1
|
Kakar N, Mascarenhas S, Ali A, Azmatullah, Ijlal Haider SM, Badiger VA, Ghofrani MS, Kruse N, Hashmi SN, Pozojevic J, Balachandran S, Toft M, Malik S, Händler K, Fatima A, Iqbal Z, Shukla A, Spielmann M, Radhakrishnan P. Further evidence of biallelic NAV3 variants associated with recessive neurodevelopmental disorder with dysmorphism, developmental delay, intellectual disability, and behavioral abnormalities. Hum Genet 2025; 144:55-65. [PMID: 39708122 PMCID: PMC11754320 DOI: 10.1007/s00439-024-02718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied. Recently, five bi-allelic and three mono-allelic variants in NAV3 were reported in 12 individuals from eight unrelated families with neurodevelopmental disorder (NDD). Here, we report five patients from three unrelated consanguineous families segregating autosomal recessive NDD. Patients have symptoms of dysmorphism, intellectual disability, developmental delay, and behavioral abnormalities. Exome sequencing (ES) was performed on two affected individuals from one large family, and one affected individual from each of the other two families. ES revealed two homozygous nonsense c.6325C > T; p.(Gln2109Ter) and c.6577C > T; p.(Arg2193Ter) and a homozygous splice site (c.243 + 1G > T) variants in the NAV3 (NM_001024383.2). Analysis of single-cell sequencing datasets from embryonic and young adult human brains revealed that NAV3 is highly expressed in the excitatory neurons, inhibitory neurons, and microglia, consistent with its role in neurodevelopment. In conclusion, in this study, we further validate biallelic protein truncating variants in NAV3 as a cause of NDD, expanding the spectrum of pathogenic variants in this newly discovered NDD gene.
Collapse
Affiliation(s)
- Naseebullah Kakar
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
- Department for Biotechnology, FLS&I, BUITEMS, Quetta, Pakistan
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Asmat Ali
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Azmatullah
- Department of Zoology, Human Genetics Program, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Vaishnavi Ashok Badiger
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mobina Shadman Ghofrani
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Nathalie Kruse
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Sohana Nadeem Hashmi
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Jelena Pozojevic
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Saranya Balachandran
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O Box 1171, 0318, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Sajid Malik
- Department of Zoology, Human Genetics Program, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kristian Händler
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Ambrin Fatima
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Malte Spielmann
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany.
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
Hawkins NA, Speakes N, Kearney JA. Fine mapping and candidate gene analysis of Dravet syndrome modifier loci on mouse chromosomes 7 and 8. Mamm Genome 2024; 35:334-345. [PMID: 38862622 PMCID: PMC11329421 DOI: 10.1007/s00335-024-10046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Dravet syndrome is a developmental and epileptic encephalopathy (DEE) characterized by intractable seizures, comorbidities related to developmental, cognitive, and motor delays, and a high mortality burden due to sudden unexpected death in epilepsy (SUDEP). Most Dravet syndrome cases are attributed to SCN1A haploinsufficiency, with genetic modifiers and environmental factors influencing disease severity. Mouse models with heterozygous deletion of Scn1a recapitulate key features of Dravet syndrome, including seizures and premature mortality; however, severity varies depending on genetic background. Here, we refined two Dravet survival modifier (Dsm) loci, Dsm2 on chromosome 7 and Dsm3 on chromosome 8, using interval-specific congenic (ISC) mapping. Dsm2 was complex and encompassed at least two separate loci, while Dsm3 was refined to a single locus. Candidate modifier genes within these refined loci were prioritized based on brain expression, strain-dependent differences, and biological relevance to seizures or epilepsy. High priority candidate genes for Dsm2 include Nav2, Ptpn5, Ldha, Dbx1, Prmt3 and Slc6a5, while Dsm3 has a single high priority candidate, Psd3. This study underscores the complex genetic architecture underlying Dravet syndrome and provides insights into potential modifier genes that could influence disease severity and serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior St., Searle 8-510, Chicago, IL, 60611, USA
| | - Nathan Speakes
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior St., Searle 8-510, Chicago, IL, 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior St., Searle 8-510, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Umair M, Alharbi M, Aloyouni E, Al Abdulrahman A, Aldrees M, Al Tuwaijri A, Bilal M, Alfadhel M. Mutated neuron navigator 3 as a candidate gene for a rare neurodevelopmental disorder. Mol Genet Genomic Med 2024; 12:e2473. [PMID: 39038237 PMCID: PMC11262617 DOI: 10.1002/mgg3.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Neuron navigator 3 (NAV3) is characterized as one of the neuron navigator family (NAV1, NAV2, NAV3) proteins predominantly expressed in the nervous system. The NAV3-encoded protein comprises a conserved AAA and coiled-coil domains characteristic of ATPases, which are associated with different cellular activities. METHODS We describe a Saudi proband presenting a complex recessive neurodevelopmental disorder (NDD). Whole exome sequencing (WES) followed by Sanger sequencing, 3D protein modeling and RT-qPCR was performed. RESULTS WES revealed a bi-allelic frameshift variant (c.2604_2605delAG; p.Val870SerfsTer12) in exon 12 of the NAV3 gene. Furthermore, RT-qPCR revealed a significant decrease in the NAV3 mRNA expression in the patient sample, and 3D protein modeling revealed disruption of the overall secondary structure. CONCLUSION For the time, we associate a bi-allelic variant in the NAV3 gene causing NDD in humans.
