1
|
Ahn SY, Bagheri Varzaneh M, Zhao Y, Rozynek J, Ravindran S, Banks J, Chaudhry M, Reed DA. NG2/CSPG4 attenuates motility in mandibular fibrochondrocytes under serum starvation conditions. Front Cell Dev Biol 2023; 11:1240920. [PMID: 38020894 PMCID: PMC10662293 DOI: 10.3389/fcell.2023.1240920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The migration of mandibular fibrochondrocytes is important for the development of the mandible, the homeostasis of the mandibular cartilage, and for the capacity of the tissue to respond to injury. Mandibular fibrochondrocytes have to overcome formidable obstacles during migration including a dense and heterogeneous three-dimensional matrix. Guiding the direction of cell migration and commitment to a migratory phenotype in this microenvironment necessitates a multivalent response to chemotactic and extracellular matrix-mediated stimuli. One of the key matrix components in the cartilage of the temporomandibular joint is type VI collagen. Neuron/glial antigen 2 (NG2/CSPG4) is a transmembrane proteoglycan that binds with collagen VI and has been implicated in a wide range of cell behaviors including cell migration, motility, adhesion, and proliferation. While NG2/CSPG4 has been shown to be a key regulator of mandibular cartilage homeostasis, its role in the migration of mandibular fibrochondrocytes during normal and cell stress conditions has yet to be resolved. Here, we address this gap in knowledge by characterizing NG2/CSPG4-dependent migration in mandibular fibrochondrocytes using primary mandibular fibrochondrocytes isolated from control and full length NG2/CSPG4 knockout mice, in primary mandibular fibrochondrocytes isolated from NG2|DsRed reporter mice and in an immortalized mandibular fibrochondrocyte cell line with a mutated NG2/CSPG4 ectodomain. All three cells demonstrate similar results, with loss of the full length or truncated NG2/CSPG4 increasing the rate of cell migration in serum starvation/cell stress conditions. These findings clearly implicate NG2/CSPG4 as a key molecule in the regulation of cell migration in mandibular fibrochondrocytes in normal and cell stress conditions, underscoring the role of NG2/CSPG4 as a mechanosensitive signaling hub in the mandibular cartilage.
Collapse
Affiliation(s)
- Shin Young Ahn
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Mina Bagheri Varzaneh
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Yan Zhao
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jacob Rozynek
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jonathan Banks
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Minahil Chaudhry
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - David A. Reed
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Abstract
The vasculature consists of vessels of different sizes that are arranged in a hierarchical pattern. Two cell populations work in concert to establish this pattern during embryonic development and adopt it to changes in blood flow demand later in life: endothelial cells that line the inner surface of blood vessels, and adjacent vascular mural cells, including smooth muscle cells and pericytes. Despite recent progress in elucidating the signalling pathways controlling their crosstalk, much debate remains with regard to how mural cells influence endothelial cell biology and thereby contribute to the regulation of blood vessel formation and diameters. In this Review, I discuss mural cell functions and their interactions with endothelial cells, focusing on how these interactions ensure optimal blood flow patterns. Subsequently, I introduce the signalling pathways controlling mural cell development followed by an overview of mural cell ontogeny with an emphasis on the distinguishing features of mural cells located on different types of blood vessels. Ultimately, I explore therapeutic strategies involving mural cells to alleviate tissue ischemia and improve vascular efficiency in a variety of diseases.
Collapse
Affiliation(s)
- Arndt F. Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Cescon M, Rampazzo E, Bresolin S, Da Ros F, Manfreda L, Cani A, Della Puppa A, Braghetta P, Bonaldo P, Persano L. Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell Mol Life Sci 2023; 80:233. [PMID: 37505240 PMCID: PMC10382393 DOI: 10.1007/s00018-023-04887-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells. Our data demonstrate that COL6 sustains the stem-like properties of GBM cells and supports the maintenance of an aggressive transcriptional program promoting cancer cell proliferation and survival. In particular, we identified a specific subset of COL6-transcriptionally co-regulated genes, required for the response of cells to replicative stress and DNA damage, supporting the concept that COL6 is an essential stimulus for the activation of GBM cell response and resistance to chemotherapy, through the ATM/ATR axis. Altogether, these findings indicate that COL6 plays a pivotal role in GBM tumor biology, exerting a pleiotropic action across different GBM hallmarks, including phenotypic identity and gene transcription, as well as response to treatments, thus providing valuable information for the understanding of the complex microenvironmental cues underlying GBM malignancy.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Silvia Bresolin
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Francesco Da Ros
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Alice Cani
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Alessandro Della Puppa
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Academic Neurosurgery, Careggi University Hospital and University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy.
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy.
| |
Collapse
|
4
|
Pericytes in the tumor microenvironment. Cancer Lett 2023; 556:216074. [PMID: 36682706 DOI: 10.1016/j.canlet.2023.216074] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Pericytes are a type of mural cell located between the endothelial cells of capillaries and the basement membrane, which function to regulate the capillary vasomotor and maintain normal microcirculation of local tissues and organs and have been identified as a significant component in the tumor microenvironment (TME). Pericytes have various interactions with different components of the TME, such as constituting the pre-metastatic niche, promoting the growth of cancer cells and drug resistance through paracrine activity, and inducing M2 macrophage polarization. While changes in the TME can affect the number, phenotype, and molecular markers of pericytes. For example, pericyte detachment from endothelial cells in the TME facilitates tumor cells in situ to invade the circulating blood and is beneficial to local capillary basement membrane enzymatic hydrolysis and endothelial cell proliferation and budding, which contribute to tumor angiogenesis and metastasis. In this review, we discuss the emerging role of pericytes in the TME, and tumor treatment related to pericytes. This review aimed to provide a more comprehensive understanding of the function of pericytes and the relationship between pericytes and tumors and to provide ideas for the treatment and prevention of malignant tumors.
Collapse
|
5
|
Elabi OF, Karampatsi D, Vercalsteren E, Lietzau G, Nyström T, Klein T, Darsalia V, Patrone C, Paul G. DPP-4 Inhibitor and Sulfonylurea Differentially Reverse Type 2 Diabetes-Induced Blood-Brain Barrier Leakage and Normalize Capillary Pericyte Coverage. Diabetes 2023; 72:405-414. [PMID: 36448982 PMCID: PMC9935496 DOI: 10.2337/db22-0674] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Microvascular pathology in the brain is one of the suggested mechanisms underlying the increased incidence and progression of neurodegenerative diseases in people with type 2 diabetes (T2D). Although accumulating data suggest a neuroprotective effect of antidiabetics, the underlying mechanisms are unclear. Here, we investigated whether two clinically used antidiabetics, the dipeptidyl peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride, which restore T2D-induced brain vascular pathology. Microvascular pathology was examined in the striatum of mice fed for 12 months with either normal chow diet or a high-fat diet (HFD) to induce T2D. A subgroup of HFD-fed mice was treated with either linagliptin or glimepiride for 3 months before sacrifice. We demonstrate that T2D caused leakage of the blood-brain barrier (BBB), induced angiogenesis, and reduced pericyte coverage of microvessels. However, linagliptin and glimepiride recovered the BBB integrity and restored the pericyte coverage differentially. Linagliptin normalized T2D-induced angiogenesis and restored pericyte coverage. In contrast, glimepiride enhanced T2D-induced angiogenesis and increased pericyte density, resulting in proper vascular coverage. Interestingly, glimepiride reduced microglial activation, increased microglial-vascular interaction, and increased collagen IV density. This study provides evidence that both DPP-4 inhibition and sulfonylurea reverse T2D-induced BBB leakage, which may contribute to antidiabetic neurorestorative effects.
Collapse
Affiliation(s)
- Osama F. Elabi
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Grazyna Lietzau
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
- Corresponding author: Gesine Paul,
| |
Collapse
|
6
|
Seynhaeve ALB, Ten Hagen TLM. An In Vivo Model to Study Cell Migration in XYZ-T Dimension Followed by Whole-Mount Re-evaluation. Methods Mol Biol 2023; 2608:325-341. [PMID: 36653716 DOI: 10.1007/978-1-0716-2887-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cell migration is a very dynamic process involving several chemical as well as biological interactions with other cells and the environment. Several models exist to study cell migration ranging from simple 2D in vitro cultures to more demanding 3D multicellular assays, to complex evaluation in animals. High-resolution 4D (XYZ, spatial + T, time dimension) intravital imaging using transgenic animals with a fluorescent label in cells of interest is a powerful tool to study cell migration in the correct environment. Here we describe an advanced dorsal skinfold chamber model to study endothelial cell and pericyte migration and association.
