1
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
2
|
Rehman A, Zhovmer A, Sato R, Mukouyama YS, Chen J, Rissone A, Puertollano R, Liu J, Vishwasrao HD, Shroff H, Combs CA, Xue H. Convolutional neural network transformer (CNNT) for fluorescence microscopy image denoising with improved generalization and fast adaptation. Sci Rep 2024; 14:18184. [PMID: 39107416 PMCID: PMC11303381 DOI: 10.1038/s41598-024-68918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Deep neural networks can improve the quality of fluorescence microscopy images. Previous methods, based on Convolutional Neural Networks (CNNs), require time-consuming training of individual models for each experiment, impairing their applicability and generalization. In this study, we propose a novel imaging-transformer based model, Convolutional Neural Network Transformer (CNNT), that outperforms CNN based networks for image denoising. We train a general CNNT based backbone model from pairwise high-low Signal-to-Noise Ratio (SNR) image volumes, gathered from a single type of fluorescence microscope, an instant Structured Illumination Microscope. Fast adaptation to new microscopes is achieved by fine-tuning the backbone on only 5-10 image volume pairs per new experiment. Results show that the CNNT backbone and fine-tuning scheme significantly reduces training time and improves image quality, outperforming models trained using only CNNs such as 3D-RCAN and Noise2Fast. We show three examples of efficacy of this approach in wide-field, two-photon, and confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Azaan Rehman
- Office of AI Research, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Alexander Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, 20903, USA
| | - Ryo Sato
- Laboratory of Stem Cell and Neurovascular Research, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neurovascular Research, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIBIB, NIH, Bethesda, MD, 20892, USA
| | - Alberto Rissone
- Laboratory of Protein Trafficking and Organelle Biology, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Rosa Puertollano
- Laboratory of Protein Trafficking and Organelle Biology, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, NIBIB, NIH, Bethesda, MD, 20892, USA
| | | | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Christian A Combs
- Light Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Hui Xue
- Office of AI Research, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Health Futures, Microsoft Research, Redmond, Washington, 98052, USA
| |
Collapse
|
3
|
Levic DS, Niedzwiecki D, Kandakatla A, Karlovich NS, Juneja A, Park J, Stolarchuk C, Adams S, Willer JR, Schaner MR, Lian G, Beasley C, Marjoram L, Flynn AD, Valentine JF, Onken JE, Sheikh SZ, Davis EE, Evason KJ, Garman KS, Bagnat M. TNF Promoter Hypomethylation Is Associated With Mucosal Inflammation in IBD and Anti-TNF Response. GASTRO HEP ADVANCES 2024; 3:888-898. [PMID: 39286616 PMCID: PMC11402298 DOI: 10.1016/j.gastha.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the tumor necrosis factor (TNF) promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and nonresponders. Methods We obtained mucosal biopsies from 200 participants (133 IBDs and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 nonresponders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated intestinal epithelial cells from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF nonresponders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed 2 missense variants in DNA methyltransferase 1, 1 of which had reduced function in vivo. Conclusion Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Apoorva Kandakatla
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Norah S. Karlovich
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Arjun Juneja
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Jieun Park
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Shanté Adams
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lindsay Marjoram
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Ann D. Flynn
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - John F. Valentine
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - Jane E. Onken
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erica E. Davis
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kimberley J. Evason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Madakashira BP, Magnani E, Ranjan S, Sadler KC. DNA hypomethylation activates Cdk4/6 and Atr to induce DNA replication and cell cycle arrest to constrain liver outgrowth in zebrafish. Nucleic Acids Res 2024; 52:3069-3087. [PMID: 38321933 PMCID: PMC11014291 DOI: 10.1093/nar/gkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.
Collapse
|
5
|
Levic DS, Niedzwiecki D, Kandakatla A, Karlovich NS, Juneja A, Park J, Stolarchuk C, Adams S, Willer JR, Schaner MR, Lian G, Beasley C, Marjoram L, Flynn AD, Valentine JF, Onken JE, Sheikh SZ, Davis EE, Evason KJ, Garman KS, Bagnat M. TNF promoter hypomethylation is associated with mucosal inflammation in IBD and anti-TNF response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302343. [PMID: 38370739 PMCID: PMC10871362 DOI: 10.1101/2024.02.05.24302343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background and aims Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the TNF promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and non-responders. Methods We obtained mucosal biopsies from 200 participants (133 IBD and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 non-responders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated IECs from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF non-responders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed two missense variants in DNMT1, one of which had reduced function in vivo. Conclusions Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Apoorva Kandakatla
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Norah S. Karlovich
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Arjun Juneja
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Jieun Park
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Shanté Adams
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ann D. Flynn
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - John F. Valentine
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - Jane E. Onken
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica E. Davis
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Kimberley J. Evason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Lawir DF, Soza-Ried C, Iwanami N, Siamishi I, Bylund GO, O Meara C, Sikora K, Kanzler B, Johansson E, Schorpp M, Cauchy P, Boehm T. Antagonistic interactions safeguard mitotic propagation of genetic and epigenetic information in zebrafish. Commun Biol 2024; 7:31. [PMID: 38182651 PMCID: PMC10770094 DOI: 10.1038/s42003-023-05692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The stability of cellular phenotypes in developing organisms depends on error-free transmission of epigenetic and genetic information during mitosis. Methylation of cytosine residues in genomic DNA is a key epigenetic mark that modulates gene expression and prevents genome instability. Here, we report on a genetic test of the relationship between DNA replication and methylation in the context of the developing vertebrate organism instead of cell lines. Our analysis is based on the identification of hypomorphic alleles of dnmt1, encoding the DNA maintenance methylase Dnmt1, and pole1, encoding the catalytic subunit of leading-strand DNA polymerase epsilon holoenzyme (Pole). Homozygous dnmt1 mutants exhibit genome-wide DNA hypomethylation, whereas the pole1 mutation is associated with increased DNA methylation levels. In dnmt1/pole1 double-mutant zebrafish larvae, DNA methylation levels are restored to near normal values, associated with partial rescue of mutant-associated transcriptional changes and phenotypes. Hence, a balancing antagonism between DNA replication and maintenance methylation buffers against replicative errors contributing to the robustness of vertebrate development.
