1
|
Neurophysiological assessment of cortical activity in DEPDC5- and NPRL3-related epileptic mTORopathies. Orphanet J Rare Dis 2023; 18:11. [PMID: 36639812 PMCID: PMC9840333 DOI: 10.1186/s13023-022-02600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutations in the GATOR1 complex genes, DEPDC5 and NPRL3, play a major role in the development of lesional and non-lesional focal epilepsy through increased mTORC1 signalling. We aimed to assess the effects of mTORC1 hyperactivation on GABAergic inhibitory circuits, in 3 and 5 individuals carrying DEPDC5 and NPRL3 mutations respectively using a multimodal approach including transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy (MRS), and electroencephalography (EEG). RESULTS Inhibitory functions probed by TMS and MRS showed no effect of mutations on cortical GABAergic receptor-mediated inhibition and GABA concentration, in both cortical and subcortical regions. However, stronger EEG theta oscillations and stronger and more synchronous gamma oscillations were observed in DEPDC5 and NPRL3 mutations carriers. CONCLUSIONS These results suggest that DEPDC5 and NPRL3-related epileptic mTORopathies may not directly modulate GABAergic functions but are nonetheless characterized by a stronger neural entrainment that may be reflective of a cortical hyperexcitability mediated by increased mTORC1 signaling.
Collapse
|
2
|
Meng L, Altaye SZ, Feng M, Hu H, Han B, Li J. Phosphoproteomic basis of neuroplasticity in the antennal lobes influences the olfactory differences between A. mellifera and A. cerana honeybees. J Proteomics 2022; 251:104413. [PMID: 34728424 DOI: 10.1016/j.jprot.2021.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 10/19/2022]
Abstract
The honeybee species A. mellifera and A. cerana have evolved substantial differences in olfactory-driven behaviors and in peripheral olfactory systems. Knowledge of the central nervous system regulating these olfaction differences is limited, however. We compared the phosphoproteome of the antennal lobes (ALs, the primary olfactory neuropil) of A. mellifera and A. cerana, and identified a total of 2812 phosphopeptides carrying 2971 phosphosites from 1265 phosphoproteins. Of these, 76% of the phosphoproteins were shared by both species, which were mainly presynapse and cytoskeleton components, and were involved in signal transduction and neurotransmitter secretion. This finding indicates the fundamental role of protein phosphorylation in regulating signal transduction in the ALs. The mTOR signaling pathway, the phagosome pathway, and the autophagy pathway, which are important in protein metabolism, were enriched, suggesting glomeruli plasticity and olfactory processing are intensively modulated by phosphorylation via these pathways. Compared with A. mellifera, 107 phosphoproteins associated with protein metabolism and transport were uniquely expressed in A. cerana, indicating the protein synthesis-dependent synaptic plasticity is enhanced in A. cerana to facilitate the processing of more complex floral odor clues in mountain foraging areas. This finding is further supported by the significantly upregulated key phosphoproteins of the mTOR signaling pathway in A. cerana ALs. These results provide insights into the phosphoproteomic basis of neuroplasticity that is coupled with the divergent evolution of bees in different environments. SIGNIFICANCE: To adapt to their own ecological niche, the two major honeybee species, A. mellifera and A. cerana, have developed significant difference in olfactory-driven behaviors, but our understanding of the underlying regulation of the central nervous system is still limitate. Here we performed the first comprehensive phosphoproteomic comparison of antennal lobes (Als) between A. mellifera and A. cerena. A large proportion of the identified phosphosites and phosphoproteins were shared between the two species to serve as a core network in the regulation of signal transduction and glomeruli plasticity of ALs. However, compared with A. mellifera, 107 phosphoproteins associated with protein metabolism and transport were uniquely identified in A. cerana ALs, and also several key phosphoproteins in mTOR signaling pathway were found upregulated in A. cerana. These findings indicate protein phosphorylation enhanced the protein synthesis-dependent synaptic plasticity in A. cerana to facilitate the processing of more complex floral odor clues in mountain foraging areas. Our data provide a valuable insight into phosphoproteome-driven cerebral regulation of honeybee olfactory behaviors, which is potentially useful for further neurobiological investigation in both honeybees and other insects.
Collapse
Affiliation(s)
- Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Solomon Zewdu Altaye
- Ethiopian Institute of Agricultural Research, PO Box 2003, Addis Ababa, Ethiopia
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China.
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China.
| |
Collapse
|
3
|
Treffy RW, Rajan SG, Jiang X, Nacke LM, Malkana UA, Naiche LA, Bergey DE, Santana D, Rajagopalan V, Kitajewski JK, O'Bryan JP, Saxena A. Neuroblastoma differentiation in vivo excludes cranial tumors. Dev Cell 2021; 56:2752-2764.e6. [PMID: 34610330 DOI: 10.1016/j.devcel.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
Neuroblastoma (NB), the most common cancer in the first year of life, presents almost exclusively in the trunk. To understand why an early-onset cancer would have such a specific localization, we xenotransplanted human NB cells into discrete neural crest (NC) streams in zebrafish embryos. Here, we demonstrate that human NB cells remain in an undifferentiated, tumorigenic state when comigrating posteriorly with NC cells but, upon comigration into the head, differentiate into neurons and exhibit decreased survival. Furthermore, we demonstrate that this in vivo differentiation requires retinoic acid and brain-derived neurotrophic factor signaling from the microenvironment, as well as cell-autonomous intersectin-1-dependent phosphoinositide 3-kinase-mediated signaling, likely via Akt kinase activation. Our findings suggest a microenvironment-driven explanation for NB's trunk-biased localization and highlight the potential for induced differentiation to promote NB resolution in vivo.
Collapse
Affiliation(s)
- Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sriivatsan G Rajan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinghang Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Usama A Malkana
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dani E Bergey
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
4
|
Kuang W, Liu T, He F, Yu L, Wang Q, Yu C. Icariside II promotes the differentiation of human amniotic mesenchymal stem cells into dopaminergic neuron-like cells. In Vitro Cell Dev Biol Anim 2021; 57:457-467. [PMID: 33721206 DOI: 10.1007/s11626-021-00556-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to observe the effect of icariside II (ICS II) on the differentiation of human amniotic mesenchymal stem cells (hAMSCs) into dopaminergic neuron-like cells, the involvement of PI3K signaling pathway inhibitors. After identifying hAMSCs by flow cytometry, hAMSCs were induced and treated with ICS II at 10 μmol/L, 3 μmol/L, 1 μmol/L, and 0 μmol/L. hAMSCs in the LY294002+3μM ICS II group were pretreated with 20 μmol/L LY294002, a PI3K-specific inhibitor, for 1 h, and then hAMSCs were induced with 3 μmol/L ICS II. On the 21st day of induction, immunofluorescence was used to detect expression of the neuronal nuclei (NeuN), neuron-specific enolase (NSE), microtubule-associated protein-2 (MAP-2), glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) antigens in each induced cell group. Western blotting was used to detect the relative protein expression of NSE, MAP-2, GFAP, and TH. ELISA was used to detect the dopamine concentration in the induction medium supernatant of each group. After 21 d of ICS II induction, immunofluorescence showed that GFAP expression was not obvious in any hAMSC group. The NeuN, NSE, MAP-2, and TH fluorescent proteins were expressed in each group. NeuN was expressed in the nucleus and cytoplasm, while NSE, MAP-2, and TH were mainly expressed in the cytoplasm. The positive cell rates of NeuN, NSE, MAP-2, and TH in the 10 μmol/L, 3 μmol/L, and 1 μmol/L ICS II groups were higher than those in the LY294002+3μM ICS II and control groups. After 21 d of induction, the Western blot results showed that the protein expression levels of NSE, MAP-2, and TH in the 10 μmol/L, 3 μmol/L, and 1 μmol/L ICS II groups were significantly higher than those in the LY294002+3μM ICS II and control groups. The MAP-2 protein expression levels in the 10 μmol/L and 3 μmol/L groups were higher than that in the 1 μmol/L group. After 21 d of induction, the dopamine concentrations in the culture supernatants of the 10 μmol/L, 3 μmol/L, and 1 μmol/L ICS II groups were higher than those in the LY294002+3μM ICS II and control groups. In our experiment, ICS II induced hAMSCs to differentiate into dopaminergic neuron-like cells, and the optimal concentration range of ICS II was 3-10 μmol/L. Moreover, the PI3K signaling pathway is involved in the above differentiation process.
