1
|
Luo X, Ni X, Zhi J, Jiang X, Bai R. Small molecule agents against alopecia: Potential targets and related pathways. Eur J Med Chem 2024; 276:116666. [PMID: 39002436 DOI: 10.1016/j.ejmech.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Alopecia has emerged as a global concern, extending beyond the middle-aged and elderly population and increasingly affecting younger individuals. Despite its growing prevalence, the treatment options and effective drugs for alopecia remain limited due to the incomplete understanding of its underlying mechanisms. Therefore, it is urgent to explore the pathogenesis of alopecia and discover novel and safer therapeutic agents. This review provided an overview of the prevailing clinical disorders of alopecia, and the key pathways and targets involved in hair growth process. Additionally, it discusses FDA-approved drugs and clinical candidates for the treatment of alopecia, and explores small molecule compounds with anti-alopecia potential in the drug discovery phase. These endeavors are expected to provide researchers with valuable scientific insights and practical information for anti-alopecia drug discovery.
Collapse
Affiliation(s)
- Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
2
|
Xie K, Ning C, Yang A, Zhang Q, Wang D, Fan X. Resequencing Analyses Revealed Genetic Diversity and Selection Signatures during Rabbit Breeding and Improvement. Genes (Basel) 2024; 15:433. [PMID: 38674368 PMCID: PMC11049387 DOI: 10.3390/genes15040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Domestication has shaped the diverse characteristics of rabbits, including coat color, fur structure, body size, and various physiological traits. Utilizing whole-genome resequencing (DNBSEQ-T7), we analyzed the genetic diversity, population structure, and genomic selection across 180 rabbits from 17 distinct breeds to uncover the genetic basis of these traits. We conducted whole-genome sequencing on 17 rabbit breeds, identifying 17,430,184 high-quality SNPs and analyzing genomic diversity, patterns of genomic variation, population structure, and selection signatures related to coat color, coat structure, long hair, body size, reproductive capacity, and disease resistance. Through PCA and NJ tree analyses, distinct clusters emerged among Chinese indigenous rabbits, suggesting varied origins and domestication histories. Selective sweep testing pinpointed regions and genes linked to domestication and key morphological and economic traits, including those affecting coat color (TYR, ASIP), structure (LIPH), body size (INSIG2, GLI3), fertility (EDNRA, SRD5A2), heat stress adaptation (PLCB1), and immune response (SEC31A, CD86, LAP3). Our study identified key genomic signatures of selection related to traits such as coat color, fur structure, body size, and fertility; these findings highlight the genetic basis underlying phenotypic diversification in rabbits and have implications for breeding programs aiming to improve productive, reproductive, and adaptive traits. The detected genomic signatures of selection also provide insights into rabbit domestication and can aid conservation efforts for indigenous breeds.
Collapse
Affiliation(s)
- Kerui Xie
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Aiguo Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Dan Wang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xinzhong Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
3
|
He J, Wei C, Huang X, Zhang G, Mao J, Li X, Yang C, Zhang W, Tian K, Liu G. MiR-23b and miR-133 Cotarget TGFβ2/NOTCH1 in Sheep Dermal Fibroblasts, Affecting Hair Follicle Development. Cells 2024; 13:557. [PMID: 38534401 DOI: 10.3390/cells13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Wool is produced and controlled by hair follicles (HFs). However, little is known about the mechanisms involved in HF development and regulation. Sheep dermal fibroblasts (SDFs) play a key role in the initial stage of HF development. Analyzing the molecular mechanism that regulates early HF development in superfine wool sheep is of great importance for better understanding the HF morphogenesis process and for the breeding of fine wool sheep. Here, we show that two microRNAs (miRNAs) affect the development of HFs by targeting two genes that are expressed by SDFs. Meanwhile, the overexpression and inhibition of oar-miR-23b and oar-miR-133 in SDFs cells and cell proliferation, apoptosis, and migration were further detected using a CCK-8 assay, an Annexin V-FITC assay, a Transwell assay, and flow cytometry. We found that oar-miR-23b, oar-miR-133, and their cotarget genes TGFβ2 and NOTCH1 were differentially expressed during the six stages of HF development in superfine wool sheep. Oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs and promoted the apoptosis of SDFs through TGFβ2 and NOTCH1. oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs by jointly targeting TGFβ2 and NOTCH1, thereby inhibiting the development of superfine wool HFs. Our research provides a molecular marker that can be used to guide the breeding of ultrafine wool sheep.
Collapse
Affiliation(s)
- Junmin He
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Chen Wei
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guoping Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jingyi Mao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xue Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Cunming Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenjing Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kechuan Tian
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Guifen Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
4
|
Abstract
Diseases affecting the hair follicle are common in domestic animals, but despite the importance of an intact skin barrier and a fully functional hair coat, knowledge about the detailed morphological features and the diversity of these complex mini-organs are often limited, although mandatory to evaluate skin biopsies with a history of alopecia. The factors that regulate the innate hair follicle formation and the postnatal hair cycle are still not completely understood in rodents, only rudimentarily known in humans, and are poorly understood in our companion animals. This review aims to summarize the current knowledge about hair follicle and hair shaft anatomy, the arrangement of hair follicles, hair follicle morphogenesis in the embryo, and the lifelong regeneration during the postnatal hair cycle in domestic animals. The role of follicular stem cells and the need for a multitude of interacting signaling events during hair follicle morphogenesis and regeneration is unquestioned. Because of the lack of state of the art methods that can be applied in rodents but are not feasible in companion animals, most of the information in this review is based on rodent studies. However, the few data from domestic animals that are available will be discussed, and it can be assumed that at least the principal molecular mechanisms are similar in rodents and other species.
Collapse
|
5
|
Walendzik K, Kopcewicz M, Wiśniewska J, Opyd P, Machcińska-Zielińska S, Gawrońska-Kozak B. Dermal white adipose tissue development and metabolism: The role of transcription factor Foxn1. FASEB J 2023; 37:e23171. [PMID: 37682531 DOI: 10.1096/fj.202300873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Intradermal adipocytes form dermal white adipose tissue (dWAT), a unique fat depot localized in the lower layer of the dermis. However, recognition of molecular factors regulating dWAT development, homeostasis, and bioactivity is limited. Using Foxn1-/- and Foxn1+/+ mice, we demonstrated that epidermally expressed Foxn1 regulates dWAT development and defines the adipogenic capacity of dermal fibroblasts. In intact and post-wounded skin, Foxn1 contributes to the initial stimulation of dWAT adipogenesis and participates in the modulation of lipid metabolism processes. Furthermore, Foxn1 activity strengthens adipogenic processes through Bmp2 and Igf2 signaling and regulates lipid metabolism in differentiated dermal fibroblasts. The results reveal the contribution of Foxn1 to dWAT metabolism, thus identifying possible targets for modulation and regulation of dWAT in physiological and pathological processes in the skin.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wiśniewska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paulina Opyd
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Machcińska-Zielińska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
7
|
Understanding Mammalian Hair Follicle Ecosystems by Single-Cell RNA Sequencing. Animals (Basel) 2022; 12:ani12182409. [PMID: 36139270 PMCID: PMC9495062 DOI: 10.3390/ani12182409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Single-cell sequencing technology can reflect cell population heterogeneity at the single-cell level, leading to a better understanding of the role of individual cells in the microenvironment. Over the past few years, single-cell sequencing technology has not only made more new discoveries in the study of cellular heterogeneity of other rare cells such as stem cells, but has also become the most powerful research method for embryonic development, organ differentiation, cancer occurrence, and cell mapping. In this review, we outline the use of scRNA-seq in hair follicles. In particular, by focusing on landmark studies and the recent discovery of novel subpopulations of hair follicles, we summarize the phenotypic diversity of hair follicle cells and their links to hair follicle morphogenesis. Enhancing our understanding of the progress of hair follicle research will help to elucidate the regulatory mechanisms that determine the fate of different types of cells in the hair follicle, thereby guiding hair loss treatment and hair-producing economic animal breeding research. Abstract Single-cell sequencing technology can fully reflect the heterogeneity of cell populations at the single cell level, making it possible for us to re-recognize various tissues and organs. At present, the sequencing study of hair follicles is transiting from the traditional ordinary transcriptome level to the single cell level, which will provide diverse insights into the function of hair follicle cells. This review focuses on research advances in the hair follicle microenvironment obtained from scRNA-seq studies of major cell types in hair follicle development, with a special emphasis on the discovery of new subpopulations of hair follicles by single-cell techniques. We also discuss the problems and current solutions in scRNA-seq observation and look forward to its prospects.