Collapse
Affiliation(s)
- Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cristian Soza-Ried
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Göran O Bylund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Connor O Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katarzyna Sikora
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bioinformatic Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Benoît Kanzler
- Transgenic Mouse Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pierre Cauchy
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
9
|
Ma J, Yang Z, Huang Z, Li L, Huang J, Chen J, Ni R, Luo L, He J. Rngtt governs biliary-derived liver regeneration initiation by transcriptional regulation of mTORC1 and Dnmt1 in zebrafish. Hepatology 2023; 78:167-178. [PMID: 36724876 DOI: 10.1097/hep.0000000000000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023]
Abstract
In cases of end-stage liver diseases, the proliferation of existing hepatocytes is compromised, a feature of human chronic liver disease, in which most hepatocytes are dysfunctional. So far, liver transplantation represents the only curative therapeutic solution for advanced liver diseases, and the shortage of donor organs leads to high morbidity and mortality worldwide. The promising treatment is to prompt the biliary epithelial cells (BECs) transdifferentiation. However, the critical factors governing the initiation of BEC-derived liver regeneration are largely unknown. The zebrafish has advantages in large-scale genetic screens to identify the critical factors involved in liver regeneration. Here, we combined N-ethyl-N-nitrosourea screen, positional cloning, transgenic lines, antibody staining, and in situ hybridization methods and identified a liver regeneration defect mutant ( lrd ) using the zebrafish extensive liver injury model. Through positional cloning and genomic sequencing, we mapped the mutation site to rngtt . Loss of rngtt leads to the defects of BEC dedifferentiation, bipotential progenitor cell activation, and cell proliferation in the initiation stage of liver regeneration. The transdifferentiation from BECs to hepatocytes did not occur even at the late stage of liver regeneration. Mechanically, Rngtt transcriptionally regulates the attachment of mRNA cap to mTOR complex 1 (mTORC1) components and dnmt1 to maintain the activation of mTORC1 and DNA methylation in BECs after severe liver injury and prompt BEC to hepatocyte conversion. Furthermore, rptor and dnmt1 mutants displayed the same liver regeneration defects as rngtt mutation. In conclusion, our results suggest Rngtt is a new factor that initiates BEC-derived liver regeneration.
Collapse
Affiliation(s)
- Jianlong Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuolin Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Linke Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingliang Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
10
|
Li Y, Tang C, Liu F, Zhu C, Liu F, Zhu P, Wang L. DNA methylation safeguards the generation of hematopoietic stem and progenitor cells by repression of Notch signaling. Development 2022; 149:275510. [PMID: 35502759 PMCID: PMC9188753 DOI: 10.1242/dev.200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
The earliest hematopoietic stem and progenitor cells (HSPCs) are generated from the ventral wall of the dorsal aorta, through endothelial-to-hematopoietic transition during vertebrate embryogenesis. Notch signaling is crucial for HSPC generation across vertebrates; however, the precise control of Notch during this process remains unclear. In the present study, we used multi-omics approaches together with functional assays to assess global DNA methylome dynamics during the endothelial cells to HSPCs transition in zebrafish, and determined that DNA methyltransferase 1 (Dnmt1) is essential for HSPC generation via repression of Notch signaling. Depletion of dnmt1 resulted in decreased DNA methylation levels and impaired HSPC production. Mechanistically, we found that loss of dnmt1 induced hypomethylation of Notch genes and consequently elevated Notch activity in hemogenic endothelial cells, thereby repressing the generation of HSPCs. This finding deepens our understanding of HSPC specification in vivo, which will provide helpful insights for designing new strategies for HSPC generation in vitro. Summary: Multi-omics approaches and functional assays reveal global DNA methylome dynamics and an indispensable role of DNA methyltransferase 1 in hematopoietic stem/progenitor cell generation through repression of Notch signaling.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences 1 , Beijing, 100101 , China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Fan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences 1 , Beijing, 100101 , China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| |
Collapse
|
11
|
DNA methylation maintenance at the p53 locus initiates biliary-mediated liver regeneration. NPJ Regen Med 2022; 7:21. [PMID: 35351894 PMCID: PMC8964678 DOI: 10.1038/s41536-022-00217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
In cases of extensive liver injury, biliary epithelial cells (BECs) dedifferentiate into bipotential progenitor cells (BPPCs), then redifferentiate into hepatocytes and BECs to accomplish liver regeneration. Whether epigenetic regulations, particularly DNA methylation maintenance enzymes, play a role in this biliary-mediated liver regeneration remains unknown. Here we show that in response to extensive hepatocyte damages, expression of dnmt1 is upregulated in BECs to methylate DNA at the p53 locus, which represses p53 transcription, and in turn, derepresses mTORC1 signaling to activate BEC dedifferentiation. After BEC dedifferentiation and BPPC formation, DNA methylation at the p53 locus maintains in BPPCs to continue blocking p53 transcription, which derepresses Bmp signaling to induce BPPC redifferentiation. Thus, this study reveals promotive roles and mechanisms of DNA methylation at the p53 locus in both dedifferentiation and redifferentiation stages of biliary-mediated liver regeneration, implicating DNA methylation and p53 as potential targets to stimulate regeneration after extensive liver injury.
Collapse
|
12
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
13
|
Wu X, Zhang H, Zhang B, Zhang Y, Wang Q, Shen W, Wu X, Li L, Xia W, Nakamura R, Liu B, Liu F, Takeda H, Meng A, Xie W. Methylome inheritance and enhancer dememorization reset an epigenetic gate safeguarding embryonic programs. SCIENCE ADVANCES 2021; 7:eabl3858. [PMID: 34936444 PMCID: PMC8694617 DOI: 10.1126/sciadv.abl3858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/10/2021] [Indexed: 05/31/2023]
Abstract
Marked epigenetic reprogramming is essential to convert terminally differentiated gametes to totipotent embryos. It remains puzzling why postfertilization global DNA reprogramming occurs in mammals but not in nonmammalian vertebrates. In zebrafish, global methylome inheritance is however accompanied by extensive enhancer “dememorization” as they become fully methylated. By depleting maternal dnmt1 using oocyte microinjection, we eliminated DNA methylation in early embryos, which died around gastrulation with severe differentiation defects. Notably, methylation deficiency leads to derepression of adult tissue–specific genes and CG-rich enhancers, which acquire ectopic transcription factor binding and, unexpectedly, histone H3 lysine 4 trimethylation (H3K4me3). By contrast, embryonic enhancers are generally CG-poor and evade DNA methylation repression. Hence, global DNA hypermethylation inheritance coupled with enhancer dememorization installs an epigenetic gate that safeguards embryonic programs and ensures temporally ordered gene expression. We propose that “enhancer dememorization” underlies and unifies distinct epigenetic reprogramming modes in early development between mammals and nonmammals.