Collapse
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS), Ministry of National Guard Health Affairs (MNGH)RiyadhSaudi Arabia
| | - Meshael Alharbi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS), Ministry of National Guard Health Affairs (MNGH)RiyadhSaudi Arabia
| | - Essra Aloyouni
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS), Ministry of National Guard Health Affairs (MNGH)RiyadhSaudi Arabia
| | - Abdulkareem Al Abdulrahman
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS), Ministry of National Guard Health Affairs (MNGH)RiyadhSaudi Arabia
| | - Mohammed Aldrees
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS), Ministry of National Guard Health Affairs (MNGH)RiyadhSaudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS), Ministry of National Guard Health Affairs (MNGH)RiyadhSaudi Arabia
- Clinical Laboratory Sciences DepartmentCollege of Applied Medical Sciences, KSAU‐HSRiyadhSaudi Arabia
| | - Muhammad Bilal
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS), Ministry of National Guard Health Affairs (MNGH)RiyadhSaudi Arabia
- Genetics and Precision Medicine DepartmentKing Abdullah Specialized Children Hospital (KASCH), MNGHARiyadhSaudi Arabia
| |
Collapse
|
4
|
Hawkins NA, Speakes N, Kearney JA. Fine Mapping and Candidate Gene Analysis of Dravet Syndrome Modifier Loci on Mouse Chromosomes 7 and 8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589561. [PMID: 38659879 PMCID: PMC11042286 DOI: 10.1101/2024.04.15.589561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Dravet syndrome is a developmental and epileptic encephalopathy (DEE) characterized by intractable seizures, comorbidities related to developmental, cognitive, and motor delays, and a high mortality burden due to sudden unexpected death in epilepsy (SUDEP). Most Dravet syndrome cases are attributed to SCN1A haploinsufficiency, with genetic modifiers and environmental factors influencing disease severity. Mouse models with heterozygous deletion of Scn1a recapitulate key features of Dravet syndrome, including seizures and premature mortality; however, severity varies depending on genetic background. Here, we refined two Dravet survival modifier (Dsm) loci, Dsm2 on chromosome 7 and Dsm3 on chromosome 8, using interval-specific congenic (ISC) mapping. Dsm2 was complex and encompassed at least two separate loci, while Dsm3 was refined to a single locus. Candidate modifier genes within these refined loci were prioritized based on brain expression, strain-dependent differences, and biological relevance to seizures or epilepsy. High priority candidate genes for Dsm2 include Nav2, Ptpn5, Ldha, Dbx1, Prmt3 and Slc6a5, while Dsm3 has a single high priority candidate, Psd3. This study underscores the complex genetic architecture underlying Dravet syndrome and provides insights into potential modifier genes that could influence disease severity and serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Nicole A. Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Nathan Speakes
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Jennifer A. Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| |
Collapse
|
5
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
6
|
Accogli A, Lu S, Musante I, Scudieri P, Rosenfeld JA, Severino M, Baldassari S, Iacomino M, Riva A, Balagura G, Piccolo G, Minetti C, Roberto D, Xia F, Razak R, Lawrence E, Hussein M, Chang EYH, Holick M, Calì E, Aliberto E, De-Sarro R, Gambardella A, Network UD, Group SYNS, Emrick L, McCaffery PJA, Clagett-Dame M, Marcogliese PC, Bellen HJ, Lalani SR, Zara F, Striano P, Salpietro V. Loss of Neuron Navigator 2 Impairs Brain and Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2023; 22:206-222. [PMID: 35218524 PMCID: PMC9985553 DOI: 10.1007/s12311-022-01379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Denis Roberto
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | | | - Emily Lawrence
- Department of Cardiology, Texas Childrens Hospital, Houston, USA
| | - Mohamed Hussein
- Department of Ophthalmology, Texas Childrens Hospital, Houston, USA
| | | | - Michelle Holick
- Texas Childrens Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Elisa Calì
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Rosalba De-Sarro
- Department of Clinical and Experimental Medicine, Policlinic "G. Martino", University of Messina, 98100, Messina, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Universita' Degli Studi "Magna Graecia" Viale Europa, 88100, CATANZARO, Italy
| | | | | | - Lisa Emrick
