1
|
Dai W, Guo R, Na X, Jiang S, Liang J, Guo C, Fang Y, Na Z, Li D. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox Biol 2024; 73:103205. [PMID: 38815332 PMCID: PMC11167393 DOI: 10.1016/j.redox.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a major molecular mediator of the hypoxic response. In the endometrium, local hypoxic conditions induced by hormonal fluctuations and endometrial vascular remodeling contribute to the production of HIF-1α, which plays an indispensable role in a series of physiological activities, such as menstruation and metamorphosis. The sensitive regulation of HIF-1α maintains the cellular viability and regenerative capacity of the endometrium against cellular stresses induced by hypoxia and excess reactive oxygen species. In contrast, abnormal HIF-1α levels exacerbate the development of various endometrial pathologies. This knowledge opens important possibilities for the development of promising HIF-1α-centered strategies to ameliorate endometrial disease. Nonetheless, additional efforts are required to elucidate the regulatory network of endometrial HIF-1α and promote the applications of HIF-1α-centered strategies in the human endometrium. Here, we summarize the role of the HIF-1α-mediated pathway in endometrial physiology and pathology, highlight the latest HIF-1α-centered strategies for treating endometrial diseases, and improve endometrial receptivity.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinni Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
2
|
Allen S, Natale BV, Ejeckam AO, Lee K, Hardy DB, Natale DR. Cannabidiol Exposure During Rat Pregnancy Leads to Labyrinth-Specific Vascular Defects in the Placenta and Reduced Fetal Growth. Cannabis Cannabinoid Res 2024; 9:766-780. [PMID: 38364116 PMCID: PMC11304342 DOI: 10.1089/can.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
Introduction: Cannabis use is increasing among pregnant people, and cannabidiol (CBD), a constituent of cannabis, is often perceived as "natural" and "safe" as it is non-intoxicating. In utero, cannabis exposure is associated with negative health outcomes, including fetal growth restriction (FGR). The placenta supplies oxygen and nutrients to the fetus, and alterations in placental development can lead to FGR. While there has been some investigation into the effects of Δ9-THC, there has been limited investigation into the impacts of in utero gestational CBD exposure on the placenta. Methods: This study used histological and transcriptomic analysis of embryonic day (E)19.5 rat placentas from vehicle and CBD (3 mg/kg intraperitoneal injection) exposed pregnancies (E6.5-18.5). Results: The study revealed that pups from CBD-exposed pregnancies were 10% smaller, with the placentae displaying a decreased fetal blood space perimeter-to-area ratio. The transcriptomic analysis supported compromised angiogenesis and blood vessel formation with downregulated biological processes, including tube morphogenesis, angiogenesis, blood vessel morphogenesis, blood vessel development and vasculature development. Further, the CBD-exposed placentas displayed changed expression of glucose transporters (decreased GLUT1 and GR expression and increased GLUT3 expression). Transcriptomic analysis further revealed upregulated biological processes associated with metabolism. Finally, histological and transcriptomic analysis revealed altered cell populations within the placenta, specifically to syncytiotrophoblast layer II and endothelial cells. Conclusion: Together these results suggest that the structural changes in CDB-exposed placentae, including the altered expression of nutrient transporters and the changes to the placental fetal vasculature, may underlie the reduced fetal growth.
Collapse
Affiliation(s)
- Sofia Allen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bryony V. Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, Ontario, Canada
| | - Alexis O. Ejeckam
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kendrick Lee
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - David R.C. Natale
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Chiang YT, Seow KM, Chen KH. The Pathophysiological, Genetic, and Hormonal Changes in Preeclampsia: A Systematic Review of the Molecular Mechanisms. Int J Mol Sci 2024; 25:4532. [PMID: 38674114 PMCID: PMC11050545 DOI: 10.3390/ijms25084532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Preeclampsia, a serious complication of pregnancy, involves intricate molecular and cellular mechanisms. Fetal microchimerism, where fetal cells persist within maternal tissues and in circulation, acts as a mechanistic link between placental dysfunction and maternal complications in the two-stage model of preeclampsia. Hormones, complements, and cytokines play pivotal roles in the pathophysiology, influencing immune responses, arterial remodeling, and endothelial function. Also, soluble HLA-G, involved in maternal-fetal immune tolerance, is reduced in preeclampsia. Hypoxia-inducible factor 1-alpha (Hif-α) dysregulation leads to placental abnormalities and preeclampsia-like symptoms. Alterations in matrix metalloproteinases (MMPs), endothelins (ETs), chemokines, and cytokines contribute to defective trophoblast invasion, endothelial dysfunction, and inflammation. Preeclampsia's genetic complexity includes circRNAs, miRNAs, and lncRNAs. CircRNA_06354 is linked to early-onset preeclampsia by influencing trophoblast invasion via the hsa-miR-92a-3p/VEGF-A pathway. The dysregulation of C19MC, especially miR-519d and miR-517-5p, affects trophoblast function. Additionally, lncRNAs like IGFBP1 and EGFR-AS1, along with protein-coding genes, impact trophoblast regulation and angiogenesis, influencing both preeclampsia and fetal growth. Besides aberrations in CD31+ cells, other potential biomarkers such as MMPs, soluble HLA-G, and hCG hold promise for predicting preeclampsia and its complications. Therapeutic interventions targeting factors such as peroxisome PPAR-γ and endothelin receptors show potential in mitigating preeclampsia-related complications. In conclusion, preeclampsia is a complex disorder with a multifactorial etiology and pathogenesis. Fetal microchimerism, hormones, complements, and cytokines contribute to placental and endothelial dysfunction with inflammation. Identifying novel biomarkers and therapeutic targets offers promise for early diagnosis and effective management, ultimately reducing maternal and fetal morbidity and mortality. However, further research is warranted to translate these findings into clinical practice and enhance outcomes for at-risk women.
