1
|
Okazaki K, Katano W, Shibata K, Asahina M, Koshiba-Takeuchi K, Shimomura K, Umehara M. Ectopic expression of LONELY GUY7 in epidermis of internodal segments for de novo shoot regeneration without phytohormone treatment in ipecac. PHYSIOLOGIA PLANTARUM 2025; 177:e70023. [PMID: 39723728 DOI: 10.1111/ppl.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
In many plant species, the application of exogenous phytohormones is crucial for initiating de novo shoot regeneration. However, ipecac [Carapichea ipecacuanha (Brot) L. Andersson] has a unique ability to develop adventitious shoots on the epidermis of internodal segments without phytohormone treatment. This characteristic allows us to evaluate the effects of endogenous phytohormones in this species. Here, we showed that the presence of the pith, including vascular bundles in the internodal segment, is required to activate both endogenous cytokinin (CK) biosynthesis and adventitious shoot formation. Adventitious shoots were mainly formed in the apical region of internodal segments, where the CK biosynthesis genes ISOPENTENYL TRANSFERASE 3 (CiIPT3) and LONELY GUY 7 (CiLOG7) were spontaneously upregulated in the early culture stage on phytohormone-free medium. In addition, CiIPT3 and CiLOG7 were respectively expressed in the pith and the epidermis of the internodal segments. The expression of CiLOG7 was localized as several spots on the epidermis. These findings suggest that CK precursors are generated in the pith, transferred to the epidermis, and then converted into active CKs, facilitating adventitious shoot formation on the epidermis. Conversely, auxin levels rapidly decreased during culture and remained low in the region of shoot formation. Auxin is transferred to the basal region of internodal segments, and strongly suppressed the CiLOG7 expression and decreased the CK levels. Thus, we conclude that the ectopic expression of CiLOG7 in the epidermis of internodal segments contributes to de novo shoot regeneration in ipecac.
Collapse
Affiliation(s)
- Karin Okazaki
- Graduate School of Life Sciences, Toyo University, Asaka-shi, Saitama, Japan
| | - Wataru Katano
- Graduate School of Life Sciences, Toyo University, Asaka-shi, Saitama, Japan
| | - Kyomi Shibata
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
- Advanced Instrumental Analysis Center. Teikyo University.1-1 Toyosatodai, Utsunomiya, Tochigi, Japan
| | | | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, Asaka-shi, Saitama, Japan
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, Asaka-shi, Saitama, Japan
| |
Collapse
|
2
|
Park JS, Choi Y, Jeong MG, Jeong YI, Han JH, Choi HK. Uncovering transcriptional reprogramming during callus development in soybean: insights and implications. FRONTIERS IN PLANT SCIENCE 2023; 14:1239917. [PMID: 37600197 PMCID: PMC10436568 DOI: 10.3389/fpls.2023.1239917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Callus, a valuable tool in plant genetic engineering, originates from dedifferentiated cells. While transcriptional reprogramming during callus formation has been extensively studied in Arabidopsis thaliana, our knowledge of this process in other species, such as Glycine max, remains limited. To bridge this gap, our study focused on conducting a time-series transcriptome analysis of soybean callus cultured for various durations (0, 1, 7, 14, 28, and 42 days) on a callus induction medium following wounding with the attempt of identifying genes that play key roles during callus formation. As the result, we detected a total of 27,639 alterations in gene expression during callus formation, which could be categorized into eight distinct clusters. Gene ontology analysis revealed that genes associated with hormones, cell wall modification, and cell cycle underwent transcriptional reprogramming throughout callus formation. Furthermore, by scrutinizing the expression patterns of genes related to hormones, cell cycle, cell wall, and transcription factors, we discovered that auxin, cytokinin, and brassinosteroid signaling pathways activate genes involved in both root and shoot meristem development during callus formation. In summary, our transcriptome analysis provides significant insights into the molecular mechanisms governing callus formation in soybean. The information obtained from this study contributes to a deeper understanding of this intricate process and paves the way for further investigation in the field.
Collapse
Affiliation(s)
- Joo-Seok Park
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Yoram Choi
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Min-Gyun Jeong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Yeong-Il Jeong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Ji-Hyun Han
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
3
|
Comparisons between Plant and Animal Stem Cells Regarding Regeneration Potential and Application. Int J Mol Sci 2023; 24:ijms24054392. [PMID: 36901821 PMCID: PMC10002278 DOI: 10.3390/ijms24054392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.
Collapse
|
4
|
Okazaki K, Koike I, Kera S, Yamaguchi K, Shigenobu S, Shimomura K, Umehara M. Gene expression profiling before and after internode culture for adventitious shoot formation in ipecac. BMC PLANT BIOLOGY 2022; 22:361. [PMID: 35869421 PMCID: PMC9308184 DOI: 10.1186/s12870-022-03756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), adventitious shoots can be induced simply by placing internodal segments on phytohormone-free culture medium. The shoots form locally on the epidermis of the apical region of the segments, but not the basal region. Levels of endogenous auxin and cytokinin transiently increase in the segments after 1 week of culture. RESULTS Here, we conducted RNA-seq analysis to compare gene expression patterns in apical and basal regions of segments before culture and after 1 week of culture for adventitious shoot formation. The results revealed 8987 differentially expressed genes in a de novo assembly of 76,684 genes. Among them, 276 genes were upregulated in the apical region after 1 week of culture relative to before culture and the basal region after 1 week of culture. These genes include 18 phytohormone-response genes and shoot-formation-related genes. Validation of the gene expression by quantitative real-time PCR assay confirmed that the expression patterns were similar to those of the RNA-seq data. CONCLUSIONS The transcriptome data show that expression of cytokinin biosynthesis genes is induced along with the acquisition of cellular pluripotency and the initiation of cell division by wounding in the apical region of internodal segments, that trigger adventitious shoot formation without callusing.
Collapse
Affiliation(s)
- Karin Okazaki
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Imari Koike
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Sayuri Kera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Katushi Yamaguchi
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| |
Collapse
|
5
|
Shimada S, Yanagawa Y, Munesada T, Horii Y, Kuriyama T, Kawashima M, Kondou Y, Yoshizumi T, Mitsuda N, Ohme-Takagi M, Makita Y, Matsui M. A collection of inducible transcription factor-glucocorticoid receptor fusion lines for functional analyses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:595-607. [PMID: 35510416 DOI: 10.1111/tpj.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis possesses approximately 2000 transcription factors (TFs) in its genome. They play pivotal roles in various biological processes but analysis of their function has been hampered by the overlapping nature of their activities. To uncover clues to their function, we generated inducible TF lines using glucocorticoid receptor (GR) fusion techniques in Arabidopsis. These TF-GR lines each express one of 1255 TFs as a fusion with the GR gene. An average 14 lines of T2 transgenic TF-GR lines were generated for each TF to monitor their function. To evaluate these transcription lines, we induced the TF-GR lines of phytochrome-interacting factor 4, which controls photomorphogenesis, with synthetic glucocorticoid dexamethasone. These phytochrome-interacting factor 4-GR lines showed the phenotype described in a previous report. We performed screening of the other TF-GR lines for TFs involved in light signaling under blue and far-red light conditions and identified 13 novel TF candidates. Among these, we found two lines showing higher anthocyanin accumulation under light conditions and we examined the regulating genes. These results indicate that the TF-GR lines can be used to dissect functionally redundant genes in plants and demonstrate that the TF-GR line collection can be used as an effective tool for functional analysis of TFs.
Collapse
Affiliation(s)
- Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuki Yanagawa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, 271-8510, Japan
| | - Takachika Munesada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of NanoBioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yoko Horii
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mika Kawashima
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Youichi Kondou
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takeshi Yoshizumi
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi City, Gunma, 371-0816, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
6
|
Loupit G, Valls Fonayet J, Prigent S, Prodhomme D, Spilmont AS, Hilbert G, Franc C, De Revel G, Richard T, Ollat N, Cookson SJ. Identifying early metabolite markers of successful graft union formation in grapevine. HORTICULTURE RESEARCH 2022; 9:uhab070. [PMID: 35043179 PMCID: PMC8881376 DOI: 10.1093/hr/uhab070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 05/06/2023]
Abstract
Grafting is an important horticultural technique used for many crop species. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. In general, visible phenotypes of grafted plants (size, root number, etc.) are poorly correlated with grafting success, but some studies have suggested that some polyphenols could be used as markers of graft incompatibility several months or years after grafting. However, much of the previous studies into metabolite markers of grafting success have not included all the controls necessary to unequivocally validate the markers proposed. In this study, we quantified 73 primary and secondary metabolites in nine hetero-grafts and six homo-grafted controls 33 days after grafting at the graft interface and in both the scion and rootstock woody tissues. Certain biomarker metabolites typical of a high stress status (such as proline, GABA and pallidol) were particularly accumulated at the graft interface of the incompatible scion/rootstock combination. We then used correlation analysis and generalized linear models to identify potential metabolite markers of grafting success measured one year after grafting. Here we present the first attempt to quantitatively predict graft compatibility and identify marker metabolites (especially asparagine, trans-resveratrol, trans-piceatannol and α-viniferin) 33 days after grafting, which was found to be particularly informative for homo-graft combinations.
Collapse
Affiliation(s)
- Grégoire Loupit
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Josep Valls Fonayet
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine - Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Sylvain Prigent
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine - Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- INRAE, University Bordeaux, UMR BFP, 33882 Villenave d’Ornon, France
| | - Duyen Prodhomme
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Anne-Sophie Spilmont
- Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, 30240 Le Grau-du-Roi, France
| | - Ghislaine Hilbert
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Céline Franc
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Gilles De Revel
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Tristan Richard
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine - Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Sarah Jane Cookson
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| |
Collapse
|
7
|
Iwase A, Kondo Y, Laohavisit A, Takebayashi A, Ikeuchi M, Matsuoka K, Asahina M, Mitsuda N, Shirasu K, Fukuda H, Sugimoto K. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:734-752. [PMID: 34375004 PMCID: PMC9291923 DOI: 10.1111/nph.17594] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/24/2021] [Indexed: 05/05/2023]
Abstract
Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.
Collapse
Affiliation(s)
- Akira Iwase
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- JST, PRESTOKawaguchi332‐0012Japan
| | - Yuki Kondo
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
- Department of BiologyGraduate School of ScienceKobe UniversityKobe657‐8501Japan
| | | | | | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of BiologyFaculty of ScienceNiigata University8050 Ikarashi 2‐no‐cho, Nishi‐kuNiigataJapan
| | - Keita Matsuoka
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Masashi Asahina
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
- Advanced Instrumental Analysis CenterTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Nobutaka Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8566Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Hiroo Fukuda
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| |
Collapse
|
8
|
Tissue-Specific Metabolic Reprogramming during Wound-Induced Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2021; 22:ijms221810112. [PMID: 34576275 PMCID: PMC8466849 DOI: 10.3390/ijms221810112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Plants have remarkable regenerative capacity, which allows them to survive tissue damage after exposure to biotic and abiotic stresses. Some of the key transcription factors and hormone crosstalk mechanisms involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. However, little is known about the role of metabolism in wound-induced organ formation. Here, we performed detailed transcriptome analysis and used a targeted metabolomics approach to study de novo organ formation in tomato hypocotyl explants and found tissue-specific metabolic differences and divergent developmental pathways. Our results indicate that successful regeneration in the apical region of the hypocotyl depends on a specific metabolic switch involving the upregulation of photorespiratory pathway components and the differential regulation of photosynthesis-related gene expression and gluconeogenesis pathway activation. These findings provide a useful resource for further investigation of the molecular mechanisms involved in wound-induced organ formation in crop species such as tomato.
Collapse
|
9
|
Effects of Hormones and Epigenetic Regulation on the Callus and Adventitious Bud Induction of Fraxinus mandshurica Rupr. FORESTS 2020. [DOI: 10.3390/f11050590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fraxinus mandshurica Rupr. (hereafter “F. mandshurica”) is known as one of northeast China′s important, valuable hardwood timber species. However, tissue culture and micropropagation of the species are difficult and have low efficiency, limiting asexual propagation. In this manuscript, stem explants were utilized to establish an effective regeneration system through adventitious bud organogenesis. The factors influencing callus regeneration in vitro were determined, and callus regeneration technology was established. The mechanism of adventitious bud formation was analyzed. Thidiazuron (TDZ) played a crucial role in the formation of adventitious buds. Elevated concentrations of TDZ were beneficial to callus induction and low concentrations of 6-benzyladenine (BA) led to loose state callus formation. The order of callus induction rates for different explants was stem cotyledon (100%) > segment (98.54%) > hypocotyl (92.56%) > root (50.71%). The effects of exogenous addition of 6-BA and TDZ on the endogenous hormone content of plants during the regeneration of adventitious buds were also assessed, as well as the expression characteristics of genes related to the regeneration pathway. The comprehensive analysis results showed that the suitable medium for callus induction and adventitious bud differentiation was c12 medium (MSB5 + 30 g/L sucrose + 7 g/L Agar + 5 mg/L 6-BA + 8 mg/L TDZ + 2 mg/L glycine + 0.1 mg/L IBA + 5% coconut water). The induction rates of callus and adventitious buds were 99.15% and 33.33%. The addition of 2.4 mg/L of the DNA demethylation reagent 5-azacytidine (5-aza) and 0.15 mg/L of the histone deacetylase inhibitor trichostatin A (TSA) increased the rates of adventitious bud induction by 17.78% over the control. This further laid the foundation for large-scale cultivation of excellent varieties and genetic transformation techniques.
Collapse
|
10
|
Prodhomme D, Valls Fonayet J, Hévin C, Franc C, Hilbert G, de Revel G, Richard T, Ollat N, Cookson SJ. Metabolite profiling during graft union formation reveals the reprogramming of primary metabolism and the induction of stilbene synthesis at the graft interface in grapevine. BMC PLANT BIOLOGY 2019; 19:599. [PMID: 31888506 PMCID: PMC6937855 DOI: 10.1186/s12870-019-2055-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Grafting with rootstocks is essential for the culture of many perennial fruit crops and is increasing being used in the production of annual fruits and vegetables. Our previous work based on microarrays showed that transcripts encoding enzymes of both primary and secondary metabolism were differentially expressed during graft union formation in both homo-grafts (a genotype grafted with itself) and hetero-grafts (two different genotypes grafted together). The aim of this study was to profile primary and secondary metabolites, and quantify the activity of phenylalanine ammonia lyase (PAL) and neutral invertase (NI) in the scion and rootstock tissues and the graft interface of homo and hetero-grafts of grapevine 1 month after grafting. Table-top grafting was done on over-wintering stems (canes) of grapevine and the graft interface tissues (containing some woody stem tissues and callus) were compared to the surrounding rootstock and scion tissues. The objective was to identify compounds involved in graft union formation and hetero-grafting responses. RESULTS A total of 54 compounds from primary and secondary metabolism (19 amino acids, five primary and 30 secondary compounds metabolites) and the activity of two enzymes were measured. The graft interface was associated with an increase in the accumulation of the branched-chain amino acids, basic amino acids, certain stilbene compounds and higher PAL and NI activity in comparison to the surrounding woody stem tissues. Some amino acids and stilbenes were identified as being accumulated differently between the graft interfaces of the scion/rootstock combinations in a manner which was unrelated to their concentrations in the surrounding woody stem tissues. CONCLUSIONS This study revealed the modification of primary metabolism to support callus cell formation and the stimulation of stilbene synthesis at the graft interface, and how these processes are modified by hetero-grafting. Knowledge of the metabolites and/or enzymes required for successful graft union formation offer us the potential to identify markers that could be used by nurseries and researchers for selection and breeding purposes.
Collapse
Affiliation(s)
- Duyên Prodhomme
- INRA, Univ. Bordeaux, ISVV, EGFV UMR 1287, F-33140 Villenave d’Ornon, France
| | - Josep Valls Fonayet
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France
| | - Cyril Hévin
- INRA, Univ. Bordeaux, ISVV, EGFV UMR 1287, F-33140 Villenave d’Ornon, France
| | - Céline Franc
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France
| | - Ghislaine Hilbert
- INRA, Univ. Bordeaux, ISVV, EGFV UMR 1287, F-33140 Villenave d’Ornon, France
| | - Gilles de Revel
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France
| | - Tristan Richard
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France
| | - Nathalie Ollat
- INRA, Univ. Bordeaux, ISVV, EGFV UMR 1287, F-33140 Villenave d’Ornon, France
| | - Sarah Jane Cookson
- INRA, Univ. Bordeaux, ISVV, EGFV UMR 1287, F-33140 Villenave d’Ornon, France
| |
Collapse
|
11
|
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. Molecular Mechanisms of Plant Regeneration. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:377-406. [PMID: 30786238 DOI: 10.1146/annurev-arplant-050718-100434] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants reprogram somatic cells following injury and regenerate new tissues and organs. Upon perception of inductive cues, somatic cells often dedifferentiate, proliferate, and acquire new fates to repair damaged tissues or develop new organs from wound sites. Wound stress activates transcriptional cascades to promote cell fate reprogramming and initiate new developmental programs. Wounding also modulates endogenous hormonal responses by triggering their biosynthesis and/or directional transport. Auxin and cytokinin play pivotal roles in determining cell fates in regenerating tissues and organs. Exogenous application of these plant hormones enhances regenerative responses in vitro by facilitating the activation of specific developmental programs. Many reprogramming regulators are epigenetically silenced during normal development but are activated by wound stress and/or hormonal cues.
Collapse
Affiliation(s)
- Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - Yuki Sakamoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
- Department of Biological Sciences, University of Tokyo, Tokyo 119-0033, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - Duncan Coleman
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
- Department of Biological Sciences, University of Tokyo, Tokyo 119-0033, Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
- Department of Biological Sciences, University of Tokyo, Tokyo 119-0033, Japan
| |
Collapse
|
12
|
Mooney S, Al-Saharin R, Choi CM, Tucker K, Beathard C, Hellmann HA. Characterization of Brassica rapa RAP2.4-Related Proteins in Stress Response and as CUL3-Dependent E3 Ligase Substrates. Cells 2019; 8:cells8040336. [PMID: 30974760 PMCID: PMC6523098 DOI: 10.3390/cells8040336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 01/07/2023] Open
Abstract
The turnip Brassica rapa has important economic value and represents a good model system to study gene function in crop plants. ERF/AP2 transcription factors are a major group of proteins that are often involved in regulating stress-responses and developmental programs. Some ERF/AP2 proteins are targets of CULLIN3-based E3 ligases that use BTB/POZ-MATH proteins as substrate receptors. These receptors bind the transcription factor and facilitate their ubiquitylation and subsequent degradation via the 26S proteasome. Here, we show tissue and stress-dependent expression patterns for three Brassica rapa ERF/AP2 proteins that are closely related to Arabidopsis thaliana AtRAP2.4. Cloning of the Brassica genes showed that the corresponding proteins can assemble with a BPM protein and CULLIN3, and that they are instable in a 26S proteasome dependent manner. This work demonstrates the conserved nature of the ERF/AP2-CULLIN3-based E3 ligase interplay, and represents a first step to analyze their function in a commercially relevant crop plant.
Collapse
Affiliation(s)
- Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Raed Al-Saharin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Christina M Choi
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Kyle Tucker
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Chase Beathard
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Hanjo A Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
13
|
Sugimoto K, Temman H, Kadokura S, Matsunaga S. To regenerate or not to regenerate: factors that drive plant regeneration. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:138-150. [PMID: 30703741 DOI: 10.1016/j.pbi.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 05/23/2023]
Abstract
Plants have a remarkable regenerative capacity, but it varies widely among species and tissue types. Whether plant cells/tissues initiate regeneration largely depends on the extent to which they are constrained to their original tissue fate. Once cells start the regeneration program, they acquire a new fate, form meristems, and develop into organs. During these processes, the cells must continuously overcome various barriers to the progression of the regeneration program until the organ (or whole plant) is complete. Recent studies have revealed key factors and signals affecting cell fate during plant regeneration. Here, we review recent research on: (i) environmental signal inputs and physical stimuli that act as initial triggers of regeneration; (ii) epigenetic and transcriptional cellular responses to those triggers leading to cellular reprograming; and (iii) molecules that direct the formation and development of the new stem cell niche. We also discuss differences and similarities between regeneration and normal development.
Collapse
Affiliation(s)
- Kaoru Sugimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Haruka Temman
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoshi Kadokura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
14
|
Pais MS. Somatic Embryogenesis Induction in Woody Species: The Future After OMICs Data Assessment. FRONTIERS IN PLANT SCIENCE 2019; 10:240. [PMID: 30984207 PMCID: PMC6447717 DOI: 10.3389/fpls.2019.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 05/15/2023]
Abstract
Very early somatic embryogenesis has been recognized as a powerful method to propagate plants in vitro. For some woody species and in particular for some coniferous trees, somatic embryogenesis induction has become a routine procedure. For the majority, the application of this technology presents yet many limitations especially due to the genotype, the induction conditions, the number of embryos produced, maturation, and conversion, among other factors that compromise the systematic use of somatic embryogenesis for commercial purposes especially of woody species and forest trees in particular. The advancements obtained on somatic embryogenesis in Arabidopsis and the development of OMIC technologies allowed the characterization of genes and the corresponding proteins that are conserved in woody species. This knowledge will help in understanding the molecular mechanisms underlying the complex regulatory networks that control somatic embryogenesis in woody plants. In this revision, we report on developments of OMICs (genomics, transcriptomics, metabolomics, and proteomics) applied to somatic embryogenesis induction and its contribution for understanding the change of fate giving rise to the expression of somatic embryogenesis competence.
Collapse
|
15
|
Efroni I, Prasad K. Insights into the art of recreation. Dev Biol 2018; 442:1-2. [PMID: 30213362 DOI: 10.1016/j.ydbio.2018.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Idan Efroni
- The Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.Box 12, Rehovot 76100, Israel.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, School of Biology, Maruthamala PO, Vithura, Thiruvananthapuram 69551, India.
| |
Collapse
|