1
|
Zandieh A, Seeger SK, Tunnell EC, Wheeler SK. A rare case of lupus cerebritis presenting as ictal epileptic headache: A case report. Headache 2024; 64:685-691. [PMID: 38700260 DOI: 10.1111/head.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 05/05/2024]
Abstract
Ictal epileptic headache, characterized by headache as the sole symptom of a seizure attack, is a rare condition. In this case report, we present a 52-year-old female with a history of systemic lupus erythematosus who sought medical attention at the headache clinic due to a new type of headache. The headache was described as an intense painful wave followed by a dull headache, without autonomic symptoms or migrainous features. Magnetic resonance imaging revealed an enhancing lesion in the left hippocampus in addition to two other lesions in the corpus callosum and left parieto-occipital lobe. Electroencephalography during the headache episodes showed epileptic discharges originating from the left fronto-temporal region. The patient was initiated on levetiracetam, which resulted in the resolution of both the epileptic discharges and the headaches. This case underscores the significance of considering ictal epileptic headache as a potential secondary cause for headaches, particularly in patients with underlying conditions that may predispose them to epilepsy, such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Ali Zandieh
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susanne K Seeger
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn C Tunnell
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shawna K Wheeler
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Aschner A, Keller A, Williams A, Whitney R, Cunningham K, Hamilton RM, Pollanen M, Donner E. Cardiac arrhythmia and epilepsy genetic variants in sudden unexpected death in epilepsy. Front Neurol 2024; 15:1386730. [PMID: 38756210 PMCID: PMC11097959 DOI: 10.3389/fneur.2024.1386730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Sudden Unexpected Death in Epilepsy (SUDEP) is the leading epilepsy-related cause of death, affecting approximately 1 per 1,000 individuals with epilepsy per year. Genetic variants that affect autonomic function, such as genes associated with cardiac arrhythmias, may predispose people with epilepsy to greater risk of both sudden cardiac death and SUDEP. Advances in next generation sequencing allow for the exploration of gene variants as potential biomarkers. Methods Genetic testing for the presence of cardiac arrhythmia and epilepsy gene variants was performed via genetic panels in 39 cases of SUDEP identified via autopsy by the Ontario Forensic Pathology Service. Variants were summarized by in-silico evidence for pathogenicity from 4 algorithms (SIFT, PolyPhen-2, PROVEAN, Mutation Taster) and allele frequencies in the general population (GnomAD). A maximum credible population allele frequency of 0.00004 was calculated based on epilepsy prevalence and SUDEP incidence to assess whether a variant was compatible with a pathogenic interpretation. Results Median age at the time of death was 33.3 years (range: 2, 60). Fifty-nine percent (n=23) were male. Gene panels detected 62 unique variants in 45 genes: 19 on the arrhythmia panel and 26 on the epilepsy panel. At least one variant was identified in 28 (72%) of decedents. Missense mutations comprised 57 (92%) of the observed variants. At least three in silico models predicted 12 (46%) cardiac arrhythmia panel missense variants and 20 (65%) epilepsy panel missense variants were pathogenic. Population allele frequencies were <0.00004 for 11 (42%) of the cardiac variants and 10 (32%) of the epilepsy variants. Together, these metrics identified 13 SUDEP variants of interest. Discussion Nearly three-quarters of decedents in this SUDEP cohort carried variants in comprehensive epilepsy or cardiac arrhythmia gene panels, with more than a third having variants in both panels. The proportion of decedents with cardiac variants aligns with recent studies of the disproportionate cardiac burden the epilepsy community faces compared to the general population and suggests a possible cardiac contribution to epilepsy mortality. These results identified 13 priority targets for future functional studies of these genes potential role in sudden death and demonstrates the necessity for further exploration of potential genetic contributions to SUDEP.
Collapse
Affiliation(s)
- Amir Aschner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anne Keller
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Andrew Williams
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robyn Whitney
- McMaster Children’s Hospital, McMaster University, Hamilton, ON, Canada
| | - Kris Cunningham
- Department of Pathology and Molecular Medicine, School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Robert M. Hamilton
- Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael Pollanen
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Kim W, Lee H, Lee KW, Yang E, Kim S. The Association of Nocturnal Seizures and Interictal Cardiac/Central Autonomic Function in Frontal Lobe Epilepsy: Heart Rate Variability and Central Autonomic Network Analysis. Neuropsychiatr Dis Treat 2023; 19:2081-2091. [PMID: 37810949 PMCID: PMC10559795 DOI: 10.2147/ndt.s426263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Patients with epilepsy frequently experience autonomic dysfunction, closely related to sudden unexplained death in epilepsy (SUDEP). SUDEP occurs most often at night or during sleep, and frequent nocturnal seizures are an established risk factor. This study investigated the influence of nocturnal seizures on autonomic dysfunction in epilepsy. Patients and Methods This retrospective study enrolled frontal lobe epilepsy (FLE) patients who performed 24-hour EEG monitoring. All participants were divided into nocturnal FLE (NFLE, > 90% of seizures occurring during sleep) or diurnal FLE (DFLE) groups. EEG and ECG signals were simultaneously obtained during waking and sleep stages. EEG current density source and connectivity analysis of the autonomic network were performed. ECG was analyzed across time and frequency domains heart rate variability (HRV) analysis method was used. The obtained parameters were compared between the NFLE and DFLE groups. Results Fifteen NFLE and 16 DFLE patients were enrolled with no significant difference in age, sex, disease duration, seizure frequency, or the number of anti-seizure medications between the two groups. During sleep, a decrease in HRV parameters and an increase of the beta-1 (13-22 Hz) current source density power in the bilateral paracentral lobule (BA4,5,6), precuneus (BA7), and cingulate (BA31) were observed in the NFLE group compared to DFLE group. The NFLE group also showed hyperconnectivity in the central autonomic (12 edges distributed over 10 nodes), sympathetic (2 edges distributed over 3 nodes), and parasympathetic (4 edges distributed over 6 nodes) beta-1 frequency band networks during sleep. During wakefulness, central and cardiac autonomic variables were not significantly different between the NFLE and DFLE groups. Conclusion Interictal cardiac and central autonomic dysfunction occurred simultaneously and can be attributed to the brain-heart autonomic axis. Our findings suggest that nocturnal seizures may contribute to interictal autonomic dysfunction during sleep in people with epilepsy.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjo Lee
- Department of Neurology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Kyung Won Lee
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunjin Yang
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seonghoon Kim
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Giussani G, Falcicchio G, La Neve A, Costagliola G, Striano P, Scarabello A, Mostacci B, Beghi E. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023; 8:728-757. [PMID: 36896633 PMCID: PMC10472423 DOI: 10.1002/epi4.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a sudden, unexpected, witnessed or unwitnessed, non-traumatic and non-drowning death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus in which postmortem examination does not reveal other causes of death. Lower diagnostic levels are assigned when cases met most or all of these criteria, but data suggested more than one possible cause of death. The incidence of SUDEP ranged from 0.09 to 2.4 per 1000 person-years. Differences can be attributed to the age of the study populations (with peaks in the 20-40-year age group) and the severity of the disease. Young age, disease severity (in particular, a history of generalized TCS), having symptomatic epilepsy, and the response to antiseizure medications (ASMs) are possible independent predictors of SUDEP. The pathophysiological mechanisms are not fully known due to the limited data available and because SUDEP is not always witnessed and has been electrophysiologically monitored only in a few cases with simultaneous assessment of respiratory, cardiac, and brain activity. The pathophysiological basis of SUDEP may vary according to different circumstances that make that particular seizure, in that specific moment and in that patient, a fatal event. The main hypothesized mechanisms, which could contribute to a cascade of events, are cardiac dysfunction (included potential effects of ASMs, genetically determined channelopathies, acquired heart diseases), respiratory dysfunction (included postictal arousal deficit for the respiratory mechanism, acquired respiratory diseases), neuromodulator dysfunction, postictal EEG depression and genetic factors.