Collapse
Affiliation(s)
- Ann L B Seynhaeve
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Zhang L, Han Y, Chen Q, Dissanayaka WL. Sema4D-plexin-B1 signaling in recruiting dental stem cells for vascular stabilization on a microfluidic platform. LAB ON A CHIP 2022; 22:4632-4644. [PMID: 36331411 DOI: 10.1039/d2lc00632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The recruitment of mural cells is critical for stabilization of nascent vessels. Stem cells from human exfoliated deciduous teeth (SHED) are considered to have mural cell-like properties. However, the signaling mechanisms that regulate the cross-talk between endothelial cells and SHED in recruiting them as mural cells is much less well understood. Herein, using a 3D biomimetic microfluidic device, for the first time, we unraveled the role of semaphorin 4D (Sema4D)-plexin-B1 signaling in the recruitment of SHED as mural cells during angiogenic sprouting and vasculature formation by endothelial cells (ECs) in a 3D fibrin matrix. The specific compartmentalized design of the microfluidic chip facilitated recreation of the multi-step dynamic process of angiogenesis in a time and space dependent manner. Enabled by the chip design, different morphogenic steps of angiogenesis including endothelial proliferation, migration & invasion, vascular sprout formation and recruitment of mural cells as well as functional aspects including perfusion and permeability were examined under various pharmacological and genetic manipulations. The results showed that Sema4D facilitates the interaction between endothelial cells and SHED and promotes the recruitment of SHED as mural cells in vascular stabilization. Our results further demonstrated that Sema4D exerts these effects by acting on endothelial-plexin-B1 by inducing expression of platelet-derived growth factor (PDGF)-BB, which is a major mural cell recruitment factor.
Collapse
Affiliation(s)
- Lili Zhang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Yuanyuan Han
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Qixin Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
8
|
Chen K, Yong J, Zauner R, Wally V, Whitelock J, Sajinovic M, Kopecki Z, Liang K, Scott KF, Mellick AS. Chondroitin Sulfate Proteoglycan 4 as a Marker for Aggressive Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5564. [PMID: 36428658 PMCID: PMC9688099 DOI: 10.3390/cancers14225564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the extracellular matrix (ECM) to promote tumour cell invasion, migration as well as inflammation and angiogenesis. While CSPG4 has been widely studied in certain malignancies, such as melanoma, evidence is emerging from global gene expression studies, which suggests a role for CSPG4 in squamous cell carcinoma (SCC). While relatively treatable, lack of widely agreed upon diagnostic markers for SCCs is problematic, especially for clinicians managing certain patients, including those who are aged or infirm, as well as those with underlying conditions such as epidermolysis bullosa (EB), for which a delayed diagnosis is likely lethal. In this review, we have discussed the structure of CSPG4, and quantitatively analysed CSPG4 expression in the tissues and pathologies where it has been identified to determine the usefulness of CSPG4 expression as a diagnostic marker and therapeutic target in management of malignant SCC.
Collapse
Affiliation(s)
- Kathryn Chen
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Joel Yong
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - John Whitelock
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Mila Sajinovic
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Kang Liang
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kieran Francis Scott
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Albert Sleiman Mellick
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| |
Collapse
|
9
|
左 明, 刘 艳. [Latest Research Findings on the Role of Non-Tumor Cells in Glioma Microenvironment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:573-578. [PMID: 35871725 PMCID: PMC10409475 DOI: 10.12182/20220760204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 06/15/2023]
Abstract
As the tumor cell-centered treatment strategies cannot curb the malignant progression of glioblastoma effectively, the therapeutic effect of glioblastoma is still not satisfactory. In addition to glioma cells, glioma microenvironment (GME) comprises massive numbers of non-tumor cells and soluble cytokines. The non-tumor cells include endothelial cells, pericytes, microglia/macrophages, mesenchymal cells, astrocytes, neurons, etc. These non-tumor cell components, together with glioma cells, form one organism which regulates the progression of glioma. Considerable progress has been been in research on GME, which will be conducive to the development of non-tumor cell targeted therapies and and improvements in the prognosis of glioma patients. Herein, we summarized the interaction of glioma cells with endothelial cells, pericytes, microglia/macrophages, astrocytes, neurons and mesenchymal cells, a topic that has been extensively researched, as well as the corresponding translational studies. We also discussed the potential challenges and opportunities of developing glioma treatments based on tumor microenvironment.
Collapse
Affiliation(s)
- 明荣 左
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 艳辉 刘
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Zhang H, Wu Z, Hu D, Yan M, Sun J, Lai J, Bai L. Immunotherapeutic Targeting of NG2/CSPG4 in Solid Organ Cancers. Vaccines (Basel) 2022; 10:vaccines10071023. [PMID: 35891187 PMCID: PMC9321363 DOI: 10.3390/vaccines10071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Neuro-glia antigen 2/chondroitin sulfate proteoglycan 4 (NG2/CSPG4, also called MCSP, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a large cell-surface antigen and an unusual cell membrane integral glycoprotein frequently expressed on undifferentiated precursor cells in multiple solid organ cancers, including cancers of the liver, pancreas, lungs, and kidneys. It is a valuable molecule involved in cancer cell adhesion, invasion, spreading, angiogenesis, complement inhibition, and signaling. Although the biological significance underlying NG2/CSPG4 proteoglycan involvement in cancer progression needs to be better defined, based on the current evidence, NG2/CSPG4+ cells, such as pericytes (PCs, NG2+/CD146+/PDGFR-β+) and cancer stem cells (CSCs), are closely associated with the liver malignancy, hepatocellular carcinoma (HCC), pancreatic malignancy, and pancreatic ductal adenocarcinoma (PDAC) as well as poor prognoses. Importantly, with a unique method, we successfully purified NG2/CSPG4-expressing cells from human HCC and PDAC vasculature tissue blocks (by core needle biopsy). The cells appeared to be spheres that stably expanded in cultures. As such, these cells have the potential to be used as sources of target antigens. Herein, we provide new information on the possibilities of frequently selecting NG2/CSPG4 as a solid organ cancer biomarker or exploiting expressing cells such as CSCs, or the PG/chondroitin sulfate chain of NG2/CSPG4 on the cell membrane as specific antigens for the development of antibody- and vaccine-based immunotherapeutic approaches to treat these cancers.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Zhenyu Wu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Department of Nuclear Medicine, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Jing Sun
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Department of Nuclear Medicine, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030000, China
- Correspondence: ; Tel.: +86-23-68765709; Fax: +86-2365462170
| |
Collapse
|
11
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
12
|
Qiu Y, Wang N, Guo T, Liu S, Tang X, Zhong Z, Chen Q, Wu H, Li X, Wang J, Zhang S, Ou Y, Wang B, Ma K, Gu W, Cao J, Chen H, Duan Y. Establishment of a 3D model of tumor-driven angiogenesis to study the effects of anti-angiogenic drugs on pericyte recruitment. Biomater Sci 2021; 9:6064-6085. [PMID: 34136892 DOI: 10.1039/d0bm02107e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-β in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.