Collapse
Affiliation(s)
- Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongmei Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingjie Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiuyan Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weikun Xia
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Bofeng Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Science, Beijing, China
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
15
|
Parveen N, Dhawan S. DNA Methylation Patterning and the Regulation of Beta Cell Homeostasis. Front Endocrinol (Lausanne) 2021; 12:651258. [PMID: 34025578 PMCID: PMC8137853 DOI: 10.3389/fendo.2021.651258] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta cells play a central role in regulating glucose homeostasis by secreting the hormone insulin. Failure of beta cells due to reduced function and mass and the resulting insulin insufficiency can drive the dysregulation of glycemic control, causing diabetes. Epigenetic regulation by DNA methylation is central to shaping the gene expression patterns that define the fully functional beta cell phenotype and regulate beta cell growth. Establishment of stage-specific DNA methylation guides beta cell differentiation during fetal development, while faithful restoration of these signatures during DNA replication ensures the maintenance of beta cell identity and function in postnatal life. Lineage-specific transcription factor networks interact with methylated DNA at specific genomic regions to enhance the regulatory specificity and ensure the stability of gene expression patterns. Recent genome-wide DNA methylation profiling studies comparing islets from diabetic and non-diabetic human subjects demonstrate the perturbation of beta cell DNA methylation patterns, corresponding to the dysregulation of gene expression associated with mature beta cell state in diabetes. This article will discuss the molecular underpinnings of shaping the islet DNA methylation landscape, its mechanistic role in the specification and maintenance of the functional beta cell phenotype, and its dysregulation in diabetes. We will also review recent advances in utilizing beta cell specific DNA methylation patterns for the development of biomarkers for diabetes, and targeting DNA methylation to develop translational approaches for supplementing the functional beta cell mass deficit in diabetes.
Collapse
Affiliation(s)
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
16
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
17
|
Magnani E, Macchi F, Madakashira BP, Zhang C, Alaydaroos F, Sadler KC. uhrf1 and dnmt1 Loss Induces an Immune Response in Zebrafish Livers Due to Viral Mimicry by Transposable Elements. Front Immunol 2021; 12:627926. [PMID: 33854502 PMCID: PMC8039153 DOI: 10.3389/fimmu.2021.627926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of transposable elements (TEs) can cause cellular damage. Cytoplasmic nucleic acid sensing pathways evolved to detect pathogens, but can also serve to cull cells with inappropriate TE activation as TEs can be viral mimetics. Epigenetic silencing of TEs is mediated in part by DNA methylation, but it is not clear if TE activation or the immune system contribute to the cellular damage caused by loss of DNA methylation. Here, we provide mechanistic insight into the observation of an activated interferon response in the liver of zebrafish larvae with deletion in critical components of the DNA methylation machinery, uhrf1 and dnmt1. We focus on dissecting the relationship between DNA methylation, TE activation and induction of an immune response through cytoplasmic DNA and double stranded RNA sensing pathways and identify tnfa as a mediator of cell death in the liver of these mutants. Integrated RNAseq and methylome analysis identified LTR transposons as the most upregulated in these mutants and also the most methylated in control larvae, indicating a direct role of DNA methylation in suppressing this TE subclass. RNAseq analysis from these same samples revealed expression signatures of a type-I interferon response and of tnfa activation, mimicking the pattern of gene expression in virally infected cells. CRISPR/Cas9 mediated depletion of the cellular antiviral sensors sting and mavs reduced expression of interferon response genes and tnfa depletion dramatically reduced cell death in uhrf1 mutant livers. This suggests that the antiviral response induced by DNA hypomethylation and TE activation in the liver is mediated by the signaling pathways activated by both cytoplasmic double stranded RNA and DNA and that tnfa mediates cell death as a potential mechanism to eliminate these damaged cells.
Collapse
Affiliation(s)
- Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Fatima Alaydaroos
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Chen C, Gu Y, Philippe J, Zhang P, Bachman H, Zhang J, Mai J, Rufo J, Rawls JF, Davis EE, Katsanis N, Huang TJ. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat Commun 2021; 12:1118. [PMID: 33602914 PMCID: PMC7892888 DOI: 10.1038/s41467-021-21373-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.
Collapse
Affiliation(s)
- Chuyi Chen
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Julien Philippe
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Jinxin Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
20
|
Crocins from Crocus sativus L. in the Management of Hyperglycemia. In Vivo Evidence from Zebrafish. Molecules 2020; 25:molecules25225223. [PMID: 33182581 PMCID: PMC7696463 DOI: 10.3390/molecules25225223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a disease characterized by persistent high blood glucose levels and accompanied by impaired metabolic pathways. In this study, we used zebrafish to investigate the effect of crocins isolated from Crocus sativus L., on the control of glucose levels and pancreatic β-cells. Embryos were exposed to an aqueous solution of crocins and whole embryo glucose levels were measured at 48 h post-treatment. We showed that the application of crocins reduces zebrafish embryo glucose levels and enhances insulin expression. We also examined whether crocins are implicated in the metabolic pathway of gluconeogenesis. We showed that following a single application of crocins and glucose level reduction, the expression of phosphoenolpyruvate carboxykinase1 (pck1), a key gene involved in glucose metabolism, is increased. We propose a putative role for the crocins in glucose metabolism and insulin management.
Collapse
|
21
|
Chen YT, Lin WD, Liao WL, Tsai YC, Liao JW, Tsai FJ. NT5C2 methylation regulatory interplay between DNMT1 and insulin receptor in type 2 diabetes. Sci Rep 2020; 10:16087. [PMID: 32999320 PMCID: PMC7527562 DOI: 10.1038/s41598-020-71336-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/12/2020] [Indexed: 11/29/2022] Open
Abstract
Epigenetics alternation of non-genetic variation and genome-wide association study proven allelic variants may associate with insulin secretion in type 2 diabetes (T2D) development. We analyzed promoter DNA methylation array to evaluate the associated with increased susceptibility to T2D (30 cases, 10 controls) and found 1,091 gene hypermethylated in promoter regions. We performed the association study of T2D and found 698 single nucleotide polymorphisms in exon and promoter sites by using 2,270 subjects (560 cases, 1,710 controls). A comparison of DNA hypermethylation and gene silencing of mouse T2D results in our T2D patients’ results showed that the 5′-nucleotidase, cytosolic II (NT5C2) and fucosyltransferase 8 (FUT8) genes were strongly associated with increased susceptibility to T2D. DNA hypermethylation in promoter regions reduced NT5C2 gene expression, but not FUT8 in T2D patients. NT5C2 protein expression was decreased in pancreatic β-cells from T2D mice. Transient transfection NT5C2 into RIN-m5F cells down-regulated DNA methyltransferase I (DNMT1) expression and up-regulation of the insulin receptor. Moreover, NT5C2 knockdown induced in DNMT1 overexpression and insulin receptor inhibition. Taken together, these results showed that NT5C2 epigenetically regulated insulin receptor in patients and mice with T2D, and maybe provide for T2D therapy strategy.