Collapse
Affiliation(s)
- Giorgia Giussani
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | | | - Pasquale Striano
- IRCCS Istituto “Giannina Gaslini”GenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Anna Scarabello
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Ettore Beghi
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
5
|
Singh V, Ryan JM, Auerbach DS. It is premature for a unified hypothesis of sudden unexpected death in epilepsy: A great amount of research is still needed to understand the multisystem cascade. Epilepsia 2023; 64:2006-2010. [PMID: 37129136 DOI: 10.1111/epi.17636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Justin M Ryan
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
6
|
Lee SS, El Ters N, Vesoulis ZA, Zempel JM, Mathur AM. Variable Association of Physiologic Changes With Electrographic Seizure-Like Events in Infants Born Preterm. J Pediatr 2023; 257:113348. [PMID: 36801212 PMCID: PMC10575679 DOI: 10.1016/j.jpeds.2022.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 02/17/2023]
Abstract
OBJECTIVES To determine the incidence of seizure-like events in a cohort of infants born preterm as well as the prevalence of associated vital sign changes (heart rate [HR], respiratory rate, and pulse oximetry [SpO2]). STUDY DESIGN We performed prospective conventional video electroencephalogram monitoring on infants born at 23-30 weeks of gestational age during the first 4 postnatal days. For detected seizure-like events, simultaneously captured vital sign data were analyzed during the pre-event baseline and during the event. Significant vital sign changes were defined as HR or respiratory rate >±2 SD from the infant's own baseline physiologic mean, derived from a 10-minute interval before the seizure-like event. Significant change in SpO2 was defined as oxygen desaturation during the event with a mean SpO2 <88%. RESULTS Our sample included 48 infants with median gestational age of 28 weeks (IQR 26-29) and birth weight of 1125 g (IQR 963-1265). Twelve (25%) infants had seizure-like discharges with a total of 201 events; 83% (10/12) of infants had vital sign changes during these events, and 50% (6/12) had significant vital sign changes during the majority of the seizure-like events. Concurrent HR changes occurred the most frequently. CONCLUSIONS Individual infant variability was observed in the prevalence of concurrent vital sign changes with electroencephalographic seizure-like events. Physiologic changes associated with preterm electrographic seizure-like events should be investigated further as a potential biomarker to assess the clinical significance of such events in the preterm population.
Collapse
Affiliation(s)
- Stephanie S Lee
- Division of Neonatology, Department of Pediatrics, University of Iowa Stead Family Children's Hospital, Iowa City, IA
| | - Nathalie El Ters
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, MO.
| | - Zachary A Vesoulis
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, MO
| | - John M Zempel
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO
| | - Amit M Mathur
- Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
7
|
Hovaguimian A. Dysautonomia. Neurol Clin 2022; 41:193-213. [DOI: 10.1016/j.ncl.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Gastrointestinal and Autonomic Symptoms—How to Improve the Diagnostic Process in Panayiotopoulos Syndrome? CHILDREN 2022; 9:children9060814. [PMID: 35740751 PMCID: PMC9222198 DOI: 10.3390/children9060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
One of the most common epileptic disorders in the pediatric population is Panayiotopoulos syndrome. Clinical manifestations of this idiopathic illness include predominantly autonomic symptoms and dysfunction of the cardiorespiratory system. Another feature constitutes prolonged seizures that usually occur at sleep. It is crucial to differentiate the aforementioned disease from other forms of epilepsy, especially occipital and structural epilepsy and non-epileptic disorders. The diagnostic process is based on medical history, clinical examination, neuroimaging and electroencephalography—though results of the latter may be unspecific. Patients with Panayiotopoulos syndrome (PS) do not usually require treatment, as the course of the disease is, in most cases, mild, and the prognosis is good. The purpose of this review is to underline the role of central autonomic network dysfunction in the development of Panayiotopoulos syndrome, as well as the possibility of using functional imaging techniques, especially functional magnetic resonance imaging (fMRI), in the diagnostic process. These methods could be crucial for understanding the pathogenesis of PS. More data arerequired to create algorithms that will be able to predict the exposure to various complications of PS. It also concerns the importance of electroencephalography (EEG) as a tool to distinguish Panayiotopoulos syndrome from other childhood epileptic syndromes and non-epileptic disorders.
Collapse
|
9
|
Gül Ü, Yolcu C, Ayça S, Elevli M. Effect of levetiracetam on cardiac repolarization in children with epilepsy. Epilepsy Res 2022; 179:106841. [PMID: 34894618 DOI: 10.1016/j.eplepsyres.2021.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Epileptic discharges occurring during seizure may affect many systems in the ictal, postictal, and interictal periods. Autonomic dysfunction and its negative impacts on the heart may cause life-threatening clinical manifestations, cardiac arrhythmias, and sudden cardiac death in epileptic patients. This study investigated the impact of levetiracetam (LEV) therapy on cardiac electrical activity in children with epilepsy. MATERIAL AND METHODS Our study included a total of 120 cases, comprising 40 newly diagnosed epilepsy patients, 40 epilepsy patients who had been receiving LEV therapy for at least 6 months, and 40 healthy individuals. Age at diagnosis, duration of LEV treatment, and familial history of cardiac disease were recorded in a standardized form. Electrocardiogram (ECG) parameters were calculated for all cases, echocardiography (ECHO) findings were noted, and the obtained data were compared using statistical methods. RESULTS A comparison of the ECG parameters showed that the Tpeak-Tend (Tp-e) interval, and the Tp-e/QT dispersion (QTd) and Tp-e/QTc dispersion (QTcd) ratios, of the newly diagnosed epilepsy patients were statistically significantly increased compared with the other two groups (p = <0.001, p = 0.001, and p = 0.007, respectively). There were no statistically significant differences between the three groups in terms of QTd and QTcd. DISCUSSION The repolarization differences in children with newly diagnosed epilepsy may have reflected early subclinical findings associated with the disease. We concluded that LEV monotherapy may make a positive contribution to early repolarization differences.