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Texas Childrens Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Peter J A McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Margaret Clagett-Dame
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, 53706, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Childrens Hospital, Houston, TX, USA
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
7
|
Powers RM, Hevner RF, Halpain S. The Neuron Navigators: Structure, function, and evolutionary history. Front Mol Neurosci 2023; 15:1099554. [PMID: 36710926 PMCID: PMC9877351 DOI: 10.3389/fnmol.2022.1099554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Neuron navigators (Navigators) are cytoskeletal-associated proteins important for neuron migration, neurite growth, and axon guidance, but they also function more widely in other tissues. Recent studies have revealed novel cellular functions of Navigators such as macropinocytosis, and have implicated Navigators in human disorders of axon growth. Navigators are present in most or all bilaterian animals: vertebrates have three Navigators (NAV1-3), Drosophila has one (Sickie), and Caenorhabditis elegans has one (Unc-53). Structurally, Navigators have conserved N- and C-terminal regions each containing specific domains. The N-terminal region contains a calponin homology (CH) domain and one or more SxIP motifs, thought to interact with the actin cytoskeleton and mediate localization to microtubule plus-end binding proteins, respectively. The C-terminal region contains two coiled-coil domains, followed by a AAA+ family nucleoside triphosphatase domain of unknown activity. The Navigators appear to have evolved by fusion of N- and C-terminal region homologs present in simpler organisms. Overall, Navigators participate in the cytoskeletal response to extracellular cues via microtubules and actin filaments, in conjunction with membrane trafficking. We propose that uptake of fluid-phase cues and nutrients and/or downregulation of cell surface receptors could represent general mechanisms that explain Navigator functions. Future studies developing new models, such as conditional knockout mice or human cerebral organoids may reveal new insights into Navigator function. Importantly, further biochemical studies are needed to define the activities of the Navigator AAA+ domain, and to study potential interactions among different Navigators and their binding partners.
Collapse
Affiliation(s)
- Regina M. Powers
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,Department of Pathology, UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,*Correspondence: Shelley Halpain, ✉
| |
Collapse
|
8
|
Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, Yoon H, Miller AR, Navarro J, Westfall J, Leraas K, Choi S, Williamson R, Fitch J, Kelly BJ, White P, Lee K, McGrath S, Cottrell CE, Magrini V, Leonard J, Pindrik J, Shaikhouni A, Boué DR, Thomas DL, Pierson CR, Wilson RK, Ostendorf AP, Mardis ER, Koboldt DC. Detection of brain somatic variation in epilepsy-associated developmental lesions. Epilepsia 2022; 63:1981-1997. [PMID: 35687047 DOI: 10.1111/epi.17323] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Olivia E Grischow
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hyojung Yoon
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jason Navarro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samantha Choi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rachel Williamson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sean McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jeffrey Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan Pindrik
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ammar Shaikhouni
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel R Boué
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher R Pierson
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Adam P Ostendorf
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Division of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
9
|
Herman I, Jolly A, Du H, Dawood M, Abdel-Salam GMH, Marafi D, Mitani T, Calame DG, Coban-Akdemir Z, Fatih JM, Hegazy I, Jhangiani SN, Gibbs RA, Pehlivan D, Posey JE, Lupski JR. Quantitative dissection of multilocus pathogenic variation in an Egyptian infant with severe neurodevelopmental disorder resulting from multiple molecular diagnoses. Am J Med Genet A 2022; 188:735-750. [PMID: 34816580 PMCID: PMC8837671 DOI: 10.1002/ajmg.a.62565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.