Collapse
Affiliation(s)
- Yng-Tay Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.
| | - Wei-De Lin
- Human Genetic Center, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ching Tsai
- Human Genetic Center, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetic Center, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
22
|
Dobosz AM, Janikiewicz J, Borkowska AM, Dziewulska A, Lipiec E, Dobrzyn P, Kwiatek WM, Dobrzyn A. Stearoyl-CoA Desaturase 1 Activity Determines the Maintenance of DNMT1-Mediated DNA Methylation Patterns in Pancreatic β-Cells. Int J Mol Sci 2020; 21:ijms21186844. [PMID: 32961871 PMCID: PMC7555428 DOI: 10.3390/ijms21186844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Metabolic stress, such as lipotoxicity, affects the DNA methylation profile in pancreatic β-cells and thus contributes to β-cell failure and the progression of type 2 diabetes (T2D). Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that is involved in monounsaturated fatty acid synthesis, which protects pancreatic β-cells against lipotoxicity. The present study found that SCD1 is also required for the establishment and maintenance of DNA methylation patterns in β-cells. We showed that SCD1 inhibition/deficiency caused DNA hypomethylation and changed the methyl group distribution within chromosomes in β-cells. Lower levels of DNA methylation in SCD1-deficient β-cells were followed by lower levels of DNA methyltransferase 1 (DNMT1). We also found that the downregulation of SCD1 in pancreatic β-cells led to the activation of adenosine monophosphate-activated protein kinase (AMPK) and an increase in the activity of the NAD-dependent deacetylase sirtuin-1 (SIRT1). Furthermore, the physical association between DNMT1 and SIRT1 stimulated the deacetylation of DNMT1 under conditions of SCD1 inhibition/downregulation, suggesting a mechanism by which SCD1 exerts control over DNMT1. We also found that SCD1-deficient β-cells that were treated with compound c, an inhibitor of AMPK, were characterized by higher levels of both global DNA methylation and DNMT1 protein expression compared with untreated cells. Therefore, we found that activation of the AMPK/SIRT1 signaling pathway mediates the effect of SCD1 inhibition/deficiency on DNA methylation status in pancreatic β-cells. Altogether, these findings suggest that SCD1 is a gatekeeper that protects β-cells against the lipid-derived loss of DNA methylation and provide mechanistic insights into the mechanism by which SCD1 regulates DNA methylation patterns in β-cells and T2D-relevant tissues.
Collapse
Affiliation(s)
- Aneta M. Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.M.D.); (J.J.); (A.D.)
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.M.D.); (J.J.); (A.D.)
| | - Anna M. Borkowska
- Division of Interdisciplinary Research, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (A.M.B.); (E.L.); (W.M.K.)
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.M.D.); (J.J.); (A.D.)
| | - Ewelina Lipiec
- Division of Interdisciplinary Research, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (A.M.B.); (E.L.); (W.M.K.)
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Wojciech M. Kwiatek
- Division of Interdisciplinary Research, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (A.M.B.); (E.L.); (W.M.K.)
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.M.D.); (J.J.); (A.D.)
- Correspondence:
| |
Collapse
|
23
|
Transgenerational inheritance of impaired larval T cell development in zebrafish. Nat Commun 2020; 11:4505. [PMID: 32908148 PMCID: PMC7481223 DOI: 10.1038/s41467-020-18289-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Evidence for transgenerational inheritance of epigenetic information in vertebrates is scarce. Aberrant patterns of DNA methylation in gametes may set the stage for transmission into future generations. Here, we describe a viable hypomorphic allele of dnmt1 in zebrafish that causes widespread demethylation of CpG dinucleotides in sperm and somatic tissues. We find that homozygous mutants are essentially normal, with the exception of drastically impaired lymphopoiesis, affecting both larval and adult phases of T cell development. The phenotype of impaired larval (but not adult) T cell development is transmitted to subsequent generations by genotypically wildtype fish. We further find that about 200 differentially methylated regions in sperm DNA of transmitting and non-transmitting males, including hypermethylated sites associated with runx3 and rptor genes, whose reduced activities are associated with impaired larval T cell development. Our results indicate a particular sensitivity of larval T cell development to transgenerationally inherited epimutations. Evidence for transgenerational inheritance of epigenetic information in vertebrates is scarce. Here the authors report that homozygous dnmt1 mutant zebrafish are essentially normal, with the exception of impaired lymphopoiesis, with impaired larval (but not adult) T cell development being transmitted to subsequent generations by genotypically wildtype fish.
Collapse
|
24
|
Liang YZ, Li JJH, Xiao HB, He Y, Zhang L, Yan YX. Identification of stress-related microRNA biomarkers in type 2 diabetes mellitus: A systematic review and meta-analysis. J Diabetes 2020; 12:633-644. [PMID: 29341487 DOI: 10.1111/1753-0407.12643] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many studies have investigated microRNAs (miRNAs) in the detection of type 2 diabetes mellitus (T2DM). Herein, the dysregulated direction of stress-related miRNAs used as biomarkers of T2DM are summarized and analyzed. METHODS PubMed, EMBASE, ISI Web of Science, and three Chinese databases were searched for case-control miRNA profiling studies about T2DM. A meta-analysis under a random effect was performed. Subgroup analysis was conducted based on different tissues and species. Sensitivity analysis was conducted to confirm the robustness among studies. The effect size was pooled using ln odds ratios (ORs), 95% confidence intervals (95% CIs), and P-values. RESULTS The present meta-analysis included 39 case-control studies with a total of 494 miRNAs. Only 33 miRNAs were reported in three or more studies and, of these, 18 were inconsistent in their direction of dysregulation. Two significantly dysregulated miRNAs (let-7 g and miR-155) were identified in the meta-analysis. Four miRNAs (miR-142-3p, miR-155, miR-21, and miR-34c-5p) were dysregulated in patients with T2DM, whereas five miRNAs (miR-146a, miR-199a-3p, miR-200b, miR-29b and miR-30e) were dysregulated in animal models of diabetes. In addition, two dysregulated miRNAs (miR-146a and miR-21) were highly cornea specific and heart specific. In sensitivity analysis, only miR-155 was still significantly dysregulated after removing studies with small sample sizes. CONCLUSIONS The present meta-analysis revealed that 16 stress-related miRNAs were significantly dysregulated in T2DM. MiR-148b, miR-223, miR-130a, miR-19a, miR-26b and miR-27b were selected as potential circulating biomarkers of T2DM. In addition, miR-146a and miR-21 were identified as potential tissue biomarkers of T2DM.