Collapse
Affiliation(s)
- Ümit Gül
- Haseki Education and Training Hospital, Department of Pediatrics, Istanbul, Turkey
| | - Canan Yolcu
- Haseki Education and Training Hospital, Department of Pediatric Cardiology, Istanbul, Turkey
| | - Senem Ayça
- Haseki Education and Training Hospital, Department of Pediatric Neurology, Istanbul, Turkey.
| | - Murat Elevli
- Haseki Education and Training Hospital, Department of Pediatrics, Istanbul, Turkey
| |
Collapse
|
10
|
Shaker KK, Al Mahdawi AM, Hamdan FB. Interictal autonomic dysfunction in patients with epilepsy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00422-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Abstract
Background
Autonomic nervous system (ANS) symptoms are frequently present in people with epilepsy (PwE). They are generally more prominent when they originate from the temporal lobe. We aim to investigate the alterations of autonomic functions during the interictal period in patient with temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) using heart-based tests, blood pressure (BP)-based tests and sympathetic skin response (SSR). Forty-eight PwE with disease duration ranging from 2 to 15 years and 51 healthy individuals were studied. Long-term electroencephalography (EEG) monitoring, the heart rate variability (HRV) during normal breathing, deep breathing, Valsalva maneuver and standing, BP responses during standing, to isometric hand grip and to mental arithmetic, and the SSR was recorded for all participants.
Results
31 patients with TLE and 17 with IGE showed lower RR-IV values during deep breathing, Valsalva maneuver and standing, but not during rest, impaired BP responses during standing, isometric hand grip, and mental arithmetic. Also, prolonged SSR latencies. Within PwE group, no difference was noticed between males and females, nor between the left and right temporal lobes.
Conclusion
Abnormal autonomic (sympathetic and parasympathetic) regulatory functions suggest that epilepsy may alter the autonomic function and this is not only in TLE but rather in IGE too. These autonomic changes are irrespective of the localization of epilepsy between the two hemispheres. The ANS changes in epileptic patients, particularly those with autonomic symptoms, confirm that electrophysiologic measures of autonomic function may be of value in preventing sudden unexpected death in epilepsy.
Collapse
|
11
|
Statello R, Carnevali L, Sgoifo A, Miragoli M, Pisani F. Heart rate variability in neonatal seizures: Investigation and implications for management. Neurophysiol Clin 2021; 51:483-492. [PMID: 34774410 DOI: 10.1016/j.neucli.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many factors acting during the neonatal period can affect neurological development of the infant. Neonatal seizures (NS) that frequently occur in the immature brain may influence autonomic maturation and lead to detectable cardiovascular signs. These autonomic manifestations can also have significant diagnostic and prognostic value. The analysis of Heart Rate Variability (HRV) represents the most used and feasible method to evaluate cardiac autonomic regulation. This narrative review summarizes studies investigating HRV dynamics in newborns with seizures, with the aim of highlighting the potential utility of HRV measures for seizure detection and management. While HRV analysis in critically ill newborns is influenced by many potential confounders, we suggest that it can enhance the ability to better diagnose seizures in the clinical setting. We present potential applications of the analysis of HRV, which could have a useful future role, beyond the research setting.
Collapse
Affiliation(s)
- Rosario Statello
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Departement of Molecular Cardiology, Humanitas Research Hospital, IRCCS, Rozzano MI, Italy.
| | - Francesco Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
12
|
Shlobin NA, Sander JW. Reducing Sudden Unexpected Death in Epilepsy: Considering Risk Factors, Pathophysiology and Strategies. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00691-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose of Review
Sudden Unexpected Death in Epilepsy (SUDEP) is the commonest cause of epilepsy-related premature mortality in people with chronic epilepsy. It is the most devastating epilepsy outcome. We describe and discuss risk factors and possible pathophysiological mechanisms to elucidate possible preventative strategies to avert SUDEP.
Recent Findings
Sudden death accounts for a significant proportion of premature mortality in people with epilepsy compared to the general population. Unmodifiable risk factors include a history of neurologic insult, younger age of seizure-onset, longer epilepsy duration, a history of convulsions, symptomatic epilepsy, intellectual disability, and non-ambulatory status. Modifiable risk factors include the presence of convulsive seizures, increased seizure frequency, timely and appropriate use of antiseizure medications, polytherapy, alcoholism, and supervision while sleeping. Pathophysiology is unclear, but several possible mechanisms such as direct alteration of cardiorespiratory function, pulmonary impairment, electrocerebral shutdown, adenosine dysfunction, and genetic susceptibility suggested.
Summary
Methods to prevent SUDEP include increasing awareness of SUDEP, augmenting knowledge of unmodifiable risk factors, obtaining full seizure remission, addressing lifestyle factors such as supervision and prone positioning, and enacting protocols to increase the detection of and intervention for SUDEP. Further studies are required to characterize precisely and comprehensively SUDEP risk factors and pathophysiological drivers and develop evidence-based algorithms to minimize SUDEP in people with epilepsy.
Collapse
|
13
|
Frontal lobe hypometabolism associated with Sudden Unexpected Death in Epilepsy (SUDEP) risk: An objective PET study. Epilepsy Behav 2021; 122:108185. [PMID: 34252829 DOI: 10.1016/j.yebeh.2021.108185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Abnormalities of brain structures and neuronal networks have been identified in MRI studies of patients with Sudden Unexpected Death in Epilepsy (SUDEP) as well as in those at elevated risk. The goal of this study was to identify common patterns of objectively detected brain glucose metabolic abnormalities associated with SUDEP patients and those at high SUDEP risk. METHODS Patients with refractory epilepsy (n = 78, age: 16-61 years, 44 females), who underwent comprehensive presurgical evaluation, were assessed for their risk of SUDEP using the revised SUDEP-7 inventory. From the 57 patients with low SUDEP risk, 35 were selected to match their demographic and clinical characteristics to those with high SUDEP risk (n = 21). [18F]fluoro-deoxy-glucose positron emission tomography (FDG-PET) abnormalities were evaluated in the high- and low-SUDEP risk subgroups compared to FDG-PET scans of a healthy adult control group using statistical parametric mapping (SPM). Individual FDG-PET scans of 4 additional patients, who died from SUDEP, were also analyzed by SPM. RESULTS Mean SUDEP-7 score was 6.1 in the high and 2.7 in the low SUDEP risk group. MRI showed no lesion in 36 patients (64%). Statistical parametric mapping analysis of the high SUDEP risk subgroup showed bilateral medial frontal and inferior frontal hypometabolism as a common pattern. The low-risk group showed no specific common metabolic abnormalities on SPM group analysis. Individual PET scans of all 4 patients who died from SUDEP also showed bilateral frontal lobe hypometabolism. CONCLUSIONS These data show that bilateral frontal lobe involvement on FDG-PET, especially the medial and inferior frontal cortex, may be a common metabolic pattern associated with high SUDEP risk and SUDEP itself, in patients with refractory focal epilepsy.