Collapse
Affiliation(s)
- Wei Kuang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Liu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang He
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Wang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyin Yu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
5
|
Huang Y, Mei X, Jiang W, Zhao H, Yan Z, Zhang H, Liu Y, Hu X, Zhang J, Peng W, Zhang J, Qi Q, Chen N. Mesenchymal Stem Cell-Conditioned Medium Protects Hippocampal Neurons From Radiation Damage by Suppressing Oxidative Stress and Apoptosis. Dose Response 2021; 19:1559325820984944. [PMID: 33716588 PMCID: PMC7923989 DOI: 10.1177/1559325820984944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the effects of mesenchymal stem cell-conditioned medium (MSC-CM) on radiation-induced oxidative stress, survival and apoptosis in hippocampal neurons. Methods The following groups were defined: Control, radiation treatment (RT), RT+MSC-CM, MSC-CM, RT + N-Acetylcysteine (RT+NAC), and RT + MSC-CM + PI3 K inhibitor (LY294002). A cell Counting Kit-8 (CCK-8) was used to measure cell proliferation. Apoptosis was examined by AnnexinV/PI flow cytometric analyses. Intracellular reactive oxygen species (ROS) were detected by DCFH-DA. Intracellular glutathione (GSH), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity were detected by colorimetric assays. Protein levels of γ-H2AX, PI3K-AKT, P53, cleaved caspase-3, Bax, and BCl-2 were analyzed by Western blotting. Results The proliferation of HT22 cells was significantly inhibited in the RT group, but was significantly preserved in the RT + MSC-CM group (P < 0.01). Apoptosis was significantly higher in the RT group than in the RT+ MSC-CM group (P < 0.01). MSC-CM decreased intracellular ROS and MDA content after irradiation (P < 0.01). GSH level and SOD activity were higher in the RT + MSC-CM group than in the RT group, as was MMP (P < 0.01). MSC-CM decreased expression of γ-H2AX, P53, Bax, and cleaved-caspase-3, but increased Bcl-2 expression (P < 0.01). Conclusion MSC-CM attenuated radiation-induced hippocampal neuron cell line damage by alleviating oxidative stress and suppressing apoptosis.
Collapse
Affiliation(s)
- Yue Huang
- North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xiaolong Mei
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Weishi Jiang
- North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Beichen, Tianjin, China
| | - Zhenyu Yan
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Haixia Zhang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Ying Liu
- North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xia Hu
- North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Jingyi Zhang
- North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Wenshuo Peng
- North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Jing Zhang
- The Third Central Hospital of Tianjin, Hedong District, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Qingling Qi
- Department of Anesthesiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Naiyao Chen
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
6
|
Wilmerding A, Rinaldi L, Caruso N, Lo Re L, Bonzom E, Saurin AJ, Graba Y, Delfini MC. HoxB genes regulate neuronal delamination in the trunk neural tube by controlling the expression of Lzts1. Development 2021; 148:dev.195404. [PMID: 33472847 DOI: 10.1242/dev.195404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Differential Hox gene expression is central for specification of axial neuronal diversity in the spinal cord. Here, we uncover an additional function of Hox proteins in the developing spinal cord, restricted to B cluster Hox genes. We found that members of the HoxB cluster are expressed in the trunk neural tube of chicken embryo earlier than Hox from the other clusters, with poor antero-posterior axial specificity and with overlapping expression in the intermediate zone (IZ). Gain-of-function experiments of HoxB4, HoxB8 and HoxB9, respectively, representative of anterior, central and posterior HoxB genes, resulted in ectopic progenitor cells in the mantle zone. The search for HoxB8 downstream targets in the early neural tube identified the leucine zipper tumor suppressor 1 gene (Lzts1), the expression of which is also activated by HoxB4 and HoxB9. Gain- and loss-of-function experiments showed that Lzts1, which is expressed endogenously in the IZ, controls neuronal delamination. These data collectively indicate that HoxB genes have a generic function in the developing spinal cord, controlling the expression of Lzts1 and neuronal delamination.
Collapse
Affiliation(s)
| | | | - Nathalie Caruso
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Laure Lo Re
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Emilie Bonzom
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Andrew J Saurin
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Yacine Graba
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | | |
Collapse
|
7
|
Vitamin E Deficiency Disrupts Gene Expression Networks during Zebrafish Development. Nutrients 2021; 13:nu13020468. [PMID: 33573233 PMCID: PMC7912379 DOI: 10.3390/nu13020468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Vitamin E (VitE) is essential for vertebrate embryogenesis, but the mechanisms involved remain unknown. To study embryonic development, we fed zebrafish adults (>55 days) either VitE sufficient (E+) or deficient (E–) diets for >80 days, then the fish were spawned to generate E+ and E– embryos. To evaluate the transcriptional basis of the metabolic and phenotypic outcomes, E+ and E– embryos at 12, 18 and 24 h post-fertilization (hpf) were subjected to gene expression profiling by RNASeq. Hierarchical clustering, over-representation analyses and gene set enrichment analyses were performed with differentially expressed genes. E– embryos experienced overall disruption to gene expression associated with gene transcription, carbohydrate and energy metabolism, intracellular signaling and the formation of embryonic structures. mTOR was apparently a major controller of these changes. Thus, embryonic VitE deficiency results in genetic and transcriptional dysregulation as early as 12 hpf, leading to metabolic dysfunction and ultimately lethal outcomes.
Collapse
|
8
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
9
|
Del Carmen SLM, Laura GV, Leonardo OL, Bernabé RRG, Antonio MRM. Aβ40 Oligomers Promote Survival and Early Neuronal Differentiation of Dentate Gyrus-Isolated Precursor Cells Through Activation of the Akt Signaling Pathway. Neurotox Res 2020; 38:611-625. [PMID: 32623694 DOI: 10.1007/s12640-020-00253-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022]
Abstract
The amyloid beta-peptide (Aβ) is the low-abundance product of amyloid precursor protein (APP), which is produced lifelong in the healthy brain. The functional properties of Aβ40 and Aβ42 peptides have not been completely elucidated to date. Although, several studies suggest that these peptides have a number of neurotrophic and neurotoxic properties, respectively. Interestingly, low concentrations of Aβ40 and Aβ42 regulate synaptic plasticity and improve cognitive functions, whereas the accumulation of Aβ42, coupled with the effects of age, can cause dysregulation of synaptic function, as is shown in Alzheimer's disease. Additionally, several studies suggest that both peptides, Aβ40 and Aβ42, are involved in neurogenic processes; however, these results are still controversial. Moreover, existing data indicate a direct relationship between the physicochemical characteristics of the peptides and their effects. Herein, we evaluated the effect of Aβ40 oligomers on hippocampal precursor cells isolated from the dentate gyrus of adult female C57Bl6 mice (mADGPCs). To this end, mADGPCs were treated with nanomolar and micromolar range concentrations of oligomeric forms of Aβ40 for 24, 48, and 72 h to evaluate their effects on several events in the neurogenic process in vitro, including viability, proliferation, and early differentiation. The results indicate that Aβ40 favors mADGPC proliferation, survival, and neuronal differentiation following a mechanism that involves activation of the Akt signaling pathway. Thus, this study provides evidence about the positive effects of Aβ40 oligomers on the neurogenic process in adult mouse hippocampal precursor cells in vitro.