Collapse
Affiliation(s)
- Ying-Zhi Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jia-Jiang-Hui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Huan-Bo Xiao
- Department of Preventive Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
25
|
Xu F, Liu J, Na L, Chen L. Roles of Epigenetic Modifications in the Differentiation and Function of Pancreatic β-Cells. Front Cell Dev Biol 2020; 8:748. [PMID: 32984307 PMCID: PMC7484512 DOI: 10.3389/fcell.2020.00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes, a metabolic disease with multiple causes characterized by high blood sugar, has become a public health problem. Hyperglycaemia is caused by deficiencies in insulin secretion, impairment of insulin function, or both. The insulin secreted by pancreatic β cells is the only hormone in the body that lowers blood glucose levels and plays vital roles in maintaining glucose homeostasis. Therefore, investigation of the molecular mechanisms of pancreatic β cell differentiation and function is necessary to elucidate the processes involved in the onset of diabetes. Although numerous studies have shown that transcriptional regulation is essential for the differentiation and function of pancreatic β cells, increasing evidence indicates that epigenetic mechanisms participate in controlling the fate and regulation of these cells. Epigenetics involves heritable alterations in gene expression caused by DNA methylation, histone modification and non-coding RNA activity that does not result in DNA nucleotide sequence alterations. Recent research has revealed that a variety of epigenetic modifications play an important role in the development of diabetes. Here, we review the mechanisms by which epigenetic regulation affects β cell differentiation and function.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Liu
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
26
|
dnmt1 function is required to maintain retinal stem cells within the ciliary marginal zone of the zebrafish eye. Sci Rep 2020; 10:11293. [PMID: 32647199 PMCID: PMC7347529 DOI: 10.1038/s41598-020-68016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
The ciliary marginal zone (CMZ) of the zebrafish retina contains a population of actively proliferating resident stem cells, which generate retinal neurons throughout life. The maintenance methyltransferase, dnmt1, is expressed within the CMZ. Loss of dnmt1 function results in gene misregulation and cell death in a variety of developmental contexts, however, its role in retinal stem cell (RSC) maintenance is currently unknown. Here, we demonstrate that zebrafish dnmt1s872 mutants possess severe defects in RSC maintenance within the CMZ. Using a combination of immunohistochemistry, in situ hybridization, and a transgenic reporter assay, our results demonstrate a requirement for dnmt1 activity in the regulation of RSC proliferation, gene expression and in the repression of endogenous retroelements (REs). Ultimately, cell death is elevated in the dnmt1−/− CMZ, but in a p53-independent manner. Using a transgenic reporter for RE transposition activity, we demonstrate increased transposition in the dnmt1−/− CMZ. Taken together our data identify a critical role for dnmt1 function in RSC maintenance in the vertebrate eye.
Collapse
|
27
|
Yang B, Covington BA, Chen W. In vivo generation and regeneration of β cells in zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:9. [PMID: 32613468 PMCID: PMC7329966 DOI: 10.1186/s13619-020-00052-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
The pathological feature of diabetes, hyperglycemia, is a result of an inadequate number and/or function of insulin producing β cells. Replenishing functional β cells is a strategy to cure the disease. Although β-cell regeneration occurs in animal models under certain conditions, human β cells are refractory to proliferation. A better understanding of both the positive and the negative regulatory mechanisms of β-cell regeneration in animal models is essential to develop novel strategies capable of inducing functional β cells in patients. Zebrafish are an attractive model system for studying β-cell regeneration due to the ease to which genetic and chemical-genetic approaches can be used as well as their high regenerative capacity. Here, we highlight the current state of β-cell regeneration studies in zebrafish with an emphasis on cell signaling mechanisms.
Collapse
Affiliation(s)
- Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
28
|
Iwanami N, Takeshita K, Lawir DF, Suetake I, Tajima S, Sikora K, Trancoso I, ÓMeara C, Siamishi I, Takahama Y, Furutani-Seiki M, Kondoh H, Yonezawa Y, Schorpp M, Boehm T. Epigenetic Protection of Vertebrate Lymphoid Progenitor Cells by Dnmt1. iScience 2020; 23:101260. [PMID: 32585597 PMCID: PMC7322073 DOI: 10.1016/j.isci.2020.101260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022] Open
Abstract
DNA methylation is a universal epigenetic mechanism involved in regulation of gene expression and genome stability. The DNA maintenance methylase DNMT1 ensures that DNA methylation patterns are faithfully transmitted to daughter cells during cell division. Because loss of DNMT1 is lethal, a pan-organismic analysis of DNMT1 function is lacking. We identified new recessive dnmt1 alleles in medaka and zebrafish and, guided by the structures of mutant proteins, generated a recessive variant of mouse Dnmt1. Each of the three missense mutations studied here distorts the catalytic pocket and reduces enzymatic activity. Because all three DNMT1 mutant animals are viable, it was possible to examine their phenotypes throughout life. The consequences of genome-wide hypomethylation of DNA of somatic tissues in the Dnmt1 mutants are surprisingly mild but consistently affect the development of the lymphoid lineage. Our findings indicate that developing lymphocytes in vertebrates are sensitive to perturbations of DNA maintenance methylation. Genetic screens identified recessive viable missense alleles of dnmt1 in teleosts A viable mouse Dnmt1 mutant generated by structure-guided precision mutagenesis Missense mutations distort the catalytic pocket and reduce enzymatic activity DNA hypomethylation consistently affects development of the lymphoid lineage
Collapse
Affiliation(s)
- Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| | | | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Isao Suetake
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Katarzyna Sikora
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Inês Trancoso
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Connor ÓMeara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Makoto Furutani-Seiki
- Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushige Yonezawa
- High Pressure Protein Research Center, Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
29
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
30
|
Suzuki N, Ochi H. Regeneration enhancers: A clue to reactivation of developmental genes. Dev Growth Differ 2020; 62:343-354. [PMID: 32096563 PMCID: PMC7383998 DOI: 10.1111/dgd.12654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
During tissue and organ regeneration, cells initially detect damage and then alter nuclear transcription in favor of tissue/organ reconstruction. Until recently, studies of tissue regeneration have focused on the identification of relevant genes. These studies show that many developmental genes are reused during regeneration. Concurrently, comparative genomics studies have shown that the total number of genes does not vastly differ among vertebrate taxa. Moreover, functional analyses of developmental genes using various knockout/knockdown techniques demonstrated that the functions of these genes are conserved among vertebrates. Despite these data, the ability to regenerate damaged body parts varies widely between animals. Thus, it is important to determine how regenerative transcriptional programs are triggered and why animals with low regenerative potential fail to express developmental genes after injury. Recently, we discovered relevant enhancers and named them regeneration signal-response enhancers (RSREs) after identifying their activation mechanisms in a Xenopus laevis transgenic system. In this review, we summarize recent studies of injury/regeneration-associated enhancers and then discuss their mechanisms of activation.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science ResearchFaculty of MedicineYamagata UniversityYamagataJapan
| |
Collapse
|
31
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
32
|
Akdogan-Ozdilek B, Duval KL, Goll MG. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res 2020; 9. [PMID: 32528656 PMCID: PMC7262572 DOI: 10.12688/f1000research.21809.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Early animal development is characterized by intense reorganization of the embryonic genome, including large-scale changes in chromatin structure and in the DNA and histone modifications that help shape this structure. Particularly profound shifts in the chromatin landscape are associated with the maternal-to-zygotic transition, when the zygotic genome is first transcribed and maternally loaded transcripts are degraded. The accessibility of the early zebrafish embryo facilitates the interrogation of chromatin during this critical window of development, making it an important model for early chromatin regulation. Here, we review our current understanding of chromatin dynamics during early zebrafish development, highlighting new advances as well as similarities and differences between early chromatin regulation in zebrafish and other species.
Collapse
Affiliation(s)
| | | | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Mullapudi ST, Boezio GLM, Rossi A, Marass M, Matsuoka RL, Matsuda H, Helker CSM, Yang YHC, Stainier DYR. Disruption of the pancreatic vasculature in zebrafish affects islet architecture and function. Development 2019; 146:dev.173674. [PMID: 31597659 DOI: 10.1242/dev.173674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Abstract
A dense local vascular network is crucial for pancreatic endocrine cells to sense metabolites and secrete hormones, and understanding the interactions between the vasculature and the islets may allow for therapeutic modulation in disease conditions. Using live imaging in two models of vascular disruption in zebrafish, we identified two distinct roles for the pancreatic vasculature. At larval stages, expression of a dominant negative version of Vegfaa (dnVegfaa) in β-cells led to vascular and endocrine cell disruption with a minor impairment in β-cell function. In contrast, expression of a soluble isoform of Vegf receptor 1 (sFlt1) in β-cells blocked the formation of the pancreatic vasculature and drastically stunted glucose response, although islet architecture was not affected. Notably, these effects of dnVegfaa or sFlt1 were not observed in animals lacking vegfaa, vegfab, kdrl, kdr or flt1 function, indicating that they interfere with multiple ligands and/or receptors. In adults, disrupted islet architecture persisted in dnVegfaa-expressing animals, whereas sFlt1-expressing animals displayed large sheets of β-cells along their pancreatic ducts, accompanied by impaired glucose tolerance in both models. Thus, our study reveals novel roles for the vasculature in patterning and function of the islet.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrea Rossi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
34
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
35
|
Zang HL, Huang GM, Ju HY, Tian XF. Integrative analysis of the inverse expression patterns in pancreas development and cancer progression. World J Gastroenterol 2019; 25:4727-4738. [PMID: 31528097 PMCID: PMC6718033 DOI: 10.3748/wjg.v25.i32.4727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As the malignant tumor, pancreatic cancer with a meager 5-years survival rate has been widely concerning. However, the molecular mechanisms that result in malignant transformation of pancreatic cells remain elusive.
AIM To investigate the gene expression profiles in normal or malignant transformed pancreas development.
METHODS MaSigPro and ANOVA were performed on two pancreas development datasets downloaded from the Gene Expression Omnibus database. Six pancreatic cancer datasets collected from TCGA database were used to establish differentially expressed genes related to pancreas development and pancreatic cancer. Moreover, gene clusters with highly similar interpretation patterns between pancreas development and pancreatic cancer progression were established by self-organizing map and singular value decomposition. Additionally, the hypergeometric test was performed to compare the corresponding interpretation patterns. Abnormal regions of metabolic pathway were analyzed using the Sub-pathway-GM method.
RESULTS This study established the continuously upregulated and downregulated genes at different stages in pancreas development and progression of pancreatic cancer. Through analysis of the differentially expressed genes, we established the inverse and consistent direction development-cancer pattern associations. Based on the application of the Subpathway-GM analysis, we established 17 significant metabolic sub-pathways that were closely associated with pancreatic cancer. Of note, the most significant metabolites sub-pathway was related to glycerophospholipid metabolism.
CONCLUSION The inverse and consistent direction development-cancer pattern associations were established. There was a significant correlation in the inverse patterns, but not consistent direction patterns.
Collapse
Affiliation(s)
- Hong-Liang Zang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guo-Min Huang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Hai-Ying Ju
- Department of Hematology, Jilin Province Blood Center, Changchun 130000, Jilin Province, China
| | - Xiao-Feng Tian
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
36
|
Schmitz RJ, Lewis ZA, Goll MG. DNA Methylation: Shared and Divergent Features across Eukaryotes. Trends Genet 2019; 35:818-827. [PMID: 31399242 DOI: 10.1016/j.tig.2019.07.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Abstract
Chemical modification of nucleotide bases in DNA provides one mechanism for conveying information in addition to the genetic code. 5-methylcytosine (5mC) represents the most common chemically modified base in eukaryotic genomes. Sometimes referred to simply as DNA methylation, in eukaryotes 5mC is most prevalent at CpG dinucleotides and is frequently associated with transcriptional repression of transposable elements. However, 5mC levels and distributions are variable across phylogenies, and emerging evidence suggests that the functions of DNA methylation may be more diverse and complex than was previously appreciated. We summarize the current understanding of DNA methylation profiles and functions in different eukaryotic lineages.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
37
|
Ganz J, Melancon E, Wilson C, Amores A, Batzel P, Strader M, Braasch I, Diba P, Kuhlman JA, Postlethwait JH, Eisen JS. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev Biol 2019; 455:473-484. [PMID: 31394080 DOI: 10.1016/j.ydbio.2019.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Catherine Wilson
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Angel Amores
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Marie Strader
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ingo Braasch
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Parham Diba
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John H Postlethwait
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
38
|
Pan Q, Chen J, Guo L, Lu X, Liao S, Zhao C, Wang S, Liu H. Mechanistic insights into environmental and genetic risk factors for systemic lupus erythematosus. Am J Transl Res 2019; 11:1241-1254. [PMID: 30972159 PMCID: PMC6456562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organ systems with diverse presentation, primarily affecting women of reproductive age. Various genetic and environmental risk factors are involved in the pathogenesis of SLE, and many SLE susceptibility genes have been identified recently; however, gene therapy is not a viable clinical option at this time. Thus, environmental risks factors, particularly regional characteristics that can be controlled, need to be further investigated. Here, we systematically explored these risk factors, including ultraviolet radiation, seasonal distribution, geographical distribution, and climate factors, and also summarized the mechanisms related to these risk factors. Probable mechanisms were explicated in at least four aspects including inflammatory mediators, apoptosis and autophagy in keratinocytes, epigenetic factors, and gene-environment interactions. This information is expected to provide practical insights into these risk factors in order to benefit patients with SLE and facilitate the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Linjie Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
- Division of Rheumatology, Huizhou Central People’s HospitalHuizhou 516001, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Sijie Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524001, Guangdong, China
| |
Collapse
|
39
|
Karanth S, Schlegel A. The Monocarboxylate Transporter SLC16A6 Regulates Adult Length in Zebrafish and Is Associated With Height in Humans. Front Physiol 2019; 9:1936. [PMID: 30692937 PMCID: PMC6339906 DOI: 10.3389/fphys.2018.01936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023] Open
Abstract
When fasted as larvae or fed ketogenic diets as adults, homozygous zebrafish slc16a6a mutants develop hepatic steatosis because their livers cannot export the major ketone body β-hydroxybutyrate, diverting liver-trapped ketogenic carbon atoms to triacylglycerol. Here, we find that slc16a6a mutants are longer than their wild-type siblings. This effect is largely not sexually dimorphic, nor is it affected by dietary fat content on a pure genetic background. A mixed genetic background alters the proportionality of mass to length modestly. We also observe that non-coding variations in the 5′-untranslated region and first intron, and coding variations within the fifth exon of the orthologous human gene locus SLC16A6 are highly significantly associated with human height. Since both zebrafish and human orthologs of SLC16A6 are expressed in multiple locations, this gene likely regulates height through modulating transport of monocarboxylic acids in several tissues.
Collapse
Affiliation(s)
- Santhosh Karanth
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States.,Division of Endocrinology, Metabolism & Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Amnon Schlegel
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States.,Division of Endocrinology, Metabolism & Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
40
|
Epigenetic Regulation of Organ Regeneration in Zebrafish. J Cardiovasc Dev Dis 2018; 5:jcdd5040057. [PMID: 30558240 PMCID: PMC6306890 DOI: 10.3390/jcdd5040057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
The zebrafish is broadly used for investigating de novo organ regeneration, because of its strong regenerative potential. Over the past two decades of intense study, significant advances have been made in identifying both the regenerative cell sources and molecular signaling pathways in a variety of organs in adult zebrafish. Epigenetic regulation has gradually moved into the center-stage of this research area, aided by comprehensive work demonstrating that DNA methylation, histone modifications, chromatin remodeling complexes, and microRNAs are essential for organ regeneration. Here, we present a brief review of how these epigenetic components are induced upon injury, and how they are involved in sophisticated organ regeneration. In addition, we highlight several prospective research directions and their potential implications for regenerative medicine.
Collapse
|
41
|
Mullapudi ST, Helker CS, Boezio GL, Maischein HM, Sokol AM, Guenther S, Matsuda H, Kubicek S, Graumann J, Yang YHC, Stainier DY. Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. eLife 2018; 7:42209. [PMID: 30520733 PMCID: PMC6300353 DOI: 10.7554/elife.42209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate ‘insulin-free’ model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified three that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms. Diabetes is a disease that affects the ability of the body to control the level of sugar in the blood. Individuals with diabetes are unable to make a hormone called insulin – which normally stimulates certain cells to absorb sugar from the blood – or their cells are less able to respond to this hormone. Most treatments for diabetes involve replacing the lost insulin or boosting the hormone’s activity in the body. However, these treatments can also cause individuals to gain weight or become more resistant to insulin, making it harder to control blood sugar levels. In addition to insulin, several other factors regulate the levels of sugar in the blood and some of them may operate independently of insulin. However, little is known about such factors because it is impractical to carry out large-scale screens to identify drugs that target them in humans or mice, which are often used as experimental models for human biology. To overcome this challenge, Mullapudi et al. turned to another animal known as the zebrafish and generated mutant fish that lack insulin. The mutant zebrafish had similar problems with regulating sugar levels as those observed in humans and mice with diabetes. This observation suggests that insulin is just as important in zebrafish as it is in humans and other mammals. The mutant zebrafish did not survive into adulthood, and so Mullapudi et al. transplanted healthy tissue into the zebrafish to allow them to produce enough insulin to survive. These adult zebrafish produced many offspring that still carried the insulin mutation. Mullapudi et al. used these mutant offspring to screen over 2,000 drugs for their ability to decrease blood sugar levels in the absence of insulin. The screen identified three promising candidate drugs, including a molecule that interferes with a receptor for a signal known as androgen. These findings will help researchers investigate new ways to treat diabetes. In the future, the screening approach developed by Mullapudi et al. could be adapted to search for new drugs to treat other human metabolic conditions.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
42
|
Wu X, Shen W, Zhang B, Meng A. The genetic program of oocytes can be modified in vivo in the zebrafish ovary. J Mol Cell Biol 2018; 10:479-493. [PMID: 30060229 DOI: 10.1093/jmcb/mjy044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
Oocytes, the irreplaceable gametes for generating a new organism, are matured in the ovary of living female animals. It is unknown whether any genetic manipulations can be applied to immature oocytes inside the living ovaries. As a proof-of-concept, we here demonstrate genetic amendments of zebrafish immature oocytes within the ovary. Oocyte microinjection in situ (OMIS) stimulates tissue repair responses, but some of the microinjected immature oocytes are matured, ovulated and fertilizable. By OMIS-mediated Cas9 approach, ntla and gata5 loci of oocytes arrested at prophase I of meiosis are successfully edited before fertilization. Through OMIS, high efficiency of biallelic mutations in single or multiple loci using Cas9/gRNAs allows immediate manifestation of mutant phenotypes in F0 embryos and multiple transgenes can co-express the reporters in F0 embryos with patterns similar to germline transgenic embryos. Furthermore, maternal knockdown of dnmt1 by antisense morpholino via OMIS results in a dramatic decrease of global DNA methylation level at the dome stage and causes embryonic lethality prior to segmentation period. Therefore, OMIS opens a door to efficiently modify the genome and provides a possibility to repair genetically abnormal oocytes in situ.
Collapse
Affiliation(s)
- Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
Rajshekar S, Yao J, Arnold PK, Payne SG, Zhang Y, Bowman TV, Schmitz RJ, Edwards JR, Goll M. Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome. eLife 2018; 7:39658. [PMID: 30484769 PMCID: PMC6261255 DOI: 10.7554/elife.39658] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/04/2018] [Indexed: 12/13/2022] Open
Abstract
Pericentromeric satellite repeats are enriched in 5-methylcytosine (5mC). Loss of 5mC at these sequences is common in cancer and is a hallmark of Immunodeficiency, Centromere and Facial abnormalities (ICF) syndrome. While the general importance of 5mC is well-established, the specific functions of 5mC at pericentromeres are less clear. To address this deficiency, we generated a viable animal model of pericentromeric hypomethylation through mutation of the ICF-gene ZBTB24. Deletion of zebrafish zbtb24 caused a progressive loss of 5mC at pericentromeres and ICF-like phenotypes. Hypomethylation of these repeats triggered derepression of pericentromeric transcripts and activation of an interferon-based innate immune response. Injection of pericentromeric RNA is sufficient to elicit this response in wild-type embryos, and mutation of the MDA5-MAVS dsRNA-sensing machinery blocks the response in mutants. These findings identify activation of the innate immune system as an early consequence of pericentromeric hypomethylation, implicating derepression of pericentromeric transcripts as a trigger of autoimmunity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). Cells package DNA into structures called chromosomes. When cells divide, each chromosome duplicates, and a structure called a centromere initially holds the copies together. The sequences of DNA on either side of the centromeres are often highly repetitive. In backboned animals, this DNA normally also has extra chemical modifications called methyl groups attached to it. The role that these methyl groups play in this region is not known, although in other DNA regions they often stop the DNA being ‘transcribed’ into molecules of RNA. The cells of people who have a rare human genetic disorder called ICF syndrome, lack the methyl groups near the centromere. The methyl groups may also be lost in old and cancerous cells. Researchers often use ‘model’ animals to investigate the effects of DNA modifications. But, until now, there were no animal models that lose methyl groups from the DNA around centromeres in the same way as seen in ICF syndrome. Rajshekar et al. have developed a new zebrafish model for ICF syndrome that loses the methyl groups around its centromeres over time. Studying the cells of these zebrafish showed that when the methyl groups are missing, the cell starts to transcribe the DNA sequences around the centromeres. The resulting RNA molecules appear to be mistaken by the cell for viral RNA. They activate immune sensors that normally detect RNA viruses, which triggers an immune response. The new zebrafish model can now be used in further studies to help researchers to understand the key features of ICF syndrome. Future work could also investigate whether the loss of methyl groups around the centromeres plays a role in other diseases where the immune system attacks healthy tissues.
Collapse
Affiliation(s)
- Srivarsha Rajshekar
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, United States.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Jun Yao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Paige K Arnold
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sara G Payne
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Georgia, United States
| | - John R Edwards
- Department of Medicine, Center for Pharmacogenomics, Washington University in St. Louis School of Medicine, Missouri, United States
| | - Mary Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Department of Genetics, University of Georgia, Georgia, United States
| |
Collapse
|
44
|
Han S, Tan C, Ding J, Wang J, Ma'ayan A, Gouon-Evans V. Endothelial cells instruct liver specification of embryonic stem cell-derived endoderm through endothelial VEGFR2 signaling and endoderm epigenetic modifications. Stem Cell Res 2018; 30:163-170. [PMID: 29936335 DOI: 10.1016/j.scr.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Liver organogenesis requires complex cell-cell interactions between hepatic endoderm cells and adjacent cell niches. Endothelial cells are key players for endoderm hepatic fate decision. We previously demonstrated that the endothelial cell niche promotes hepatic specification of mouse embryonic stem cell(ESC)-derived endoderm through dual repression of Wnt and Notch pathways in endoderm cells. In the present study, we dissected further the mechanisms by which endothelial cells trigger endoderm hepatic specification. Using our previously established in vitro mouse ESC system mimicking the early hepatic specification process, endoderm cells were purified and co-cultured with endothelial cells to induce hepatic specification. The comparison of transcriptome profiles between hepatic endoderm cells isolated from co-cultures and endoderm cells cultured alone revealed that VEGF signaling instructs hepatic specification of endoderm cells through endothelial VEGFR2 activation. Additionally, epigenetic mark inhibition assays upon co-cultures uncovered that histone acetylation and DNA methylation promote hepatic specification while histone methylation inhibits it. This study provides an efficient 2D platform modelling the endothelial cell niche crosstalk with endoderm, and reveals mechanisms by which endothelial cells promote hepatic specification of mouse ESC-derived endoderm cells through endothelial VEGFR2 activation and endoderm epigenetic modifications.
Collapse
Affiliation(s)
- Songyan Han
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Tan
- Department of Pharmacological Science, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Science, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Valerie Gouon-Evans
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Bergemann D, Massoz L, Bourdouxhe J, Carril Pardo CA, Voz ML, Peers B, Manfroid I. Nifurpirinol: A more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations. Wound Repair Regen 2018; 26:238-244. [PMID: 29663654 DOI: 10.1111/wrr.12633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired.
Collapse
Affiliation(s)
- David Bergemann
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Laura Massoz
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Jordane Bourdouxhe
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Claudio A Carril Pardo
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Marianne L Voz
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Bernard Peers
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| |
Collapse
|
46
|
Jessop P, Ruzov A, Gering M. Developmental Functions of the Dynamic DNA Methylome and Hydroxymethylome in the Mouse and Zebrafish: Similarities and Differences. Front Cell Dev Biol 2018; 6:27. [PMID: 29616219 PMCID: PMC5869911 DOI: 10.3389/fcell.2018.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/05/2018] [Indexed: 12/25/2022] Open
Abstract
5-methylcytosine (5mC) is the best understood DNA modification and is generally believed to be associated with repression of gene expression. Over the last decade, sequentially oxidized forms of 5mC (oxi-mCs) have been discovered within the genomes of vertebrates. Their discovery was accompanied by that of the ten-eleven translocation (TET) methylcytosine dioxygenases, the enzymes that catalyze the formation of the oxi-mCs. Although a number of studies performed on different vertebrate models and embryonic stem cells demonstrated that both TET enzymes and oxi-mCs are likely to be important for several developmental processes it is currently unclear whether their developmental roles are conserved among vertebrates. Here, we summarize recent developments in this field suggesting that biological roles of TETs/oxi-mCs may significantly differ between mice and zebrafish. Thus, although the role of TET proteins in late organogenesis has been documented for both these systems; unlike in mice the enzymatic oxidation of 5mC does not seem to be involved in zygotic reprogramming or gastrulation in zebrafish. Our analysis may provide an insight into the general principles of epigenetic regulation of animal development and cellular differentiation.
Collapse
Affiliation(s)
- Peter Jessop
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Martin Gering
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
47
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
48
|
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 2018; 433:177-189. [PMID: 29291972 PMCID: PMC5753428 DOI: 10.1016/j.ydbio.2017.08.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
Collapse
Affiliation(s)
- Kelly A McLaughlin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
| | - Michael Levin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States
| |
Collapse
|
49
|
Kamel M, Ninov N. Catching new targets in metabolic disease with a zebrafish. Curr Opin Pharmacol 2017; 37:41-50. [DOI: 10.1016/j.coph.2017.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
|
50
|
Wang L, Liu Z, Lin H, Ma D, Tao Q, Liu F. Epigenetic regulation of left-right asymmetry by DNA methylation. EMBO J 2017; 36:2987-2997. [PMID: 28882847 DOI: 10.15252/embj.201796580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022] Open
Abstract
DNA methylation is a major epigenetic modification; however, the precise role of DNA methylation in vertebrate development is still not fully understood. Here, we show that DNA methylation is essential for the establishment of the left-right (LR) asymmetric body plan during vertebrate embryogenesis. Perturbation of DNA methylation by depletion of DNA methyltransferase 1 (dnmt1) or dnmt3bb.1 in zebrafish embryos leads to defects in dorsal forerunner cell (DFC) specification or collective migration, laterality organ malformation, and disruption of LR patterning. Knockdown of dnmt1 in Xenopus embryos also causes similar defects. Mechanistically, loss of dnmt1 function induces hypomethylation of the lefty2 gene enhancer and promotes lefty2 expression, which consequently represses Nodal signaling in zebrafish embryos. We also show that Dnmt3bb.1 regulates collective DFC migration through cadherin 1 (Cdh1). Taken together, our data uncover dynamic DNA methylation as an epigenetic mechanism to control LR determination during early embryogenesis in vertebrates.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| | - Zhibin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| | - Hao Lin
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Science, Beijing, China
| |
Collapse
|