Collapse
Affiliation(s)
- Yi-Ting Chiang
- Department of Medical Education, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan;
| | - Kok-Min Seow
- Department of Obstetrics and Gynecology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- Department of Obstetrics and Gynecology, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
4
|
Natale BV, Kotadia R, Gustin K, Harihara A, Min S, Kreisman MJ, Breen KM, Natale DR. Extracellular Matrix Influences Gene Expression and Differentiation of Mouse Trophoblast Stem Cells. Stem Cells Dev 2023; 32:622-637. [PMID: 37463089 PMCID: PMC10561768 DOI: 10.1089/scd.2022.0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Trophoblast stem (TS) cells were first isolated from the mouse placenta; however, little is known about their maintenance and niche in vivo. TS cells, like other stem cells, have a unique microenvironment in which the extracellular matrix (ECM) is a component. Placental pathology is associated with ECM change. However, how these changes and the individual ECM components impact the maintenance or differentiation of TS cells has not been established. This study identified which ECM component(s) maintain the greatest expression of markers associated with undifferentiated mouse trophoblast stem (mTS) cells and which alter the profile of markers of differentiation based on mRNA analysis. mTS cells cultured on individual ECM components and subsequent quantitative polymerase chain reaction analysis revealed that laminin promoted the expression of markers associated with undifferentiated TS cells, fibronectin promoted gene expression associated with syncytiotrophoblast (SynT) layer II cells, and collagen IV promoted the expression of genes associated with differentiated trophoblast. To investigate whether pathological placental ECM influenced the expression of genes associated with different trophoblast subtypes, the mouse model of streptozotocin (STZ)-induced pancreatic β cell ablation and diabetes was used. Female mice administered STZ (blood glucose ≥300 mg/dL) or control (blood glucose ≤150 mg/dL) were mated. Placental pathology at embryonic day (E)14.5 was confirmed with reduced fetal blood space area, reduced expression of the pericyte marker αSMA, and decreased expression of ECM proteins. mTS cells cultured on ECM isolated from STZ placenta were associated with reduced expression of undifferentiated mTS markers and increased expression of genes associated with terminally differentiated trophoblast [Gcm-1 and SynA (SynT) and junctional zone Tpbpa and Prl2c2]. Altogether, these results support the value of using ECM isolated from the placenta as a tool for understanding trophoblast contribution to placental pathology.
Collapse
Affiliation(s)
- Bryony V. Natale
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Ramie Kotadia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Katarina Gustin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Anirudha Harihara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Sarah Min
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Michael J. Kreisman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Kellie M. Breen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - David R.C. Natale
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Zheng B, Lyu L, Wang X, Wen H, Li Y, Li J, Yao Y, Zuo C, Yan S, Xie S, Qi X. Comparative transcriptomic analysis and genome-wide characterization of the Semaphorin family reveal the potential mechanism of angiogenesis around embryo in ovoviviparous black rockfish (Sebastes schlegelii). Gen Comp Endocrinol 2023; 338:114275. [PMID: 36940835 DOI: 10.1016/j.ygcen.2023.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
To guarantee the quality and survival rate of their offspring, ovoviviparous teleost evolved special characteristics of in vivo fertilization and embryo development. Maternal black rockfish, having over 50 thousand embryos developing within the ovary simultaneously, provided around 40% nutrition throughout oocyte development, while the capillaries around each embryo contributed the rest 60% during pregnancy. Since fertilization, capillaries started to proliferate and developed into a placenta-like structure that covered over half of each embryo. Aimed to characterize the potential mechanism behind, comparative transcriptome analysis of samples collected according to the process of pregnancy. Three important time point in the process, including mature oocyte stage, fertilization and sarcomere period, were chosen for the transcriptome sequencing. Our study identified key pathways and genes involved in the cell cycle as well as DNA replication and repair, cell migration and adhesion, immune, and metabolic functions. Notably, several of the semaphoring gene family members were differently expressed. To confirm the accuracy of these genes, total of 32 sema genes were identified from the whole genome and distinct expression pattern of sema genes was observed in different pregnant stages. Our results revealed a novel insight for further investigating the functions of sema genes in reproduction physiology and embryo processes in ovoviviparous teleost.
Collapse
Affiliation(s)
- Bingyan Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
7
|
Garcés-Lázaro I, Kotzur R, Cerwenka A, Mandelboim O. NK Cells Under Hypoxia: The Two Faces of Vascularization in Tumor and Pregnancy. Front Immunol 2022; 13:924775. [PMID: 35769460 PMCID: PMC9234265 DOI: 10.3389/fimmu.2022.924775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental conditions greatly shape the phenotype and function of immune cells. Specifically, hypoxic conditions that exist within tissues and organs have been reported to affect both the adaptive and the innate immune system. Natural killer (NK) cells belong to the innate immune system. They are among the first immune cells responding to infections and are involved in tumor surveillance. NK cells produce cytokines that shape other innate and adaptive immune cells, and they produce cytolytic molecules leading to target cell killing. Therefore, they are not only involved in steady state tissue homeostasis, but also in pathogen and tumor clearance. Hence, understanding the role of NK cells in pathological and physiological immune biology is an emerging field. To date, it remains incompletely understood how the tissue microenvironment shapes NK cell phenotype and function. In particular, the impact of low oxygen concentrations in tissues on NK cell reactivity has not been systematically dissected. Here, we present a comprehensive review focusing on two highly compelling hypoxic tissue environments, the tumor microenvironment (pathological) and the decidua (physiological) and compare their impact on NK cell reactivity.
Collapse
Affiliation(s)
- Irene Garcés-Lázaro
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rebecca Kotzur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Adelheid Cerwenka, ; Ofer Mandelboim,
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- *Correspondence: Adelheid Cerwenka, ; Ofer Mandelboim,
| |
Collapse
|
8
|
Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 2022; 238:108186. [PMID: 35413308 DOI: 10.1016/j.pharmthera.2022.108186] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xinyao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| |
Collapse
|
9
|
Physiological Function of the Dynamic Oxygen Signaling Pathway at the Maternal-fetal Interface. J Reprod Immunol 2022; 151:103626. [DOI: 10.1016/j.jri.2022.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
10
|
Ferreira BD, Barros T, Moleiro ML, Guedes-Martins L. Preeclampsia and Fetal Congenital Heart Defects. Curr Cardiol Rev 2022; 18:80-91. [PMID: 35430980 PMCID: PMC9896419 DOI: 10.2174/1573403x18666220415150943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/01/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction, impaired implantation and placental insufficiency have been identified as mechanisms behind the development of pre-eclampsia, resulting in angiogenic factors' alteration. Angiogenic imbalance is also associated with congenital heart defects, and this common physiologic pathway may explain the association between them and pre-eclampsia. This review aims to understand the physiology shared by these two entities and whether women with pre-eclampsia have an increased risk of fetal congenital heart defects (or the opposite). The present research has highlighted multiple vasculogenic pathways associated with heart defects and preeclampsia, but also epigenetic and environmental factors, contributing both. It is also known that fetuses with a prenatal diagnosis of congenital heart disease have an increased risk of several comorbidities, including intrauterine growth restriction. Moreover, the impact of pre-eclampsia goes beyond pregnancy as it increases the risk for following pregnancies and for diseases later in life in both offspring and mothers. Given the morbidity and mortality associated with these conditions, it is of foremost importance to understand how they are related and its causative mechanisms. This knowledge may allow earlier diagnosis, an adequate surveillance or even the implementation of preventive strategies.