Collapse
Affiliation(s)
- Silva-Lucero María Del Carmen
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370, Mexico City, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Gómez-Virgilio Laura
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370, Mexico City, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Ortíz-López Leonardo
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370, Mexico City, Mexico
| | - Ramírez-Rodríguez Gerardo Bernabé
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370, Mexico City, Mexico.
| | - Meraz-Ríos Marco Antonio
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
10
|
Cespedes A, Villa M, Benito-Cuesta I, Perez-Alvarez MJ, Ordoñez L, Wandosell F. Energy-Sensing Pathways in Ischemia: The Counterbalance Between AMPK and mTORC. Curr Pharm Des 2020; 25:4763-4770. [PMID: 31820693 DOI: 10.2174/1381612825666191210152156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/06/2019] [Indexed: 01/02/2023]
Abstract
Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow. The present review aims to analyze to what extent the lack of each of the elements of the system leads to damage and which mechanisms are unaffected by this deficiency. We believe that the specific analysis of the effect of lack of each component could lead to the emergence of new therapeutic targets for this important brain pathology.
Collapse
Affiliation(s)
- Angel Cespedes
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Research Group of Neurodegenerative Diseases, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics - Tolima University, Santa Helena - 730006299, Ibagué, Colombia
| | - Mario Villa
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Departamento de Biología (Fisiología Animal). Facultad de Ciencias. Universidad Autónoma de Madrid. C/Darwin 2. 28049 Madrid, Spain
| | - Irene Benito-Cuesta
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Maria J Perez-Alvarez
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Departamento de Biología (Fisiología Animal). Facultad de Ciencias. Universidad Autónoma de Madrid. C/Darwin 2. 28049 Madrid, Spain
| | - Lara Ordoñez
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
11
|
Dai R, Chen W, Hua W, Xiong L, Li Y, Li L. Comparative transcriptome analysis of transcultured human skin-derived precursors (tSKPs) from adherent monolayer culture system and tSKPs-derived fibroblasts (tFBs) by RNA-Seq. Biosci Trends 2020; 14:104-114. [PMID: 32321899 DOI: 10.5582/bst.2019.01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcultured human skin derived precursors (tSKPs) from adherent monolayer culture system have similar characteristics as traditional skin derived precursors (SKPs), making tSKPs a suitable candidate for regenerative medicine. tSKPs can differentiate into fibroblasts. However, little is known about the molecular mechanism of the transition from tSKPs to fibroblasts. Here, we compared the transcriptional profiles of human tSKPs and tSKPs-derived fibroblasts (tFBs) by RNA-Sequence aiming to determine the candidate genes and pathways involving in the differentiation process. A total of 1042 differentially expressed genes (DEGs) were identified between tSKPs and tFBs, with 490 genes up-regulated and 552 genes down-regulated. Our study showed that these DEGs were significantly enriched in tumor necrosis factor signaling pathway, focal adhesion, extracellular matrix-receptor interaction and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway. A further transcription factors (TFs) analysis of DEGs revealed the significantly down-expressed TFs (p21, Foxo1and Foxc1) in tFBs were mostly the downstream nodes of PI3K-Akt signaling pathway, which suggested PI3K-Akt signaling pathway might play an important role in tSKPs differentiation. The results of our study are useful for investigating the molecular mechanisms in tSKPs differentiation into tFBs, making it possible to take advantage of their potential application in regenerative medicine.
Collapse
Affiliation(s)
- Ru Dai
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Dermatology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Chen
- Department of Medical Cosmetology, The Second People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wei Hua
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lidan Xiong
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Poncet N, Halley PA, Lipina C, Gierliński M, Dady A, Singer GA, Febrer M, Shi Y, Yamaguchi TP, Taylor PM, Storey KG. Wnt regulates amino acid transporter Slc7a5 and so constrains the integrated stress response in mouse embryos. EMBO Rep 2020; 21:e48469. [PMID: 31789450 PMCID: PMC6944906 DOI: 10.15252/embr.201948469] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Amino acids are essential for cellular metabolism, and it is important to understand how nutrient supply is coordinated with changing energy requirements during embryogenesis. Here, we show that the amino acid transporter Slc7a5/Lat1 is highly expressed in tissues undergoing morphogenesis and that Slc7a5-null mouse embryos have profound neural and limb bud outgrowth defects. Slc7a5-null neural tissue exhibited aberrant mTORC1 activity and cell proliferation; transcriptomics, protein phosphorylation and apoptosis analyses further indicated induction of the integrated stress response as a potential cause of observed defects. The pattern of stress response gene expression induced in Slc7a5-null embryos was also detected at low level in wild-type embryos and identified stress vulnerability specifically in tissues undergoing morphogenesis. The Slc7a5-null phenotype is reminiscent of Wnt pathway mutants, and we show that Wnt/β-catenin loss inhibits Slc7a5 expression and induces this stress response. Wnt signalling therefore normally supports the metabolic demands of morphogenesis and constrains cellular stress. Moreover, operation in the embryo of the integrated stress response, which is triggered by pathogen-mediated as well as metabolic stress, may provide a mechanistic explanation for a range of developmental defects.
Collapse
Affiliation(s)
- Nadège Poncet
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| | - Pamela A Halley
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Christopher Lipina
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Marek Gierliński
- Division of Computational BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Alwyn Dady
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Gail A Singer
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Melanie Febrer
- Sequencing FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Illumina CanadaVictoriaBCCanada
| | - Yun‐Bo Shi
- Section on Molecular MorphogenesisNICHD, NIHBethesdaMDUSA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology LaboratoryCenter for Cancer ResearchNational Cancer Institute‐Frederick, NIHFrederickMDUSA
| | - Peter M Taylor
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kate G Storey
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
13
|
Kadoya M, Sasai N. Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate. Front Neurosci 2019; 13:1022. [PMID: 31607856 PMCID: PMC6773814 DOI: 10.3389/fnins.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
The neural tube is composed of a number of neural progenitors and postmitotic neurons distributed in a quantitatively and spatially precise manner. The floor plate, located in the ventral-most region of the neural tube, has a lot of unique characteristics, including a low cell proliferation rate. The mechanisms by which this region-specific proliferation rate is regulated remain elusive. Here we show that the activity of the mTOR signaling pathway, which regulates the proliferation of the neural progenitor cells, is significantly lower in the floor plate than in other domains of the embryonic neural tube. We identified the forkhead-type transcription factor FoxA2 as a negative regulator of mTOR signaling in the floor plate, and showed that FoxA2 transcriptionally induces the expression of the E3 ubiquitin ligase RNF152, which together with its substrate RagA, regulates cell proliferation via the mTOR pathway. Silencing of RNF152 led to the aberrant upregulation of the mTOR signal and aberrant cell division in the floor plate. Taken together, the present findings suggest that floor plate cell number is controlled by the negative regulation of mTOR signaling through the activity of FoxA2 and its downstream effector RNF152.
Collapse
Affiliation(s)
- Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
14
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
15
|
Dong ZY, Pei Z, Wang YL, Li Z, Khan A, Meng XT. Ascl1 Regulates Electric Field-Induced Neuronal Differentiation Through PI3K/Akt Pathway. Neuroscience 2019; 404:141-152. [PMID: 30771509 DOI: 10.1016/j.neuroscience.2019.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Directing differentiation of neural stem/progenitor cells (NSCs/NPCs) to produce functional neurons is one of the greatest challenges in regenerative medicine. Our previous paper has confirmed that electrical stimulation has a high efficiency of triggering neuronal differentiation by using isolated filum terminale (FT)-derived NPCs. To further clarify the intrinsic molecular mechanisms, protein-protein interaction (PPI) network analysis was applied to pinpoints novel hubs in electric field (EF)-induced neuronal differentiation. In this study, siRNA transfection of Achaete-scute homolog 1 (Ascl1) in NPCs or NPCs was followed by direct current stimulation at 150 mV/mm. Neuronal differentiation rate and protein expression level were analyzed after 7 or 14 days of electrical stimulation. The data showed that the expression level of Ascl1 was enhanced by electrical stimulation and positively correlated to EF strength. Moreover, we identified that the expression of Ascl1 positively regulated neuronal differentiation of NPCs and can be up-regulated by EF-stimulation through the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Therefore, this study provides new insights into the role of Ascl1 and its relevant PI3K/Akt pathway in regulating of EF-induced neuronal differentiation and pointed out that continuous expression of Ascl1 in NPCs is required for EF-induced neuronal differentiation.