Collapse
Affiliation(s)
- Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Zhiyong Zhong
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xiajing Li
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Yimeng Ou
- Department of General Surgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, P. R. China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, P. R. China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, P. R. China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Lees DM, Reynolds LE, Pedrosa AR, Roy-Luzarraga M, Hodivala-Dilke KM. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis 2021; 24:471-482. [PMID: 33730293 PMCID: PMC8292267 DOI: 10.1007/s10456-021-09776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
Collapse
Affiliation(s)
- Delphine M Lees
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana Rita Pedrosa
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
15
|
Antonioli L, Fornai M, Pellegrini C, D'Antongiovanni V, Turiello R, Morello S, Haskó G, Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:145-167. [PMID: 33123998 DOI: 10.1007/978-3-030-47189-7_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell surface receptors, classified into four subtypes: A1, A2A, A2B, and A3. A critical role of this nucleoside is emerging in the modulation of several immune and nonimmune cells defining the tumor microenvironment, providing novel insights about the development of novel therapeutic strategies aimed at undermining the immune-privileged sites where cancer cells grow and proliferate.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Roberta Turiello
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Yang Y, Torbey MT. Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke. Curr Neuropharmacol 2020; 18:1250-1265. [PMID: 32691713 PMCID: PMC7770645 DOI: 10.2174/1570159x18666200720173316] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels, is a natural defense mechanism helping to restore oxygen and nutrient supply to the affected brain tissue following an ischemic stroke. By stimulating vessel growth, angiogenesis may stabilize brain perfusion, thereby promoting neuronal survival, brain plasticity, and neurologic recovery. However, therapeutic angiogenesis after stroke faces challenges: new angiogenesis-induced vessels have a higher than normal permeability, and treatment to promote angiogenesis may exacerbate outcomes in stroke patients. The development of therapies requires elucidation of the precise cellular and molecular basis of the disease. Microenvironment homeostasis of the central nervous system is essential for its normal function and is maintained by the blood-brain barrier (BBB). Tight junction proteins (TJP) form the tight junction (TJ) between vascular endothelial cells (ECs) and play a key role in regulating the BBB permeability. We demonstrated that after stroke, new angiogenesis-induced vessels in peri-infarct areas have abnormally high BBB permeability due to a lack of major TJPs in ECs. Therefore, promoting TJ formation and BBB integrity in the new vessels coupled with speedy angiogenesis will provide a promising and safer treatment strategy for improving recovery from stroke. Pericyte is a central neurovascular unite component in vascular barriergenesis and are vital to BBB integrity. We found that pericytes also play a key role in stroke-induced angiogenesis and TJ formation in the newly formed vessels. Based on these findings, in this article, we focus on regulation aspects of the BBB functions and describe cellular and molecular special features of TJ formation with an emphasis on role of pericytes in BBB integrity during angiogenesis after stroke.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| | - Michel T Torbey
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| |
Collapse
|
17
|
Tong F, Xiong CJ, Wei CH, Wang Y, Liang ZW, Lu H, Pan HJ, Dong JH, Zheng XF, Wu G, Dong XR. Hypo-fractionation radiotherapy normalizes tumor vasculature in non-small cell lung cancer xenografts through the p-STAT3/HIF-1 alpha signaling pathway. Ther Adv Med Oncol 2020; 12:1758835920965853. [PMID: 33193827 PMCID: PMC7605032 DOI: 10.1177/1758835920965853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Hypo-fractionation radiotherapy (HFRT) was considered to be an important treatment for non-small cell lung cancer (NSCLC), but the radiobiological effects of HFRT on NSCLC remain unclear. The aim of this study was to investigate specific biological effect of HFRT on tumor angiogenesis, compared with conventional radiotherapy (CRT). Methods: The subcutaneous xenograft models and the dorsal skinfold window chamber (DSWC) models of nude mice bearing H460 and HCC827 NSCLC cells were irradiated with doses of 0 Gy (sham group), 22 Gy delivered into 11 fractions (CRT group) or 12 Gy delivered into 1 fraction (HFRT group). At certain time-points after irradiation, the volumes, hypoxic area, coverage rate of pericyte and micro-vessel density (MVD) of the subcutaneous xenograft models were detected, and the tumor vasculature was visualized in the DSMC model. The expressions of phosphorylated signal transducer and activator of transcription (p-STAT3), hypoxia-inducible factor 1-α (HIF-1α), CXCL12 and VEGFA were detected. Results: Compared with the CRT groups, HFRT showed more-efficient tumor growth-suppression, accompanied by a HFRT-induced window-period, during which vasculature was normalized, tumor hypoxia was improved and MVD was decreased. Moreover, during the window-period, the signal levels of p-STAT3/HIF-1α pathway and the expressions of its downstream angiogenic factors (VEGFA and CXCL12) were inhibited by HFRT. Conclusion: Compared with CRT, HFRT induced tumor vasculature normalization by rendering the remaining vessels less tortuous and increasing pericyte coverage of tumor blood vessels, thereby ameliorating tumor hypoxia and enhancing the tumor-killing effect. Moreover, HFRT might exert the aforementioned effects through p-STAT3/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Jin Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Hua Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Wen Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Jiao Pan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hua Dong
- Experimental Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Feng Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Rong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
18
|
Guan YN, Li Y, Roosan M, Jing Q. Single-cell transcriptomics of murine mural cells reveals cellular heterogeneity. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1077-1086. [PMID: 33165809 PMCID: PMC7649565 DOI: 10.1007/s11427-020-1823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 10/28/2022]
Abstract
Mural cells (MCs) wrap around the endothelium, and participate in the development and homeostasis of vasculature. MCs have been reported as heterogeneous population morphologically and functionally. However, the transcriptional heterogeneity of MCs was rarely studied. In this study, we illustrated the transcriptional heterogeneity of MCs with different perspectives by using publicly available single-cell dataset GSE109774. Specifically, MCs are transcriptionally different from other cell types, and ligand-receptor interactions of different cells with MCs vary. Re-clustering of MCs identified five distinct subclusters. The heterogeneity of MCs in tissues was reflected by MC coverage, various distribution of MC subclusters, and ligand-receptor interactions of MCs and parenchymal cells. The transcriptomic diversity of MCs revealed in this article will help facilitate further research into MCs.
Collapse
Affiliation(s)
- Ya-Na Guan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM) & CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai, 200031, China
| | - Yue Li
- Chapman University, Irvine, CA, 92618, USA
| | | | - Qing Jing
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM) & CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai, 200031, China.
| |
Collapse
|
19
|
Yuan K, Liu Y, Zhang Y, Nathan A, Tian W, Yu J, Sweatt AJ, Shamshou EA, Condon D, Chakraborty A, Agarwal S, Auer N, Zhang S, Wu JC, Zamanian RT, Nicolls MR, de Jesus Perez VA. Mural Cell SDF1 Signaling Is Associated with the Pathogenesis of Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 62:747-759. [PMID: 32084325 DOI: 10.1165/rcmb.2019-0401oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization, but whether similar mechanisms are responsible for their behavior is unknown. RNA-seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO). Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that, similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared with control mice, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in coculture. SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Yu Liu
- Stanford Cardiovascular Institute
| | | | - Abinaya Nathan
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Wen Tian
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and.,VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, California; and
| | - Joyce Yu
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Andrew J Sweatt
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and
| | - Elya A Shamshou
- Department of Immunology, University of Washington, Seattle, Washington
| | - David Condon
- Division of Pulmonary and Critical Care Medicine
| | - Ananya Chakraborty
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Stuti Agarwal
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Natasha Auer
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Serena Zhang
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | | | - Roham T Zamanian
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and
| | - Mark R Nicolls
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and.,VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, California; and
| | | |
Collapse
|
20
|
Schmitt BM, Boewe AS, Becker V, Nalbach L, Gu Y, Götz C, Menger MD, Laschke MW, Ampofo E. Protein Kinase CK2 Regulates Nerve/Glial Antigen (NG)2-Mediated Angiogenic Activity of Human Pericytes. Cells 2020; 9:cells9061546. [PMID: 32630438 PMCID: PMC7348826 DOI: 10.3390/cells9061546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 is a crucial regulator of endothelial cell proliferation, migration and sprouting during angiogenesis. However, it is still unknown whether this kinase additionally affects the angiogenic activity of other vessel-associated cells. In this study, we investigated the effect of CK2 inhibition on primary human pericytes. We found that CK2 inhibition reduces the expression of nerve/glial antigen (NG)2, a crucial factor which is involved in angiogenic processes. Reporter gene assays revealed a 114 bp transcriptional active region of the human NG2 promoter, whose activity was decreased after CK2 inhibition. Functional analyses demonstrated that the pharmacological inhibition of CK2 by CX-4945 suppresses pericyte proliferation, migration, spheroid sprouting and the stabilization of endothelial tubes. Moreover, aortic rings of NG2−/− mice showed a significantly reduced vascular sprouting when compared to rings of NG2+/+ mice, indicating that NG2 is an important regulator of the angiogenic activity of pericytes. In vivo, implanted Matrigel plugs containing CX-4945-treated pericytes exhibited a lower microvessel density when compared to controls. These findings demonstrate that CK2 regulates the angiogenic activity of pericytes through NG2 gene expression. Hence, the inhibition of CK2 represents a promising anti-angiogenic strategy, because it does not only target endothelial cells, but also vessel-associated pericytes.
Collapse
Affiliation(s)
- Beate M. Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Vivien Becker
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
- Correspondence: ; Tel.: +49-6841-16-26561; Fax: +49-6841-16-26553
| |
Collapse
|
21
|
Baci D, Chirivì M, Pace V, Maiullari F, Milan M, Rampin A, Somma P, Presutti D, Garavelli S, Bruno A, Cannata S, Lanzuolo C, Gargioli C, Rizzi R, Bearzi C. Extracellular Vesicles from Skeletal Muscle Cells Efficiently Promote Myogenesis in Induced Pluripotent Stem Cells. Cells 2020; 9:cells9061527. [PMID: 32585911 PMCID: PMC7349204 DOI: 10.3390/cells9061527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The recent advances, offered by cell therapy in the regenerative medicine field, offer a revolutionary potential for the development of innovative cures to restore compromised physiological functions or organs. Adult myogenic precursors, such as myoblasts or satellite cells, possess a marked regenerative capacity, but the exploitation of this potential still encounters significant challenges in clinical application, due to low rate of proliferation in vitro, as well as a reduced self-renewal capacity. In this scenario, induced pluripotent stem cells (iPSCs) can offer not only an inexhaustible source of cells for regenerative therapeutic approaches, but also a valuable alternative for in vitro modeling of patient-specific diseases. In this study we established a reliable protocol to induce the myogenic differentiation of iPSCs, generated from pericytes and fibroblasts, exploiting skeletal muscle-derived extracellular vesicles (EVs), in combination with chemically defined factors. This genetic integration-free approach generates functional skeletal myotubes maintaining the engraftment ability in vivo. Our results demonstrate evidence that EVs can act as biological "shuttles" to deliver specific bioactive molecules for a successful transgene-free differentiation offering new opportunities for disease modeling and regenerative approaches.
Collapse
Affiliation(s)
- Denisa Baci
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Maila Chirivì
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Valentina Pace
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | | | - Marika Milan
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Andrea Rampin
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Paolo Somma
- Flow Cytometry Core, Humanitas Clinical and Research Center, 20089 Milan, Italy;
| | - Dario Presutti
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Silvia Garavelli
- Institute for Endocrinology and Oncology “Gaetano Salvatore”, National Research Council, 80131 Naples, Italy;
| | | | - Stefano Cannata
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.C.); (C.G.)
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, 20090 Milan, Italy;
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.C.); (C.G.)
| | - Roberto Rizzi
- Institute of Biomedical Technologies, National Research Council, 20090 Milan, Italy;
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
- Correspondence: (R.R.); (C.B.); Tel.: +39-02-0066-0230 (R.R.); +39-02-0066-0230 (C.B.)
| | - Claudia Bearzi
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
- Correspondence: (R.R.); (C.B.); Tel.: +39-02-0066-0230 (R.R.); +39-02-0066-0230 (C.B.)
| |
Collapse
|
22
|
Chondroitin Sulphate Proteoglycans in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:73-92. [PMID: 32845503 DOI: 10.1007/978-3-030-48457-6_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteoglycans are macromolecules that are essential for the development of cells, human diseases and malignancies. In particular, chondroitin sulphate proteoglycans (CSPGs) accumulate in tumour stroma and play a key role in tumour growth and invasion by driving multiple oncogenic pathways in tumour cells and promoting crucial interactions in the tumour microenvironment (TME). These pathways involve receptor tyrosine kinase (RTK) signalling via the mitogen-activated protein kinase (MAPK) cascade and integrin signalling via the activation of focal adhesion kinase (FAK), which sustains the activation of extracellular signal-regulated kinases 1/2 (ERK1/2).Human CSPG4 is a type I transmembrane protein that is associated with the growth and progression of human brain tumours. It regulates cell signalling and migration by interacting with components of the extracellular matrix, extracellular ligands, growth factor receptors, intracellular enzymes and structural proteins. Its overexpression by tumour cells, perivascular cells and precursor/progenitor cells in gliomas suggests that it plays a role in their origin, progression and neo-angiogenesis and its aberrant expression in tumour cells may be a promising biomarker to monitor malignant progression and patient survival.The aim of this chapter is to review and discuss the role of CSPG4 in the TME of human gliomas, including its potential as a druggable therapeutic target.
Collapse
|
23
|
Kang TY, Bocci F, Jolly MK, Levine H, Onuchic JN, Levchenko A. Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci U S A 2019; 116:23551-23561. [PMID: 31685607 PMCID: PMC6876202 DOI: 10.1073/pnas.1913373116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis frequently occurs in the context of acute or persistent inflammation. The complex interplay of proinflammatory and proangiogenic cues is only partially understood. Using an experimental model, permitting exposure of developing blood vessel sprouts to multiple combinations of diverse biochemical stimuli and juxtacrine cell interactions, we present evidence that a proinflammatory cytokine, tumor necrosis factor (TNF), can have both proangiogenic and antiangiogenic effects, depending on the dose and the presence of pericytes. In particular, we find that pericytes can rescue and enhance angiogenesis in the presence of otherwise-inhibitory high TNF doses. This sharp switch from proangiogenic to antiangiogenic effect of TNF observed with an escalating dose of this cytokine, as well as the effect of pericytes, are explained by a mathematical model trained on the biochemical data. Furthermore, this model was predictive of the effects of diverse combinations of proinflammatory and antiinflammatory cues, and variable pericyte coverage. The mechanism supports the effect of TNF and pericytes as modulating signaling networks impinging on Notch signaling and specification of the Tip and Stalk phenotypes. This integrative analysis elucidates the plasticity of the angiogenic morphogenesis in the presence of diverse and potentially conflicting cues, with immediate implications for many physiological and pathological settings.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale Systems Biology Institute, Yale University, New Haven, CT 06520
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Department of Physics, Northeastern University, Boston, MA 02115;
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520;
- Yale Systems Biology Institute, Yale University, New Haven, CT 06520
| |
Collapse
|
24
|
Bhowmick S, D'Mello V, Caruso D, Wallerstein A, Abdul-Muneer P. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp Neurol 2019; 317:260-270. [DOI: 10.1016/j.expneurol.2019.03.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023]
|
25
|
Santos GSP, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericyte Plasticity in the Brain. Neurosci Bull 2019; 35:551-560. [PMID: 30367336 PMCID: PMC6527663 DOI: 10.1007/s12264-018-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Cerebral pericytes are perivascular cells that stabilize blood vessels. Little is known about the plasticity of pericytes in the adult brain in vivo. Recently, using state-of-the-art technologies, including two-photon microscopy in combination with sophisticated Cre/loxP in vivo tracing techniques, a novel role of pericytes was revealed in vascular remodeling in the adult brain. Strikingly, after pericyte ablation, neighboring pericytes expand their processes and prevent vascular dilatation. This new knowledge provides insights into pericyte plasticity in the adult brain.
Collapse
Affiliation(s)
- Gabryella S P Santos
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
26
|
Role and Molecular Mechanisms of Pericytes in Regulation of Leukocyte Diapedesis in Inflamed Tissues. Mediators Inflamm 2019; 2019:4123605. [PMID: 31205449 PMCID: PMC6530229 DOI: 10.1155/2019/4123605] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
Leukocyte recruitment is a hallmark of the inflammatory response. Migrating leukocytes breach the endothelium along with the vascular basement membrane and associated pericytes. While much is known about leukocyte-endothelial cell interactions, the mechanisms and role of pericytes in extravasation are poorly understood and the classical paradigm of leukocyte recruitment in the microvasculature seldom adequately discusses the involvement of pericytes. Emerging evidence shows that pericytes are essential players in the regulation of leukocyte extravasation in addition to their functions in blood vessel formation and blood-brain barrier maintenance. Junctions between venular endothelial cells are closely aligned with extracellular matrix protein low expression regions (LERs) in the basement membrane, which in turn are aligned with gaps between pericytes. This forms preferential paths for leukocyte extravasation. Breaching of the layer formed by pericytes and the basement membrane entails remodelling of LERs, leukocyte-pericyte adhesion, crawling of leukocytes on pericyte processes, and enlargement of gaps between pericytes to form channels for migrating leukocytes. Furthermore, inflamed arteriolar and capillary pericytes induce chemotactic migration of leukocytes that exit postcapillary venules, and through direct pericyte-leukocyte contact, they induce efficient interstitial migration to enhance the immunosurveillance capacity of leukocytes. Given their role as regulators of leukocyte extravasation, proper pericyte function is imperative in inflammatory disease contexts such as diabetic retinopathy and sepsis. This review summarizes research on the molecular mechanisms by which pericytes mediate leukocyte diapedesis in inflamed tissues.
Collapse
|
27
|
Wang X, Zhang J, Li G, Sai N, Han J, Hou Z, Kachelmeier A, Shi X. Vascular regeneration in adult mouse cochlea stimulated by VEGF-A 165 and driven by NG2-derived cells ex vivo. Hear Res 2019; 377:179-188. [PMID: 30954884 DOI: 10.1016/j.heares.2019.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Can damaged or degenerated vessels be regenerated in the ear? The question is clinically important, as disruption of cochlear blood flow is seen in a wide variety of hearing disorders, including in loud sound-induced hearing loss (endothelial injury), ageing-related hearing loss (lost vascular density), and genetic hearing loss (e.g., Norrie disease: strial avascularization). Progression in cochlear blood flow (CBF) pathology can parallel progression in hair cell and hearing loss. However, neither new vessel growth in the ear, nor the role of angiogenesis in hearing, have been investigated. In this study, we used an established ex vivo tissue explant model in conjunction with a matrigel matrix model to demonstrate for the first time that new vessels can be generated by activating a vascular endothelial growth factor (VEGF-A) signal. Most intriguingly, we found that the pattern of the newly formed vessels resembles the natural 'mesh pattern' of in situ strial vessels, with both lumen and expression of tight junctions. Sphigosine-1-phosphate (S1P) in synergy with VEGF-A control new vessel size and growth. Using transgenic neural/glial antigen 2 (NG2) fluorescent reporter mice, we have furthermore discovered that the progenitors of "de novo" strial vessels are NG2-derived cells. Taken together, our data demonstrates that damaged strial microvessels can be regenerated by reprogramming NG2-derived angiogenic cells. Restoration of the functional vasculature may be critical for recovery of vascular dysfunction related hearing loss.
Collapse
Affiliation(s)
- Xiaohan Wang
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA; Boston Children's Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Jinhui Zhang
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Guangshuai Li
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Na Sai
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jiang Han
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology / Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
28
|
Vähätupa M, Nättinen J, Jylhä A, Aapola U, Kataja M, Kööbi P, Järvinen TAH, Uusitalo H, Uusitalo-Järvinen H. SWATH-MS Proteomic Analysis of Oxygen-Induced Retinopathy Reveals Novel Potential Therapeutic Targets. Invest Ophthalmol Vis Sci 2019; 59:3294-3306. [PMID: 30025079 DOI: 10.1167/iovs.18-23831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxygen-induced retinopathy (OIR) is the most widely used model for ischemic retinopathies such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). The purpose of this study was to perform the most comprehensive characterization of OIR by a recently developed technique, sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics. Methods Control and OIR retina samples collected from various time points were subjected to SWATH-MS and detailed data analysis. Immunohistochemistry from mouse retinas as well as neovascular membranes from human PDR and RVO patients were used for the detection of the localization of the proteins showing altered expression in the retina and to address their relevance to human ischemic retinopathies. Results We report the most extensive proteomic profiling of OIR to date by quantifying almost 3000 unique proteins and their expression differences between control and OIR retinas. Crystallins were the most prominent proteins induced by hypoxia in the retina, while angiogenesis related proteins such as Filamin A and nonmuscle myosin IIA stand out at the peak of angiogenesis. Majority of the changes in protein expression return to normal at P42, but there is evidence to suggest that proteins involved in neurotransmission remain at reduced level. Conclusions The results reveal new potential therapeutic targets to address hypoxia-induced pathological angiogenesis taking place in number of retinal diseases. The extensive proteomic profiling combined with pathway analysis also identifies novel molecular networks that could contribute to the pathogenesis of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Antti Jylhä
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Ulla Aapola
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Marko Kataja
- Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Peeter Kööbi
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Department of Musculoskeletal Disorders, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
29
|
Sattiraju A, Mintz A. Pericytes in Glioblastomas: Multifaceted Role Within Tumor Microenvironments and Potential for Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:65-91. [PMID: 31147872 DOI: 10.1007/978-3-030-16908-4_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is an aggressive and lethal disease that often results in a poor prognosis. Unlike most solid tumors, GBM is characterized by diffuse infiltrating margins, extensive angiogenesis, hypoxia, necrosis, and clonal heterogeneity. Recurrent disease is an unavoidable consequence for many patients as standard treatment options such as surgery, radiotherapy, and chemotherapy have proven to be insufficient in causing long-term survival benefits. Systemic delivery of promising drugs is hindered due to the blood-brain barrier and non-uniform perfusion within GBM tissue. In recent years, many investigations have highlighted the role of GBM stem cells (GSCs) and their microenvironment in the initiation and maintenance of tumor tissue. Preclinical and early clinical studies to target GSCs and microenvironmental components are currently underway. Of these strategies, immunotherapy using checkpoint inhibitors and redirected cytotoxic T cells have shown promising results in early investigations. But, GBM microenvironment is heterogenous and recent investigations have shown cell populations within this microenvironment to be plastic. These studies underline the importance of identifying the role of and targeting multiple cell populations within the GBM microenvironment which could have a synergistic effect when combined with novel therapies. Pericytes are multipotent perivascular cells that play a vital role within the GBM microenvironment by assisting in tumor initiation, survival, and progression. Due to their role in regulating the blood-brain barrier permeability, promoting angiogenesis, tumor growth, clearing extracellular matrix for infiltrating GBM cells and in helping GBM cells evade immune surveillance, pericytes could be ideal therapeutic targets for stymieing or exploiting their role within the GBM microenvironment. This chapter will introduce hallmarks of GBM and elaborate on the contributions of pericytes to these hallmarks by examining recent findings. In addition, the chapter also highlights the therapeutic value of targeting pericytes, while discussing conventional and novel GBM therapies and obstacles to their efficacy.
Collapse
Affiliation(s)
- Anirudh Sattiraju
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Egners A, Rezaei M, Kuzmanov A, Poitz DM, Streichert D, Müller-Reichert T, Wielockx B, Breier G. PHD3 Acts as Tumor Suppressor in Mouse Osteosarcoma and Influences Tumor Vascularization via PDGF-C Signaling. Cancers (Basel) 2018; 10:cancers10120496. [PMID: 30563292 PMCID: PMC6316346 DOI: 10.3390/cancers10120496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer cell proliferation and insufficient blood supply can lead to the development of hypoxic areas in the tumor tissue. The adaptation to the hypoxic environment is mediated by a transcriptional complex called hypoxia-inducible factor (HIF). HIF protein levels are tightly controlled by oxygen-dependent prolyl hydroxylase domain proteins (PHDs). However, the precise roles of these enzymes in tumor progression and their downstream signaling pathways are not fully characterized. Here, we study PHD3 function in murine experimental osteosarcoma. Unexpectedly, PHD3 silencing in LM8 cells affects neither HIF-1α protein levels, nor the expression of various HIF-1 target genes. Subcutaneous injection of PHD3-silenced tumor cells accelerated tumor progression and was accompanied by dramatic phenotypic changes in the tumor vasculature. Blood vessels in advanced PHD3-silenced tumors were enlarged whereas their density was greatly reduced. Examination of the molecular pathways underlying these alterations revealed that platelet-derived growth factor (PDGF)-C signaling is activated in the vasculature of PHD3-deficient tumors. Silencing of PDGF-C depleted tumor growth, increased vessel density and reduced vessel size. Our data show that PHD3 controls tumor growth and vessel architecture in LM8 osteosarcoma by regulating the PDGF-C pathway, and support the hypothesis that different members of the PHD family exert unique functions in tumors.
Collapse
Affiliation(s)
- Antje Egners
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, 52074 Aachen, Germany.
- Department of Pathology, TU Dresden, 01307 Dresden, Germany.
| | - Maryam Rezaei
- Department of Biochemistry, University of Münster, 48149 Münster, Germany.
| | - Aleksandar Kuzmanov
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland.
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Doreen Streichert
- Core Facility Cellular Imaging, Experimental Center, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Thomas Müller-Reichert
- Core Facility Cellular Imaging, Experimental Center, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Georg Breier
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
31
|
Gregorio I, Braghetta P, Bonaldo P, Cescon M. Collagen VI in healthy and diseased nervous system. Dis Model Mech 2018; 11:dmm032946. [PMID: 29728408 PMCID: PMC6031366 DOI: 10.1242/dmm.032946] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collagen VI is a major extracellular matrix protein exerting a number of functions in different tissues, spanning from biomechanical to regulatory signals in the cell survival processes, and playing key roles in maintaining the stemness or determining the differentiation of several types of cells. In the last couple of years, emerging findings on collagen VI have led to increased interest in its role in the nervous system. The role of this protein in the peripheral nervous system was intensely studied and characterized in detail. Collagen VI acts as a regulator of Schwann cell differentiation and is required for preserving peripheral nerve myelination, function and structure, as well as for orchestrating nerve regeneration after injury. Although the role and distribution of collagen VI in the peripheral nervous system is now well established, the role of this distinctive extracellular matrix component in the central nervous system, along with its links to human neurological and neurodegenerative disorders, remains an open field of investigation. In this Review, we summarize and discuss a number of recent findings related to collagen VI in the central and peripheral nervous systems. We further link these findings to different aspects of the protein that are relevant to human diseases in these compartments in order to provide a comprehensive overview of the roles of this key matrix component in the nervous system.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
32
|
Tang F, Lord MS, Stallcup WB, Whitelock JM. Cell surface chondroitin sulphate proteoglycan 4 (CSPG4) binds to the basement membrane heparan sulphate proteoglycan, perlecan, and is involved in cell adhesion. J Biochem 2018; 163:399-412. [PMID: 29462330 DOI: 10.1093/jb/mvy008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
Chondroitin sulphate proteoglycan 4 (CSPG4) is a cell surface proteoglycan highly expressed by tumour, perivascular and oligodendrocyte cells and known to be involved cell adhesion and migration. This study showed that CSPG4 was present as a proteoglycan on the cell surface of two melanoma cell lines, MM200 and Me1007, as well as shed into the conditioned medium. CSPG4 from the two melanoma cell lines differed in the amount of chondroitin sulphate (CS) decoration, as well as the way the protein core was fragmented. In contrast, the CSPG4 expressed by a colon carcinoma cell line, WiDr, was predominantly as a protein core on the cell surface lacking glycosaminoglycan (GAG) chains. This study demonstrated that CSPG4 immunopurified from the melanoma cell lines formed a complex with perlecan synthesized by the same cultured cells. Mechanistic studies showed that CSPG4 bound to perlecan via hydrophobic protein-protein interactions involving multiple sites on perlecan including the C-terminal region. Furthermore, this study revealed that CSPG4 interacted with perlecan to support cell adhesion and actin polymerization. Together these data suggest a novel mechanism by which CSPG4 expressing cells might attach to perlecan-rich matrices so as those found in connective tissues and basement membranes.
Collapse
Affiliation(s)
- Fengying Tang
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - William B Stallcup
- Tumour Microenvironment and Cancer Immunology Program, Cancer Centre, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John M Whitelock
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, Hu B. Diverse Functions and Mechanisms of Pericytes in Ischemic Stroke. Curr Neuropharmacol 2018; 15:892-905. [PMID: 28088914 PMCID: PMC5652032 DOI: 10.2174/1570159x15666170112170226] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Every year, strokes take millions of lives and leave millions of individuals living with permanent disabilities. Recently more researchers embrace the concept of the neurovascular unit (NVU), which encompasses neurons, endothelial cells (ECs), pericytes, astrocyte, microglia, and the extracellular matrix. It has been well-documented that NVU emerged as a new paradigm for the exploration of mechanisms and therapies in ischemic stroke. To better understand the complex NVU and broaden therapeutic targets, we must probe the roles of multiple cell types in ischemic stroke. The aims of this paper are to introduce the biological characteristics of brain pericytes and the available evidence on the diverse functions and mechanisms involving the pericytes in the context of ischemic stroke. Methods: Research and online content related to the biological characteristics and pathophysiological roles of pericytes is review. The new research direction on the Pericytes in ischemic stroke, and the potential therapeutic targets are provided. Results: During the different stages of ischemic stroke, pericytes play different roles: 1) On the hyperacute phase of stroke, pericytes constriction and death may be a cause of the no-reflow phenomenon in brain capillaries; 2) During the acute phase, pericytes detach from microvessels and participate in inflammatory-immunological response, resulting in the BBB damage and brain edema. Pericytes also provide benefit for neuroprotection by protecting endothelium, stabilizing BBB and releasing neurotrophins; 3) Similarly, during the later recovery phase of stroke, pericytes also contribute to angiogenesis, neurogenesis, and thereby promote neurological recovery. Conclusion: This emphasis on the NVU concept has shifted the focus of ischemic stroke research from neuro-centric views to the complex interactions within NVU. With this new perspective, pericytes that are centrally positioned in the NVU have been widely studied in ischemic stroke. More work is needed to elucidate the beneficial and detrimental roles of brain pericytes in ischemic stroke that may serve as a basis for potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Elvis Nana Opoku
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingqiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
34
|
Padel T, Roth M, Gaceb A, Li JY, Björkqvist M, Paul G. Brain pericyte activation occurs early in Huntington's disease. Exp Neurol 2018; 305:139-150. [PMID: 29630897 DOI: 10.1016/j.expneurol.2018.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/03/2018] [Accepted: 03/29/2018] [Indexed: 02/03/2023]
Abstract
Microvascular changes have recently been described for several neurodegenerative disorders, including Huntington's disease (HD). HD is characterized by a progressive neuronal cell loss due to a mutation in the Huntingtin gene. However, the temporal and spatial microvascular alterations in HD remain unclear. Also, knowledge on the implication of pericytes in HD pathology is still sparse and existing findings are contradictory. Here we examine alterations in brain pericytes in the R6/2 mouse model of HD and in human post mortem HD brain sections. To specifically track activated pericytes, we crossbred R6/2 mice with transgenic mice expressing the Green fluorescent protein gene under the Regulator of G-protein signaling 5 (Rgs5) promoter. We demonstrate an increase in activated pericytes in the R6/2 brain and in post mortem HD brain tissue. Importantly, pericyte changes are already detected before striatal neuronal cell loss, weight loss or behavioural deficits occur in R6/2 mice. This is associated with vascular alterations, whereby striatal changes precede cortical changes. Our findings suggest that pericyte activation may be one of the initial steps contributing to the observed vascular modifications in HD. Thus, pericytes may constitute an important target to address early microvascular changes contributing to disease progression in HD.
Collapse
Affiliation(s)
- Thomas Padel
- Translational Neurology group, Department of Clinical Science, Wallenberg Neuroscience Center, Wallenberg Centre for Molecular Medicine at Lund University, Lund University, 22184 Lund, Sweden
| | - Michaela Roth
- Translational Neurology group, Department of Clinical Science, Wallenberg Neuroscience Center, Wallenberg Centre for Molecular Medicine at Lund University, Lund University, 22184 Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology group, Department of Clinical Science, Wallenberg Neuroscience Center, Wallenberg Centre for Molecular Medicine at Lund University, Lund University, 22184 Lund, Sweden
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Maria Björkqvist
- Biomarkers in Brain Disease, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Gesine Paul
- Translational Neurology group, Department of Clinical Science, Wallenberg Neuroscience Center, Wallenberg Centre for Molecular Medicine at Lund University, Lund University, 22184 Lund, Sweden; Department of Neurology, Scania University Hospital, 22185 Lund, Sweden.
| |
Collapse
|
35
|
Wilhelm I, Fazakas C, Molnár K, Végh AG, Haskó J, Krizbai IA. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab 2018; 38:563-587. [PMID: 28920514 PMCID: PMC5888855 DOI: 10.1177/0271678x17732025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Despite the potential obstacle represented by the blood-brain barrier for extravasating malignant cells, metastases are more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature and survival in the cerebral environment.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
36
|
Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 2018; 25:21. [PMID: 29519245 PMCID: PMC5844098 DOI: 10.1186/s12929-018-0423-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pericytes are multipotent cells present in every vascularized tissue in the body. Despite the fact that they are well-known for more than a century, pericytes are still representing cells with intriguing properties. This is mainly because of their heterogeneity in terms of definition, tissue distribution, origin, phenotype and multi-functional properties. The body of knowledge illustrates importance of pericytes in the regulation of homeostatic and healing processes in the body. MAIN BODY In this review, we summarized current knowledge regarding identification, isolation, ontogeny and functional characteristics of pericytes and described molecular mechanisms involved in the crosstalk between pericytes and endothelial or immune cells. We highlighted the role of pericytes in the pathogenesis of fibrosis, diabetes-related complications (retinopathy, nephropathy, neuropathy and erectile dysfunction), ischemic organ failure, pulmonary hypertension, Alzheimer disease, tumor growth and metastasis with the focus on their therapeutic potential in the regenerative medicine. The functions and capabilities of pericytes are impressive and, as yet, incompletely understood. Molecular mechanisms responsible for pericyte-mediated regulation of vascular stability, angiogenesis and blood flow are well described while their regenerative and immunomodulatory characteristics are still not completely revealed. Strong evidence for pericytes' participation in physiological, as well as in pathological conditions reveals a broad potential for their therapeutic use. Recently published results obtained in animal studies showed that transplantation of pericytes could positively influence the healing of bone, muscle and skin and could support revascularization. However, the differences in their phenotype and function as well as the lack of standardized procedure for their isolation and characterization limit their use in clinical trials. CONCLUSION Critical to further progress in clinical application of pericytes will be identification of tissue specific pericyte phenotype and function, validation and standardization of the procedure for their isolation that will enable establishment of precise clinical settings in which pericyte-based therapy will be efficiently applied.
Collapse
Affiliation(s)
- C. Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida USA
| | - Bojana Simovic Markovic
- Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Serbia, Faculty of Medical Sciences, 69 Svetozar Markovic Street, Kragujevac, 34000 Serbia
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida USA
| | - Aleksandar Arsenijevic
- Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Serbia, Faculty of Medical Sciences, 69 Svetozar Markovic Street, Kragujevac, 34000 Serbia
| | - Valentin Djonov
- University of Bern, Institute of Anatomy, Baltzerstrasse 2, Bern, Switzerland
| | - Vladislav Volarevic
- Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Serbia, Faculty of Medical Sciences, 69 Svetozar Markovic Street, Kragujevac, 34000 Serbia
| |
Collapse
|
37
|
Yin L, He J, Xue J, Na F, Tong R, Wang J, Gao H, Tang F, Mo X, Deng L, Lu Y. PDGFR-β inhibitor slows tumor growth but increases metastasis in combined radiotherapy and Endostar therapy. Biomed Pharmacother 2018; 99:615-621. [PMID: 29653486 DOI: 10.1016/j.biopha.2018.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pericytes are pivotal mural cells of blood vessels and play an essential role in coordinating the function of endothelial cells. Previous studies demonstrated that Endostar, a novel endostatin targeting endothelial cells, can enhance the effect of radiotherapy (RT). The present study addressed whether inhibiting pericytes could potentially improve the efficacy of combined RT and Endostar therapy. METHODS Platelet-derived growth factor beta-receptor inhibitor (CP673451) was chosen to inhibit pericytes and RT (12 Gy) was delivered. Lewis lung carcinoma-bearing C57BL/6 mice were randomized into 3 groups: RT, RT + Endo, and RT + Endo + CP673451. Subsequently, tumor microvessel density (MVD), pericyte coverage, tumor hypoxia, and lung metastasis were monitored at different time points following different therapies. RESULTS Compared to the other two groups, RT + Endo + CP673451 treatment markedly inhibited tumor growth with no improvement in the overall survival. Further analyses clarified that in comparison to RT alone, RT + Endo significantly reduced the tumor MVD, with a greater decrease noted in the RT + Endo + CP673451 group. However, additional CP673451 accentuated tumor hypoxia and enhanced the pulmonary metastasis in the combined RT and Endostar treatment. CONCLUSIONS Tumor growth can be further suppressed by pericyte inhibitor; however, metastases are potentially enhanced. More in-depth studies are warranted to confirm the potential benefits and risks of anti-pericyte therapy.
Collapse
Affiliation(s)
- Limei Yin
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Jiazhuo He
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Feifei Na
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Ruizhan Tong
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Jingwen Wang
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Hui Gao
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Fei Tang
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Lei Deng
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China.
| | - You Lu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Abstract
Studies of pericytes have been retarded by the lack of appropriate markers for identification of these perivascular mural cells. Use of antibodies against the NG2 proteoglycan as a pericyte marker has greatly facilitated recent studies of pericytes, emphasizing the intimate spatial relationship between pericytes and endothelial cells, allowing more accurate quantification of pericyte/endothelial cell ratios in different vascular beds, and revealing the participation of pericytes throughout all stages of blood vessel formation. The functional importance of NG2 in pericyte biology has been established via NG2 knockdown (in vitro) and knockout (in vivo) strategies that reveal significant deficits in blood vessel formation when NG2 is absent from pericytes. NG2 influences pericyte proliferation and motility by acting as an auxiliary receptor that enhances signaling through integrins and receptor tyrosine kinase growth factor receptors. By acting in a trans orientation, NG2 also activates integrin signaling in closely apposed endothelial cells, leading to enhanced maturation and formation of endothelial cell junctions. NG2 null mice exhibit reduced growth of both mammary and brain tumors that can be traced to deficits in tumor vascularization. Use of Cre-Lox technology to produce pericyte-specific NG2 null mice has revealed specific deficits in tumor vessels that include decreased pericyte ensheathment of endothelial cells, diminished assembly of the vascular basement membrane, reduced vessel patency, and increased vessel leakiness. Interestingly, myeloid-specific NG2 null mice exhibit even larger deficits in tumor vascularization, leading to correspondingly slower tumor growth. Myeloid-specific NG2 null mice are deficient in their ability to recruit macrophages to tumors and other sites of inflammation. This absence of macrophages deprives pericytes of a signal that is crucial for their ability to interact with endothelial cells. The interplay between pericytes, endothelial cells, and macrophages promises to be an extremely fertile area of future study.
Collapse
Affiliation(s)
- William B Stallcup
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
39
|
Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice. J Neurosci 2017; 38:1366-1382. [PMID: 29279310 DOI: 10.1523/jneurosci.3953-16.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/18/2017] [Accepted: 12/17/2017] [Indexed: 01/10/2023] Open
Abstract
Spinal cord injury (SCI) induces a centralized fibrotic scar surrounded by a reactive glial scar at the lesion site. The origin of these scars is thought to be perivascular cells entering lesions on ingrowing blood vessels and reactive astrocytes, respectively. However, two NG2-expressing cell populations, pericytes and glia, may also influence scar formation. In the periphery, new blood vessel growth requires proliferating NG2+ pericytes; if this were also true in the CNS, then the fibrotic scar would depend on dividing NG2+ pericytes. NG2+ glial cells (also called oligodendrocyte progenitors or polydendrocytes) also proliferate after SCI and accumulate in large numbers among astrocytes in the glial scar. Their effect there, if any, is unknown. We show that proliferating NG2+ pericytes and glia largely segregate into the fibrotic and glial scars, respectively; therefore, we used a thymidine kinase/ganciclovir paradigm to ablate both dividing NG2+ cell populations to determine whether either scar was altered. Results reveal that loss of proliferating NG2+ pericytes in the lesion prevented intralesion angiogenesis and completely abolished the fibrotic scar. The glial scar was also altered in the absence of acutely dividing NG2+ cells, displaying discontinuous borders and significantly reduced GFAP density. Collectively, these changes enhanced edema, prolonged hemorrhage, and impaired forelimb functional recovery. Interestingly, after halting GCV at 14 d postinjury, scar elements and vessels entered the lesions over the next 7 d, as did large numbers of axons that were not present in controls. Collectively, these data reveal that acutely dividing NG2+ pericytes and glia play fundamental roles in post-SCI tissue remodeling.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) is characterized by formation of astrocytic and fibrotic scars, both of which are necessary for lesion repair. NG2+ cells may influence both scar-forming processes. This study used a novel transgenic mouse paradigm to ablate proliferating NG2+ cells after SCI to better understand their role in repair. For the first time, our data show that dividing NG2+ pericytes are required for post-SCI angiogenesis, which in turn is needed for fibrotic scar formation. Moreover, loss of cycling NG2+ glia and pericytes caused significant multicellular tissue changes, including altered astrocyte responses and impaired functional recovery. This work reveals previously unknown ways in which proliferating NG2+ cells contribute to endogenous repair after SCI.
Collapse
|
40
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
41
|
Platelet-Rich Plasma as an Autologous and Proangiogenic Cell Delivery System. Mediators Inflamm 2017; 2017:1075975. [PMID: 28845088 PMCID: PMC5563430 DOI: 10.1155/2017/1075975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.
Collapse
|
42
|
You WK, Stallcup WB. Localization of VEGF to Vascular ECM Is an Important Aspect of Tumor Angiogenesis. Cancers (Basel) 2017; 9:cancers9080097. [PMID: 28788063 PMCID: PMC5575600 DOI: 10.3390/cancers9080097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/02/2022] Open
Abstract
Our research has identified several examples in which reduced VEGF-A binding to deficient vascular extracellular matrix leads to deficits in tumor vascularization and tumor growth: (1) germline ablation of collagen VI in the stroma of intracranial B16F10 melanomas; (2) knockdown of the Tks5 scaffolding protein in MDA-MB-231 mammary tumor cells; (3) germline ablation of NG2 proteoglycan in the stroma of MMTV-PyMT mammary tumors; and (4) myeloid-specific ablation of NG2 in the stroma of intracranial B16F10 melanomas. Tumor hypoxia is increased in each of the four types of experimental mice, accompanied by increases in total VEGF-A. However, while VEGF-A is highly associated with tumor blood vessels in control mice, it is much more diffusely distributed in tumors in all four sets of experimental mice, likely due to reduced extent of the vascular extracellular matrix. In parallel to lost VEGF-A localization, tumor vessels in each case have smaller diameters and are leakier than tumor vessels in control mice. Tumor growth is decreased as a result of this poor vascular function. The fact that the observed vascular changes occur in the absence of alterations in vascular density suggests that examination of vessel structure and function is more useful than vascular density for understanding the importance of angiogenesis in tumor progression.
Collapse
Affiliation(s)
| | - William B Stallcup
- Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Lu J, Shenoy AK. Epithelial-to-Pericyte Transition in Cancer. Cancers (Basel) 2017; 9:cancers9070077. [PMID: 28677655 PMCID: PMC5532613 DOI: 10.3390/cancers9070077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 01/05/2023] Open
Abstract
During epithelial-to-mesenchymal transition (EMT), cells lose epithelial characteristics and acquire mesenchymal properties. These two processes are genetically separable and governed by distinct transcriptional programs, rendering the EMT outputs highly heterogeneous. Our recent study shows that the mesenchymal products generated by EMT often express multiple pericyte markers, associate with and stabilize blood vessels to fuel tumor growth, thus phenotypically and functionally resembling pericytes. Therefore, some EMT events represent epithelial-to-pericyte transition (EPT). The serum response factor (SRF) plays key roles in both EMT and differentiation of pericytes, and may inherently confer the pericyte attributes on EMT cancer cells. By impacting their intratumoral location and cell surface receptor expression, EPT may enable cancer cells to receive and respond to angiocrine factors produced by the vascular niche, and develop therapy resistance.
Collapse
Affiliation(s)
- Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-3633, USA.
| | - Anitha K Shenoy
- Department of Pharmaceutics and Biomedical Sciences, California Health Sciences University, Clovis, CA 93612, USA.
| |
Collapse
|
44
|
Rolih V, Barutello G, Iussich S, De Maria R, Quaglino E, Buracco P, Cavallo F, Riccardo F. CSPG4: a prototype oncoantigen for translational immunotherapy studies. J Transl Med 2017; 15:151. [PMID: 28668095 PMCID: PMC5494135 DOI: 10.1186/s12967-017-1250-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/21/2017] [Indexed: 12/21/2022] Open
Abstract
Thanks to striking progress in both the understanding of anti-tumor immune response and the characterization of several tumor associated antigens (TAA), a more rational design and more sophisticated strategies for anti-tumor vaccination have been possible. However, the effectiveness of cancer vaccines in clinical trial is still partial, indicating that additional studies are needed to optimize their design and their pre-clinical testing. Indeed, anti-tumor vaccination success relies on the choice of the best TAA to be targeted and on the translational power of the pre-clinical model used to assess its efficacy. The chondroitin sulfate proteoglycan-4 (CSPG4) is a cell surface proteoglycan overexpressed in a huge range of human and canine neoplastic lesions by tumor cells, tumor microenvironment and cancer initiating cells. CSPG4 plays a central role in the oncogenic pathways required for malignant progression and metastatization. Thanks to these features and to its poor expression in adult healthy tissues, CSPG4 represents an ideal oncoantigen and thus an attractive target for anti-tumor immunotherapy. In this review we explore the potential of CSPG4 immune-targeting. Moreover, since it has been clearly demonstrated that spontaneous canine tumors mimic the progression of human malignancies better than any other pre-clinical model available so far, we reported also our results indicating that CSPG4 DNA vaccination is safe and effective in significantly increasing the survival of canine melanoma patients. Therefore, anti-CSPG4 vaccination strategy could have a substantial impact for the treatment of the wider population of spontaneous CSPG4-positive tumor affected dogs with a priceless translational value and a revolutionary implication for human oncological patients.
Collapse
Affiliation(s)
- Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| |
Collapse
|
45
|
Zhao P, Feng Z, Qi Q, Huang B, Chen A, Li X, Wang X, Wang J. Increased NG2 and SOX2 expression is associated with high-grade choroid plexus tumors. Oncol Lett 2017; 14:1802-1806. [PMID: 28789413 DOI: 10.3892/ol.2017.6326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/31/2017] [Indexed: 01/27/2023] Open
Abstract
The World Health Organization classification of choroid plexus tumors (CPT) includes three distinct grades: Choroid plexus papilloma (CPP), atypical choroid plexus papilloma (ACPP) and choroid plexus carcinoma (CPC). The molecular basis for these pathological distinctions may help to stratify tumors and provide an insight into the clinical behavior of CPTs. In the present study, the progenitor and stem cell markers neuron glia antigen-2 (NG2) and sex-determining region Y-box 2 (SOX2) were investigated as potential biomarkers that may distinguish between distinct CPT grades. Immunohistochemistry was used to determine the expression of NG2 and SOX2 in CPTs (n=34) from Chinese patients (21 males and 13 females) with a mean age of 31.1 years (range, 1-63 years). The proportion of cells stained were scored using a scale between 0 and 3+, where 0 represents no staining and 3+ represents strong staining, and mean scores for each marker were determined on the basis of tumor grade. Pathological diagnosis revealed a distribution of cases as follows: CPP, 25; ACPP, 5; and CPC, 4. NG2 and SOX2 were expressed in CPTs of all grades. The mean labeling indices for CPP, ACPP and CPC were 1.12, 1.80 and 2.75 for NG2, respectively, and 1.20, 2.00 and 3.00 for SOX2, respectively. Statistical analysis of the mean labeling indices revealed a significant association between the expression of NG2 and SOX2 and CPT grade (P=0.001 and <0.001 for CPP/ACPP and CPP/CPC, respectively). The results of the present study indicated that increased expression of NG2 and SOX2 was associated with higher-grade tumors and that these markers may be useful in determining CPT grade.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
46
|
The Importance of Pericytes in Healing: Wounds and other Pathologies. Int J Mol Sci 2017; 18:ijms18061129. [PMID: 28538706 PMCID: PMC5485953 DOI: 10.3390/ijms18061129] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022] Open
Abstract
Much of current research investigates the beneficial properties of mesenchymal stem cells (MSCs) as a treatment for wounds and other forms of injury. In this review, we bring attention to and discuss the role of the pericyte, a cell type which shares much of the differentiation potential and regenerative properties of the MSC as well as specific roles in the regulation of angiogenesis, inflammation and fibrosis. Pericytes have been identified as dysfunctional or depleted in many disease states, and observing the outcomes of pericyte perturbation in models of disease and wound healing informs our understanding of overall pericyte function and identifies these cells as an important target in the development of therapies to encourage healing.
Collapse
|
47
|
Reynolds LE, D'Amico G, Lechertier T, Papachristodoulou A, Muñoz-Félix JM, De Arcangelis A, Baker M, Serrels B, Hodivala-Dilke KM. Dual role of pericyte α6β1-integrin in tumour blood vessels. J Cell Sci 2017; 130:1583-1595. [PMID: 28289267 PMCID: PMC5450232 DOI: 10.1242/jcs.197848] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
The α6β1-integrin is a major laminin receptor, and formation of a laminin-rich basement membrane is a key feature in tumour blood vessel stabilisation and pericyte recruitment, processes that are important in the growth and maturation of tumour blood vessels. However, the role of pericyte α6β1-integrin in angiogenesis is largely unknown. We developed mice where the α6-integrin subunit is deleted in pericytes and examined tumour angiogenesis and growth. These mice had: (1) reduced pericyte coverage of tumour blood vessels; (2) reduced tumour blood vessel stability; (3) increased blood vessel diameter; (4) enhanced blood vessel leakiness, and (5) abnormal blood vessel basement membrane architecture. Surprisingly, tumour growth, blood vessel density and metastasis were not altered. Analysis of retinas revealed that deletion of pericyte α6-integrin did not affect physiological angiogenesis. At the molecular level, we provide evidence that pericyte α6-integrin controls PDGFRβ expression and AKT-mTOR signalling. Taken together, we show that pericyte α6β1-integrin regulates tumour blood vessels by both controlling PDGFRβ and basement membrane architecture. These data establish a novel dual role for pericyte α6-integrin as modulating the blood vessel phenotype during pathological angiogenesis.
Collapse
Affiliation(s)
- Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gabriela D'Amico
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tanguy Lechertier
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alexandros Papachristodoulou
- Laboratory for Molecular Neuro-Oncology, Dept. of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich CH-8091, Switzerland
| | - José M Muñoz-Félix
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adèle De Arcangelis
- IGBMC, UMR 7104, INSERM U964, Université de Strasbourg, BP. 10142, 1, Rue Laurent Fries, Illkirch Cedex 67404, France
| | - Marianne Baker
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
48
|
Shapiro JP, Guzeloglu-Kayisli O, Kayisli UA, Semerci N, Huang SJ, Arlier S, Larsen K, Fadda P, Schatz F, Lockwood CJ. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding. Contraception 2017; 95:592-601. [PMID: 28433626 DOI: 10.1016/j.contraception.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. STUDY DESIGN Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. RESULTS Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. CONCLUSION These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. IMPLICATIONS Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding.
Collapse
Affiliation(s)
- John P Shapiro
- Department of Internal Medicine, The Ohio State University, College of Medicine, Columbus, OH, 43210, USA
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Paolo Fadda
- Department of Molecular Virology and Immunology, The Ohio State University, College of Medicine, Columbus, OH, 43210, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA.
| |
Collapse
|
49
|
NG2 Proteoglycan Enhances Brain Tumor Progression by Promoting Beta-1 Integrin Activation in both Cis and Trans Orientations. Cancers (Basel) 2017; 9:cancers9040031. [PMID: 28362324 PMCID: PMC5406706 DOI: 10.3390/cancers9040031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
By physically interacting with beta-1 integrins, the NG2 proteoglycan enhances activation of the integrin heterodimers. In glioma cells, co-localization of NG2 and 31 integrin in individual cells (cis interaction) can be demonstrated by immunolabeling, and the NG2-integrin interaction can be confirmed by co-immunoprecipitation. NG2-dependent integrin activation is detected via use of conformationally sensitive monoclonal antibodies that reveal the activated state of the beta-1 subunit in NG2-positive versus NG2-negative cells. NG2-dependent activation of beta-1 integrins triggers downstream activation of FAK and PI3K/Akt signaling, resulting in increased glioma cell proliferation, motility, and survival. Similar NG2-dependent cis activation of beta-1 integrins occurs in microvascular pericytes, leading to enhanced proliferation and motility of these vascular cells. Surprisingly, pericyte NG2 is also able to promote beta-1 integrin activation in closely apposed endothelial cells (trans interaction). Enhanced beta-1 signaling in endothelial cells promotes endothelial maturation by inducing the formation of endothelial junctions, resulting in increased barrier function of the endothelium and increased basal lamina assembly. NG2-dependent beta-1 integrin signaling is therefore important for tumor progression by virtue of its affects not only on the tumor cells themselves, but also on the maturation and function of tumor blood vessels.
Collapse
|
50
|
Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 2017; 543:428-432. [PMID: 28273064 DOI: 10.1038/nature21409] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
Although the main focus of immuno-oncology has been manipulating the adaptive immune system, harnessing both the innate and adaptive arms of the immune system might produce superior tumour reduction and elimination. Tumour-associated macrophages often have net pro-tumour effects, but their embedded location and their untapped potential provide impetus to discover strategies to turn them against tumours. Strategies that deplete (anti-CSF-1 antibodies and CSF-1R inhibition) or stimulate (agonistic anti-CD40 or inhibitory anti-CD47 antibodies) tumour-associated macrophages have had some success. We hypothesized that pharmacologic modulation of macrophage phenotype could produce an anti-tumour effect. We previously reported that a first-in-class selective class IIa histone deacetylase (HDAC) inhibitor, TMP195, influenced human monocyte responses to the colony-stimulating factors CSF-1 and CSF-2 in vitro. Here, we utilize a macrophage-dependent autochthonous mouse model of breast cancer to demonstrate that in vivo TMP195 treatment alters the tumour microenvironment and reduces tumour burden and pulmonary metastases by modulating macrophage phenotypes. TMP195 induces the recruitment and differentiation of highly phagocytic and stimulatory macrophages within tumours. Furthermore, combining TMP195 with chemotherapy regimens or T-cell checkpoint blockade in this model significantly enhances the durability of tumour reduction. These data introduce class IIa HDAC inhibition as a means to harness the anti-tumour potential of macrophages to enhance cancer therapy.
Collapse
|