Collapse
Affiliation(s)
- Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Ghada M. H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait,Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Daniel G. Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Ibrahim Hegazy
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
10
|
Yuan L, Zou D, Yang X, Chen X, Lu Y, Zhang A, Zhang P, Wei F. Proteomics and functional study reveal kallikrein-6 enhances communicating hydrocephalus. Clin Proteomics 2021; 18:30. [PMID: 34915845 PMCID: PMC8903716 DOI: 10.1186/s12014-021-09335-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Communicating hydrocephalus (CH) is a common neurological disorder caused by a blockage of cerebrospinal fluid. In this study, we aimed to explore the potential molecular mechanism underlying CH development. Methods Quantitative proteomic analysis was performed to screen the differentially expressed proteins (DEPs) between patients with and without CH. A CH rat model was verified by Hoechst staining, and the co-localization of the target protein and neuron was detected using immunofluorescence staining. Loss-of-function experiments were performed to examine the effect of KLK6 on the synapse structure. Results A total of 11 DEPs were identified, and kallikrein 6 (KLK6) expression was found to be significantly upregulated in patients with CH compared with that in patients without CH. The CH rat model was successfully constructed, and KLK6 was found to be co-localized with neuronal nuclei in brain tissue. The expression level of IL-1β, TNF-α, and KLK6 in the CH group was higher than that in the control group. After knockdown of KLK6 expression using small-interfering RNA (siRNA), the expression levels of synapsin-1 and PSD95 in neuronal cells were increased, and the length, number, and structure of synapses were significantly improved. Following siRNA interference KLK6 expression, 5681 differentially expressed genes (DEGs) were identified in transcriptome profile. The upregulated DEGs of Appl2, Nav2, and Nrn1 may be involved in the recovery of synaptic structures after the interference of KLK6 expression. Conclusions Collectively, KLK6 participates in the development of CH and might provide a new target for CH treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09335-9.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Dongdong Zou
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Xia Yang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Xin Chen
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China.
| | - Youming Lu
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Aijun Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Pengqi Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Fance Wei
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
11
|
Sánchez-Huertas C, Bonhomme M, Falco A, Fagotto-Kaufmann C, van Haren J, Jeanneteau F, Galjart N, Debant A, Boudeau J. The +TIP Navigator-1 is an actin-microtubule crosslinker that regulates axonal growth cone motility. J Cell Biol 2021; 219:151835. [PMID: 32497170 PMCID: PMC7480110 DOI: 10.1083/jcb.201905199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Microtubule (MT) plus-end tracking proteins (+TIPs) are central players in the coordination between the MT and actin cytoskeletons in growth cones (GCs) during axon guidance. The +TIP Navigator-1 (NAV1) is expressed in the developing nervous system, yet its neuronal functions remain poorly elucidated. Here, we report that NAV1 controls the dynamics and motility of the axonal GCs of cortical neurons in an EB1-dependent manner and is required for axon turning toward a gradient of netrin-1. NAV1 accumulates in F-actin-rich domains of GCs and binds actin filaments in vitro. NAV1 can also bind MTs independently of EB1 in vitro and crosslinks nonpolymerizing MT plus ends to actin filaments in axonal GCs, preventing MT depolymerization in F-actin-rich areas. Together, our findings pinpoint NAV1 as a key player in the actin-MT crosstalk that promotes MT persistence at the GC periphery and regulates GC steering. Additionally, we present data assigning to NAV1 an important role in the radial migration of cortical projection neurons in vivo.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Marion Bonhomme
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Amandine Falco
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Christine Fagotto-Kaufmann
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Jeffrey van Haren
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freddy Jeanneteau
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anne Debant
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Jérôme Boudeau
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| |
Collapse
|
12
|
Qu W, Jin H, Chen BP, Liu J, Li R, Guo W, Tian H. CPEB3 regulates neuron-specific alternative splicing and involves neurogenesis gene expression. Aging (Albany NY) 2020; 13:2330-2347. [PMID: 33318303 PMCID: PMC7880327 DOI: 10.18632/aging.202259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