Collapse
|
14
|
Farrenburg M, Rali A, Grodzinsky A, Landazuri P. Cardiology perspective on seizure-related bradyarrhythmias and SUDEP: A survey study. Epilepsy Behav 2021; 122:108188. [PMID: 34252834 DOI: 10.1016/j.yebeh.2021.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine cardiologist knowledge of and experience with seizure-related bradyarrhythmias and sudden unexpected death in epilepsy (SUDEP). BACKGROUND Autonomic changes related to acute seizures are common and can occur during the ictal or postictal period. Two concerning changes in these periods are significant bradycardia and asystole. Postictal asystole has been investigated as a potential mechanism for SUDEP. METHODS A 27-question survey delivered to cardiologists and cardiology fellows assessed demographics, personal experience, and training involving SUDEP and seizure-related bradycardia and asystole. Following IRB approval, a list of US cardiology fellowships was constructed using the AAMC public website. Surveys were distributed by email to all programs whose program director or coordinator's email was readily available on their website. They were asked to forward the survey to both cardiology fellows and practicing cardiologists. RESULTS Fifty one surveys were completed: 23 from fellows and 28 from practicing cardiologists. Forty nine were from academic centers. Twenty four respondents (47%) reported being consulted for ictal bradycardia or asystole. Nine and 13 recommended treatment for ictal bradycardia or ictal asystole, respectively. Nineteen respondents (37%) reported being consulted for postictal bradycardia or asystole. Eight recommended treatment for postictal bradycardia or asystole, respectively. Treatment recommendations included medical management and/or pacemaker. None reported a substantial knowledge of SUDEP. The most common response interrogating SUDEP awareness (63%) was "no knowledge of SUDEP". Formal SUDEP education was not reported by any participant with only one reporting formal didactics regarding seizure-related arrhythmias. DISCUSSION Our results suggest ictal bradyarrhythmias are less commonly known to cardiologists, with SUDEP awareness being far less. Formal education to cardiologists on these two topics could prove beneficial at the intersection of cardiology and care for patients with epilepsy.
Collapse
Affiliation(s)
- Mark Farrenburg
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, United States.
| | - Aniket Rali
- Department of Cardiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, United States
| | - Anna Grodzinsky
- Cardiovascular Division, Saint Luke's Mid America Heart Institute, 4401 Wornall Rd., Kansas City, MO 64111, United States
| | - Patrick Landazuri
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, United States
| |
Collapse
|
15
|
Seizures and status epilepticus may be risk factor for cardiac arrhythmia or cardiac arrest across multiple time frames. Epilepsy Behav 2021; 120:107998. [PMID: 33991906 DOI: 10.1016/j.yebeh.2021.107998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine if Emergency Department (ED) or inpatient encounters for epilepsy or status epilepticus are associated with increased odds of cardiac arrhythmia or cardiac arrest over successively longer time frames. METHODS The State Inpatient and ED Databases (from New York, Florida, and California) are statewide datasets containing data on 97% of hospitalizations and ED encounters from these states. In this retrospective, case-crossover study, we used International Classification of Diseases, Ninth Revision, Clinical Modification codes to identify index cardiac arrhythmia encounters. Exposures were inpatient or ED encounters for epilepsy or status epilepticus. The case-crossover analysis tested whether an epilepsy or status epilepticus encounter within various case periods (1, 3, 7, 30, 60, 90, and 180 days prior to index encounter) was associated with subsequent ED or inpatient encounter for cardiac arrhythmia, as compared to control periods of equal length one year prior. RESULTS The odds ratio (OR) for cardiac arrhythmia after an epilepsy encounter was significant at all time intervals (OR range 2.37-3.36), and highest at 1 day after epilepsy encounter (OR 3.63, 95% confidence interval [CI] 1.66-7.93, p = 0.0013). The OR after status epilepticus was significant at 7- to 180-day intervals (OR range 2.25-2.74), and highest at 60 days (OR 2.74, CI 2.09-3.61, p < 0.0001). SIGNIFICANCE Epilepsy and status epilepticus events are associated with increased odds of subsequent cardiac arrhythmia or cardiac arrest over multiple chronic timeframes. Increased cardiac surveillance may be warranted to minimize morbidity and mortality in patients with epilepsy.
Collapse
|
16
|
Chen SF, Pan HY, Huang CR, Huang JB, Tan TY, Chen NC, Hsu CY, Chuang YC. Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy. J Pers Med 2021; 11:jpm11040313. [PMID: 33920691 PMCID: PMC8073240 DOI: 10.3390/jpm11040313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
Patients with epilepsy frequently experience autonomic dysfunction and impaired cerebral autoregulation. The present study investigates autonomic function and cerebral autoregulation in patients with epilepsy to determine whether these factors contribute to impaired autoregulation. A total of 81 patients with epilepsy and 45 healthy controls were evaluated, assessing their sudomotor, cardiovagal, and adrenergic functions using a battery of autonomic nervous system (ANS) function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial Doppler examination during the breath-holding test, the Valsalva maneuver, and the head-up tilting test. Autonomic functions were impaired during the interictal period in patients with epilepsy compared to healthy controls. The three indices of cerebral autoregulation—the breath-holding index (BHI), an autoregulation index calculated in phase II of the Valsalva maneuver (ASI), and cerebrovascular resistance measured in the second minute during the head-up tilting test (CVR2-min)—all decreased in patients with epilepsy. ANS dysfunction correlated significantly with impairment of cerebral autoregulation (measured by BHI, ASI, and CVR2-min), suggesting that the increased autonomic dysfunction in patients with epilepsy may augment the dysregulation of cerebral blood flow. Long-term epilepsy, a high frequency of seizures, and refractory epilepsy, particularly temporal lobe epilepsy, may contribute to advanced autonomic dysfunction and impaired cerebral autoregulation. These results have implications for therapeutic interventions that aim to correct central autonomic dysfunction and impairment of cerebral autoregulation, particularly in patients at high risk for sudden, unexplained death in epilepsy.