Collapse
Affiliation(s)
| | - Tânia Barros
- Address correspondence to this author at the Instituto de Ciências Biomédicas Abel Salazar, University of Porto, P.O. Box: 4050-313, Porto, Portugal; Tel/Fax: +351917518938; E-mail:
| | | | | |
Collapse
|
11
|
Chu H, Sacharidou A, Nguyen A, Li C, Chambliss KL, Salmon JE, Shen YM, Lo J, Leone GW, Herz J, Hui DY, Marciano DK, Abrahams VM, Natale BV, Montalbano AP, Xiao X, Xu L, Natale DR, Shaul PW, Mineo C. Protein Phosphatase 2A Activation Via ApoER2 in Trophoblasts Drives Preeclampsia in a Mouse Model of the Antiphospholipid Syndrome. Circ Res 2021; 129:735-750. [PMID: 34404233 DOI: 10.1161/circresaha.120.318941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Haiyan Chu
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - An Nguyen
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Chun Li
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Jane E Salmon
- Medicine, Hospital for Special Surgery, Weill Cornell Medical College, New York (J.E.S.)
| | - Yu-Min Shen
- Internal Medicine (Y.-M.S., D.K.M.), University of Texas Southwestern Medical Center, Dallas
| | - Julie Lo
- Obstetrics and Gynecology (J.L.), University of Texas Southwestern Medical Center, Dallas
| | - Gustavo W Leone
- Froedtert-Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee (G.W.L.)
| | - Joachim Herz
- Molecular Genetics (J.H.), University of Texas Southwestern Medical Center, Dallas
| | - David Y Hui
- Pathology, University of Cincinnati College of Medicine (D.Y.H.)
| | - Denise K Marciano
- Internal Medicine (Y.-M.S., D.K.M.), University of Texas Southwestern Medical Center, Dallas.,Cell Biology (D.K.M., C.M.), University of Texas Southwestern Medical Center, Dallas
| | - Vikki M Abrahams
- Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT (V.M.A.)
| | - Bryony V Natale
- Obstetrics, Gynecology & Reproductive Science, University of California San Diego, La Jolla (B.V.N., D.R.N.).,Obstetrics and Gynaecology, School of Medicine, Queen's University, Ontario, Canada (B.V.N., D.R.N.)
| | - Alina P Montalbano
- Biochemistry and Obstetrics and Gynecology (A.P.M.), University of Texas Southwestern Medical Center, Dallas
| | - Xue Xiao
- Population and Data Sciences and Pediatrics (X.X., L.X.), University of Texas Southwestern Medical Center, Dallas
| | - Lin Xu
- Population and Data Sciences and Pediatrics (X.X., L.X.), University of Texas Southwestern Medical Center, Dallas
| | - David R Natale
- Obstetrics, Gynecology & Reproductive Science, University of California San Diego, La Jolla (B.V.N., D.R.N.).,Obstetrics and Gynaecology, School of Medicine, Queen's University, Ontario, Canada (B.V.N., D.R.N.)
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.).,Cell Biology (D.K.M., C.M.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
12
|
The Impact of Hypoxia in Early Pregnancy on Placental Cells. Int J Mol Sci 2021; 22:ijms22189675. [PMID: 34575844 PMCID: PMC8466283 DOI: 10.3390/ijms22189675] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022] Open
Abstract
Oxygen levels in the placental microenvironment throughout gestation are not constant, with severe hypoxic conditions present during the first trimester. This hypoxic phase overlaps with the most critical stages of placental development, i.e., blastocyst implantation, cytotrophoblast invasion, and spiral artery remodeling initiation. Dysregulation of any of these steps in early gestation can result in pregnancy loss and/or adverse pregnancy outcomes. Hypoxia has been shown to regulate not only the self-renewal, proliferation, and differentiation of trophoblast stem cells and progenitor cells, but also the recruitment, phenotype, and function of maternal immune cells. In this review, we will summarize how oxygen levels in early placental development determine the survival, fate, and function of several important cell types, e.g., trophoblast stem cells, extravillous trophoblasts, syncytiotrophoblasts, uterine natural killer cells, Hofbauer cells, and decidual macrophages. We will also discuss the cellular mechanisms used to cope with low oxygen tensions, such as the induction of hypoxia-inducible factor (HIF) or mammalian target of rapamycin (mTOR) signals, regulation of the metabolic pathway, and adaptation to autophagy. Understanding the beneficial roles of hypoxia in early placental development will provide insights into the root cause(s) of some pregnancy disorders, such as spontaneous abortion, preeclampsia, and intrauterine growth restriction.
Collapse
|
13
|
Siragher E, Sferruzzi-Perri AN. Placental hypoxia: What have we learnt from small animal models? Placenta 2021; 113:29-47. [PMID: 34074553 DOI: 10.1016/j.placenta.2021.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Intrauterine hypoxia is a feature of pregnancy complications, both at high altitude and sea level. To understand the placental response to reduced oxygen availability, small animal models of maternal inhalation hypoxia (MIH) or reduced uterine perfusion pressure (RUPP) may be utilised. The aim of this review was to compare the findings of those studies to identify the role of oxygen availability in adapting placental structural and functional phenotypes in relation to fetal outcome. It also sought to explore the evidence for the involvement of particular genes and protein signalling pathways in the placenta in mediating hypoxia driven alterations. The data available demonstrate that both MIH and RUPP can induce placental hypoxia, which affects placental structure and vascularity, as well as glucose, amino acid, calcium and possibly lipid transport capacity. In addition, changes have been observed in HIF, VEGF, insulin/IGF2, AMPK, mTOR, PI3K and PPARγ signalling, which may be key in linking together observed phenotypes under conditions of placental hypoxia. Many different manipulations have been examined, with varied outcomes depending on the intensity, timing and duration of the insult. Some manipulations have detrimental effects on placental phenotype, viability and fetal growth, whereas in others, the placenta appears to adapt to uphold fetal growth despite the challenge of low oxygen. Together these data suggest a complex response of the placenta to reduced oxygen availability, which links to changes in fetal outcomes. However, further work is required to explore the role of fetal sex, altered maternal physiology and placental molecular mechanisms to fully understand placental responses to hypoxia and their relevance for pregnancy outcome.
Collapse
Affiliation(s)
- Emma Siragher
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
14
|
Hu XQ, Zhang L. Hypoxia and Mitochondrial Dysfunction in Pregnancy Complications. Antioxidants (Basel) 2021; 10:antiox10030405. [PMID: 33800426 PMCID: PMC7999178 DOI: 10.3390/antiox10030405] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common and severe stress to an organism's homeostatic mechanisms, and hypoxia during gestation is associated with significantly increased incidence of maternal complications of preeclampsia, adversely impacting on the fetal development and subsequent risk for cardiovascular and metabolic disease. Human and animal studies have revealed a causative role of increased uterine vascular resistance and placental hypoxia in preeclampsia and fetal/intrauterine growth restriction (FGR/IUGR) associated with gestational hypoxia. Gestational hypoxia has a major effect on mitochondria of uteroplacental cells to overproduce reactive oxygen species (ROS), leading to oxidative stress. Excess mitochondrial ROS in turn cause uteroplacental dysfunction by damaging cellular macromolecules, which underlies the pathogenesis of preeclampsia and FGR. In this article, we review the current understanding of hypoxia-induced mitochondrial ROS and their role in placental dysfunction and the pathogenesis of pregnancy complications. In addition, therapeutic approaches selectively targeting mitochondrial ROS in the placental cells are discussed.
Collapse
|
15
|
Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871476. [PMID: 33282113 PMCID: PMC7685819 DOI: 10.1155/2020/8871476] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extrapulmonary injury factors. Presently, excessive inflammation in the lung and the apoptosis of alveolar epithelial cells are considered to be the key factors in the pathogenesis of ALI. Hypoxia-inducible factor-1 (HIF-1) is an oxygen-dependent conversion activator that is closely related to the activity of reactive oxygen species (ROS). HIF-1 has been shown to play an important role in ALI and can be used as a potential therapeutic target for ALI. This manuscript will introduce the progress of HIF-1 in ALI and explore the feasibility of applying inhibitors of HIF-1 to ALI, which brings hope for the treatment of ALI.
Collapse
|
16
|
Zhao H, Narasimhan P, Kalish F, Wong RJ, Stevenson DK. Dysregulation of hypoxia-inducible factor-1α (Hif1α) expression in the Hmox1-deficient placenta. Placenta 2020; 99:108-116. [PMID: 32784053 PMCID: PMC7549641 DOI: 10.1016/j.placenta.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Introduction Severe hypoxia exists in placentas during early pregnancy, with reoxygenation during mid-gestation. Hypoxia-inducible factor-1α (Hif1α), an oxygen sensor, initiates placental vascular development. We have shown that the placental vasculature in Hmox1-deficient (Hmox1+/−, Het) pregnancies is impaired, with morphological defects similar to Hif1α-deficient placentas. Materials and methods Whole wild-type (WT) and Het mouse placentas were collected at E8.5 (1%–3% O2) and E9.5–15.5 (8%–10% O2). mRNA levels were determined using real-time RT-PCR or PCR arrays and protein levels using Western blot. Bone marrow-derived macrophages (BMDMs) from WT, Het, and Hmox1 knockout (KO) mice, representing different Hmox1 cellular levels, were generated to study the role of Hmox1 on Hif1α ′s response to hypoxia-reoxygenation and gestational age-specific placental lysates. Results Hif1α was expressed in WT and Het placentas throughout gestation, with protein levels peaking at E8.5 and mRNA levels significantly upregulated from E9.5–E13.5, but significantly lower in Het placentas. Genes associated with angiogenesis (Vegfa, Vegfr1, Mmp2, Cxcl12, Angpt1, Nos3), antioxidants (Sod1, Gpx1), and transcription factors (Ap2, Bach1, Nrf2) were significantly different in Het placentas. In response to in vitro hypoxia-reoxygenation and to WT or Het placental lysates, Hif1α transcription was lower in Het and Hmox1 KO BMDMs compared with WT BMDMs. Discussion These findings suggest that deficiencies in Hmox1 underlie the insufficient placental Hif1α response to hypoxia-reoxygenation during gestation and subsequently impair downstream placental vascular formation. Therefore, a dysregulation of Hif1α expression caused by any genetic defect or environmental influence in early pregnancy could be the root cause of pregnancy disorders. Expression of Hif1α in wild-type (WT) placentas is gestational age-dependent. Hif1α expression is reduced in Hmox1-deficient placentas. Expression of angiogenic genes is altered in Hmox1-deficient placentas. Hypoxia-reoxygenation induces a differential expression of Hif1α in cells. Adding placental lysates dysregulates expression of Hif1α in Hmox1-deficient cells.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Purnima Narasimhan
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Flora Kalish
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
de Barros Mucci D, Kusinski LC, Wilsmore P, Loche E, Pantaleão LC, Ashmore TJ, Blackmore HL, Fernandez-Twinn DS, Carmo MDGTD, Ozanne SE. Impact of maternal obesity on placental transcriptome and morphology associated with fetal growth restriction in mice. Int J Obes (Lond) 2020; 44:1087-1096. [PMID: 32203108 PMCID: PMC7188669 DOI: 10.1038/s41366-020-0561-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND In utero exposure to obesity is consistently associated with increased risk of metabolic disease, obesity and cardiovascular dysfunction in later life despite the divergence of birth weight outcomes. The placenta plays a critical role in offspring development and long-term health, as it mediates the crosstalk between the maternal and fetal environments. However, its phenotypic and molecular modifications in the context of maternal obesity associated with fetal growth restriction (FGR) remain poorly understood. METHODS Using a mouse model of maternal diet-induced obesity, we investigated changes in the placental transcriptome through RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) at embryonic day (E) 19. The most differentially expressed genes (FDR < 0.05) were validated by Quantitative real-time PCR (qPCR) in male and female placentae at E19. The expression of these targets and related genes was also determined by qPCR at E13 to examine whether the observed alterations had an earlier onset at mid-gestation. Structural analyses were performed using immunofluorescent staining against Ki67 and CD31 to investigate phenotypic outcomes at both timepoints. RESULTS RNA-seq and IPA analyses revealed differential expression of transcripts and pathway interactions related to placental vascular development and tissue morphology in obese placentae at term, including downregulation of Muc15, Cnn1, and Acta2. Pdgfb, which is implicated in labyrinthine layer development, was downregulated in obese placentae at E13. This was consistent with the morphological evidence of reduced labyrinth zone (LZ) size, as well as lower fetal weight at both timepoints irrespective of offspring sex. CONCLUSIONS Maternal obesity results in abnormal placental LZ development and impaired vascularization, which may mediate the observed FGR through reduced transfer of nutrients across the placenta.
Collapse
Affiliation(s)
- Daniela de Barros Mucci
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK. .,Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Nutritional Epidemiology Observatory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Laura C Kusinski
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Phoebe Wilsmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Lucas C Pantaleão
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Heather L Blackmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Maria das Graças T do Carmo
- Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Kalisch-Smith JI, Ved N, Sparrow DB. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020; 12:a037234. [PMID: 31548181 PMCID: PMC7050589 DOI: 10.1101/cshperspect.a037234] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital heart disease (CHD) has many forms and a wide range of causes. Clinically, it is important to understand the causes. This allows estimation of recurrence rate, guides treatment options, and may also be used to formulate public health advice to reduce the population prevalence of CHD. The recent advent of sophisticated genetic and genomic methods has led to the identification of more than 100 genes associated with CHD. However, despite these great strides, to date only one-third of CHD cases have been shown to have a simple genetic cause. This is because CHD can also be caused by oligogenic factors, environmental factors, and/or gene-environment interaction. Although solid evidence for environmental causes of CHD have been available for almost 80 years, it is only very recently that the molecular mechanisms for these risk factors have begun to be investigated. In this review, we describe the most important environmental CHD risk factors, and what is known about how they cause CHD.
Collapse
Affiliation(s)
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| | - Duncan Burnaby Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| |
Collapse
|
19
|
Abstract
Pheochromocytomas are rare tumors originating in the adrenal medulla. They may be sporadic or in the context of a hereditary syndrome. A considerable number of pheochromocytomas carry germline or somatic gene mutations, which are inherited in the autosomal dominant way. All patients should undergo genetic testing. Symptoms are due to catecholamines over production or to a mass effect. Diagnosis is confirmed by raised plasma or urine metanephrines or normetanephrines. Radiology assists in the tumor location and any local invasion or metastasis. All the patients should have preoperative preparation with α-blockers and/or other medications to control hypertension, arrhythmia, and volume expansion. Surgery is the definitive treatment. Follow up should be life-long.
Collapse
|
20
|
Δ9-tetrahydrocannabinol exposure during rat pregnancy leads to symmetrical fetal growth restriction and labyrinth-specific vascular defects in the placenta. Sci Rep 2020; 10:544. [PMID: 31953475 PMCID: PMC6969028 DOI: 10.1038/s41598-019-57318-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
1 in 5 women report cannabis use during pregnancy, with nausea cited as their primary motivation. Studies show that (-)-△9-tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in cannabis, causes fetal growth restriction, though the mechanisms are not well understood. Given the critical role of the placenta to transfer oxygen and nutrients from mother, to the fetus, any compromise in the development of fetal-placental circulation significantly affects maternal-fetal exchange and thereby, fetal growth. The goal of this study was to examine, in rats, the impact of maternal Δ9-THC exposure on fetal development, neonatal outcomes, and placental development. Dams received a daily intraperitoneal injection (i.p.) of vehicle control or Δ9-THC (3 mg/kg) from embryonic (E)6.5 through 22. Dams were allowed to deliver normally to measure pregnancy and neonatal outcomes, with a subset sacrificed at E19.5 for placenta assessment via immunohistochemistry and qPCR. Gestational Δ9-THC exposure resulted in pups born with symmetrical fetal growth restriction, with catch up growth by post-natal day (PND)21. During pregnancy there were no changes to maternal food intake, maternal weight gain, litter size, or gestational length. E19.5 placentas from Δ9-THC-exposed pregnancies exhibited a phenotype characterized by increased labyrinth area, reduced Epcam expression (marker of labyrinth trophoblast progenitors), altered maternal blood space, decreased fetal capillary area and an increased recruitment of pericytes with greater collagen deposition, when compared to vehicle controls. Further, at E19.5 labyrinth trophoblast had reduced glucose transporter 1 (GLUT1) and glucocorticoid receptor (GR) expression in response to Δ9-THC exposure. In conclusion, maternal exposure to Δ9-THC effectively compromised fetal growth, which may be a result of the adversely affected labyrinth zone development. These findings implicate GLUT1 as a Δ9-THC target and provide a potential mechanism for the fetal growth restriction observed in women who use cannabis during pregnancy.
Collapse
|
21
|
Fisher JJ, Bartho LA, Perkins AV, Holland OJ. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 2019; 47:176-184. [PMID: 31469913 DOI: 10.1111/1440-1681.13172] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are central to cell function. The placenta forms the interface between maternal and fetal systems, and placental mitochondria have critical roles in maintaining pregnancy. The placenta is unusual in having two adjacent cell layers (cytotrophoblasts and the syncytiotrophoblast) with vastly different mitochondria that have distinct functions in health and disease. Mitochondria both produce the majority of reactive oxygen species (ROS), and are sensitive to ROS. ROS are important in allowing cells to sense their environment through mitochondrial-centred signalling, and this signalling also helps cells/tissues adapt to changing environments. However, excessive ROS are damaging, and increased ROS levels are associated with pregnancy complications, including the important disorders preeclampsia and gestational diabetes mellitus. Here we review the function of placental mitochondria in healthy pregnancy, and also in pregnancy complications. Placental mitochondria are critical to cell function, and mitochondrial damage is a feature of pregnancy complications. However, the responsiveness of mitochondria to ROS signalling may be central to placental adaptations that mitigate damage, and placental mitochondria are an attractive target for the development of therapeutics to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Lucy A Bartho
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
22
|
Llurba Olive E, Xiao E, Natale DR, Fisher SA. Oxygen and lack of oxygen in fetal and placental development, feto-placental coupling, and congenital heart defects. Birth Defects Res 2019; 110:1517-1530. [PMID: 30576091 DOI: 10.1002/bdr2.1430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Low oxygen concentration (hypoxia) is part of normal embryonic development, yet the situation is complex. Oxygen (O2 ) is a janus gas with low levels signaling through hypoxia-inducible transcription factor (HIF) that are required for development of fetal and placental vasculature and fetal red blood cells. This results in coupling of fetus and mother around midgestation as a functional feto-placental unit (FPU) for O2 transport, which is required for continued growth and development of the fetus. Defects in these processes may leave the developing fetus vulnerable to O2 deprivation or other stressors during this critical midgestational transition when common septal and conotruncal heart defects (CHDs) are likely to arise. Recent human epidemiological and case-control studies support an association between placental dysfunction, manifest as early onset pre-eclampsia (PE) and increased serum bio-markers, and CHD. Animal studies support this association, in particular those using gene inactivation in the mouse. Sophisticated methods for gene inactivation, cell fate mapping, and a quantitative bio-reporter of O2 concentration support the premise that hypoxic stress at critical stages of development leads to CHD. The secondary heart field contributing to the cardiac outlet is a key target, with activation of the un-folded protein response and abrogation of FGF signaling or precocious activation of a cardiomyocyte transcriptional program for differentiation, suggested as mechanisms. These studies provide a strong foundation for further study of feto-placental coupling and hypoxic stress in the genesis of human CHD.
Collapse
Affiliation(s)
- Elisa Llurba Olive
- Director of the Obstetrics and Gynecology Department, Sant Pau University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,Maternal and Child Health and Development Network II (SAMID II) RD16/0022, Institute of Health Carlos III, Madrid, Spain
| | - Emily Xiao
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - David R Natale
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Diego, San Diego, California
| | - Steven A Fisher
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology and Biophysics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Zhang Q, Hao J, Li G. Deletion of Prl7d1 causes placental defects at mid-pregnancy in mice. Mol Reprod Dev 2019; 86:696-713. [PMID: 31012985 DOI: 10.1002/mrd.23148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/16/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022]
Abstract
Prolactin family 7, subfamily d, member 1 (Prl7d1), a member of the expanding prolactin family, is mainly expressed in the placental junctional zone (including trophoblast giant cells and spongiotrophoblast cells) with peak expression observed at 12 days postcoitum (dpc) in mice. Previous studies have shown that PRL7D1 is a key mediator of angiogenesis in vitro; however, its physiological roles in placental development in vivo have not been characterized. To address this issue, we deleted Prl7d1 in mice and demonstrated that its absence results in reduced litter size and fertility. Histologically, Prl7d1 mutants exhibited striking placental abnormalities at 12.5 dpc, including a reduction in the proportion of labyrinth layers and a significant increase in decidual natural killer cells, glycogen trophoblasts, and trophoblast giant cells in the junctional zone. Moreover, placentas from Prl7d1-null mice displayed a thickened decidual spiral artery. Notably, these negative effects were more pronounced in male fetuses. Further RNA-sequencing analysis showed that Prl7d1 deletion results in significant differences in the placental transcriptome profile between the two sexes of fetuses. Together, this study demonstrates that Prl7d1 possesses antiangiogenic properties in deciduas and inhibits the development of junctional zone, which potentially alters the functional capacity of the placenta to support optimal fetal growth. Moreover, of note, the role of Prl7d1 in the placenta is regulated in a fetal sex-specific manner.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jie Hao
- Experimental Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Wattez JS, Qiao L, Lee S, Natale DRC, Shao J. The platelet-derived growth factor receptor alpha promoter-directed expression of cre recombinase in mouse placenta. Dev Dyn 2019; 248:363-374. [PMID: 30843624 PMCID: PMC6488356 DOI: 10.1002/dvdy.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background Numerous pathologies of pregnancy originate from placental dysfunction. It is essential to understand the functions of key genes in the placenta in order to discern the etiology of placental pathologies. A paucity of animal models that allow conditional and inducible expression of a target gene in the placenta is a major limitation for studying placental development and function. Results To study the platelet‐derived growth factor receptor alpha (PDGFRα)‐directed and tamoxifen‐induced Cre recombinase expression in the placenta, PDGFRα‐CreER mice were crossed with mT/mG dual‐fluorescent reporter mice. The expression of endogenous membrane‐localized enhanced green fluorescent protein (mEGFP) and/or dTomato in the placenta was examined to identify PDGFRα promoter‐directed Cre expression. Pregnant PDGFRα‐CreER;mT/mG mice were treated with tamoxifen at various gestational ages. Upon tamoxifen treatment, reporter protein mEGFP was observed in the junctional zone (JZ) and chorionic plate (CP). Furthermore, a single dose of tamoxifen was sufficient to induce the recombination. Conclusions PDGFRα‐CreER expression is restricted to the JZ and CP of mouse placentas. PDGFRα‐CreER mice provide a useful tool to conditionally knock out or overexpress a target gene in these regions of the mouse placenta. Inducible PDGFRα‐directed Cre expression trophoblasts cells. A single tamoxifen treatment is sufficient to induce the recombination. Valuable tool to temporary knockout or over‐express a target gene in the placenta. Do not require sophisticated system and suitable for ordinary laboratory setting.
Collapse
Affiliation(s)
| | - Liping Qiao
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Samuel Lee
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | | | - Jianhua Shao
- Department of Pediatrics, University of California San Diego, La Jolla, California
| |
Collapse
|
25
|
Trophoblast-Specific Expression of Hif-1α Results in Preeclampsia-Like Symptoms and Fetal Growth Restriction. Sci Rep 2019; 9:2742. [PMID: 30808910 PMCID: PMC6391498 DOI: 10.1038/s41598-019-39426-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023] Open
Abstract
The placenta is an essential organ that is formed during pregnancy and its proper development is critical for embryonic survival. While several animal models have been shown to exhibit some of the pathological effects present in human preeclampsia, these models often do not represent the physiological aspects that have been identified. Hypoxia-inducible factor 1 alpha (Hif-1α) is a necessary component of the cellular oxygen-sensing machinery and has been implicated as a major regulator of trophoblast differentiation. Elevated levels of Hif-1α in the human placenta have been linked to the development of pregnancy-associated disorders, such as preeclampsia and fetal growth restriction. As oxygen regulation is a critical determinant for placentogenesis, we determined the effects of constitutively active Hif-1α, specifically in trophoblasts, on mouse placental development in vivo. Our research indicates that prolonged expression of trophoblast-specific Hif-1α leads to a significant decrease in fetal birth weight. In addition, we noted significant physiological alterations in placental differentiation that included reduced branching morphogenesis, alterations in maternal and fetal blood spaces, and failure to remodel the maternal spiral arteries. These placental alterations resulted in subsequent maternal hypertension with parturitional resolution and maternal kidney glomeruloendotheliosis with accompanying proteinuria, classic hallmarks of preeclampsia. Our findings identify Hif-1α as a critical molecular mediator of placental development and indicate that prolonged expression of Hif-1α, explicitly in placental trophoblasts causes maternal pathology and establishes a mouse model that significantly recapitulates the physiological and pathophysiological characteristics of preeclampsia with fetal growth restriction.
Collapse
|
26
|
Köstlin-Gille N, Dietz S, Schwarz J, Spring B, Pauluschke-Fröhlich J, Poets CF, Gille C. HIF-1α-Deficiency in Myeloid Cells Leads to a Disturbed Accumulation of Myeloid Derived Suppressor Cells (MDSC) During Pregnancy and to an Increased Abortion Rate in Mice. Front Immunol 2019; 10:161. [PMID: 30804946 PMCID: PMC6370686 DOI: 10.3389/fimmu.2019.00161] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Abortions are the most important reason for unintentional childlessness. During pregnancy, maternal immune cells are in close contact to cells of the semi-allogeneic fetus. Dysregulation of the maternal immune system leading to defective adaptation to pregnancy often plays a role in pathogenesis of abortions. Myeloid-derived suppressor cells (MDSC) are myeloid cells that suppress functions of other immune cells, especially T-cells, thereby negatively affecting diseases such as cancer, sepsis or trauma. They seem, however, also necessary for maintenance of maternal-fetal tolerance. Mechanisms regulating MDSC expansion and function during pregnancy are only incompletely understood. In tumor environment, hypoxia is crucial for MDSC accumulation and activation. Hypoxia is also important for early placenta and embryo development. Effects of hypoxia are mediated through hypoxia-inducible factor 1α (HIF-1α). In the present study we aimed to examine the role of HIF-1α in myeloid cells for MDSC accumulation and MDSC function during pregnancy and for pregnancy outcome. We therefore used a mouse model with targeted deletion of HIF-1α in myeloid cells (myeloid HIF-KO) and analyzed blood, spleens and uteri of pregnant mice at gestational day E 10.5 in comparison to non-pregnant animals and wildtype (WT) animals. Further we analyzed pregnancy success by determining rates of failed implantation and abortion in WT and myeloid HIF-KO animals. We found that myeloid HIF-KO in mice led to an abrogated MDSC accumulation in the pregnant uterus and to impaired suppressive activity of MDSC. While expression of chemokine receptors and integrins on MDSC was not affected by HIF-1α, myeloid HIF-KO led to increased apoptosis rates of MDSC in the uterus. Myeloid-HIF-KO resulted in increased proportions of non-pregnant animals after positive vaginal plug and increased abortion rates, suggesting that activation of HIF-1α dependent pathways in MDSC are important for maintenance of pregnancy.
Collapse
Affiliation(s)
| | - Stefanie Dietz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Bärbel Spring
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | | | - Christian F Poets
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| |
Collapse
|
27
|
Huang Z, Xu B, Huang X, Zhang Y, Yu M, Han X, Song L, Xia Y, Zhou Z, Wang X, Chen M, Lu C. Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe 2O 3 NP-induced embryonic development toxicity via mitochondria damage. Nanotoxicology 2019; 13:204-220. [PMID: 30663479 DOI: 10.1080/17435390.2018.1537411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Iron oxides nanoparticles (FeOX NPs), including α-Fe2O3, γ-Fe2O3, and Fe3O4, are employed in many technological applications. However, very few studies have investigated the embryonic developmental toxicity of FeOX NPs. In this study, metabolomics analysis were used to uncover the potential mechanisms of FeOX NPs developmental toxicity on embryo-larval zebrafish and mice. Our results indicated that γ-Fe2O3 NP treatment could cause increased mortality, dropped hatching rate, etc., while α-Fe2O3 and Fe3O4 NPs showed no obvious effect. Through metabolomics analysis, a total of 42 metabolites were found to be significantly changed between the γ-Fe2O3 NP-treated group and the control group (p < 0.05). Pathway enrichment analysis indicated the impairment of mitochondria function. γ-Fe2O3 NP treatment caused abnormal mitochondrion structure and a decrease in mitochondrial membrane potential in zebrafish embryos. Meanwhile, ATP synthesis was decreased while oxidative stress levels were affected. It is noteworthy that acetyl-l-carnitine (ALCAR) (p = 6.79E - 04) and l-carnitine (p = 1.43E - 03) were identified with minimal p values, the relationship between the two counter-balance was regulated by acetyltransferase (crata). Subsequently, we performed rescue experiments with ALCAR on zebrafish embryos, and found that the mortality rates reduced and hatching rates raised significantly in the γ-Fe2O3 NP-treated group. Additionally, γ-Fe2O3 exposure could lead to increased absorbed fetus rate, decreased placental weight, lower expression of acetyltransferase (Crat), reduced ATP synthesis as well as increased oxidative stress (p < 0.05). Our findings demonstrated that γ-Fe2O3 NP might affect the mitochondrial membrane potential and ATP synthesis by affecting the metabolism of ALCAR, thereby stimulating oxidative stress, cell apoptosis, and causing embryonic development toxicity.
Collapse
Affiliation(s)
- Zhenyao Huang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Bo Xu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Xiaomin Huang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Yuqing Zhang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Mingming Yu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Xiumei Han
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Ling Song
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Yankai Xia
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Zhu Zhou
- c Thomas J. Long School of Pharmacy and Health Sciences , University of the Pacific , Stockton , CA , USA
| | - Xinru Wang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Minjian Chen
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Chuncheng Lu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| |
Collapse
|
28
|
Natale BV, Mehta P, Vu P, Schweitzer C, Gustin K, Kotadia R, Natale DRC. Reduced Uteroplacental Perfusion Pressure (RUPP) causes altered trophoblast differentiation and pericyte reduction in the mouse placenta labyrinth. Sci Rep 2018; 8:17162. [PMID: 30464252 PMCID: PMC6249310 DOI: 10.1038/s41598-018-35606-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
This study characterized the effect of the reduced utero-placental perfusion pressure (RUPP) model of placental insufficiency on placental morphology and trophoblast differentiation at mid-late gestation (E14.5). Altered trophoblast proliferation, reduced syncytiotrophoblast gene expression, increased numbers of sinusoidal trophoblast giant cells, decreased Vegfa and decreased pericyte presence in the labyrinth were observed in addition to changes in maternal blood spaces, the fetal capillary network and reduced fetal weight. Further, the junctional zone was characterized by reduced spongiotrophoblast and glycogen trophoblast with increased trophoblast giant cells. Increased Hif-1α and TGF-β-3 in vivo with supporting hypoxia studies in trophoblast stem (TS) cells in vitro, support hypoxia as a contributing factor to the RUPP placenta phenotype. Together, this study identifies altered cell populations within the placenta that may contribute to the phenotype, and thus support the use of RUPP in the mouse as a model of placenta insufficiency. As such, this model in the mouse provides a valuable tool for understanding the phenotypes resulting from genetic manipulation of isolated cell populations to further understand the etiology of placenta insufficiency and fetal growth restriction. Further this study identifies a novel relationship between placental insufficiency and pericyte depletion in the labyrinth layer.
Collapse
Affiliation(s)
- Bryony V Natale
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Prutha Mehta
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Priscilla Vu
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Schweitzer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Katarina Gustin
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramie Kotadia
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - David R C Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada.
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
29
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
30
|
Soares MJ, Iqbal K, Kozai K. Hypoxia and Placental Development. Birth Defects Res 2018; 109:1309-1329. [PMID: 29105383 DOI: 10.1002/bdr2.1135] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
Abstract
Hemochorial placentation is orchestrated through highly regulated temporal and spatial decisions governing the fate of trophoblast stem/progenitor cells. Trophoblast cell acquisition of specializations facilitating invasion and uterine spiral artery remodeling is a labile process, sensitive to the environment, and represents a process that is vulnerable to dysmorphogenesis in pathologic states. Hypoxia is a signal guiding placental development, and molecular mechanisms directing cellular adaptations to low oxygen tension are integral to trophoblast cell differentiation and placentation. Hypoxia can also be used as an experimental tool to investigate regulatory processes controlling hemochorial placentation. These developmental processes are conserved in mouse, rat, and human placentation. Consequently, elements of these developmental events can be modeled and hypotheses tested in trophoblast stem cells and in genetically manipulated rodents. Hypoxia is also a consequence of a failed placenta, yielding pathologies that can adversely affect maternal adjustments to pregnancy, fetal health, and susceptibility to adult disease. The capacity of the placenta for adaptation to environmental challenges highlights the importance of its plasticity in safeguarding a healthy pregnancy. Birth Defects Research 109:1309-1329, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas.,Fetal Health Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
31
|
Cerychova R, Bohuslavova R, Papousek F, Sedmera D, Abaffy P, Benes V, Kolar F, Pavlinkova G. Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovasc Diabetol 2018; 17:68. [PMID: 29753320 PMCID: PMC5948854 DOI: 10.1186/s12933-018-0713-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
Background Epidemiological studies show that maternal diabetes predisposes offspring to cardiovascular and metabolic disorders. However, the precise mechanisms for the underlying penetrance and disease predisposition remain poorly understood. We examined whether hypoxia-inducible factor 1 alpha, in combination with exposure to a diabetic intrauterine environment, influences the function and molecular structure of the adult offspring heart. Methods and results In a mouse model, we demonstrated that haploinsufficient (Hif1a+/−) offspring from a diabetic pregnancy developed left ventricle dysfunction at 12 weeks of age, as manifested by decreased fractional shortening and structural remodeling of the myocardium. Transcriptional profiling by RNA-seq revealed significant transcriptome changes in the left ventricle of diabetes-exposed Hif1a+/− offspring associated with development, metabolism, apoptosis, and blood vessel physiology. In contrast, both wild type and Hif1a+/− offspring from diabetic pregnancies showed changes in immune system processes and inflammatory responses. Immunohistochemical analyses demonstrated that the combination of haploinsufficiency of Hif1a and exposure to maternal diabetes resulted in impaired macrophage infiltration, increased levels of advanced glycation end products, and changes in vascular homeostasis in the adult offspring heart. Conclusions Together our findings provide evidence that a global reduction in Hif1a gene dosage increases predisposition of the offspring exposed to maternal diabetes to cardiac dysfunction, and also underscore Hif1a as a critical factor in the fetal programming of adult cardiovascular disease. Electronic supplementary material The online version of this article (10.1186/s12933-018-0713-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radka Cerychova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, 25250, Vestec, Czechia.,Faculty of Science, Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, 25250, Vestec, Czechia
| | | | - David Sedmera
- Institute of Physiology CAS, Prague, Czechia.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Vladimir Benes
- EMBL Genomics Core Facility, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, 25250, Vestec, Czechia.
| |
Collapse
|
32
|
Efficient Induction of Syncytiotrophoblast Layer II Cells from Trophoblast Stem Cells by Canonical Wnt Signaling Activation. Stem Cell Reports 2017; 9:2034-2049. [PMID: 29153986 PMCID: PMC5785677 DOI: 10.1016/j.stemcr.2017.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023] Open
Abstract
The syncytiotrophoblast layer is the most critical and prominent tissue in placenta. SynT cells are differentiated from trophoblast stem cells (TSCs) during early embryogenesis. Mouse TSCs can spontaneously differentiate into cells of mixed lineages in vitro upon withdrawal of stemness-maintaining factors. However, differentiation into defined placental cell lineages remains challenging. We report here that canonical Wnt signaling activation robustly induces expression of SynT-II lineage-specific genes Gcm1 and SynB and suppresses markers of other placental lineages. In contrast to mouse TSCs, the induced SynT-II cells are migratory. More importantly, the migration depends on hepatocyte growth factor (HGF) and the c-MET signaling axis. Furthermore, HGF-expressing cells lie adjacent to SynT-II cells in developing murine placenta, suggesting that HGF/c-MET signaling plays a critical role in SynT-II cell morphogenesis during the labyrinth branching process. The availability of SynT-II cells in vitro will facilitate molecular understanding of labyrinth layer development. Wnt is sufficient to induce SynT-II cells from trophoblast stem cells Induced SynT-II cells are migratory and are independent on EMT Hepatocyte growth factor/c-MET is essential for SynT-II cell migration
Collapse
|
33
|
Min S, Natale BV, Natale DRC. Temporal and spatial expression of glyceraldehyde 3-phosphate dehydrogenase (Gapdh) in the mouse placenta. Placenta 2017; 57:170-174. [PMID: 28864008 DOI: 10.1016/j.placenta.2017.06.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 11/18/2022]
Abstract
Glucose metabolism in trophoblast cells is essential to provide the required energy for the development and function of the placenta. Glyceraldehyde 3-phosphate dehydrogenase (Gapdh), a key enzyme in the glycolysis pathway has been considered ubiquitously expressed in cells. There is, however, a growing body of evidence suggesting that Gapdh has many functions in pathways unrelated to glucose metabolism. In the present study, we show that GAPDH expression and sub-cellular localization changes through gestation in the mouse placenta. Our findings raise the possibility that GAPDH has multiple functions in trophoblast cells and the developing placenta, while also cautioning against its use as an endogenous reference or standard for gene expression in the placenta.
Collapse
Affiliation(s)
- Sarah Min
- University of California San Diego, Reproductive Medicine, La Jolla, CA, United States
| | - Bryony V Natale
- University of California San Diego, Reproductive Medicine, La Jolla, CA, United States
| | - David R C Natale
- University of California San Diego, Reproductive Medicine, La Jolla, CA, United States; University of Calgary, Comparative Biology & Experimental Medicine, Calgary, AB, Canada
| |
Collapse
|