In the mammalian brain, alternative pre-mRNA splicing is a fundamental mechanism that modifies neuronal function dynamically where secretion of different splice variants regulates neurogenesis, development, pathfinding, maintenance, migration, and synaptogenesis. Sequence-specific RNA-Binding Protein CPEB3 has distinctive isoform-distinct biochemical interactions and neuronal development assembly roles. Nonetheless, the mechanisms moderating splice isoform options remain unclear. To establish the modulatory trend of CPEB3, we cloned and excessively expressed CPEB3 in HT22 cells. We used RNA-seq to analyze CPEB3-regulated alternative splicing on control and CPEB3-overexpressing cells. Consequently, we used iRIP-seq to identify CPEB-binding targets. We additionally validated CPEB3-modulated genes using RT-qPCR. CPEB3 overexpression had insignificant effects on gene expression in HT22 cells. Notably, CPEB3 partially modulated differential gene splicing enhanced in the modulation of neural development, neuron cycle, neurotrophin, synapse, and specific development pathway, implying an alternative splicing regulatory mechanism associated with neurogenesis. Moreover, qRT-PCR verified the CPEB3-modulated transcription of neurogenesis genes LCN2 and NAV2, synaptogenesis gene CYLD, as well as neural development gene JADE1. Herein, we established that CPEB3 is a critical modulator of alternative splicing in neurogenesis, which remarkably enhances the current understanding of the CPEB3 mediated alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongjuan Jin
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bing-Peng Chen
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
13
|
Pook C, Ahrens JM, Clagett-Dame M. Expression pattern of Nav2 in the murine CNS with development. Gene Expr Patterns 2020; 35:119099. [PMID: 32081718 DOI: 10.1016/j.gep.2020.119099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Neuron navigator 2 (NAV2, RAINB1, POMFIL2, HELAD1, unc53H2) is essential for nervous system development. In the present study the spatial distribution of Nav2 transcript in mouse CNS during embryonic, postnatal and adult life is examined. Because multiple NAV2 proteins are predicted based on alternate promoter usage and RNA splicing, in situ hybridization was performed using probes designed to the 5' and 3' ends of the Nav2 transcript, and PCR products using primer sets spanning the length of the mRNA were also examined by real time PCR (qPCR). These studies support full-length Nav2 transcript as the predominant form in the wild-type mouse CNS. The developing cortex, hippocampus, thalamus, olfactory bulb, and granule cells (GC) within the cerebellum show the highest expression, with a similar staining pattern using either the 5'Nav2 or 3'Nav2 probe. Nav2 is expressed in GC precursors migrating over the cerebellar primordium as well as in the postmitotic premigratory cells of the external granule cell layer (EGL). It is expressed in the cornu ammonis (CA) and dentate gyrus (DG) throughout hippocampal development. In situ hybridization was combined with immunohistochemistry for Ki67, CTIP2 and Nissl staining to follow Nav2 transcript location during cortical development, where it is observed in neuroepithelial cells exiting the germinal compartments, as well as later in the cortical plate (CP) and developing cortical layers. The highest levels of Nav2 in all brain regions studied are observed in late gestation and early postnatal life which coincides with times when neurons are migrating and differentiating. A hypomorphic mouse that lacks the full-length transcript but expresses shorter transcript shows little staining in the CNS with either probe set except at the base of the cerebellum, where a shorter Nav2 transcript is detected. Using dual fluorescent probe in situ hybridization studies, these cells are identified as oligodendrocytes and are detected using both Olig1 and the 3'Nav2 probe. The identification of full-length Nav2 as the primary transcript in numerous brain regions suggests NAV2 could play a role in CNS development beyond that of its well-established role in the cerebellum.
Collapse
Affiliation(s)
- Caitlin Pook
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA; Medical College of Wisconsin-Milwaukee Campus, Wauwatosa, WI, 53226, USA
| | - Jamie M Ahrens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Margaret Clagett-Dame
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, 53706, USA.
| |
Collapse
|
14
|
Ablondi M, Eriksson S, Tetu S, Sabbioni A, Viklund Å, Mikko S. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes (Basel) 2019; 10:E976. [PMID: 31783652 PMCID: PMC6947233 DOI: 10.3390/genes10120976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 01/12/2023] Open
Abstract
The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.
Collapse
Affiliation(s)
- Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sasha Tetu
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Åsa Viklund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| |
Collapse
|
15
|
Davidson B, Hellesylt E, Holth A, Danielsen HE, Skeie-Jensen T, Katz B. Neuron navigator-2 and cyclin D2 are new candidate prognostic markers in uterine sarcoma. Virchows Arch 2017. [DOI: 10.1007/s00428-017-2172-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, Kvarnung M, Gerdts J, Trinh S, Cosemans N, Vives L, Lin J, Turner TN, Santen G, Ruivenkamp C, Kriek M, van Haeringen A, Aten E, Friend K, Liebelt J, Barnett C, Haan E, Shaw M, Gecz J, Anderlid BM, Nordgren A, Lindstrand A, Schwartz C, Kooy RF, Vandeweyer G, Helsmoortel C, Romano C, Alberti A, Vinci M, Avola E, Giusto S, Courchesne E, Pramparo T, Pierce K, Nalabolu S, Amaral D, Scheffer IE, Delatycki MB, Lockhart PJ, Hormozdiari F, Harich B, Castells-Nobau A, Xia K, Peeters H, Nordenskjöld M, Schenck A, Bernier RA, Eichler EE. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet 2017; 49:515-526. [PMID: 28191889 PMCID: PMC5374041 DOI: 10.1038/ng.3792] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022]
Abstract
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
Collapse
Affiliation(s)
| | - Bo Xiong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of forensic medicine and Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tianyun Wang
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michaela Fenckova
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Sandy Trinh
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Nele Cosemans
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Laura Vives
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janice Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tychele N. Turner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gijs Santen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marjolein Kriek
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Kathryn Friend
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Christopher Barnett
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Eric Haan
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Marie Shaw
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
| | - Jozef Gecz
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | - Stefania Giusto
- Unit of Neurology, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | | | | | - Karen Pierce
- UCSD, Autism Center of Excellence, La Jolla, CA, USA
| | | | - David Amaral
- MIND Institute and the University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ingrid E. Scheffer
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Martin B. Delatycki
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Paul J. Lockhart
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Annette Schenck
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
17
|
Nibbeling EAR, Delnooz CCS, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MAJ, Verbeek DS. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev 2017; 75:22-39. [PMID: 28143763 DOI: 10.1016/j.neubiorev.2017.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathérine C S Delnooz
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory Clinic, Atlanta, USA
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
18
|
Rezzoug F, Thomas SD, Rouchka EC, Miller DM. Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression. PLoS One 2016; 11:e0161588. [PMID: 27551915 PMCID: PMC4995011 DOI: 10.1371/journal.pone.0161588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022] Open
Abstract
G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common regulatory mechanism for genes whose promoters contain these sequences.
Collapse
Affiliation(s)
- Francine Rezzoug
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville Kentucky, United States of America
- * E-mail: (FR); (DMM)
| | - Shelia D. Thomas
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville Kentucky, United States of America
| | - Eric C. Rouchka
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, Kentucky, United States of America
| | - Donald M. Miller
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville Kentucky, United States of America
- * E-mail: (FR); (DMM)
| |
Collapse
|
19
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Spontaneous malformations of the cerebellar vermis: Prevalence, inheritance, and relationship to lobule/fissure organization in the C57BL/6 lineage. Neuroscience 2015; 310:242-51. [PMID: 26383253 DOI: 10.1016/j.neuroscience.2015.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022]
Abstract
The complex neuronal circuitry of the cerebellum is embedded within its lamina, folia, and lobules, which together play an important role in sensory and motor function. Studies in mouse models have demonstrated that both cerebellar lamination and lobule/fissure development are under genetic control. The cerebellar vermis of C57BL/6 mice exhibits spontaneous malformations of neuronal migration of posterior lobules (VIII-IX; molecular layer heterotopia); however, the extent to which other inbred mice also exhibit these malformations is unknown. Using seven different inbred mouse strains and two first filial generation (F1) hybrids, we show that only the C57BL/6 strain exhibits heterotopia. Furthermore, we observed heterotopia in consomic and recombinant inbred strains. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1 and the sex chromosomes. Additional morphological analyses showed no relationship between heterotopia formation and other features of lobule/fissure organization. These data are relevant toward understanding normal cerebellar development and disorders affecting cerebellar foliation and lamination.
Collapse
|
21
|
Schwarz R, Reif A, Scholz CJ, Weissflog L, Schmidt B, Lesch KP, Jacob C, Reichert S, Heupel J, Volkert J, Kopf J, Hilscher M, Weber H, Kittel-Schneider S. A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients. World J Biol Psychiatry 2015; 16:180-9. [PMID: 25162476 DOI: 10.3109/15622975.2014.948064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Methylphenidate (MPH) is a commonly used stimulant medication for treating attention-deficit/hyperactivity disorder (ADHD). Besides inhibiting monoamine reuptake there is evidence that MPH also influences gene expression directly. METHODS We investigated the impact of MPH treatment on gene expression levels of lymphoblastoid cells derived from adult ADHD patients and healthy controls by hypothesis-free, genome-wide microarray analysis. Significant findings were subsequently confirmed by quantitative Real-Time PCR (qRT PCR) analysis. RESULTS The microarray analysis from pooled samples after correction for multiple testing revealed 138 genes to be marginally significantly regulated due to MPH treatment, and one gene due to diagnosis. By qRT PCR we could confirm that GUCY1B3 expression was differential due to diagnosis. We verified chronic MPH treatment effects on the expression of ATXN1, HEY1, MAP3K8 and GLUT3 in controls as well as acute treatment effects on the expression of NAV2 and ATXN1 specifically in ADHD patients. CONCLUSIONS Our preliminary results demonstrate MPH treatment differences in ADHD patients and healthy controls in a peripheral primary cell model. Our results need to be replicated in larger samples and also using patient-derived neuronal cell models to validate the contribution of those genes to the pathophysiology of ADHD and mode of action of MPH.
Collapse
Affiliation(s)
- Ricarda Schwarz
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg , Würzburg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hori M, Nakamachi T, Shibato J, Rakwal R, Shioda S, Numazawa S. Unraveling the Specific Ischemic Core and Penumbra Transcriptome in the Permanent Middle Cerebral Artery Occlusion Mouse Model Brain Treated with the Neuropeptide PACAP38. MICROARRAYS 2015; 4:2-24. [PMID: 27600210 PMCID: PMC4996388 DOI: 10.3390/microarrays4010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
Our group has been systematically investigating the effects of the neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain. To do so, we have established and utilized the permanent middle cerebral artery occlusion (PMCAO) mouse model, in which PACAP38 (1 pmol) injection is given intracerebroventrically and compared to a control saline (0.9% sodium chloride, NaCl) injection, to unravel genome‑wide gene expression changes using a high-throughput DNA microarray analysis approach. In our previous studies, we have accumulated a large volume of data (gene inventory) from the whole brain (ipsilateral and contralateral hemispheres) after both PMCAO and post-PACAP38 injection. In our latest research, we have targeted specifically infarct or ischemic core (hereafter abbreviated IC) and penumbra (hereafter abbreviated P) post-PACAP38 injections in order to re-examine the transcriptome at 6 and 24 h post injection. The current study aims to delineate the specificity of expression and localization of differentially expressed molecular factors influenced by PACAP38 in the IC and P regions. Utilizing the mouse 4 × 44 K whole genome DNA chip we show numerous changes (≧/≦ 1.5/0.75-fold) at both 6 h (654 and 456, and 522 and 449 up- and down-regulated genes for IC and P, respectively) and 24 h (2568 and 2684, and 1947 and 1592 up- and down-regulated genes for IC and P, respectively) after PACAP38 treatment. Among the gene inventories obtained here, two genes, brain-derived neurotrophic factor (Bdnf) and transthyretin (Ttr) were found to be induced by PACAP38 treatment, which we had not been able to identify previously using the whole hemisphere transcriptome analysis. Using bioinformatics analysis by pathway- or specific-disease-state focused gene classifications and Ingenuity Pathway Analysis (IPA) the differentially expressed genes are functionally classified and discussed. Among these, we specifically discuss some novel and previously identified genes, such as alpha hemoglobin stabilizing protein (Ahsp), cathelicidin antimicrobial peptide (Camp), chemokines, interferon beta 1 (Ifnb1), and interleukin 6 (Il6) in context of PACAP38-mediated neuroprotection in the ischemic brain. Taken together, the DNA microarray analysis provides not only a great resource for further study, but also reinforces the importance of region-specific analyses in genome-wide identification of target molecular factors that might play a role in the neuroprotective function of PACAP38.
Collapse
Affiliation(s)
- Motohide Hori
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Tomoya Nakamachi
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan.
| | - Junko Shibato
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan.
| | - Randeep Rakwal
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Organization for Educational Initiatives, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Seiji Shioda
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| |
Collapse
|
23
|
Liu L, Lei J, Sanders SJ, Willsey AJ, Kou Y, Cicek AE, Klei L, Lu C, He X, Li M, Muhle RA, Ma’ayan A, Noonan JP, Šestan N, McFadden KA, State MW, Buxbaum JD, Devlin B, Roeder K. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics. Mol Autism 2014; 5:22. [PMID: 24602502 PMCID: PMC4016412 DOI: 10.1186/2040-2392-5-22] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/03/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. METHODS To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. RESULTS Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. CONCLUSIONS Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders.
Collapse
Affiliation(s)
- Li Liu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jing Lei
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Stephan J Sanders
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Arthur Jeremy Willsey
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yan Kou
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abdullah Ercument Cicek
- Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cong Lu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xin He
- Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mingfeng Li
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Rebecca A Muhle
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Šestan
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Kathryn A McFadden
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew W State
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
- Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, Friedman Brain Institute and Mindisch Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
- Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Kim BJ, Scott DA. Mouse model reveals the role of RERE in cerebellar foliation and the migration and maturation of Purkinje cells. PLoS One 2014; 9:e87518. [PMID: 24466353 PMCID: PMC3900724 DOI: 10.1371/journal.pone.0087518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/22/2013] [Indexed: 11/22/2022] Open
Abstract
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE's role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rereom/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rereom/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
14-3-3ε and NAV2 interact to regulate neurite outgrowth and axon elongation. Arch Biochem Biophys 2013; 540:94-100. [PMID: 24161943 DOI: 10.1016/j.abb.2013.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
Abstract
Neuron navigator 2 (NAV2) is required for all-trans retinoic acid (atRA) to induce neurite outgrowth in human neuroblastoma cells. Further, ectopic overexpression of full-length human NAV2 rescues an axonal elongation defect in the Caenorhabditis elegans unc-53 (NAV2 ortholog) mutant. Using a region of NAV2 that independently associates with the cytoskeleton as bait in a yeast-two-hybrid screen, 14-3-3ε was identified as a novel NAV2 interacting partner. Amino acids 761-960 of NAV2 are sufficient to confer a positive interaction with 14-3-3ε as evidenced by a two-hybrid screen and co-immunoprecipitation assay. Knockdown of 14-3-3ε leads to a decrease in atRA-mediated neurite outgrowth, similar to the elongation defects observed when NAV2 is depleted or mutated. Likewise, posterior lateral microtubule (PLM) defects in C. elegans fed unc-53 RNAi are similar to those fed ftt-2 (14-3-3 homolog) RNAi. The discovery of an interaction between NAV2 and 14-3-3ε could provide insight into the mechanism by which NAV2 participates in promoting cell migration and neuronal elongation.
Collapse
|
26
|
Davidson B, Abeler VM, Hellesylt E, Holth A, Shih IM, Skeie-Jensen T, Chen L, Yang Y, Wang TL. Gene expression signatures differentiate uterine endometrial stromal sarcoma from leiomyosarcoma. Gynecol Oncol 2012. [PMID: 23178314 DOI: 10.1016/j.ygyno.2012.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Endometrial stromal sarcoma (ESS) and leiomyosarcoma (LMS) are the two most common uterine sarcomas, but both are rare tumors. The aim of the present study was to compare the global gene expression patterns of ESS and LMS. METHODS Gene expression profiles of 7 ESS and 13 LMS were analyzed using the HumanRef-8 BeadChip from Illumina. Differentially expressed candidate genes were validated using quantitative real-time PCR and immunohistochemistry. RESULTS Unsupervised hierarchical clustering using all 54,675 genes in the array separated ESS from LMS samples. We identified 549 unique probes that were significantly differentially expressed in the two malignancies by greater than 2-fold with 1% FDR cutoff using one-way ANOVA with Benjamini-Hochberg correction, of which 336 and 213 were overexpressed in ESS and LMS, respectively. Genes overexpressed in ESS included SLC7A10, EFNB3, CCND2, ECEL1, ITM2A, NPW, PLAG1 and GCGR. Genes overexpressed in LMS included CDKN2A, FABP3, TAGLN, JPH2, GEM, NAV2 and RAB23. The top 100 genes overexpressed in LMS included those coding for myosin light chain and caldesmon, but not the genes coding for desmin or actin. CD10 was not overexpressed in ESS. Results for selected genes were validated by quantitative real-time PCR and immunohistochemistry. CONCLUSIONS We present the first study in which gene expression profiling was shown to distinguish between ESS and LMS. The molecular signatures unique to each of these malignancies may aid in expanding the diagnostic battery for their differentiation, and may provide a molecular basis for prognostic studies and therapeutic target discovery.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0424 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|