Collapse
Affiliation(s)
- Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Yung Pan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jyun-Bin Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Teng-Yeow Tan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence:
| |
Collapse
|
17
|
de Melo IS, Dos Santos YMO, Pacheco ALD, Costa MA, de Oliveira Silva V, Freitas-Santos J, de Melo Bastos Cavalcante C, Silva-Filho RC, Leite ACR, Gitaí DGL, Duzzioni M, Sabino-Silva R, Borbely AU, de Castro OW. Role of Modulation of Hippocampal Glucose Following Pilocarpine-Induced Status Epilepticus. Mol Neurobiol 2021; 58:1217-1236. [PMID: 33123979 DOI: 10.1007/s12035-020-02173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 μL) or glucose (GLU; 1, 2 or 3 mM, 1 μL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Amanda Larissa Dias Pacheco
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Maisa Araújo Costa
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Vanessa de Oliveira Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Jucilene Freitas-Santos
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Reginaldo Correia Silva-Filho
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ana Catarina Rezende Leite
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Daniel Góes Leite Gitaí
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil
| | - Alexandre Urban Borbely
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
18
|
Petrucci AN, Joyal KG, Chou JW, Li R, Vencer KM, Buchanan GF. Post-ictal Generalized EEG Suppression is reduced by Enhancing Dorsal Raphe Serotonergic Neurotransmission. Neuroscience 2020; 453:206-221. [PMID: 33242541 DOI: 10.1016/j.neuroscience.2020.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. A proposed risk marker for SUDEP is the duration of post-ictal generalized EEG suppression (PGES). The mechanisms underlying PGES are unknown. Serotonin (5-HT) has been implicated in SUDEP pathophysiology. Seizures suppress activity of 5-HT neurons in the dorsal raphe nucleus (DRN). We hypothesized that suppression of DRN 5-HT neuron activity contributes to PGES and increasing 5-HT neurotransmission or stimulating the DRN before a seizure would decrease PGES duration. Adult C57BL/6J and Pet1-Cre mice received EEG/EMG electrodes, a bipolar stimulating/recording electrode in the right basolateral amygdala, and either a microdialysis guide cannula or an injection of adeno-associated virus (AAV) allowing expression of channelrhodopsin2 plus an optic fiber into the DRN. Systemic application of the selective 5-HT reuptake inhibitor citalopram (20 mg/kg) decreased PGES duration from seizures induced during wake (n = 23) and non-rapid eye movement (NREM) sleep (n = 13) whereas fluoxetine (10 mg/kg) pretreatment decreased PGES duration following seizures induced from wake (n = 11), but not NREM sleep (n = 9). Focal chemical (n = 6) or optogenetic (n = 8) stimulation of the DRN reduced PGES duration following seizures in kindled mice induced during wake. During PGES, animals exhibited immobility and suppression of EEG activity that was reduced by citalopram pretreatment. These results suggest 5-HT and the DRN may regulate PGES.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| | - Jonathan W Chou
- Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, United States.
| | - Rui Li
- Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| | - Kimberly M Vencer
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, United States
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
19
|
de Melo IS, Pacheco ALD, Dos Santos YMO, Figueiredo LM, Nicacio DCSP, Cardoso-Sousa L, Duzzioni M, Gitaí DLG, Tilelli CQ, Sabino-Silva R, de Castro OW. Modulation of Glucose Availability and Effects of Hypo- and Hyperglycemia on Status Epilepticus: What We Do Not Know Yet? Mol Neurobiol 2020; 58:505-519. [PMID: 32975651 DOI: 10.1007/s12035-020-02133-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) can lead to serious neuronal damage and act as an initial trigger for epileptogenic processes that may lead to temporal lobe epilepsy (TLE). Besides promoting neurodegeneration, neuroinflammation, and abnormal neurogenesis, SE can generate an extensive hypometabolism in several brain areas and, consequently, reduce intracellular energy supply, such as adenosine triphosphate (ATP) molecules. Although some antiepileptic drugs show efficiency to terminate or reduce epileptic seizures, approximately 30% of TLE patients are refractory to regular antiepileptic drugs (AEDs). Modulation of glucose availability may provide a novel and robust alternative for treating seizures and neuronal damage that occurs during epileptogenesis; however, more detailed information remains unknown, especially under hypo- and hyperglycemic conditions. Here, we review several pathways of glucose metabolism activated during and after SE, as well as the effects of hypo- and hyperglycemia in the generation of self-sustained limbic seizures. Furthermore, this study suggests the control of glucose availability as a potential therapeutic tool for SE.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Yngrid Mickaelli Oliveira Dos Santos
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Laura Mello Figueiredo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Dannyele Cynthia Santos Pimentel Nicacio
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Leia Cardoso-Sousa
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), ARFIS, Av. Pará, 1720, Campus Umuruama, Uberlandia, MG, CEP 38400-902, Brazil
| | - Marcelo Duzzioni
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Cristiane Queixa Tilelli
- Physiology Laboratory, Federal University of Sao Joao del Rei (UFSJ), Central-West Campus, Divinopolis, MG, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), ARFIS, Av. Pará, 1720, Campus Umuruama, Uberlandia, MG, CEP 38400-902, Brazil.
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| |
Collapse
|
20
|
Natera-de Benito D, Muchart J, Itzep D, Ortez C, González-Quereda L, Gallano P, Ramirez A, Aparicio J, Domínguez-Carral J, Carrera-García L, Expósito-Escudero J, Pardo Cardozo N, Cuadras D, Codina A, Jou C, Jimenez-Mallebrera C, Palau F, Colomer J, Arzimanoglou A, Nascimento A, San Antonio-Arce V. Epilepsy in LAMA2-related muscular dystrophy: An electro-clinico-radiological characterization. Epilepsia 2020; 61:971-983. [PMID: 32266982 DOI: 10.1111/epi.16493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To delineate the epileptic phenotype of LAMA2-related muscular dystrophy (MD) and correlate it with the neuroradiological and muscle biopsy findings, as well as the functional motor phenotype. METHODS Clinical, electrophysiological, neuroradiological, and histopathological data of 25 patients with diagnosis of LAMA2-related MD were analyzed. RESULTS Epilepsy occurred in 36% of patients with LAMA2-related MD. Mean age at first seizure was 8 years. The most common presenting seizure type was focal-onset seizures with or without impaired awareness. Visual aura and autonomic signs, including vomiting, were frequently reported. Despite a certain degree of variability, bilateral occipital or temporo-occipital epileptiform abnormalities were by far the most commonly observed. Refractory epilepsy was found in 75% of these patients. Epilepsy in LAMA2-related MD was significantly more prevalent in those patients in whom the cortical malformations were more extensive. In contrast, the occurrence of epilepsy was not found to be associated with the patients' motor ability, the size of their white matter abnormalities, or the amount of residual merosin expressed on muscle. SIGNIFICANCE The epileptic phenotype of LAMA2-related MD is characterized by focal seizures with prominent visual and autonomic features associated with EEG abnormalities that predominate in the posterior quadrants. A consistent correlation between epileptic phenotype and neuroimaging was identified, suggesting that the extension of the polymicrogyria may serve as a predictor of epilepsy occurrence.