Collapse
Affiliation(s)
- Zhi-Yong Dong
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Zhe Pei
- Department of Neuroscience and Pediatric, GSRB1 Duke University, Durham 27710, USA
| | - Yan-Ling Wang
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Zhe Li
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Amber Khan
- The Graduate Center and CUNY School of Medicine, CUNY, 85 St Nicholas Terrace, New York, NY 10027, USA.
| | - Xiao-Ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
16
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
17
|
Zucco AJ, Pozzo VD, Afinogenova A, Hart RP, Devinsky O, D'Arcangelo G. Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Mol Cell Neurosci 2018; 92:149-163. [PMID: 30144504 DOI: 10.1016/j.mcn.2018.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a disease caused by autosomal dominant mutations in the TSC1 or TSC2 genes, and is characterized by tumor susceptibility, brain lesions, seizures and behavioral impairments. The TSC1 and TSC2 genes encode proteins forming a complex (TSC), which is a major regulator and suppressor of mammalian target of rapamycin complex 1 (mTORC1), a signaling complex that promotes cell growth and proliferation. TSC1/2 loss of heterozygosity (LOH) and the subsequent complete loss of TSC regulatory activity in null cells causes mTORC1 dysregulation and TSC-associated brain lesions or other tissue tumors. However, it is not clear whether TSC1/2 heterozygous brain cells are abnormal and contribute to TSC neuropathology. To investigate this issue, we generated induced pluripotent stem cells (iPSCs) from TSC patients and unaffected controls, and utilized these to obtain neural progenitor cells (NPCs) and differentiated neurons in vitro. These patient-derived TSC2 heterozygous NPCs were delayed in their ability to differentiate into neurons. Patient-derived progenitor cells also exhibited a modest activation of mTORC1 signaling downstream of TSC, and a marked attenuation of upstream PI3K/AKT signaling. We further show that pharmacologic PI3K or AKT inhibition, but not mTORC1 inhibition, causes a neuronal differentiation delay, mimicking the patient phenotype. Together these data suggest that heterozygous TSC2 mutations disrupt neuronal development, potentially contributing to the disease neuropathology, and that this defect may result from dysregulated PI3K/AKT signaling in neural progenitor cells.
Collapse
Affiliation(s)
- Avery J Zucco
- Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States of America; Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Valentina Dal Pozzo
- Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States of America; Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Alina Afinogenova
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America; Human Genetics Institute of New Jersey, Piscataway, NJ, United States of America
| | - Orrin Devinsky
- NYU Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York, NY, United States of America
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America; Human Genetics Institute of New Jersey, Piscataway, NJ, United States of America.
| |
Collapse
|
18
|
Xia X, Teotia P, Ahmad I. Lin28a regulates neurogliogenesis in mammalian retina through the Igf signaling. Dev Biol 2018; 440:113-128. [PMID: 29758178 DOI: 10.1016/j.ydbio.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/23/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
Abstract
In the developing central nervous system (CNS) the majority of neurons are born before the generation of glia. Emerging evidence implicates heterochronic gene, Lin28 in the temporal switch between two distinct lineages. However, the respective contributions of Lin28a and Lin28b in neurogliogenesis remain poorly understood. Here, we have examined the relative involvement of Lin28a and Lin28b in mammalian retina, a simple and accessible CNS model where neurogliogenic decision largely occurs postnatally. Examination of Lin28a/b involvement during late histogenesis by the perturbation of function approaches revealed that while Lin28b did not influence differentiation in general Lin28a facilitated and antagonized the generation of neurons and glia, respectively. Silencing of Lin28a expression in vitro and its conditional deletion in vivo during early histogenesis led to premature generation of glia. The instructive role of Lin28a on neuronal differentiation was revealed by its influence to suppress glial-specific genes and directly differentiate glia along the neuronal lineage. This function of Lin28a is likely mediated through the Igf signaling, as inhibition of the pathway abrogated Lin28a-mediated neurogliogenesis. Thus, our observations suggest that Lin28a is an important intrinsic factor that acts in concert with cell-extrinsic factors like Igfs, coordinating the developmental bias of the progenitors and niche, respectively, for the successive generation of neurons and glia.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
19
|
Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation. Cell Tissue Res 2018; 374:205-216. [DOI: 10.1007/s00441-018-2829-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/04/2018] [Indexed: 01/14/2023]
|
20
|
Avansini SH, Torres FR, Vieira AS, Dogini DB, Rogerio F, Coan AC, Morita ME, Guerreiro MM, Yasuda CL, Secolin R, Carvalho BS, Borges MG, Almeida VS, Araújo PAOR, Queiroz L, Cendes F, Lopes-Cendes I. Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia. Ann Neurol 2018; 83:623-635. [PMID: 29461643 PMCID: PMC5901021 DOI: 10.1002/ana.25187] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Focal cortical dysplasias (FCDs) are an important cause of drug-resistant epilepsy. In this work, we aimed to investigate whether abnormal gene regulation, mediated by microRNA, could be involved in FCD type II. METHODS We used total RNA from the brain tissue of 16 patients with FCD type II and 28 controls. MicroRNA expression was initially assessed by microarray. Quantitative polymerase chain reaction, in situ hybridization, luciferase reporter assays, and deep sequencing for genes in the mTOR pathway were performed to validate and further explore our initial study. RESULTS hsa-let-7f (p = 0.039), hsa-miR-31 (p = 0.0078), and hsa-miR34a (p = 0.021) were downregulated in FCD type II, whereas a transcription factor involved in neuronal and glial fate specification, NEUROG2 (p < 0.05), was upregulated. We also found that the RND2 gene, a NEUROG2-target, is upregulated (p < 0.001). In vitro experiments showed that hsa-miR-34a downregulates NEUROG2 by binding to its 5'-untranslated region. Moreover, we observed strong nuclear expression of NEUROG2 in balloon cells and dysmorphic neurons and found that 28.5% of our patients presented brain somatic mutations in genes of the mTOR pathway. INTERPRETATION Our findings suggest a new molecular mechanism, in which NEUROG2 has a pivotal and central role in the pathogenesis of FCD type II. In this way, we found that the downregulation of hsa-miR-34a leads to upregulation of NEUROG2, and consequently to overexpression of the RND2 gene. These findings indicate that a faulty coupling in neuronal differentiation and migration mechanisms may explain the presence of aberrant cells and complete dyslamination in FCD type II. Ann Neurol 2018;83:623-635.
Collapse
Affiliation(s)
- Simoni H Avansini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fábio R Torres
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - André S Vieira
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Danyella B Dogini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fabio Rogerio
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Ana C Coan
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marcia E Morita
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marilisa M Guerreiro
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Rodrigo Secolin
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Benilton S Carvalho
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Murilo G Borges
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Vanessa S Almeida
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Patrícia A O R Araújo
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Luciano Queiroz
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
21
|
Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2017; 143:3050-60. [PMID: 27578176 DOI: 10.1242/dev.137075] [Citation(s) in RCA: 708] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.
Collapse
Affiliation(s)
- Jason S L Yu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
22
|
Tian Y, Zhang ZC, Han J. Drosophila Studies on Autism Spectrum Disorders. Neurosci Bull 2017; 33:737-746. [PMID: 28795356 DOI: 10.1007/s12264-017-0166-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
In the past decade, numerous genes associated with autism spectrum disorders (ASDs) have been identified. These genes encode key regulators of synaptogenesis, synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Zi Chao Zhang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
23
|
Wei M, Li S, Yang Z, Zheng W, Le W. Gold nanoparticles enhance the differentiation of embryonic stem cells into dopaminergic neurons via mTOR/p70S6K pathway. Nanomedicine (Lond) 2017; 12:1305-1317. [PMID: 28520507 DOI: 10.2217/nnm-2017-0001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM This study aimed to investigate the effect of gold nanoparticles (AuNPs) on differentiation of mouse embryonic stem cells (ESCs) into dopaminergic (DA) neurons and explore the possible underlying molecular mechanisms. MATERIALS & METHODS The efficiency of AuNPs on DA neuron differentiation was evaluated by observing fluorescence in TH promoter-engineered GFP-reporter ESCs, western blot and real-time PCR. The possible signal pathway was determined by western blot. RESULTS Compared with feeder-free control condition, AuNPs are able to enhance fate specification of ESCs into DA neurons. Moreover, mTOR/p70S6K signaling pathway was found involving in this AuNPs-mediated DA neuron differentiation. CONCLUSION Our findings may lead future insight investigation into the underlying mechanisms and potential application of AuNPs in stem cell research.
Collapse
Affiliation(s)
- Min Wei
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhaofei Yang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Zheng
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
24
|
Diez H, Benitez MJ, Fernandez S, Torres-Aleman I, Garrido JJ, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2574-2583. [DOI: 10.1016/j.bbamcr.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022]
|
25
|
Lee JE, Lim MS, Park JH, Park CH, Koh HC. PTEN Promotes Dopaminergic Neuronal Differentiation Through Regulation of ERK-Dependent Inhibition of S6K Signaling in Human Neural Stem Cells. Stem Cells Transl Med 2016; 5:1319-1329. [PMID: 27388240 DOI: 10.5966/sctm.2015-0200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
: Phosphatase and tension homolog (PTEN) is a widely known negative regulator of insulin/phosphatidylinositol 3-kinase (PI3K) signaling. The PI3K/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) and Ras-extracellular signal-regulated kinase (Ras-ERK) signaling pathways are the chief mechanisms controlling the survival, proliferation, and differentiation of neural stem cells (NSCs). However, the roles of PTEN in Akt/mTOR and ERK signaling during proliferation and neuronal differentiation of human NSCs (hNSCs) are poorly understood. Treatment of proliferating hNSCs with a specific inhibitor of PTEN or overexpression of the PTEN inactive mutant G129E resulted in an increase in the expression levels of Ki67, p-S6 kinase (p-S6K), and p-ERK without affecting p-Akt expression during proliferation of hNSCs. Therefore, we focused on the regulatory effect of PTEN in S6K and ERK signaling during dopaminergic neuronal differentiation of hNSCs. Overexpression of PTEN during neuronal differentiation of hNSCs caused an increase in p-S6K expression and a decrease in p-ERK expression. Conversely, inhibition of PTEN increased p-ERK expression and decreased p-S6K expression. Inhibition of ERK by a specific chemical inhibitor, U0126, promoted neuronal generation, especially of tyrosine hydroxylase-positive neurons. p-S6K expression increased in a time-dependent manner during differentiation, and this effect was enhanced by U0126. These results indicated that PTEN promoted neuronal differentiation by inhibition of ERK signaling, which in turn induced activation of S6K. Our data suggest that ERK pathways participate in crosstalk with S6K through PTEN signaling during neuronal differentiation of hNSCs. These results represent a novel pathway by which PTEN may modulate the interplay between ERK and S6K signaling, leading to increased neuronal differentiation in hNSCs. SIGNIFICANCE This article adds to the body of knowledge about the mechanism of extracellular signal-regulated kinase (ERK)-mediated differentiation by describing the molecular function of phosphatase and tension homolog (PTEN) during the neuronal differentiation of human neural stem cells (hNSCs). Previous studies showed that S6K signaling promoted neuronal differentiation in hNSCs via the phosphatidylinositol 3-kinase Akt-mammalian target of rapamycin signaling pathway. A further series of studies investigated whether this S6 kinase-induced differentiation in hNSCs involves regulation of ERK signaling by PTEN. The current study identified a novel mechanism by which PTEN regulates neuronal differentiation in hNSCs, suggesting that activating PTEN function promotes dopaminergic neuronal differentiation and providing an important resource for future studies of PTEN function.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea
| | - Mi Sun Lim
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea Research and Development Center, Jeil Pharmaceutical Company, Limited, Yongin, Republic of Korea
| | - Jae Hyeon Park
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang Hwan Park
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Garza-Lombó C, Gonsebatt ME. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function. Front Cell Neurosci 2016; 10:157. [PMID: 27378854 PMCID: PMC4910040 DOI: 10.3389/fncel.2016.00157] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| | - María E Gonsebatt
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| |
Collapse
|
27
|
Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, Fischer AJ. mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 2016; 143:1859-73. [PMID: 27068108 PMCID: PMC4920162 DOI: 10.1242/dev.133215] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
We investigate the roles of mTor signaling in the formation of Müller glia-derived progenitor cells (MGPCs) in the chick retina. During embryonic development, pS6 (a readout of active mTor signaling) is present in early-stage retinal progenitors, differentiating amacrine and ganglion cells, and late-stage progenitors or maturing Müller glia. By contrast, pS6 is present at low levels in a few scattered cell types in mature, healthy retina. Following retinal damage, in which MGPCs are known to form, mTor signaling is rapidly activated in Müller glia. Inhibition of mTor in damaged retinas prevented the accumulation of pS6 in Müller glia and reduced numbers of proliferating MGPCs. Inhibition of mTor had no effect on MAPK signaling or on upregulation of the stem cell factor Klf4, whereas Pax6 upregulation was significantly reduced. Inhibition of mTor potently blocked the MGPC-promoting effects of Hedgehog, Wnt and glucocorticoid signaling in damaged retinas. In the absence of retinal damage, insulin, IGF1 and FGF2 induced pS6 in Müller glia, and this was blocked by mTor inhibitor. In FGF2-treated retinas, in which MGPCs are known to form, inhibition of mTor blocked the accumulation of pS6, the upregulation of Pax6 and the formation of proliferating MGPCs. We conclude that mTor signaling is required, but not sufficient, to stimulate Müller glia to give rise to proliferating progenitors, and the network of signaling pathways that drive the formation of MGPCs requires activation of mTor.
Collapse
Affiliation(s)
- Christopher P Zelinka
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Leo Volkov
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Zachary A Goodman
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - William A Bishop
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| |
Collapse
|
28
|
Tee AR, Sampson JR, Pal DK, Bateman JM. The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex. Semin Cell Dev Biol 2016; 52:12-20. [PMID: 26849906 DOI: 10.1016/j.semcdb.2016.01.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 11/30/2022]
Abstract
Understanding the development and function of the nervous system is one of the foremost aims of current biomedical research. The nervous system is generated during a relatively short period of intense neurogenesis that is orchestrated by a number of key molecular signalling pathways. Even subtle defects in the activity of these molecules can have serious repercussions resulting in neurological, neurodevelopmental and neurocognitive problems including epilepsy, intellectual disability and autism. Tuberous sclerosis complex (TSC) is a monogenic disease characterised by these problems and by the formation of benign tumours in multiple organs, including the brain. TSC is caused by mutations in the TSC1 or TSC2 gene leading to activation of the mechanistic target of rapamycin (mTOR) signalling pathway. A desire to understand the neurological manifestations of TSC has stimulated research into the role of the mTOR pathway in neurogenesis. In this review we describe TSC neurobiology and how the use of animal model systems has provided insights into the roles of mTOR signalling in neuronal differentiation and migration. Recent progress in this field has identified novel mTOR pathway components regulating neuronal differentiation. The roles of mTOR signalling and aberrant neurogenesis in epilepsy are also discussed. Continuing efforts to understand mTOR neurobiology will help to identify new therapeutic targets for TSC and other neurological diseases.
Collapse
Affiliation(s)
- Andrew R Tee
- Institute of Cancer & Genetics, Cardiff University School of Medicine, Institute of Medical Genetics Building, Heath Park, Cardiff CF14 4XN UK
| | - Julian R Sampson
- Institute of Cancer & Genetics, Cardiff University School of Medicine, Institute of Medical Genetics Building, Heath Park, Cardiff CF14 4XN UK
| | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London SE5 8RX UK
| | - Joseph M Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL UK.
| |
Collapse
|
29
|
Abstract
It has long been established that the transcriptional activity of retinoic acid (RA) is mediated by members of the nuclear receptor family of ligand-activated transcription factors termed RA receptors (RARs). More recent observations have established that RA also activates an additional nuclear receptor, PPARβ/δ. Partitioning RA between RARs and PPARβ/δ is governed by different intracellular lipid-binding proteins: cellular RA binding protein 2 (CRABP2) delivers RA to nuclear RARs and a fatty acid binding protein (FABP5) delivers the hormone from the cytosol to nuclear PPARβ/δ. Consequently, RA signals through RARs in CRABP2-expressing cells, but activates PPARβ/δ in cells that express a high level of FABP5. RA elicits different and sometimes opposing responses in cells that express different FABP5/CRABP2 ratios because PPARβ/δ and RARs regulate the expression of distinct sets of genes. An overview of the observations that led to the discovery of this non-classical activity of RA are presented here, along with a discussion of evidence demonstrating the involvement of the dual transcriptional activities of RA in regulating energy homeostasis, insulin responses, and adipocyte and neuron differentiation.
Collapse
|
30
|
Bateman JM. Mechanistic insights into the role of mTOR signaling in neuronal differentiation. NEUROGENESIS 2015; 2:e1058684. [PMID: 27604337 PMCID: PMC4973600 DOI: 10.1080/23262133.2015.1058684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
Abstract
Temporal control of neuronal differentiation is critical to produce a complete and fully functional nervous system. Loss of the precise temporal control of neuronal cell fate can lead to defects in cognitive development and to disorders such as epilepsy and autism. Mechanistic target of rapamycin (mTOR) is a large serine/threonine kinase that acts as a crucial sensor of cellular homeostasis. mTOR signaling has recently emerged as a key regulator of neurogenesis. However, the mechanism by which mTOR regulates neurogenesis is poorly understood. In constrast to other functions of the pathway, ‘neurogenic mTOR pathway factors’ have not previously been identified. We have very recently used Drosophila as a model system to identify the gene unkempt as the first component of the mTOR pathway regulating neuronal differentiation. Our study demonstrates that specific adaptor proteins exist that channel mTOR signaling toward the regulation of neuronal cell fate. In this Commentary we discuss the role of mTOR signaling in neurogenesis and the significance of these findings in advancing our understanding of the mechanism by which mTOR signaling controls neuronal differentiation.
Collapse
Affiliation(s)
- Joseph M Bateman
- Wolfson Center for Age-Related Diseases, King's College London ; London, UK
| |
Collapse
|
31
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
32
|
S6K Promotes Dopaminergic Neuronal Differentiation Through PI3K/Akt/mTOR-Dependent Signaling Pathways in Human Neural Stem Cells. Mol Neurobiol 2015; 53:3771-3782. [PMID: 26143260 DOI: 10.1007/s12035-015-9325-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/25/2015] [Indexed: 02/03/2023]
Abstract
It has recently been reported that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway regulates neuronal differentiation of neural stem cells (NSCs) derived from rats or mice and is essential for the self-renewal of human embryonic stem cells (hESCs). However, the roles of PI3K/Akt/mTOR signaling pathways during proliferation and dopaminergic neuronal differentiation of human neural stem cells (hNSCs) are poorly understood. In this study, we examined the effect of regulation of these intracellular signaling pathways in hNSCs on the potential to maintain proliferation and induce dopaminergic neuronal differentiation. Dopaminergic neuronal differentiation depended on the concentration of insulin in our culture system. Inhibition of PI3K/Akt with LY294002 reduced proliferation and inhibited dopaminergic neuronal differentiation of these cells. We also found that rapamycin, a specific inhibitor of mTOR, significantly reduced neuronal differentiation without affecting proliferation. Inhibition of the Akt/mTOR signaling pathway led to inhibition of p70 ribosomal S6 kinase (S6K) signaling, which reduced dopaminergic neuronal differentiation in hNSCs. Inhibition of S6K by a specific chemical inhibitor, PF-4708671 inhibited dopaminergic neuronal differentiation of hNSCs. As expected, transduction with a dominant negative S6K1 (S6K1-DN) construct impaired dopaminergic neuronal differentiation of hNSCs. Conversely, overexpression of constitutively active S6K1 (S6K1-CA) promoted dopaminergic neuronal differentiation of these cells. In a survival study, 4 weeks after transplantation, no or very few donor cells were viable in striata grafted with S6K1-DN-transduced hNSCs. In contrast, S6K1-CA-transduced hNSCs survived, integrated into striata to generate tubular masses of grafts and differentiated toward TH-positive cells. Taken together, these data demonstrated that insulin promotes dopaminergic neuronal differentiation through a PI3K/Akt/mTOR-dependent pathway and that S6K plays a critical role in dopaminergic neuronal differentiation in hNSCs.
Collapse
|
33
|
Ghosh D, Brewer GJ. External cys/cySS redox state modification controls the intracellular redox state and neurodegeneration via Akt in aging and Alzheimer's disease mouse model neurons. J Alzheimers Dis 2015; 42:313-24. [PMID: 24844688 DOI: 10.3233/jad-132756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extracellular redox environment of cells is mainly set by the redox couple cysteine/cystine (cys/cySS) while intracellular redox is buffered by reduced/oxidized glutathione (GSH/GSSG), but controlled by NAD(P)H/NAD(P). With aging, the extracellular redox environment shifts in the oxidized direction beyond middle-age. Since aging is the primary risk factor in Alzheimer's disease (AD), here our aim was to determine if a reduced extracellular cys/cySS redox potential of cultured primary mouse neurons changes the intracellular redox environment, affects pAkt levels, and protects against neuron loss. A reductive shift in cys/cySS in the extracellular medium of neuron cultures from young (4 month) and old (21 month) neurons from non-transgenic) and triple transgenic AD-like mice (3xTg-AD) caused an increase in intracellular NAD(P)H and GSH levels along with lower reactive oxygen species levels. Importantly, the imposed reductive shift decreased neuron death markedly in the 21 month neurons of both genotypes. Moreover, a reduced cys/cySS redox state increased the pAkt/Akt ratio in 21 month aging and AD-like neurons that positively correlated with a decreased neuron loss. Our findings demonstrate that manipulating the extracellular redox environment toward a more reduced redox potential is neuroprotective in both aging and AD-like neurons and may be a powerful and pragmatic therapeutic tool in aging and age-related diseases like AD.
Collapse
Affiliation(s)
- Debolina Ghosh
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Gregory J Brewer
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA Department of Neurology, University School of Medicine, Springfield, IL, USA Department of Biomedical Engineering, MIND Institute, University of California, Irvine, CA, USA
| |
Collapse
|
34
|
Land SC, Scott CL, Walker D. mTOR signalling, embryogenesis and the control of lung development. Semin Cell Dev Biol 2014; 36:68-78. [PMID: 25289569 DOI: 10.1016/j.semcdb.2014.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/07/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Abstract
The existence of a nutrient sensitive "autocatakinetic" regulator of embryonic tissue growth has been hypothesised since the early 20th century, beginning with pioneering work on the determinants of foetal size by the Australian physiologist, Thorburn Brailsford-Robertson. We now know that the mammalian target of rapamycin complexes (mTORC1 and 2) perform this essential function in all eukaryotic tissues by balancing nutrient and energy supply during the first stages of embryonic cleavage, the formation of embryonic stem cell layers and niches, the highly specified programmes of tissue growth during organogenesis and, at birth, paving the way for the first few breaths of life. This review provides a synopsis of the role of the mTOR complexes in each of these events, culminating in an analysis of lung branching morphogenesis as a way of demonstrating the central role mTOR in defining organ structural complexity. We conclude that the mTOR complexes satisfy the key requirements of a nutrient sensitive growth controller and can therefore be considered as Brailsford-Robertson's autocatakinetic centre that drives tissue growth programmes during foetal development.
Collapse
Affiliation(s)
- Stephen C Land
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Claire L Scott
- Prostrakan Pharmaceuticals, Galabank Business Park, Galashiels TD1 1PR, UK
| | - David Walker
- School of Psychology & Neuroscience, Westburn Lane, St Andrews KY16 9JP, UK
| |
Collapse
|
35
|
Avet-Rochex A, Carvajal N, Christoforou CP, Yeung K, Maierbrugger KT, Hobbs C, Lalli G, Cagin U, Plachot C, McNeill H, Bateman JM. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control. PLoS Genet 2014; 10:e1004624. [PMID: 25210733 PMCID: PMC4161320 DOI: 10.1371/journal.pgen.1004624] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/23/2014] [Indexed: 01/21/2023] Open
Abstract
Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR)/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk), which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc) as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem/progenitor cells, suggesting that the role of Unk in neurogenesis may be conserved in mammals. The development of a functional nervous system requires that nerve cells are generated at exactly the right time and place to be correctly integrated. Defects in the timing at which nerve cells are generated, or ‘differentiate’, lead to neurological disorders such as epilepsy and autism. However, very little is known about the identity of the genes that control the timing of nerve cell differentiation. Using developing photoreceptor nerves in the eye of the fruit fly, Drosophila, as a model, we showed previously that a molecular pathway known as ‘mTOR signalling’ is a key regulator of the timing of differentiation. In this study we have identified two new genes, unkempt and headcase, which control the timing of photoreceptor differentiation in Drosophila. The activity of unkempt and headcase is controlled by mTOR signalling and it is through these genes that mTOR is able to control nerve cell differentiation. The proteins encoded by unkempt and headcase form a complex and act synergistically to control the development of Drosophila photoreceptors. mTOR signalling controls a number of important cellular processes, but unkempt and headcase are the first components of this pathway to be identified that control nerve cell differentiation.
Collapse
Affiliation(s)
- Amélie Avet-Rochex
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Nancy Carvajal
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | | | - Kelvin Yeung
- The Lunenfeld-Tanenbaum Research Centre, Toronto, Ontario, Canada
| | - Katja T. Maierbrugger
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Umut Cagin
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Cedric Plachot
- The Lunenfeld-Tanenbaum Research Centre, Toronto, Ontario, Canada
| | - Helen McNeill
- The Lunenfeld-Tanenbaum Research Centre, Toronto, Ontario, Canada
| | - Joseph M. Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Irles C, Nava-Kopp AT, Morán J, Zhang L. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus. Stress 2014; 17:275-84. [PMID: 24730533 DOI: 10.3109/10253890.2014.913017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.
Collapse
|
37
|
Love NK, Keshavan N, Lewis R, Harris WA, Agathocleous M. A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation. Development 2014; 141:697-706. [PMID: 24449845 PMCID: PMC3899821 DOI: 10.1242/dev.103978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In many growing tissues, slowly dividing stem cells give rise to rapidly proliferating progenitors that eventually exit the cell cycle and differentiate. Growth rates are limited by nutrient availability, but it is unclear which steps of the proliferation-differentiation programme are particularly sensitive to fuel supplies. We examined how nutrient deprivation (ND) affects stem and progenitor cells in the ciliary marginal zone (CMZ) of the amphibian retina, a well-characterised neurogenic niche. We show that ND specifically blocks the proliferation and differentiation of progenitor cells through an mTOR-mediated mechanism. By contrast, the identity and proliferation of retinal stem cells are insensitive to ND and mTOR inhibition. Re-feeding starved retinas in vitro rescues both proliferation and differentiation, and activation of mTOR is sufficient to stimulate differentiation even in ND retinas. These results suggest that an mTOR-mediated restriction point operates in vivo to couple nutrient abundance to the proliferation and differentiation programme in retinal progenitor cells.
Collapse
Affiliation(s)
- Nicola K Love
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
38
|
Ahn J, Jang J, Choi J, Lee J, Oh SH, Lee J, Yoon K, Kim S. GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev 2014; 23:1121-33. [PMID: 24397546 DOI: 10.1089/scd.2013.0397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway.
Collapse
Affiliation(s)
- Jyhyun Ahn
- 1 School of Biological Sciences, Seoul National University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kusne Y, Goldberg EL, Parker SS, Hapak SM, Maskaykina IY, Chew WM, Limesand KH, Brooks HL, Price TJ, Sanai N, Nikolich-Zugich J, Ghosh S. Contrasting effects of chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural progenitors in mice. AGE (DORDRECHT, NETHERLANDS) 2014; 36:199-212. [PMID: 23949159 PMCID: PMC3889877 DOI: 10.1007/s11357-013-9572-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
The chronic and systemic administration of rapamycin extends life span in mammals. Rapamycin is a pharmacological inhibitor of mTOR. Metformin also inhibits mTOR signaling but by activating the upstream kinase AMPK. Here we report the effects of chronic and systemic administration of the two mTOR inhibitors, rapamycin and metformin, on adult neural stem cells of the subventricular region and the dendate gyrus of the mouse hippocampus. While rapamycin decreased the number of neural progenitors, metformin-mediated inhibition of mTOR had no such effect. Adult-born neurons are considered important for cognitive and behavioral health, and may contribute to improved health span. Our results demonstrate that distinct approaches of inhibiting mTOR signaling can have significantly different effects on organ function. These results underscore the importance of screening individual mTOR inhibitors on different organs and physiological processes for potential adverse effects that may compromise health span.
Collapse
Affiliation(s)
- Yael Kusne
- />Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287 USA
| | - Emily L. Goldberg
- />Department of Immunobiology, The University of Arizona, Tucson, AZ 85724 USA
- />Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721 USA
| | - Sara S. Parker
- />Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724 USA
| | - Sophie M. Hapak
- />Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724 USA
| | - Irina Y. Maskaykina
- />Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724 USA
| | | | - Kirsten H. Limesand
- />Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721 USA
| | - Heddwen L. Brooks
- />Department of Physiology, University of Arizona, Tucson, AZ 85724 USA
| | - Theodore J. Price
- />Department of Pharmacology, University of Arizona, Tucson, AZ 85724 USA
| | - Nader Sanai
- />Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287 USA
- />Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | | | - Sourav Ghosh
- />Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287 USA
- />Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724 USA
- />Arizona Cancer Center, Tucson, AZ 85724 USA
- />Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| |
Collapse
|
40
|
Agathocleous M, Harris WA. Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol 2013; 23:484-92. [DOI: 10.1016/j.tcb.2013.05.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
|
41
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
42
|
miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol 2013; 29:239-57. [PMID: 23903816 DOI: 10.1007/s10565-013-9250-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The main aim of this study was to evaluate whether microRNA (miRNA) profiling could be a useful tool for in vitro developmental neurotoxicity (DNT) testing. Therefore, to identify the possible DNT biomarkers among miRNAs, we have studied the changes in miRNA expressions in a mixed neuronal/glial culture derived from carcinoma pluripotent stem cells (NT2 cell line) after exposure to methyl mercury chloride (MeHgCl) during the process of neuronal differentiation (2-36 days in vitro (DIV1)). The neuronal differentiation triggered by exposure to retinoic acid (RA) was characterized in the control culture by mRNA expression analysis of neuronal specific markers such as MAP2, NF-200, Tubulin βIII, MAPT-tau, synaptophysin as well as excitatory (NMDA, AMPA) and inhibitory (GABA) receptors. The results obtained from the miRNA expression analysis have identified the presence of a miRNA signature which is specific for neural differentiation in the control culture and another for the response to MeHgCl-induced toxicity. In differentiated neuronal control cultures, we observed the downregulation of the stemness phenotype-linked miR-302 cluster and the overexpression of several miRNAs specific for neuronal differentiation (e.g. let-7, miR-125b and miR-132). In the cultures exposed to MeHgCl (400 nM), we observed an overexpression of a signature composed of five miRNAs (miR-302b, miR-367, miR-372, miR-196b and miR-141) that are known to be involved in the regulation of developmental processes and cellular stress response mechanisms. Using gene ontology term and pathway enrichment analysis of the validated targets of the miRNAs deregulated by the toxic treatment, the possible effect of MeHgCl exposure on signalling pathways involved in axon guidance and learning and memory processes was revealed. The obtained data suggest that miRNA profiling could provide simplified functional evaluation of the toxicity pathways involved in developmental neurotoxicity in comparison with the transcriptomics studies.
Collapse
|
43
|
mTOR: a link from the extracellular milieu to transcriptional regulation of oligodendrocyte development. ASN Neuro 2013; 5:e00108. [PMID: 23421405 PMCID: PMC3601842 DOI: 10.1042/an20120092] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin) pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed.
Collapse
|
44
|
Han J, Xiao Z, Chen L, Chen B, Li X, Han S, Zhao Y, Dai J. Maintenance of the self-renewal properties of neural progenitor cells cultured in three-dimensional collagen scaffolds by the REDD1-mTOR signal pathway. Biomaterials 2013; 34:1921-8. [DOI: 10.1016/j.biomaterials.2012.11.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023]
|
45
|
Yu S, Levi L, Siegel R, Noy N. Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ). J Biol Chem 2012; 287:42195-205. [PMID: 23105114 DOI: 10.1074/jbc.m112.410381] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) regulates gene transcription by activating the nuclear receptors retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR) β/δ and their respective cognate lipid-binding proteins CRABP-II and FABP5. RA induces neuronal differentiation, but the contributions of the two transcriptional pathways of the hormone to the process are unknown. Here, we show that the RA-induced commitment of P19 stem cells to neuronal progenitors is mediated by the CRABP-II/RAR path and that the FABP5/PPARβ/δ path can inhibit the process through induction of the RAR repressors SIRT1 and Ajuba. In contrast with its inhibitory activity in the early steps of neurogenesis, the FABP5/PPARβ/δ path promotes differentiation of neuronal progenitors to mature neurons, an activity mediated in part by the PPARβ/δ target gene PDK1. Hence, RA-induced neuronal differentiation is mediated through RAR in the early stages and through PPARβ/δ in the late stages of the process. The switch in RA signaling is accomplished by a transient up-regulation of RARβ concomitantly with a transient increase in the CRABP-II/FABP5 ratio at early stages of differentiation. In accordance with these conclusions, hippocampi of FABP5-null mice display excess accumulation of neuronal progenitor cells and a deficit in mature neurons versus wild-type animals.
Collapse
Affiliation(s)
- Shuiliang Yu
- Department of Pharmacology, Western Reserve University School of Medicine,Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
46
|
Zhu G, Chow LML, Bayazitov IT, Tong Y, Gilbertson RJ, Zakharenko SS, Solecki DJ, Baker SJ. Pten deletion causes mTorc1-dependent ectopic neuroblast differentiation without causing uniform migration defects. Development 2012; 139:3422-31. [PMID: 22874917 DOI: 10.1242/dev.083154] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal precursors, generated throughout life in the subventricular zone, migrate through the rostral migratory stream to the olfactory bulb where they differentiate into interneurons. We found that the PI3K-Akt-mTorc1 pathway is selectively inactivated in migrating neuroblasts in the subventricular zone and rostral migratory stream, and activated when these cells reach the olfactory bulb. Postnatal deletion of Pten caused aberrant activation of the PI3K-Akt-mTorc1 pathway and an enlarged subventricular zone and rostral migratory stream. This expansion was caused by premature termination of migration and differentiation of neuroblasts and was rescued by inhibition of mTorc1. This phenotype is reminiscent of lamination defects caused by Pten deletion in developing brain that were previously described as defective migration. However, live imaging in acute slices showed that Pten deletion did not cause a uniform defect in the mechanics of directional neuroblast migration. Instead, a subpopulation of Pten-null neuroblasts showed minimal movement and altered morphology associated with differentiation, whereas the remainder showed unimpeded directional migration towards the olfactory bulb. Therefore, migration defects of Pten-null neurons might be secondary to ectopic differentiation.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Diez H, Garrido JJ, Wandosell F. Specific roles of Akt iso forms in apoptosis and axon growth regulation in neurons. PLoS One 2012; 7:e32715. [PMID: 22509246 PMCID: PMC3324480 DOI: 10.1371/journal.pone.0032715] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/30/2012] [Indexed: 01/31/2023] Open
Abstract
Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth.
Collapse
Affiliation(s)
- Hector Diez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Centro de Biología Molecular “Severo Ochoa", CSIC-UAM, Univ. Autonoma de Madrid, Madrid, Spain
| | - Juan Jose Garrido
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Centro de Biología Molecular “Severo Ochoa", CSIC-UAM, Univ. Autonoma de Madrid, Madrid, Spain
- Laboratory of Neuronal Polarity, Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Centro de Biología Molecular “Severo Ochoa", CSIC-UAM, Univ. Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
48
|
Devès M, Bourrat F. Transcriptional mechanisms of developmental cell cycle arrest: problems and models. Semin Cell Dev Biol 2012; 23:290-7. [PMID: 22464972 DOI: 10.1016/j.semcdb.2012.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/02/2012] [Accepted: 03/01/2012] [Indexed: 12/30/2022]
Abstract
Metazoans begin their life as a single cell. Then, this cell enters a more or less protracted period of active cell proliferation, which can be considered as the default cellular state. A crucial event, the developmental cell cycle exit, occurs thereafter. This phenomenon allows for differentiation to happen and regulates the final size of organs and organisms. Its control is still poorly understood. Herein, we review some transcriptional mechanisms of cell cycle exit in animals, and propose to use cellular conveyor belts as model systems for its study. We finally point to evidence that suggests that the mechanisms of developmental cell cycle arrest may have to be maintained in adult tissues.
Collapse
|
49
|
Abstract
The generation, differentiation, and migration of newborn neurons are critical features of normal brain development that are subject to both extracellular and intracellular regulation. However, the means of such control are only partially understood. Here, we show that expression of RTP801/REDD1, an inhibitor of mTOR (mammalian target of rapamycin) activation, is regulated during neuronal differentiation and that RTP801 functions to influence the timing of both neurogenesis and neuron migration. RTP801 levels are high in embryonic cortical neuroprogenitors, diminished in newborn neurons, and low in mature neurons. Knockdown of RTP801 in vitro and in vivo accelerates cell cycle exit by neuroprogenitors and their differentiation into neurons. It also disrupts migration of rat newborn neurons to the cortical plate and results in the ectopic localization of mature neurons. On the other hand, RTP801 overexpression delays neuronal differentiation. These findings suggest that endogenous RTP801 plays an essential role in temporal control of cortical development and in cortical patterning.
Collapse
|
50
|
Ariza CA, Fleury AT, Tormos CJ, Petruk V, Chawla S, Oh J, Sakaguchi DS, Mallapragada SK. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev Rep 2011; 6:585-600. [PMID: 20665129 DOI: 10.1007/s12015-010-9171-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The differentiation and proliferation of neural stem/progenitor cells (NPCs) depend on various in vivo environmental factors or cues, which may include an endogenous electrical field (EF), as observed during nervous system development and repair. In this study, we investigate the morphologic, phenotypic, and mitotic alterations of adult hippocampal NPCs that occur when exposed to two EFs of estimated endogenous strengths. NPCs treated with a 437 mV/mm direct current (DC) EF aligned perpendicularly to the EF vector and had a greater tendency to differentiate into neurons, but not into oligodendrocytes or astrocytes, compared to controls. Furthermore, NPC process growth was promoted perpendicularly and inhibited anodally in the 437 mV/mm DC EF. Yet fewer cells were observed in the DC EF, which in part was due to a decrease in cell viability. The other EF applied was a 46 mV/mm alternating current (AC) EF. However, the 46 mV/mm AC EF showed no major differences in alignment or differentiation, compared to control conditions. For both EF treatments, the percent of mitotic cells during the last 14 h of the experiment were statistically similar to controls. Reported here, to our knowledge, is the first evidence of adult NPC differentiation affected in an EF in vitro. Further investigation and application of EFs on stem cells is warranted to elucidate the utility of EFs to control phenotypic behavior. With progress, the use of EFs may be engineered to control differentiation and target the growth of transplanted cells in a stem cell-based therapy to treat nervous system disorders.
Collapse
Affiliation(s)
- Carlos Atico Ariza
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|