Collapse
|
8
|
Comprehensive Transcriptome Analysis of Hair Follicle Morphogenesis Reveals That lncRNA-H19 Promotes Dermal Papilla Cell Proliferation through the Chi-miR-214-3p/β-Catenin Axis in Cashmere Goats. Int J Mol Sci 2022; 23:ijms231710006. [PMID: 36077403 PMCID: PMC9456307 DOI: 10.3390/ijms231710006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Cashmere is initiated and develops in the fetal stages and the number and density of secondary hair follicles (SHFs) determine cashmere production and quality. Growing evidence indicates that both microRNA (miRNA) and long non-coding RNA (lncRNA) play an indispensable role in hair follicle (HF) growth and development. However, little is known about miRNAs, lncRNAs, and their functions as well as their interactions during cashmere initiation and development. Here, based on lncRNA and miRNA high-throughput sequencing and bioinformatics analysis, we identified 10,485 lncRNAs, 40,639 mRNAs, and 605 miRNAs in cashmere goat skin during HF induction, organogenesis, and cytodifferentiation stages. Among them, 521 lncRNAs, 5976 genes, and 204 miRNAs were differentially expressed (DE). KEGG analysis of DE genes indicated that ECM–receptor interaction and biosynthesis of amino acids were crucial for HF development. Notch, TGF-beta, and Wnt signaling pathways were also identified, which are conventional pathways associated with HF growth and development. Then, the ceRNA regulatory network was constructed, and the impact of lncRNA H19 was investigated in dermal papilla (DP) cells. The MTT, CCK-8, and EdU assays showed that the viability and proliferation of DP cells were promoted by H19, and mechanistic studies suggested that H19 performed its function through the chi-miR-214-3p/β-catenin axis. The present study created a resource for lncRNA, miRNA, and mRNA studies in cashmere morphogenesis. It could contribute to a better understanding of the molecular mechanism of ncRNAs involved in the regulation of HF growth and development.
Collapse
|
9
|
Wang X, Liu Y, He J, Wang J, Chen X, Yang R. Regulation of signaling pathways in hair follicle stem cells. BURNS & TRAUMA 2022; 10:tkac022. [PMID: 35795256 PMCID: PMC9250793 DOI: 10.1093/burnst/tkac022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Hair follicle stem cells (HFSCs) reside in the bulge region of the outer root sheath of the hair follicle. They are considered slow-cycling cells that are endowed with multilineage differentiation potential and superior proliferative capacity. The normal morphology and periodic growth of HFSCs play a significant role in normal skin functions, wound repair and skin regeneration. The HFSCs involved in these pathophysiological processes are regulated by a series of cell signal transduction pathways, such as lymphoid enhancer factor/T-cell factor, Wnt/β-catenin, transforming growth factor-β/bone morphogenetic protein, Notch and Hedgehog. The mechanisms of the interactions among these signaling pathways and their regulatory effects on HFSCs have been previously studied, but many mechanisms are still unclear. This article reviews the regulation of hair follicles, HFSCs and related signaling pathways, with the aims of summarizing previous research results, revealing the regulatory mechanisms of HFSC proliferation and differentiation and providing important references and new ideas for treating clinical diseases.
Collapse
Affiliation(s)
| | | | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Xiaodong Chen
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| | - Ronghua Yang
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| |
Collapse
|
10
|
Wu S, Yu Y, Liu C, Zhang X, Zhu P, Peng Y, Yan X, Li Y, Hua P, Li Q, Wang S, Zhang L. Single-cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying. Cell Discov 2022; 8:49. [PMID: 35606346 PMCID: PMC9126928 DOI: 10.1038/s41421-022-00394-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/01/2022] [Indexed: 02/03/2023] Open
Abstract
Hair conditions, such as hair loss and graying, are prevalent human conditions. But they are often poorly controlled due to our insufficient understanding of human scalp hair follicle (hsHF) in health and disease. Here we describe a comprehensive single-cell RNA-seq (scRNA-seq) analysis on highly purified black and early-stage graying hsHFs. Based on these, a concise single-cell atlas for hsHF and its early graying changes is generated and verified using samples from multiple independent individuals. These data reveal the lineage trajectory of hsHF in unprecedented detail and uncover its multiple unexpected features not found in mouse HFs, including the presence of an innerbulge like compartment in the growing phase, lack of a discrete companion layer, and enrichment of EMT features in HF stem cells (HFSCs). Moreover, we demonstrate that besides melanocyte depletion, early-stage human hair graying is also associated with specific depletion of matrix hair progenitors but not HFSCs. The hair progenitors' depletion is accompanied by their P53 pathway activation whose pharmaceutical blockade can ameliorate hair graying in mice, enlightening a promising therapeutic avenue for this prevalent hair condition.
Collapse
Affiliation(s)
- Sijie Wu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Caiyue Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Peiying Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - You Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Xinyu Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Peng Hua
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, China.
| |
Collapse
|
11
|
Thermos G, Piperi E, Tosios KI, Nikitakis NG. Expression of BMP4 and FOXN1 in orthokeratinized odontogenic cyst compared to odontogenic keratocyst suggests an epidermal phenotype. Biotech Histochem 2022; 97:584-592. [PMID: 35527675 DOI: 10.1080/10520295.2022.2048073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Odontogenic keratocysts (OKC) and orthokeratinized odontogenic cysts (OOC) are odontogenic cysts that share histological and immunohistochemical similarity with epidermal appendages and cutaneous cystic lesions despite exhibiting contrasting biological behavior. In epidermal appendages, BMP4 induces expression of FOXN1, which participates in terminal differentiation of keratinocytes and control of proliferation. We compared BMP4 and FOXN1 expression in OOC and OKC to investigate their role in the epithelial differentiation of these cysts. BMP4 and FOXN1 expression was assessed using immunohistochemistry in 20 primary sporadic OKC and compared to 16 OOC. BMP4 epithelial expression was detected in 81.25% OOC compared to 35% in OKC, while its expression in connective tissue was observed in 65% OKC and 75% OOC. FOXN1 was detected in 75% OOC vs. 30% OKC. The "triple positive" phenotype, i.e., BMP4 epithelial and connective tissue positivity and FOXN1 epithelial positivity, was seen in 56.25% OOC compared to 10% OKC. The greater expression of BMP4 and FOXN1 in OOC suggests greater activation of this pathway in OOC, which suggests a role in its more mature epithelium; it also resembles an epidermal phenotype.
Collapse
Affiliation(s)
- Grigorios Thermos
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Piperi
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Gawronska-Kozak B, Walendzik K, Machcinska S, Padzik A, Kopcewicz M, Wiśniewska J. Dermal White Adipose Tissue (dWAT) Is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing. Int J Mol Sci 2021; 23:257. [PMID: 35008683 PMCID: PMC8745105 DOI: 10.3390/ijms23010257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Dermal white adipose tissue (dWAT) is involved in the maintenance of skin homeostasis. However, the studies concerning its molecular regulation are limited. In the present paper, we ask whether the introduction of two transcription factors, Foxn1 and Hif-1α, into the post-wounded skin of Foxn1-/- mice regulates dWAT during wound healing (days 3 and 6). We have chosen lentivirus vectors (LVs) as a tool to deliver Foxn1 and Hif-1α into the post-wounded skin. We documented that combinations of both transgenes reduces the number, size and diameter of dermal adipocytes at the wound bed area. The qRT-PCR analysis of pro-adipogenic genes, revealed that LV-Hif-1α alone, or combined with LV-Foxn1, increases the mRNA expression of Pparγ, Glut 4 and Fasn at post-wounding day 6. However, the most spectacular stimulatory effect of Foxn1 and/or Hif-1α was observed for Igf2, the growth factor participating in adipogenic signal transduction. Our data also shows that Foxn1/Hif-1α, at post-wounding day 3, reduces levels of CD68 and MIP-1γ mRNA expression and the percentage of CD68 positive cells in the wound site. In conclusion, the present data are the first to document that Foxn1 and Hif-1α cooperatively (1) regulate dWAT during the proliferative phase of skin wound healing through the Igf2 signaling pathway, and (2) reduce the macrophages content in the wound site.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Artur Padzik
- Virus Vector Core, Turku Centre for Biotechnology BioCity, 20520 Turku, Finland;
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Joanna Wiśniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| |
Collapse
|
13
|
Zhang X, Bao P, Ye N, Zhou X, Zhang Y, Liang C, Guo X, Chu M, Pei J, Yan P. Identification of the Key Genes Associated with the Yak Hair Follicle Cycle. Genes (Basel) 2021; 13:genes13010032. [PMID: 35052373 PMCID: PMC8774716 DOI: 10.3390/genes13010032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of hair follicles in yak shows significant seasonal cycles. In our previous research, transcriptome data including mRNAs and lncRNAs in five stages during the yak hair follicles (HFs) cycle were detected, but their regulation network and the hub genes in different periods are yet to be explored. This study aimed to screen and identify the hub genes during yak HFs cycle by constructing a mRNA-lncRNA co-expression network. A total of 5000 differently expressed mRNA (DEMs) and 729 differently expressed long noncoding RNA (DELs) were used to construct the co-expression network, based on weighted genes co-expression network analysis (WGCNA). Four temporally specific modules were considered to be significantly associated with the HFs cycle of yak. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the modules are enriched into Wnt, EMC-receptor interaction, PI3K-Akt, focal adhesion pathways, and so on. The hub genes, such as FER, ELMO1, PCOLCE, and HOXC13, were screened in different modules. Five hub genes (WNT5A, HOXC13, DLX3, FOXN1, and OVOL1) and part of key lncRNAs were identified for specific expression in skin tissue. Furthermore, immunofluorescence staining and Western blotting results showed that the expression location and abundance of DLX3 and OVOL1 are changed following the process of the HFs cycle, which further demonstrated that these two hub genes may play important roles in HFs development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Yan
- Correspondence: ; Tel.: +86-0931-2115288
| |
Collapse
|
14
|
de Groot SC, Ulrich MMW, Gho CG, Huisman MA. Back to the Future: From Appendage Development Toward Future Human Hair Follicle Neogenesis. Front Cell Dev Biol 2021; 9:661787. [PMID: 33912569 PMCID: PMC8075059 DOI: 10.3389/fcell.2021.661787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Hair disorders such as alopecia and hirsutism often impact the social and psychological well-being of an individual. This also holds true for patients with severe burns who have lost their hair follicles (HFs). HFs stimulate proper wound healing and prevent scar formation; thus, HF research can benefit numerous patients. Although hair development and hair disorders are intensively studied, human HF development has not been fully elucidated. Research on human fetal material is often subject to restrictions, and thus development, disease, and wound healing studies remain largely dependent on time-consuming and costly animal studies. Although animal experiments have yielded considerable and useful information, it is increasingly recognized that significant differences exist between animal and human skin and that it is important to obtain meaningful human models. Human disease specific models could therefore play a key role in future therapy. To this end, hair organoids or hair-bearing skin-on-chip created from the patient’s own cells can be used. To create such a complex 3D structure, knowledge of hair genesis, i.e., the early developmental process, is indispensable. Thus, uncovering the mechanisms underlying how HF progenitor cells within human fetal skin form hair buds and subsequently HFs is of interest. Organoid studies have shown that nearly all organs can be recapitulated as mini-organs by mimicking embryonic conditions and utilizing the relevant morphogens and extracellular matrix (ECM) proteins. Therefore, knowledge of the cellular and ECM proteins in the skin of human fetuses is critical to understand the evolution of epithelial tissues, including skin appendages. This review aims to provide an overview of our current understanding of the cellular changes occurring during human skin and HF development. We further discuss the potential implementation of this knowledge in establishing a human in vitro model of a full skin substitute containing hair follicles and the subsequent translation to clinical use.
Collapse
Affiliation(s)
- Simon C de Groot
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Hair Science Institute, Maastricht, Netherlands
| | | | - Coen G Gho
- Hair Science Institute, Maastricht, Netherlands
| | - Margriet A Huisman
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Hintze M, Griesing S, Michels M, Blanck B, Wischhof L, Hartmann D, Bano D, Franz T. Alopecia in Harlequin mutant mice is associated with reduced AIF protein levels and expression of retroviral elements. Mamm Genome 2021; 32:12-29. [PMID: 33367954 PMCID: PMC7878237 DOI: 10.1007/s00335-020-09854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.
Collapse
Affiliation(s)
- Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany.
- Medical Department, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Griesing
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
- Dept. of Oncology, National Taiwan University Hospital, Taipei City, 100, Taiwan, ROC
| | - Marion Michels
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Birgit Blanck
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Franz
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Qiu W, Gu PR, Chuong CM, Lei M. Skin Cyst: A Pathological Dead-End With a New Twist of Morphogenetic Potentials in Organoid Cultures. Front Cell Dev Biol 2021; 8:628114. [PMID: 33511139 PMCID: PMC7835531 DOI: 10.3389/fcell.2020.628114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
A cyst is a closed sac-like structure in which cyst walls wrap certain contents typically including air, fluid, lipid, mucous, or keratin. Cyst cells can retain multipotency to regenerate complex tissue architectures, or to differentiate. Cysts can form in and outside the skin due to genetic problems, errors in embryonic development, cellular defects, chronic inflammation, infections, blockages of ducts, parasites, and injuries. Multiple types of skin cysts have been identified with different cellular origins, with a common structure including the outside cyst wall engulfs differentiated suprabasal layers and keratins. The skin cyst is usually used as a sign in pathological diagnosis. Large or surfaced skin cysts affect patients' appearance and may cause the dysfunction or accompanying diseases of adjacent tissues. Skin cysts form as a result of the degradation of skin epithelium and appendages, retaining certain characteristics of multipotency. Surprisingly, recent organoid cultures show the formation of cyst configuration as a transient state toward more morphogenetic possibility. These results suggest, if we can learn more about the molecular circuits controlling upstream and downstream cellular events in cyst formation, we may be able to engineer stem cell cultures toward the phenotypes we wish to achieve. For pathological conditions in patients, we speculate it may also be possible to guide the cyst to differentiate or de-differentiate to generate structures more akin to normal architecture and compatible with skin homeostasis.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, China
| | - Pei-Rong Gu
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- “111” Project Laboratory of Biomechanics and Tissue Repair, Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Gao QS, Xuan MF, Luo ZB, Paek HJ, Kang JD, Yin XJ. Hairless-knockout piglets generated using the clustered regularly interspaced short palindromic repeat/CRISPR-associated-9 exhibit abnormalities in the skin and thymus. Exp Anim 2019; 68:519-529. [PMID: 31308290 PMCID: PMC6842791 DOI: 10.1538/expanim.19-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear receptor corepressor Hairless (HR) interacts with nuclear receptors and
controls expression of specific target genes involved in hair morphogenesis and hair
follicle cycling. Patients with HR gene mutations exhibit atrichia, and
in rare cases, immunodeficiency. Pigs with HR gene mutations may provide
a useful model for developing therapeutic strategies because pigs are highly similar to
humans in terms of anatomy, genetics, and physiology. The present study aimed to knockout
the HR gene in pigs using the clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated-9 (Cas9) system and to investigate the
molecular and structural alterations in the skin and thymus. We introduced a biallelic
mutation into the HR gene in porcine fetal fibroblasts and generated nine
piglets via somatic cell nuclear transfer. These piglets exhibited a lack of hair on the
eyelids, abnormalities in the thymus and peripheral blood, and altered expression of
several signaling factors regulated by HR. Our results indicate that introduction of the
biallelic mutation successfully knocked out the HR gene, resulting in
several molecular and structural changes in the skin and thymus. These pigs will provide a
useful model for studying human hair disorders associated with HR gene
mutations and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qing-Shan Gao
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Mei-Fu Xuan
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Zhao-Bo Luo
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Hyo-Jin Paek
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Jin-Dan Kang
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Xi-Jun Yin
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| |
Collapse
|
18
|
Brunner MAT, Rüfenacht S, Bauer A, Erpel S, Buchs N, Braga-Lagache S, Heller M, Leeb T, Jagannathan V, Wiener DJ, Welle MM. Bald thigh syndrome in sighthounds-Revisiting the cause of a well-known disease. PLoS One 2019; 14:e0212645. [PMID: 30794648 PMCID: PMC6386255 DOI: 10.1371/journal.pone.0212645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 01/17/2023] Open
Abstract
Bald thigh syndrome is a common hair loss disorder in sighthounds. Numerous possible causes, including environmental conditions, trauma, stress, endocrinopathies and genetic components have been proposed, but only endocrinopathies have been ruled out scientifically. The overall goal of our study was to identify the cause of bald thigh syndrome and the pathological changes associated with it. We approached this aim by comparing skin biopsies and hair shafts of affected and control dogs microscopically as well as by applying high-throughput technologies such as genomics, transcriptomics and proteomics. While the histology is rather unspecific in most cases, trichogram analysis and scanning electron microscopy revealed severe structural abnormalities in hair shafts of affected dogs. This finding is supported by the results of the transcriptomic and proteomic profiling where genes and proteins important for differentiation of the inner root sheath and the assembly of a proper hair shaft were downregulated. Transcriptome profiling revealed a downregulation of genes encoding 23 hair shaft keratins and 51 keratin associated proteins, as well as desmosomal cadherins and several actors of the BMP signaling pathway which is important for hair shaft differentiation. The lower expression of keratin 71 and desmocollin 2 on the mRNA level in skin biopsies corresponded with a decreased protein expression in the hair shafts of affected dogs. The genetic analysis revealed a missense variant in the IGFBP5 gene homozygous in all available Greyhounds and other sighthounds. Further research is required to clarify whether the IGFBP5 variant represents a predisposing genetic risk factor. We conclude from our results that structural defects in the hair shafts are the cause for this well-known disease and these defects are associated with a downregulation of genes and proteins essential for hair shaft formation. Our data add important knowledge to further understand the molecular mechanisms of HF morphogenesis and alopecia in dogs.
Collapse
Affiliation(s)
- Magdalena A. T. Brunner
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | | | - Anina Bauer
- DermFocus, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Susanne Erpel
- Nano Imaging Lab, SNI, University of Basel, Basel, Switzerland
| | - Natasha Buchs
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga-Lagache
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Tosso Leeb
- DermFocus, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominique J. Wiener
- Department of Veterinary Pathobiology, Texas A&M University, College Station, United States of America
| | - Monika M. Welle
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Wang S, Luo Z, Zhang Y, Yuan D, Ge W, Wang X. The inconsistent regulation of HOXC13 on different keratins and the regulation mechanism on HOXC13 in cashmere goat (Capra hircus). BMC Genomics 2018; 19:630. [PMID: 30139327 PMCID: PMC6107959 DOI: 10.1186/s12864-018-5011-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background During hair growth, cortical cells emerging from the proliferative follicle bulb rapidly undergo a differentiation program and synthesize large amounts of hair keratin proteins. In this process, HOXC13 is one critical regulatory factor, proved by the hair defects in HOXC13 mutant mice and HOXC13 mutant patients. However, inconsistent conclusions were drawn from previous researches regarding the regulation of HOXC13 on different keratins. Whether HOXC13 has extensive and unified regulatory role on these numerous keratins is unclear. Results In this study, firstly, RNA-seq was performed to reveal the molecular mechanism of cashmere cycle including anagen and telogen. Subsequently, combining the sequencing with qRT-PCR and immunofluorescent staining results, we found that HOXC13 showed similar expression pattern with a large proportion of keratins except for KRT1 and KRT2, which were higher in anagen compared with telogen. Then, the regulatory role of HOXC13 on different keratins was investigated using dual-luciferase reporter system and keratin promoter-GFP system by overexpressing HOXC13 in HEK 293 T cells and dermal papilla cells. Our results demonstrated that HOXC13 up-regulated the promoter activity of KRT84 and KRT38, while down-regulated the promoter activity of KRT1 and KRT2, which suggested HOXC13 had an ambivalent effect on the promoters of different KRTs. Furtherly, the regulation on HOXC13 itself was investigated. At transcriptional level, the binding sites of HOXC13 and LEF1 were found in the promoter of HOXC13. Then, through transfecting corresponding overexpression vector and dual-luciferase reporter system into dermal papilla cells, the negative-feedback regulation of HOXC13 itself and positive regulation of LEF1 on HOXC13 promoter were revealed. In addition, melatonin could significantly increase the promoter activity of HOXC13 under the concentration of 10 μM and 25 μM by adding exogenous melatonin into dermal papilla cells. At post-transcriptional level, we investigated whether chi-miR-200a could target HOXC13 through dual-luciferase reporter system. At epigenetic level, we investigated the methylation level of HOXC13 promoter at different stages including anagen, telogen and 60d of embryonic period. As a result, miR-200a and methylation were not regulatory factors of HOXC13. Interestingly, we found two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 that could deprive the regulatory function of HOXC13 on keratins without changing its protein expression. Conclusion HOXC13 had an inconsistent effect on the promoters of different keratins. Two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 deprived its function on keratin regulation. Besides, the negative-feedback regulation by HOXC13 itself and positive regulation by LEF1 and melatonin on HOXC13 promoter were revealed. This study will enrich the function of HOXC13 on keratin regulation and contribute to understand the mechanism of hair follicle differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5011-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhixin Luo
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuelang Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Yuan
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Ge
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
20
|
Foxn1 in Skin Development, Homeostasis and Wound Healing. Int J Mol Sci 2018; 19:ijms19071956. [PMID: 29973508 PMCID: PMC6073674 DOI: 10.3390/ijms19071956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Intensive research effort has focused on cellular and molecular mechanisms that regulate skin biology, including the phenomenon of scar-free skin healing during foetal life. Transcription factors are the key molecules that tune gene expression and either promote or suppress gene transcription. The epidermis is the source of transcription factors that regulate many functions of epidermal cells such as proliferation, differentiation, apoptosis, and migration. Furthermore, the activation of epidermal transcription factors also causes changes in the dermal compartment of the skin. This review focuses on the transcription factor Foxn1 and its role in skin biology. The regulatory function of Foxn1 in the skin relates to physiological (development and homeostasis) and pathological (skin wound healing) conditions. In particular, the pivotal role of Foxn1 in skin development and the acquisition of the adult skin phenotype, which coincides with losing the ability of scar-free healing, is discussed. Thus, genetic manipulations with Foxn1 expression, specifically those introducing conditional Foxn1 silencing in a Foxn1+/+ organism or its knock-in in a Foxn1−/− model, may provide future perspectives for regenerative medicine.
Collapse
|
21
|
Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, Kim B, Brestoff JR, Tyldsley AS, Zheng Q, Hodkinson BP, Artis D, Grice EA. Commensal microbiota modulate gene expression in the skin. MICROBIOME 2018; 6:20. [PMID: 29378633 PMCID: PMC5789709 DOI: 10.1186/s40168-018-0404-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/18/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND The skin harbors complex communities of resident microorganisms, yet little is known of their physiological roles and the molecular mechanisms that mediate cutaneous host-microbe interactions. Here, we profiled skin transcriptomes of mice reared in the presence and absence of microbiota to elucidate the range of pathways and functions modulated in the skin by the microbiota. RESULTS A total of 2820 genes were differentially regulated in response to microbial colonization and were enriched in gene ontology (GO) terms related to the host-immune response and epidermal differentiation. Innate immune response genes and genes involved in cytokine activity were generally upregulated in response to microbiota and included genes encoding toll-like receptors, antimicrobial peptides, the complement cascade, and genes involved in IL-1 family cytokine signaling and homing of T cells. Our results also reveal a role for the microbiota in modulating epidermal differentiation and development, with differential expression of genes in the epidermal differentiation complex (EDC). Genes with correlated co-expression patterns were enriched in binding sites for the transcription factors Klf4, AP-1, and SP-1, all implicated as regulators of epidermal differentiation. Finally, we identified transcriptional signatures of microbial regulation common to both the skin and the gastrointestinal tract. CONCLUSIONS With this foundational approach, we establish a critical resource for understanding the genome-wide implications of microbially mediated gene expression in the skin and emphasize prospective ways in which the microbiome contributes to skin health and disease.
Collapse
Affiliation(s)
- Jacquelyn S Meisel
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Georgia Sfyroera
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Casey Bartow-McKenney
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Ciara Gimblet
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Julia Bugayev
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Joseph Horwinski
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brian Kim
- Department of Dermatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda S Tyldsley
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Qi Zheng
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brendan P Hodkinson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Elizabeth A Grice
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Mesler AL, Veniaminova NA, Lull MV, Wong SY. Hair Follicle Terminal Differentiation Is Orchestrated by Distinct Early and Late Matrix Progenitors. Cell Rep 2018; 19:809-821. [PMID: 28445731 DOI: 10.1016/j.celrep.2017.03.077] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
During development and regeneration, matrix progenitors undergo terminal differentiation to form the concentric layers of the hair follicle. These differentiation events are thought to require signals from the mesenchymal dermal papilla (DP); however, it remains unclear how DP-progenitor cell interactions govern specific cell fate decisions. Here, we show that the hair follicle differentiated layers are specified asynchronously, with early matrix progenitors initiating differentiation before surrounding the DP. Furthermore, these early matrix cells can undergo terminal differentiation in the absence of Shh, BMP signaling, and DP maturation. Whereas early matrix progenitors form the hair follicle companion layer, later matrix populations progressively form the inner root sheath and hair shaft. Altogether, our findings characterize some of the earliest terminal differentiation events in the hair follicle and reveal that the matrix progenitor pool can be divided into early and late phases based on distinct temporal, molecular, and functional characteristics.
Collapse
Affiliation(s)
- Arlee L Mesler
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A Veniaminova
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Madison V Lull
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunny Y Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer. Oncotarget 2018; 7:53137-53152. [PMID: 27447971 PMCID: PMC5288174 DOI: 10.18632/oncotarget.10614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Accumulating data suggests that the initiation and progression of human breast tumors is fueled by a rare subpopulation of tumor cells, termed breast tumor-initiating cells (BTIC), which resist radiotherapy and chemotherapy. Consequently, therapies that abrogate BTIC activity are needed to achieve durable cures for breast cancer patients. To identify such therapies we used a sensitive assay to complete a high-throughput screen of small molecules, including approved drugs, with BTIC-rich mouse mammary tumor cell populations. We found that inhibitors of the serotonin reuptake transporter (SERT) and serotonin receptors, which include approved drugs used to treat mood disorders, were potent inhibitors of mouse BTIC activity as determined by functional sphere-forming assays and the initiation of tumor formation by transplant of drug-exposed tumor cells into syngeneic mice. Moreover, sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), synergized with docetaxel (Taxotere) to shrink mouse breast tumors in vivo. Hence drugs targeting the serotonergic system might be repurposed to treat breast cancer patients to afford more durable breast cancer remissions.
Collapse
|
24
|
Wertheimer T, Velardi E, Tsai J, Cooper K, Xiao S, Kloss CC, Ottmüller KJ, Mokhtari Z, Brede C, deRoos P, Kinsella S, Palikuqi B, Ginsberg M, Young LF, Kreines F, Lieberman SR, Lazrak A, Guo P, Malard F, Smith OM, Shono Y, Jenq RR, Hanash AM, Nolan DJ, Butler JM, Beilhack A, Manley NR, Rafii S, Dudakov JA, van den Brink MRM. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci Immunol 2018; 3:eaal2736. [PMID: 29330161 PMCID: PMC5795617 DOI: 10.1126/sciimmunol.aal2736] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
The thymus is not only extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood, and this capacity diminishes considerably with age. We show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration via their production of bone morphogenetic protein 4 (BMP4) ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signaling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance, and regeneration, and its downstream targets such as Dll4, a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity.
Collapse
Affiliation(s)
- Tobias Wertheimer
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Freiburg University Medical Center, Albert-Ludwigs-University, 79106 Freiburg, Germany
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jennifer Tsai
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program in Immunology, Clinical Research Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Christopher C Kloss
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katja J Ottmüller
- Department of Medicine II, Würzburg University Hospital, Interdisciplinary Center for Clinical Research (IZKF), and Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Zeinab Mokhtari
- Department of Medicine II, Würzburg University Hospital, Interdisciplinary Center for Clinical Research (IZKF), and Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Christian Brede
- Department of Medicine II, Würzburg University Hospital, Interdisciplinary Center for Clinical Research (IZKF), and Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Paul deRoos
- Program in Immunology, Clinical Research Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brisa Palikuqi
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | | | - Lauren F Young
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fabiana Kreines
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sophia R Lieberman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amina Lazrak
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peipei Guo
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Florent Malard
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Odette M Smith
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yusuke Shono
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert R Jenq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Jason M Butler
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Andreas Beilhack
- Department of Medicine II, Würzburg University Hospital, Interdisciplinary Center for Clinical Research (IZKF), and Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
25
|
Abstract
FOXN1 is a prodifferentiation transcription factor in the skin epithelium. Recently, it has also emerged as an important player in controlling the skin wound healing process, as it actively participates in reepithelialization and is thought to be responsible for scar formation. FOXN1 positivity is also a feature of pigmented keratinocytes, including nevi, and FOXN1 is an attribute of benign epithelial tumors. The lack of FOXN1 favors the skin regeneration process displayed by nude mice, pointing to FOXN1 as a switch between regeneration and reparative processes. The stem cell niche provides a functional source of cells after the loss of tissue following wounding. The involvement of prodifferentiation factors in the regulation of this pool of stem cells is suggested. However, the exact mechanism is still under question, and we speculate that the FOXN1 transcription factor is involved in this process. This review analyzes the pleiotropic effects of FOXN1 in the skin, its function in the tumorigenesis process, and its potential role in depletion of the stem cell niche after injury, as well as its suggested mechanistic role, acting in a cell-autonomous and a non-cell-autonomous manner during skin self-renewal.
Collapse
|
26
|
Fleger-Weckmann A, Üstün Y, Kloepper J, Paus R, Bloch W, Chen ZL, Wegner J, Sorokin L, Langbein L, Eckes B, Zigrino P, Krieg T, Nischt R. Deletion of the epidermis derived laminin γ1 chain leads to defects in the regulation of late hair morphogenesis. Matrix Biol 2016; 56:42-56. [DOI: 10.1016/j.matbio.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
|
27
|
Wang AB, Zhang YV, Tumbar T. Gata6 promotes hair follicle progenitor cell renewal by genome maintenance during proliferation. EMBO J 2016; 36:61-78. [PMID: 27908934 DOI: 10.15252/embj.201694572] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 01/29/2023] Open
Abstract
Cell proliferation is essential to rapid tissue growth and repair, but can result in replication-associated genome damage. Here, we implicate the transcription factor Gata6 in adult mouse hair follicle regeneration where it controls the renewal of rapidly proliferating epithelial (matrix) progenitors and hence the extent of production of terminally differentiated lineages. We find that Gata6 protects against DNA damage associated with proliferation, thus preventing cell cycle arrest and apoptosis. Furthermore, we show that in vivo Gata6 stimulates EDA-receptor signaling adaptor Edaradd level and NF-κB pathway activation, known to be important for DNA damage repair and stress response in general and for hair follicle growth in particular. In cultured keratinocytes, Edaradd rescues DNA damage, cell survival, and proliferation of Gata6 knockout cells and restores MCM10 expression. Our data add to recent evidence in embryonic stem and neural progenitor cells, suggesting a model whereby developmentally regulated transcription factors protect from DNA damage associated with proliferation at key stages of rapid tissue growth. Our data may add to understanding why Gata6 is a frequent target of amplification in cancers.
Collapse
Affiliation(s)
- Alex B Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ying V Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Wang M, Yue Z, Paus R, Ramot Y. SIRT2 as a new player in epigenetic programming of keratinocyte differentiation and a candidate tumor suppressor. Exp Dermatol 2016; 23:636-8. [PMID: 24814870 DOI: 10.1111/exd.12434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/23/2022]
Abstract
Epidermal keratinocytes undergo a continuous process of terminal differentiation, which is accompanied by a dramatic change in the expression and composition of keratins. This complex and carefully orchestrated process is regulated by a large number of signal transduction events and transcriptional factors as well as by epigenetic regulatory mechanisms, namely by histone methylation/acetylation and DNA methylation. In a recent issue of Exp Dermatol, Ming et al. provide evidence that sirtuin-2 (SIRT2), a NAD+-dependent deacetylase, inhibits the expression of keratin 15 and keratin 19, epidermal stem cell markers, while it stimulates the expression of loricrin, a marker of terminal keratinocyte differentiation. Human skin cancer cells show downregulation of SIRT2, and its deletion increases tumor growth in mice. Overall, these findings suggest that this deacetylase is involved in the epigenetic regulation of keratinocyte differentiation and exerts intracutaneous tumor suppressor functions.
Collapse
Affiliation(s)
- Ming Wang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | | | | | | |
Collapse
|
29
|
Gawronska-Kozak B, Grabowska A, Kur-Piotrowska A, Kopcewicz M. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition. PLoS One 2016; 11:e0150635. [PMID: 26938103 PMCID: PMC4777299 DOI: 10.1371/journal.pone.0150635] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022] Open
Abstract
Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Grabowska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
30
|
Lanzini J, Dargère D, Regazzetti A, Tebani A, Laprévote O, Auzeil N. Changing in lipid profile induced by the mutation of Foxn1 gene: A lipidomic analysis of Nude mice skin. Biochimie 2015; 118:234-43. [PMID: 26427556 DOI: 10.1016/j.biochi.2015.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Nude mice carry a spontaneous mutation affecting the gene Foxn1 mainly expressed in the epidermis. This gene is involved in several skin functions, especially in the proliferation and the differentiation of keratinocytes which are key cells of epithelial barrier. The skin, a protective barrier for the body, is essentially composed of lipids. Taking into account these factors, we conducted a lipidomic study to search for any changes in lipid composition of skin possibly related to Foxn1 mutation. Lipids were extracted from skin biopsies of Nude and BALB/c mice to be analyzed by liquid chromatography coupled to a high resolution mass spectrometer (HRMS). Multivariate and univariate data analyses were carried out to compare lipid extracts. Identification was performed using HRMS data, retention time and mass spectrometry fragmentation study. These results indicate that mutation of Foxn1 leads to significant modifications in the lipidome in Nude mice skin. An increase in cholesterol sulfate, phospholipids, sphingolipids and fatty acids associated with a decrease in glycerolipids suggest that the lipidome in mice skin is regulated by the Foxn1 gene.
Collapse
Affiliation(s)
- Justine Lanzini
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Delphine Dargère
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Anne Regazzetti
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Abdellah Tebani
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Olivier Laprévote
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France; AP-HP, Service de Toxicologie Biologique, Hôpital Lariboisière, 4 Rue Ambroise Paré, 75475 Paris Cedex 10, France
| | - Nicolas Auzeil
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France.
| |
Collapse
|
31
|
Exploring the biology of the nail: An intriguing but less-investigated skin appendage. J Dermatol Sci 2015; 79:187-93. [PMID: 25999148 DOI: 10.1016/j.jdermsci.2015.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023]
Abstract
The nail is a highly keratinized structure covering the tip of the digit, and considered to have several important functions in our daily life. In recent years, as biological aspects of the nail organ have been characterized, we realize that the nail unit and the hair follicle share various biological and immunological features. In particular, development and homeostasis of the nail unit also requires intimate epithelial-mesenchymal interactions that involve signaling pathways such as Wnt. There is also a striking immunological resemblance between both appendages, since the nail matrix, like the anagen hair bulb and the bulge, was shown to present unique characteristics of an immune privileged site. On the other hand, considerable progress in identifying nail stem cells has succeeded in locating putative stem cell niches in the nail unit. In this context, it is intriguing that nail stem cells residing in the nail matrix were recently shown to possess the ability to organize the process leading to digit regeneration. Further elucidation of signaling pathways governing epithelial-mesenchymal interactions in the nail unit seems to be a key to develop a novel therapeutic tool to treat amputees using nail epithelium. However, it is at least certain that the nail unit has a promising potential for the future of regenerative medicine. This review explores the biology of the nail organ by focusing on intriguing knowledge gained from recent studies.
Collapse
|
32
|
Lei M, Guo H, Qiu W, Lai X, Yang T, Widelitz RB, Chuong CM, Lian X, Yang L. Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration. Exp Dermatol 2015; 23:407-13. [PMID: 24750467 DOI: 10.1111/exd.12416] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
Abstract
Hair follicles have characteristic sizes corresponding to their cycle-specific stage. However, how the anagen hair follicle specifies its size remains elusive. Here, we showed that in response to prolonged ectopic Wnt10b-mediated β-catenin activation, regenerating anagen hair follicles grew larger in size. In particular, the hair bulb, dermal papilla and hair shaft became enlarged, while the formation of different hair types (Guard, Awl, Auchene and Zigzag) was unaffected. Interestingly, we found that the effect of exogenous WNT10b was mainly on Zigzag and less on the other kinds of hairs. We observed dramatically enhanced proliferation within the matrix, DP and hair shaft of the enlarged AdWnt10b-treated hair follicles compared with those of normal hair follicles at P98. Furthermore, expression of CD34, a specific hair stem cell marker, was increased in its number to the bulge region after AdWnt10b treatment. Ectopic expression of CD34 throughout the ORS region was also observed. Many CD34-positive hair stem cells were actively proliferating in AdWnt10b-induced hair follicles. Importantly, subsequent co-treatment with the Wnt inhibitor, DKK1, reduced hair follicle enlargement and decreased proliferation and ectopic localization of hair stem cells. Moreover, injection of DKK1 during early anagen significantly reduced the width of prospective hairs. Together, these findings strongly suggest that Wnt10b/DKK1 can modulate hair follicle size during hair regeneration.
Collapse
Affiliation(s)
- Mingxing Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China; '111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A guide for building biological pathways along with two case studies: hair and breast development. Methods 2014; 74:16-35. [PMID: 25449898 DOI: 10.1016/j.ymeth.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022] Open
Abstract
Genomic information is being underlined in the format of biological pathways. Building these biological pathways is an ongoing demand and benefits from methods for extracting information from biomedical literature with the aid of text-mining tools. Here we hopefully guide you in the attempt of building a customized pathway or chart representation of a system. Our manual is based on a group of software designed to look at biointeractions in a set of abstracts retrieved from PubMed. However, they aim to support the work of someone with biological background, who does not need to be an expert on the subject and will play the role of manual curator while designing the representation of the system, the pathway. We therefore illustrate with two challenging case studies: hair and breast development. They were chosen for focusing on recent acquisitions of human evolution. We produced sub-pathways for each study, representing different phases of development. Differently from most charts present in current databases, we present detailed descriptions, which will additionally guide PESCADOR users along the process. The implementation as a web interface makes PESCADOR a unique tool for guiding the user along the biointeractions, which will constitute a novel pathway.
Collapse
|
34
|
Brooks YS, Ostano P, Jo SH, Dai J, Getsios S, Dziunycz P, Hofbauer GFL, Cerveny K, Chiorino G, Lefort K, Dotto GP. Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer. J Clin Invest 2014; 124:2260-76. [PMID: 24743148 DOI: 10.1172/jci72718] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022] Open
Abstract
Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ-dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Loci
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Heterografts
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Receptor, Notch1/biosynthesis
- Receptor, Notch1/genetics
- Transcription, Genetic/genetics
Collapse
|
35
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
36
|
Gawronska-Kozak B, Grabowska A, Kopcewicz M, Kur A. Animal models of skin regeneration. Reprod Biol 2014; 14:61-7. [DOI: 10.1016/j.repbio.2014.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
|
37
|
Rudkouskaya A, Welch I, Dagnino L. ILK modulates epithelial polarity and matrix formation in hair follicles. Mol Biol Cell 2013; 25:620-32. [PMID: 24371086 PMCID: PMC3937088 DOI: 10.1091/mbc.e13-08-0499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Integrin-linked kinase–deficient hair follicles fail to develop apical–basal polarity and show impaired specification of the hair matrix cell lineage. Exogenous laminin-511 restores matrix cell formation. Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical–basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | |
Collapse
|
38
|
The retinoid-related orphan receptor RORα promotes keratinocyte differentiation via FOXN1. PLoS One 2013; 8:e70392. [PMID: 23922987 PMCID: PMC3726659 DOI: 10.1371/journal.pone.0070392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023] Open
Abstract
RORα is a retinoid-related orphan nuclear receptor that regulates inflammation, lipid metabolism, and cellular differentiation of several non-epithelial tissues. In spite of its high expression in skin epithelium, its functions in this tissue remain unclear. Using gain- and loss-of-function approaches to alter RORα gene expression in human keratinocytes (HKCs), we have found that this transcription factor functions as a regulator of epidermal differentiation. Among the 4 RORα isoforms, RORα4 is prominently expressed by keratinocytes in a manner that increases with differentiation. In contrast, RORα levels are significantly lower in skin squamous cell carcinoma tumors (SCCs) and cell lines. Increasing the levels of RORα4 in HKCs enhanced the expression of structural proteins associated with early and late differentiation, as well as genes involved in lipid barrier formation. Gene silencing of RORα impaired the ability of keratinocytes to differentiate in an in vivo epidermal cyst model. The pro-differentiation function of RORα is mediated at least in part by FOXN1, a well-known pro-differentiation transcription factor that we establish as a novel direct target of RORα in keratinocytes. Our results point to RORα as a novel node in the keratinocyte differentiation network and further suggest that the identification of RORα ligands may prove useful for treating skin disorders that are associated with abnormal keratinocyte differentiation, including cancer.
Collapse
|
39
|
Ramot Y, Zhang G, Bíró T, Langbein L, Paus R. Is thyrotropin-releasing hormone a novel neuroendocrine modulator of keratin expression in human skin? Br J Dermatol 2013; 169:146-51. [DOI: 10.1111/bjd.12264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Y. Ramot
- Department of Dermatology; University of Lübeck; D-23538 Lübeck Germany
- Department of Dermatology; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - G. Zhang
- Department of Dermatology; University of Lübeck; D-23538 Lübeck Germany
- Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - T. Bíró
- Department of Physiology; Medical and Health Science Center; Research Center for Molecular Medicine; DE-MTA ‘Lendulet’ Cellular Physiology Research Group; University of Debrecen; Debrecen Hungary
| | - L. Langbein
- Division of Skin Carcinogenesis; German Cancer Research Center; Heidelberg Germany
| | - R. Paus
- Department of Dermatology; University of Lübeck; D-23538 Lübeck Germany
- Institute of Inflammation and Repair; University of Manchester and The Dermatology Center, Royal Salford Hospital; Manchester U.K
| |
Collapse
|
40
|
Hairless down-regulates expression of Msx2 and its related target genes in hair follicles. J Dermatol Sci 2013; 71:203-9. [PMID: 23702391 DOI: 10.1016/j.jdermsci.2013.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hairless (HR), a transcriptional cofactor, plays important roles in hair follicle (HF) morphogenesis and cycling. Recently, we reported the new Hr mutant mouse called "Hairpoor" (Hr(Hp)) that causes HR overexpression through translational de-repression. The Msh homeobox 2 (Msx2) is a homolog of the Drosophila muscle segment homeobox (msh) gene, which expressed in the hair bulb, including in the germinal matrix, and its expression spreads into the upper region of the HF including the hair cortex. OBJECTIVE Although Msx2 is regarded as an important gene in hair cycle control and hair shaft differentiation, the regulation of Msx2 expression is not well-known. METHODS Using realtime polymerase chain reaction (PCR) and western blot, we investigated the relationship between HR and Msx2 in the Hr(Hp)/Hr(Hp) mouse during the HF morphogenesis. Immunohistochemistry was performed to compare the pattern of expression of MSX2 in Hr(Hp)/Hr(Hp) mouse skin with that in wild-type skin. Msx2 mRNA expression and promoter activity was estimated using a transient expression system to see whether HR down-regulates Msx2 expression in vitro. We also investigated whether downregulation of MSX2 by HR also affects the MSX2 regulatory pathway in the Hr(Hp)/Hr(Hp) mouse and in an in vitro system. RESULTS We found that the expression of Msx2 was down-regulated by HR, which in turn down-regulated expression of Foxn1 and Lef1, MSX2 target genes, in vivo as well as in vitro. CONCLUSION Our results show that HR regulates expression of genes in the MSX2 regulatory pathway, which explains abnormal HF formation in Hr(Hp)/Hr(Hp) skin.
Collapse
|
41
|
Phillips MA, Qin Q, Hu Q, Zhao B, Rice RH. Arsenite suppression of BMP signaling in human keratinocytes. Toxicol Appl Pharmacol 2013; 269:290-6. [PMID: 23566955 DOI: 10.1016/j.taap.2013.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 12/12/2022]
Abstract
Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression.
Collapse
Affiliation(s)
- Marjorie A Phillips
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | | | | | | | | |
Collapse
|
42
|
Krolewski RC, Packard A, Jang W, Wildner H, Schwob JE. Ascl1 (Mash1) knockout perturbs differentiation of nonneuronal cells in olfactory epithelium. PLoS One 2012; 7:e51737. [PMID: 23284756 PMCID: PMC3524087 DOI: 10.1371/journal.pone.0051737] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/09/2012] [Indexed: 12/19/2022] Open
Abstract
The embryonic olfactory epithelium (OE) generates only a very few olfactory sensory neurons when the basic helix-loop-helix transcription factor, ASCL1 (previously known as MASH1) is eliminated by gene mutation. We have closely examined the structure and composition of the OE of knockout mice and found that the absence of neurons dramatically affects the differentiation of multiple other epithelial cell types as well. The most prominent effect is observed within the two known populations of stem and progenitor cells of the epithelium. The emergence of horizontal basal cells, a multipotent progenitor population in the adult epithelium, is anomalous in the Ascl1 knockout mice. The differentiation of globose basal cells, another multipotent progenitor population in the adult OE, is also aberrant. All of the persisting globose basal cells are marked by SOX2 expression, suggesting a prominent role for SOX2 in progenitors upstream of Ascl1. However, NOTCH1-expressing basal cells are absent from the knockout; since NOTCH1 signaling normally acts to suppress Ascl1 via HES1 and drives sustentacular (Sus) cell differentiation during adult epithelial regeneration, its absence suggests reciprocity between neurogenesis and the differentiation of Sus cells. Indeed, the Sus cells of the mutant mice express a markedly lower level of HES1, strengthening that notion of reciprocity. Duct/gland development appears normal. Finally, the expression of cKIT by basal cells is also undetectable, except in those small patches where neurogenesis escapes the effects of Ascl1 knockout and neurons are born. Thus, persistent neurogenic failure distorts the differentiation of multiple other cell types in the olfactory epithelium.
Collapse
Affiliation(s)
- Richard C. Krolewski
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Adam Packard
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Woochan Jang
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - James E. Schwob
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zhang Z, Burnley P, Coder B, Su DM. Insights on FoxN1 biological significance and usages of the "nude" mouse in studies of T-lymphopoiesis. Int J Biol Sci 2012; 8:1156-67. [PMID: 23091413 PMCID: PMC3477685 DOI: 10.7150/ijbs.5033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 11/24/2022] Open
Abstract
Mutation in the “nude” gene, i.e. the FoxN1 gene, induces a hairless phenotype and a rudimentary thymus gland in mice (nude mouse) and humans (T-cell related primary immunodeficiency). Conventional FoxN1 gene knockout and transgenic mouse models have been generated for studies of FoxN1 gene function related to skin and immune diseases, and for cancer models. It appeared that FoxN1's role was fully understood and the nude mouse model was fully utilized. However, in recent years, with the development of inducible gene knockout/knockin mouse models with the loxP-Cre(ERT) and diphtheria toxin receptor-induced cell abolished systems, it appears that the complete repertoire of FoxN1's roles and deep-going usage of nude mouse model in immune function studies have just begun. Here we summarize the research progress made by several recent works studying the role of FoxN1 in the thymus and utilizing nude and “second (conditional) nude” mouse models for studies of T-cell development and function. We also raise questions and propose further consideration of FoxN1 functions and utilizing this mouse model for immune function studies.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
44
|
Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol 2012; 23:906-16. [PMID: 22939761 DOI: 10.1016/j.semcdb.2012.08.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/06/2012] [Indexed: 01/06/2023]
Abstract
Hair follicles (HFs) is an appendage from the vertebrate skin epithelium, and is critical for environmental sensing, animal appearance, and body heat maintenance. HFs arise from the embryonic ectoderm and regenerate cyclically during adult life. Distinct morphological and functional stages from development through homeostasis have been extensively studied for the past decades to dissect the critical molecular mechanisms. Accumulating work suggests that different signaling cascades, such as Wnt, Bmp, Shh, and Notch, together with specific combinations of transcription factors are at work at different stages. Here we provide a comprehensive review of mouse genetics studies, which include lineage tracing along with knockout and over-expression of core genes from key signaling pathways, to paint an updated view of the molecular regulatory network that govern each stage of hair follicle development and adult cycling.
Collapse
Affiliation(s)
- Jayhun Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | | |
Collapse
|
45
|
Hammond NL, Headon DJ, Dixon MJ. The cell cycle regulator protein 14-3-3σ is essential for hair follicle integrity and epidermal homeostasis. J Invest Dermatol 2012; 132:1543-53. [PMID: 22377760 PMCID: PMC3378636 DOI: 10.1038/jid.2012.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 14-3-3σ (Stratifin; Sfn) is a cell cycle regulator intimately involved in the program of epithelial keratinization. 14-3-3σ is unique in that it is expressed primarily in epithelial cells and is frequently silenced in epithelial cancers. Despite its well-documented role as a cell cycle regulator and as a tumor suppressor, the function of 14-3-3σ in the intricate balance of proliferation and differentiation in epithelial development is poorly understood. A mutation in 14-3-3σ was found to be responsible for the repeated epilation (Er) phenotype. It has previously been shown that Sfn(+/Er) mice are characterized by repeated hair loss and regrowth, whereas Sfn(Er/Er) mice die at birth displaying severe oral fusions and limb abnormalities as a result of defects in keratinizing epithelia. Here we show that mice heterozygous for the 14-3-3σ mutation have severe defects in hair shaft differentiation, resulting in destruction of the hair shaft during morphogenesis. Furthermore, we report that the interfollicular epidermis and sebaceous glands are hyperproliferative, coincident with expanded nuclear Yap1 (Yes-associated protein 1)--a critical modulator of epidermal stem cell proliferation. We also report that hair follicle stem cells in the bulge cycle abnormally, raising important questions as to the role of 14-3-3σ in the bulge.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Medical and Human Science and Faculty of Life Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT
| | - Denis J. Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS
| | - Michael J. Dixon
- Faculty of Medical and Human Science and Faculty of Life Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT
| |
Collapse
|
46
|
Behrendt K, Klatte J, Pofahl R, Bloch W, Smyth N, Tscharntke M, Krieg T, Paus R, Niessen C, Niemann C, Brakebusch C, Haase I. A function for Rac1 in the terminal differentiation and pigmentation of hair. J Cell Sci 2012; 125:896-905. [PMID: 22275433 DOI: 10.1242/jcs.091868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair loss. The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was, however, not normal. Rescue mice showed a grey, dull hair coat, whereas that of wild-type and L61Rac1-transgenic mice was black and shiny. Hair analysis in rescue mice revealed altered structures of the hair shaft and the cuticle and disturbed organization of medulla cells and pigment distribution. Disorganization of medulla cells correlates with the absence of cortical, keratin-filled spikes that normally protrude from the cortex into the medulla. The desmosomal cadherin Dsc2, which normally decorates these protrusions, was found to be reduced or absent in the hair of rescue mice. Our study demonstrates regulatory functions for Rac1 in the formation of hair structure and pigmentation and thereby identifies, for the first time, a role for Rac1 in terminal differentiation.
Collapse
Affiliation(s)
- Kristina Behrendt
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Aubin-Houzelstein G. Notch signaling and the developing hair follicle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:142-60. [PMID: 22399345 DOI: 10.1007/978-1-4614-0899-4_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch function in the hair follicle has been mainly studied by use of transgenic mice carrying either loss or gain of function mutations in various members of the pathway. These studies revealed that whereas embryonic development of the hair follicle can be achieved without Notch, its postnatal development requires an intact Notch signaling in the hair bulb and the outer root sheath. Among the many roles played by Notch in the hair follicle, two can be highlighted: in the bulge, Notch controls a cell fate switch in hair follicle stem cells or their progenitors, preventing them from adopting an epidermal fate. In the hair bulb, Notch controls cell differentiation, ensuring the proper development of every layer of the hair shaft and inner root sheath. Notch function in the hair follicle is both cell autonomous and cell non autonomous and involves intercellular communication between adjacent layers.
Collapse
|
48
|
TSH is a novel neuroendocrine regulator of selected keratins in the human hair follicle. J Dermatol Sci 2011; 64:67-70. [DOI: 10.1016/j.jdermsci.2011.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 11/23/2022]
|
49
|
Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 2011; 118:5723-31. [PMID: 21908422 DOI: 10.1182/blood-2011-03-342097] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead box n1 (Foxn1) transcription factor is essential for thymic organogenesis during embryonic development; however, a functional role of Foxn1 in the postnatal thymus is less well understood. We developed Foxn1 transgenic mice (Foxn1Tg), in which overexpression of Foxn1 is driven by the human keratin-14 promoter. Expression of the Foxn1 transgene increased the endogenous Foxn1 levels. In aged mice, overexpression of Foxn1 in the thymus attenuated the decline in thymocyte numbers, prevented the decline in frequency of early thymic progenitors, and generated a higher number of signal joint TCR excised circle. Histologic studies revealed that structural alterations associated with thymic involution were diminished in aged Foxn1 Tg. Total numbers of EpCAM+ MHC II+ and MHC II(hi) thymic epithelial cells were higher in young and old Foxn1Tg and more EpCAM+ MHC II(hi) TEC expressed Ki-67 in aged Foxn1Tg compared with WT. Furthermore, Foxn1Tg displayed a significant reduction in the expansion of splenic CD4+ memory compartments and attenuated the decline in CD4+ and CD8+ naive compartments. Our data indicate that manipulation of Foxn1 expression in the thymus ameliorates thymopoiesis in aged mice and offer a strategy to combat the age-associated decline in naive T-cell production and CD4 naive/memory ratios in the elderly.
Collapse
|
50
|
Cai J, Ma L. Msx2 and Foxn1 regulate nail homeostasis. Genesis 2011; 49:449-59. [PMID: 21387539 DOI: 10.1002/dvg.20744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/10/2011] [Accepted: 02/19/2011] [Indexed: 01/16/2023]
Abstract
Epithelial-mesenchymal interactions underlie the foundation for ectodermal appendage formation. Signal molecules such as BMPs and WNTs mediate crosstalk between the two tissue layers and coordinate both the induction and morphogenesis of ectodermal appendages. Here, we analyzed the function of two BMP downstream transcription factors, Msx2 and Foxn1, in nail differentiation. First, we show that Msx2 function is required during onychocyte (nail cell) terminal differentiation. Second, the Msx2/Foxn1/hair keratin pathway controlling hair differentiation is also conserved during onychocyte differentiation. Finally, the Msx2-/-; Foxn1-/- double-mutant nails exhibit a more severe phenotype than either single mutant including nail bed hyperplasia. Together, our data implicate important functions for Msx2 and Foxn1 in regulating differentiation of the keratogenous zone, proliferation of distal nail matrix cells, and organization of the nail bed.
Collapse
Affiliation(s)
- Jing Cai
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|