Collapse
Affiliation(s)
- Daniel Natera-de Benito
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Jordi Muchart
- Department of Radiology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Debora Itzep
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Lidia González-Quereda
- Department of Genetics, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Pía Gallano
- Department of Genetics, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Alia Ramirez
- Unit of Epilepsy, Sleep and Neurophysiology, Neuropaediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Javier Aparicio
- Unit of Epilepsy, Sleep and Neurophysiology, Neuropaediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jana Domínguez-Carral
- Unit of Epilepsy, Sleep and Neurophysiology, Neuropaediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laura Carrera-García
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Jessica Expósito-Escudero
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Nathalia Pardo Cardozo
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Daniel Cuadras
- Statistics Department, Fundació Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Francesc Palau
- Department of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain.,Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Institute of Medicine and Dermatology, Hospital Clínic and Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Alexis Arzimanoglou
- Unit of Epilepsy, Sleep and Neurophysiology, Neuropaediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Epileptology, Sleep Disorders and Functional Pediatric Neurology, Member of ERN-EpiCARE; HFME, Hospices Civils de Lyon, Bron, France
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Victoria San Antonio-Arce
- Unit of Epilepsy, Sleep and Neurophysiology, Neuropaediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
21
|
Verrier RL, Pang TD, Nearing BD, Schachter SC. The Epileptic Heart: Concept and clinical evidence. Epilepsy Behav 2020; 105:106946. [PMID: 32109857 DOI: 10.1016/j.yebeh.2020.106946] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is generally considered to result from a seizure, typically convulsive and usually but not always occurring during sleep, followed by a sequence of events in the postictal period starting with respiratory distress and progressing to eventual cardiac asystole and death. Yet, recent community-based studies indicate a 3-fold greater incidence of sudden cardiac death in patients with chronic epilepsy than in the general population, and that in 66% of cases, the cardiac arrest occurred during routine daily activity and without a temporal relationship with a typical seizure. To distinguish a primarily cardiac cause of death in patients with epilepsy from the above description of SUDEP, we propose the concept of the "Epileptic Heart" as "a heart and coronary vasculature damaged by chronic epilepsy as a result of repeated surges in catecholamines and hypoxemia leading to electrical and mechanical dysfunction." This review starts with an overview of the pathophysiological and other lines of evidence supporting the biological plausibility of the Epileptic Heart, followed by a description of tools that have been used to generate new electrocardiogram (EKG)-derived data in patients with epilepsy that strongly support the Epileptic Heart concept and its propensity to cause sudden cardiac death in patients with epilepsy independent of an immediately preceding seizure.
Collapse
Affiliation(s)
- Richard L Verrier
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America.
| | - Trudy D Pang
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America
| | - Bruce D Nearing
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America
| | - Steven C Schachter
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine and Department of Neurology, Boston, MA United States of America
| |
Collapse
|
22
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
23
|
Graziosi A, Pellegrino N, Di Stefano V, Raucci U, Luchetti A, Parisi P. Misdiagnosis and pitfalls in Panayiotopoulos syndrome. Epilepsy Behav 2019; 98:124-128. [PMID: 31369969 DOI: 10.1016/j.yebeh.2019.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 11/19/2022]
Abstract
Panayiotopoulos syndrome (PS) is a frequent (6% among children of 1-15 years) and benign epileptic syndrome, characterized by predominantly autonomic symptoms (emesis, pallor, flushing, cyanosis, mydriasis/miosis, cardiorespiratory and thermoregulatory alterations, incontinence of urine and/or feces, hypersalivation, and modifications of intestinal motility) associated with simple motor focal seizures, which can be followed by secondary generalization. Panayiotopoulos syndrome can be extremely insidious, because it can mimic several condition, such as gastroenteritis, gastroesophageal reflux disease, encephalitis, syncope, migraine, sleep disorders, or even metabolic diseases. This peculiar pleiotropism should be kept in mind by child neurologists and pediatricians and general practitioners, because a wrong diagnosis may lead to inappropriate interventions. The consequences are high morbidity, costly mismanagement, and stress for children and their parents. The availability of electroencephalography (EEG) recording in pediatric Emergency Departments might be useful for a prompt and not-cost-consuming diagnosis. On the other hand, it is important to be aware of the possible, multifaceted, clinical presentations of PS and its clinical, radiological, and neurophysiological features in order to improve both recognition and management.
Collapse
Affiliation(s)
| | - Noemi Pellegrino
- Department of Pediatrics, "G. d'Annunzio" University, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Umberto Raucci
- Pediatric Emergency Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Luchetti
- Child Neurology, NESMOS Department, Faculty of Medicine & Psychology, "Sapienza" University, c/o Sant'Andrea Hospital, Rome, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine & Psychology, "Sapienza" University, c/o Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
24
|
Amygdala rapid kindling impairs breathing in response to chemoreflex activation. Brain Res 2019; 1718:159-168. [DOI: 10.1016/j.brainres.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/16/2019] [Accepted: 05/12/2019] [Indexed: 01/10/2023]
|
25
|
Affiliation(s)
| | - George L Morris
- Wisconsin Ascension Health Care, Milwaukee, Wisconsin (G.L.M.)
| |
Collapse
|
26
|
Abstract
Several aspects of thermoregulation play a role in epilepsy. Circuitries involved in thermoregulation are affected by seizures and epilepsy, hyperthermia may be both cause and result of seizures, and hypothermia may prevent or abort seizures. Autonomic manifestations of seizures including thermoregulatory disturbances are common in a variety of clinical epilepsy syndromes. Experimental hyperthermia has been studied extensively, predominantly to investigate febrile seizures of childhood. In particular prolonged or complex febrile seizures have been associated with the later development of epilepsy in adulthood and the pathophysiology of how febrile seizures cause epilepsy is of tremendous interest. Febrile seizures represent an opportunity to potentially intervene early in life in susceptible individuals and affect epileptogenesis. The pathophysiologic underpinnings of how hyperthermia induces seizures and how this in turn results in epilepsy are controversial, but likely involve multiple factors. Both glutamatergic and GABAergic neurotransmission is affected, and numerous mutations in genes encoding ion channels have been identified. Cytokines such as interleukin-1β have been implicated in febrile seizures as well as susceptibility to provoked seizures later in life. Hyperthermia is a common feature of generalized convulsive status epilepticus, but may also be seen with nonconvulsive seizures, indicating involvement of thermoregulatory centers.
Collapse
Affiliation(s)
- Sebastian Pollandt
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States.
| | - Thomas P Bleck
- Departments of Neurological Sciences, Neurosurgery, Medicine, and Anesthesiology, Rush Medical College, Chicago, IL, United States; Clinical Neurophysiology Laboratory, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
27
|
DeGiorgio CM, Curtis A, Hertling D, Moseley BD. Sudden unexpected death in epilepsy: Risk factors, biomarkers, and prevention. Acta Neurol Scand 2019; 139:220-230. [PMID: 30443951 DOI: 10.1111/ane.13049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is one of the most important direct epilepsy-related causes of death, with an incidence in adults of 1.2 per 1000 person-years. Generalized tonic-clonic seizures have consistently emerged as the leading risk factor for SUDEP, particularly when such seizures are uncontrolled. High seizure burden, lack of antiepileptic drug (AED) treatment, polytherapy, intellectual disability, and prone position at the time of death are other key risk factors. Unfortunately, despite advances in treatment, overall mortality rates in epilepsy are rising. It is imperative that we learn more about SUDEP so that effective prevention strategies can be implemented. To help identify persons at greater risk of SUDEP and in need of closer monitoring, biomarkers are needed. Candidate biomarkers include electrocardiographic, electroencephalographic, and imaging abnormalities observed more frequently in those who have died suddenly and unexpectedly. As our knowledge of the pathophysiologic mechanisms behind SUDEP has increased, various preventative measures have been proposed. These include lattice pillows, postictal oxygen therapy, selective serotonin reuptake inhibitors, and inhibitors of opiate and adenosine receptors. Unfortunately, no randomized clinical trials are available to definitively conclude these measures are effective. Rather, gaining the best control of seizures possible (with AEDs, devices, and resective surgery) still remains the intervention with the best evidence to reduce the risk of SUDEP. In this evidence-based review, we explore the incidence of SUDEP and review the risk factors, biomarkers, and latest prevention strategies.
Collapse
Affiliation(s)
| | - Ashley Curtis
- Undergraduate Interdepartmental Program for Neuroscience, UCLA Los Angeles California
| | - Dieter Hertling
- Undergraduate Interdepartmental Program for Neuroscience, UCLA Los Angeles California
| | - Brian D. Moseley
- Department of Neurology and Rehabilitation Medicine University of Cincinnati Cincinnati Ohio
| |
Collapse
|
28
|
Thom M, Boldrini M, Bundock E, Sheppard MN, Devinsky O. Review: The past, present and future challenges in epilepsy-related and sudden deaths and biobanking. Neuropathol Appl Neurobiol 2019; 44:32-55. [PMID: 29178443 PMCID: PMC5820128 DOI: 10.1111/nan.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Awareness and research on epilepsy-related deaths (ERD), in particular Sudden Unexpected Death in Epilepsy (SUDEP), have exponentially increased over the last two decades. Most publications have focused on guidelines that inform clinicians dealing with these deaths, educating patients, potential risk factors and mechanisms. There is a relative paucity of information available for pathologists who conduct these autopsies regarding appropriate post mortem practice and investigations. As we move from recognizing SUDEP as the most common form of ERD toward in-depth investigations into its causes and prevention, health professionals involved with these autopsies and post mortem procedure must remain fully informed. Systematizing a more comprehensive and consistent practice of examining these cases will facilitate (i) more precise determination of cause of death, (ii) identification of SUDEP for improved epidemiological surveillance (the first step for an intervention study), and (iii) biobanking and cell-based research. This article reviews how pathologists and healthcare professionals have approached ERD, current practices, logistical problems and areas to improve and harmonize. The main neuropathology, cardiac and genetic findings in SUDEP are outlined, providing a framework for best practices, integration of clinical, pathological and molecular genetic investigations in SUDEP, and ultimately prevention.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - M Boldrini
- Department of Psychiatry, Columbia University Medical Centre, Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - E Bundock
- Office of the Chief Medical Examiner, Burlington, VT, USA
| | - M N Sheppard
- Department of Pathology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - O Devinsky
- Department of Neurology, NYU Epilepsy Center, New York, NY, USA
| |
Collapse
|
29
|
Manolis TA, Manolis AA, Melita H, Manolis AS. Sudden unexpected death in epilepsy: The neuro-cardio-respiratory connection. Seizure 2019; 64:65-73. [DOI: 10.1016/j.seizure.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
|
30
|
Chen SF, Jou SB, Chen NC, Chuang HY, Huang CR, Tsai MH, Tan TY, Tsai WC, Chang CC, Chuang YC. Serum Levels of Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor 1 Are Associated With Autonomic Dysfunction and Impaired Cerebral Autoregulation in Patients With Epilepsy. Front Neurol 2018; 9:969. [PMID: 30524358 PMCID: PMC6256185 DOI: 10.3389/fneur.2018.00969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) may regulate the autonomic nervous system (ANS) in epilepsy. The present study investigated the role of IGF-1 and BDNF in the regulation of autonomic functions and cerebral autoregulation in patients with epilepsy. Methods: A total of 57 patients with focal epilepsy and 35 healthy controls were evaluated and their sudomotor, cardiovagal, and adrenergic functions were assessed using a battery of ANS function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial doppler during the breath-holding test and the Valsalva maneuver. Interictal serum levels of BDNF and IGF-1 were measured with enzyme-linked immunosorbent assay kits. Results: During interictal period, reduced serum levels of BDNF and IGF-1, impaired autonomic functions, and decreased cerebral autoregulation were noted in patients with epilepsy compared with healthy controls. Reduced serum levels of BDNF correlated with age, adrenergic and sudomotor function, overall autonomic dysfunction, and the autoregulation index calculated in Phase II of the Valsalva maneuver, and showed associations with focal to bilateral tonic-clonic seizures. Reduced serum levels of IGF-1 were found to correlate with age and cardiovagal function, a parameter of cerebral autoregulation (the breath-hold index). Patients with a longer history of epilepsy, higher seizure frequency, and temporal lobe epilepsy had lower serum levels of IGF-1. Conclusions: Long-term epilepsy and severe epilepsy, particularly temporal lobe epilepsy, may perturb BDNF and IGF-1 signaling in the central autonomic system, contributing to the autonomic dysfunction and impaired cerebral autoregulation observed in patients with focal epilepsy.
Collapse
Affiliation(s)
- Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shuo-Bin Jou
- Department of Neurology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital and School of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Teng-Yeow Tan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Chen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Mamalyga ML, Mamalyga LM. Functional Capacity of the Heart in Progressive Convulsive Readiness. Bull Exp Biol Med 2018; 165:715-720. [PMID: 30353347 DOI: 10.1007/s10517-018-4249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 11/25/2022]
Abstract
Different levels of progressive convulsive readiness variously influence the dynamics of changes in heart rate variability parameters, inotropic and lusitropic reserves of the myocardium, which reflects the dependence of cardiac function on the level of convulsive readiness. Its increase is accompanied by a shift in autonomic balance towards potentiation of sympathetic influences on the heart, as well as a decrease in not only systolic, but also diastolic function, which reduces functional capacity of the heart and can lead to decompensation and prenosological state.
Collapse
Affiliation(s)
- M L Mamalyga
- Moscow Pedagogical State University, Moscow, Russia.
| | - L M Mamalyga
- Moscow Pedagogical State University, Moscow, Russia
| |
Collapse
|
32
|
Chen C, Holth JK, Bunton-Stasyshyn R, Anumonwo CK, Meisler MH, Noebels JL, Isom LL. Mapt deletion fails to rescue premature lethality in two models of sodium channel epilepsy. Ann Clin Transl Neurol 2018; 5:982-987. [PMID: 30128323 PMCID: PMC6093838 DOI: 10.1002/acn3.599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Deletion of Mapt, encoding the microtubule‐binding protein Tau, prevents disease in multiple genetic models of hyperexcitability. To investigate whether the effect of Tau depletion is generalizable across multiple sodium channel gene‐linked models of epilepsy, we examined the Scn1b−/− mouse model of Dravet syndrome, and the Scn8aN1768D/+ model of Early Infantile Epileptic Encephalopathy. Both models display severe seizures and early mortality. We found no prolongation of survival between Scn1b−/−,Mapt+/+, Scn1b−/−,Mapt+/−, or Scn1b−/−,Mapt−/− mice or between Scn8aN1768D/+,Mapt+/+, Scn8aN1768D/+,Mapt+/−, or Scn8aN1768D/+,Mapt−/− mice. Thus, the effect of Mapt deletion on mortality in epileptic encephalopathy models is gene specific and provides further mechanistic insight.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Pharmacology University of Michigan Medical School Ann Arbor Michigan 48109
| | - Jerrah K Holth
- Department of Neurology Baylor College of Medicine Houston Texas 77030.,Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas 77030.,Present address: Department of Neurology Washington University St. Louis Missouri 63110
| | - Rosie Bunton-Stasyshyn
- Department of Human Genetics University of Michigan Medical School Ann Arbor Michigan 48109
| | - Charles K Anumonwo
- Department of Pharmacology University of Michigan Medical School Ann Arbor Michigan 48109
| | - Miriam H Meisler
- Department of Human Genetics University of Michigan Medical School Ann Arbor Michigan 48109
| | - Jeffrey L Noebels
- Department of Neurology Baylor College of Medicine Houston Texas 77030.,Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas 77030
| | - Lori L Isom
- Department of Pharmacology University of Michigan Medical School Ann Arbor Michigan 48109
| |
Collapse
|
33
|
Özer G. Autonomic Dysfunction in Epileptic Patients. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2018. [DOI: 10.5799/jcei.433809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Nguyen-Michel VH, Solano O, Leu-Semenescu S, Pierre-Justin A, Gales A, Navarro V, Baulac M, Adam C, Dupont S, Arnulf I. Rapid eye movement sleep behavior disorder or epileptic seizure during sleep? A video analysis of motor events. Seizure 2018; 58:1-5. [DOI: 10.1016/j.seizure.2018.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
|
35
|
Simó M, Navarro X, Yuste VJ, Bruna J. Autonomic nervous system and cancer. Clin Auton Res 2018; 28:301-314. [DOI: 10.1007/s10286-018-0523-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
|
36
|
Kim Y, Bravo E, Thirnbeck CK, Smith-Mellecker LA, Kim SH, Gehlbach BK, Laux LC, Zhou X, Nordli DR, Richerson GB. Severe peri-ictal respiratory dysfunction is common in Dravet syndrome. J Clin Invest 2018; 128:1141-1153. [PMID: 29329111 DOI: 10.1172/jci94999] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022] Open
Abstract
Dravet syndrome (DS) is a severe childhood-onset epilepsy commonly due to mutations of the sodium channel gene SCN1A. Patients with DS have a high risk of sudden unexplained death in epilepsy (SUDEP), widely believed to be due to cardiac mechanisms. Here we show that patients with DS commonly have peri-ictal respiratory dysfunction. One patient had severe and prolonged postictal hypoventilation during video EEG monitoring and died later of SUDEP. Mice with an Scn1aR1407X/+ loss-of-function mutation were monitored and died after spontaneous and heat-induced seizures due to central apnea followed by progressive bradycardia. Death could be prevented with mechanical ventilation after seizures were induced by hyperthermia or maximal electroshock. Muscarinic receptor antagonists did not prevent bradycardia or death when given at doses selective for peripheral parasympathetic blockade, whereas apnea, bradycardia, and death were prevented by the same drugs given at doses high enough to cross the blood-brain barrier. When given via intracerebroventricular infusion at a very low dose, a muscarinic receptor antagonist prevented apnea, bradycardia, and death. We conclude that SUDEP in patients with DS can result from primary central apnea, which can cause bradycardia, presumably via a direct effect of hypoxemia on cardiac muscle.
Collapse
Affiliation(s)
- YuJaung Kim
- Department of Neurology and.,Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Se Hee Kim
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | | | - Linda C Laux
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | | | - Douglas R Nordli
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | - George B Richerson
- Department of Neurology and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Neurology Service, Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
37
|
Vorkapić M, Useinović N, Janković M, Hrnčić D. Heart rate variability processing in epilepsy: The role in detection and prediction of seizures and SUDEP. MEDICINSKI PODMLADAK 2018. [DOI: 10.5937/mp69-18553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
38
|
Mamalyga ML, Mamalyga LM. [The influence of growing seizure readiness on the autonomic regulation of the heart]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:45-49. [PMID: 28617378 DOI: 10.17116/jnevro20171174145-49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the functional state of the heart in a progressive increase of seizure readiness (SR) due to pentylenetetrazole kindling. MATERIAL AND METHODS The study was carried out on male rats of the Wistar line. Simultaneous telemetric monitoring of electrocardiogram and electroencephalogram on-line was used. Individual SR of animals in 7- and 27 day pentylenetetrazole kindling was determined. RESULTS The decrease in the index of LF/HF after 7 days of kindling reflects a compensatory reaction of the autonomic nervous system. However, the increase in SI indicates that the result obtained at the price of considerable stress regulation mechanisms. The increase in QTc, Tpeak Tend and reduced SDNN and TP suggest that compensatory mechanisms cannot prevent the high risk of life-threatening arrhythmias. High SR after 27 days of kindling is accompanied by a shift of autonomic balance towards the growth of tone of the sympathetic system which may lead to decompensation and prenosological state. CONCLUSION The characteristics of autonomic regulation of the heart in progressive SR are important for fundamental and clinical cardioneurology.
Collapse
Affiliation(s)
- M L Mamalyga
- Bakulev National Scientific Center for Cardiovascular Surgery, Moscow, Russia
| | - L M Mamalyga
- Institute of Biology and Chemistry of the Moscow Pedagogical State University, Moscow, Russia
| |
Collapse
|
39
|
Lack of heart rate variability during sleep-related apnea in patients with temporal lobe epilepsy (TLE)—an indirect marker of SUDEP? Sleep Breath 2017; 21:163-172. [DOI: 10.1007/s11325-016-1453-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/23/2016] [Accepted: 12/28/2016] [Indexed: 01/10/2023]
|
40
|
Schiecke K, Pester B, Piper D, Benninger F, Feucht M, Leistritz L, Witte H. Nonlinear Directed Interactions Between HRV and EEG Activity in Children With TLE. IEEE Trans Biomed Eng 2016; 63:2497-2504. [DOI: 10.1109/tbme.2016.2579021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Goldenholz DM, Kuhn A, