hypophyseal cartilage, and trabecular cartilage, which leads to formation of basioccipital (BO), basisphenoid (BS), and presphenoid (PS) bones, respectively. Currently, little is known about whether maturation of parachordal cartilage, hypophyseal cartilage, and trabecular cartilage occurs in a simultaneous or sequential manner and if the formation of one impacts the others. Our previous studies demonstrated that loss of function of ciliary protein Evc2 leads to premature fusion in the intersphenoid synchondrosis (ISS). In this study, we take advantage of Evc2 mutant mice to delineate the mechanism governing synchondrosis formation. Our analysis supports a cascade mechanism on the spatiotemporal regulation of the braincase floor development that the hypertrophy of parachordal cartilage (posterior side) impacts the hypertrophy of hypophyseal cartilage (middle) and trabecular cartilage (anterior side) in a sequential manner. The cascade mechanism well explains the premature fusion of the ISS in Evc2 mutant mice and is instructive to understand the specifically shortened anterior end of the braincase floor in various types of genetic syndromes. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Karen Zapien‐Guerra
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| |
Collapse
|
42
|
Hsieh YL, Wei X, Wang Y, Zhang H, Qi S, Xie D, Mishina Y, Mendonça D, Hatch N, Liu F. Chondrocyte Tsc1 controls cranial base bone development by restraining the premature differentiation of synchondroses. Bone 2021; 153:116142. [PMID: 34365025 PMCID: PMC8543925 DOI: 10.1016/j.bone.2021.116142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
Cranial base bones are formed through endochondral ossification. Synchondroses are growth plates located between cranial base bones that facilitate anterior-posterior growth of the skull. Coordinated proliferation and differentiation of chondrocytes in cranial base synchondroses is essential for cranial base bone growth. Herein, we report that constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling via Tsc1 (Tuberous sclerosis 1) deletion in chondrocytes causes abnormal skull development with decreased size and rounded shape. In contrast to decreased anterior-posterior growth of the cranial base, mutant mice also exhibited significant expansion of cranial base synchondroses including the intersphenoid synchondrosis (ISS) and the spheno-occipital synchondrosis (SOS). Cranial base synchondrosis expansion in TSC1-deficient mice was accounted for by an expansion of the resting zone due to increased cell number and size without alteration in cell proliferation. Furthermore, our data showed that mTORC1 activity is inhibited in the resting and proliferating zone chondrocytes of wild type mice, and Tsc1 deletion activated mTORC1 signaling of the chondrocytes in the resting zone area. Consequently, the chondrocytes in the resting zone of TSC1-deficient mice acquired characteristics generally attributed to pre-hypertrophic chondrocytes including high mTORC1 activity, increased cell size, and increased expression level of PTH1R (Parathyroid hormone 1 receptor) and IHH (Indian hedgehog). Lastly, treatment with rapamycin, an inhibitor of mTORC1, rescued the abnormality in synchondroses. Our results established an important role for TSC1-mTORC1 signaling in regulating cranial base bone development and showed that chondrocytes in the resting zone of synchondroses are maintained in an mTORC1-inhibitory environment.
Collapse
Affiliation(s)
- Yuan-Lynn Hsieh
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Xiaoxi Wei
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin 130021, China
| | - Yating Wang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honghao Zhang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Shuqun Qi
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Di Xie
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Daniela Mendonça
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| |
Collapse
|
43
|
Wan Y, Szabo-Rogers HL. Chondrocyte Polarity During Endochondral Ossification Requires Protein-Protein Interactions Between Prickle1 and Dishevelled2/3. J Bone Miner Res 2021; 36:2399-2412. [PMID: 34423861 DOI: 10.1002/jbmr.4428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
The expansion and growth of the endochondral skeleton requires organized cell behaviors that control chondrocyte maturation and oriented division. In other organs, these processes are accomplished through Wnt/planar cell polarity (Wnt/PCP) signaling pathway and require the protein-protein interactions of core components including Prickle1 (PK1) and Dishevelled (DVL). To determine the function of Wnt/PCP signaling in endochondral ossification of the cranial base and limb, we utilized the Prickle1Beetlejuice (Pk1Bj ) mouse line. The Pk1Bj allele has a missense mutation in the PK1 LIM1 domain that results in a hypomorphic protein. Similar to human patients with Robinow syndrome, the Prickle1Bj/Bj mouse mutants lack growth plate expansion resulting in shorter limbs and midfacial hypoplasia. Within the Prickle1Bj/Bj limb and cranial base growth plates we observe precocious maturation of chondrocytes and stalling of terminal differentiation. Intriguingly, we observed that the growth plate chondrocytes have randomized polarity based on the location of the primary cilia and the location of PRICKLE1, DVL2, and DVL3 localization. Importantly, mutant PK1Bj protein has decreased protein-protein interactions with both DVL2 and DVL3 in chondrocytes as revealed by in vivo co-immunoprecipitation and proximity ligation assays. Finally, we propose a model where the interaction between the Prickle1 LIM1 domain and DVL2 and DVL3 contributes to chondrocyte polarity and contributes to proximal-distal outgrowth of endochondral elements. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yong Wan
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather L Szabo-Rogers
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Yamamoto M, Jin Z, Hayashi S, Rodríguez‐Vázquez JF, Murakami G, Abe S. Association between the developing sphenoid and adult morphology: A study using sagittal sections of the skull base from human embryos and fetuses. J Anat 2021; 239:1300-1317. [PMID: 34268732 PMCID: PMC8602018 DOI: 10.1111/joa.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/27/2022] Open
Abstract
The developing sphenoid is regarded as a median cartilage mass (basisphenoid [BS]) with three cartilaginous processes (orbitosphenoid [OS], ala temporalis [AT], and alar process [AP]). The relationships of this initial configuration with the adult morphology are difficult to determine because of extensive membranous ossification along the cartilaginous elements. The purpose of this study was therefore to evaluate the anatomical connections between each element of the fetal sphenoid and adult morphology. Sagittal sections from 25 embryos and fetuses of gestational age 6-34 weeks and crown-rump length 12-295 mm were therefore examined and compared with horizontal and frontal sections from the other 25 late-term fetuses (217-340 mm). The OS was identified as a set of three mutually attached cartilage bars in early fetuses. At all stages, the OS-post was continuous with the anterolateral part of the BS. The BS included the notochord and Rathke's pouch remnant in embryos and early fetuses. The dorsum sellae was absent from embryos, but it protruded from the BS in early fetuses before a fossa for the hypophysis became evident. Although not higher than the hypophysis at midterm, the dorsum sellae elongated superiorly after gestational age 25 weeks. In early fetuses, the AP was located on the side immediately anterior to the otic capsule. The AT developed on the side immediately posterior to the extraocular rectus muscles. At late term, the greater wing was formed by membranous bones from the AT and AP. The AT and AP formed a complex bridge between the BS and the greater wing. A small cartilage, future medial pterygoid process (PTmed) was located inferior to the AT in early fetuses. At midterm, one endochondral bone and multiple membranous bones formed the PTmed. The lateral pterygoid process (PTlat) was formed by a single membranous bone plate. Therefore, we connected fetal elements and the adult morphology as follows. (1) Derivative of the OS makes not only the lesser wing but also the anterior margin of the body of the sphenoid. (2) Derivatives of the BS are the body of the sphenoid including the sella turcica and the dorsum sellae. (3) Most of the greater wing including the foramen rotundum and the foramen oval originate from the AT and AP and multiple membranous bones. (4) The PTmed originate from endochondral bones and multiple membranous bones, while the PTlat derive from a single membranous bone.
Collapse
Affiliation(s)
| | - Zhe‐Wu Jin
- Department of AnatomyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Shogo Hayashi
- Department of AnatomySchool of MedicineInternational University of Health and WelfareNaritaJapan
| | | | - Gen Murakami
- Division of Internal MedicineCupid‐Fair ClinicIwamizawaJapan
| | - Shinichi Abe
- Department of AnatomyTokyo Dental CollegeTokyoJapan
| |
Collapse
|
45
|
Abstract
BACKGROUND Fusion of cranial-base sutures/synchondroses presents a clinical conundrum, given their often unclear "normal" timing of closure. This study investigates the physiologic fusion timelines of cranial-base sutures/synchondroses. METHODS Twenty-three age intervals were analyzed in subjects aged 0 to 18 years. For each age interval, 10 head computed tomographic scans of healthy subjects were assessed. Thirteen cranial-base sutures/synchondroses were evaluated for patency. Partial closure in greater than or equal to 50 percent of subjects and complete bilateral closure in less than 50 percent of subjects defined the fusion "midpoint." Factor analysis identified clusters of related fusion patterns. RESULTS Two hundred thirty scans met inclusion criteria. The sutures' fusion midpoints and completion ages, respectively, were as follows: frontoethmoidal, 0 to 2 months and 4 years; frontosphenoidal, 6 to 8 months and 12 years; and sphenoparietal, 6 to 8 months and 4 years. Sphenosquamosal, sphenopetrosal, parietosquamosal, and parietomastoid sutures reached the midpoint at 6 to 8 months, 8 years, 9 to 11 months, and 12 years, respectively, but rarely completed fusion. The occipitomastoid suture partially closed in less than or equal to 30 percent of subjects. The synchondroses' fusion midpoints and completion ages, respectively, were as follows: sphenoethmoidal, 3 to 5 months and 5 years; spheno-occipital, 9 years and 17 years; anterior intraoccipital, 4 years and 10 years; and posterior intraoccipital, 18 to 23 months and 4 years. The petro-occipital synchondrosis reached the midpoint at 11 years and completely fused in less than 50 percent of subjects. Order of fusion of the sutures, but not the synchondroses, followed the anterior-to-posterior direction. Factor analysis suggested three separate fusion patterns. CONCLUSIONS The fusion timelines of cranial-base sutures/synchondroses may help providers interpret computed tomographic data of patients with head-shape abnormalities. Future work should elucidate the mechanisms and sequelae of cranial-base suture fusion that deviates from normal timelines.
Collapse
|
46
|
Rignol G, Garcia S, Authier F, Smith K, Tosello L, Marsault R, Dellugat P, Goncalves D, Brouillard M, Stavenhagen J, Santarelli L, Czech C, Gouze E. Longitudinal Imaging of the Skull Base Synchondroses Demonstrate Prevention of a Premature Ossification After Recifercept Treatment in Mouse Model of Achondroplasia. JBMR Plus 2021; 6:e10568. [PMID: 35229060 PMCID: PMC8861980 DOI: 10.1002/jbm4.10568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/12/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Guylene Rignol
- Rare Disease Unit Pfizer, Research and Development Nice France
| | | | | | - Kaamula Smith
- Université Côte d'Azur, CNRS, Inserm, iBV Nice France
| | | | | | - Pierre Dellugat
- Rare Disease Unit Pfizer, Research and Development Nice France
| | - Diogo Goncalves
- Rare Disease Unit Pfizer, Research and Development Nice France
| | | | | | | | - Christian Czech
- Rare Disease Unit Pfizer, Research and Development Nice France
| | | |
Collapse
|
47
|
Roston RA, Roth VL. Different transformations underlie blowhole and nasal passage development in a toothed whale (Odontoceti: Stenella attenuata) and a baleen whale (Mysticeti: Balaenoptera physalus). J Anat 2021; 239:1141-1156. [PMID: 34287850 PMCID: PMC8546527 DOI: 10.1111/joa.13492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 01/24/2023] Open
Abstract
Reorientation of the nasal passage away from the anteroposterior axis has evolved rarely in mammals. Unlike other mammals, cetaceans (e.g., whales, dolphins, and porpoises) have evolved a "blowhole": posteriorly repositioned nares that open dorsad. Accompanying the evolution of the blowhole, the nasal passage has rotated dorsally. Neonatal cetaceans possess a blowhole, but early in development, cetacean embryos exhibit head morphologies that resemble those of other mammals. Previous workers have proposed two developmental models for how the nasal passage reorients during prenatal ontogeny. In one model, which focused on external changes in the whole body, dorsad rotation of the head relative to the body results in dorsad rotation of the nasal passage relative to the body. A second model, based on details of the cartilaginous nasal skull, describes dorsad rotation of the nasal passage itself relative to the palate and longitudinal axis of the skull. To integrate and revise these models, we characterized both external and internal prenatal changes in a longitudinal plane that are relevant to nasal passage orientation in the body and head of the pantropical spotted dolphin (Odontoceti: Stenella attenuata). These changes were then compared to those in a prenatal series of a baleen whale, the fin whale (Mysticeti: Balaenoptera physalus), to determine if they were representative of both extant cetacean suborders. In both species, the angle between the nasal passage and the sagittal axis of the foramen magnum decreased with age. In S. attenuata, this was associated with basicranial retroflexion and midfacial lordosis: the skull appeared to fold dorsad with the presphenoid as the vertex of the angle. In contrast, in B. physalus, alignment of the nasal passage and the sagittal axis of the plane of the foramen magnum was associated with angular changes within the posterior skull (specifically, the orientations of the supraoccipital and foramen magnum relative to the posterior basicranium). With these results, we propose a new developmental model for prenatal reorientation of the odontocete nasal passage and discuss ways in which mysticetes likely deviate from this model.
Collapse
Affiliation(s)
- Rachel A. Roston
- Department of OrthodonticsSchool of DentistryUniversity of WashingtonSeattleWAUSA
- Department of BiologyDuke UniversityDurhamNCUSA
| | | |
Collapse
|
48
|
Kuroda Y, Kawaai K, Hatano N, Wu Y, Takano H, Momose A, Ishimoto T, Nakano T, Roschger P, Blouin S, Matsuo K. Hypermineralization of Hearing-Related Bones by a Specific Osteoblast Subtype. J Bone Miner Res 2021; 36:1535-1547. [PMID: 33905562 PMCID: PMC8453739 DOI: 10.1002/jbmr.4320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Auditory ossicles in the middle ear and bony labyrinth of the inner ear are highly mineralized in adult mammals. Cellular mechanisms underlying formation of dense bone during development are unknown. Here, we found that osteoblast-like cells synthesizing highly mineralized hearing-related bones produce both type I and type II collagens as the bone matrix, while conventional osteoblasts and chondrocytes primarily produce type I and type II collagens, respectively. Furthermore, these osteoblast-like cells were not labeled in a "conventional osteoblast"-specific green fluorescent protein (GFP) mouse line. Type II collagen-producing osteoblast-like cells were not chondrocytes as they express osteocalcin, localize along alizarin-labeled osteoid, and form osteocyte lacunae and canaliculi, as do conventional osteoblasts. Auditory ossicles and the bony labyrinth exhibit not only higher bone matrix mineralization but also a higher degree of apatite orientation than do long bones. Therefore, we conclude that these type II collagen-producing hypermineralizing osteoblasts (termed here auditory osteoblasts) represent a new osteoblast subtype. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Yamamoto M, Abe H, Hirouchi H, Sato M, Murakami G, Rodríguez-Vázquez JF, Abe S. Development of the cartilaginous connecting apparatuses in the fetal sphenoid, with a focus on the alar process. PLoS One 2021; 16:e0251068. [PMID: 34252104 PMCID: PMC8274926 DOI: 10.1371/journal.pone.0251068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
The human fetal sphenoid is reported to have a cartilaginous connecting apparatus known as the alar process (AP), which connects the ala temporalis (AT) (angle of the greater wing of the sphenoid) to the basisphenoid (anlage of the sphenoid body). However, how the AP develops in humans is unclear. In addition, although the AP is a common structure of the mammalian chondrocranium, little is known about whether it is really a fundamental feature in mammals. This study examined the histological sections of 20 human embryos and fetuses from 6 to 14 weeks of development, of 20 mouse embryos from embryonic days 12-18, and of 4 rats embryos form embryonic days 17 and 20. In addition, we reconsidered the definition of the AP by comparing humans and rats with mice. In humans, the AP was continuous with the basisphenoid but was separated from the AT by a thick perichondrium. Then, the AP-AT connection had a key-and-keyhole structure. Unlike a joint, no cavitation developed in this connection. In mice, there was no boundary between the AT and the basisphenoid, indicating the absence of the AP in the mouse chondrocranium. In rats, the AP was, however, separated from the AT by a thick perichondrium. Therefore, the AP can be defined as follows: the AP is temporally separated from the AT by a thick perichondrium or a key-and-keyhole structure during the fetal period. This is the first study that confirms the absence of the alar process in the mice skull, and its presence in other mammals skull should be further investigated.
Collapse
Affiliation(s)
- Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Hiroaki Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Masaki Sato
- Department of Biology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
- Division of Internal Medicine, Jikou-kai Clinic of Home Visits, Sapporo, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
50
|
Fan X, Loebel DAF, Bildsoe H, Wilkie EE, Qin J, Wang J, Tam PPL. Tissue interactions, cell signaling and transcriptional control in the cranial mesoderm during craniofacial development. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractThe cranial neural crest and the cranial mesoderm are the source of tissues from which the bone and cartilage of the skull, face and jaws are constructed. The development of the cranial mesoderm is not well studied, which is inconsistent with its importance in craniofacial morphogenesis as a source of precursor tissue of the chondrocranium, muscles, vasculature and connective tissues, mechanical support for tissue morphogenesis, and the signaling activity that mediate interactions with the cranial neural crest. Phenotypic analysis of conditional knockout mouse mutants, complemented by the transcriptome analysis of differentially enriched genes in the cranial mesoderm and cranial neural crest, have identified signaling pathways that may mediate cross-talk between the two tissues. In the cranial mesenchyme, Bmp4 is expressed in the mesoderm cells while its signaling activity could impact on both the mesoderm and the neural crest cells. In contrast, Fgf8 is predominantly expressed in the cranial neural crest cells and it influences skeletal development and myogenesis in the cranial mesoderm. WNT signaling, which emanates from the cranial neural crest cells, interacts with BMP and FGF signaling in monitoring the switch between tissue progenitor expansion and differentiation. The transcription factor Twist1, a critical molecular regulator of many aspects of craniofacial development, coordinates the activity of the above pathways in cranial mesoderm and cranial neural crest tissue compartments.
Collapse
Affiliation(s)
- Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Heidi Bildsoe
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Emilie E Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
- Bioinformatics Group, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Junwen Wang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, and Department of Biomedical Informatics, Arizona State University, Scottsdale AZ 85259, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
- School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| |
Collapse
|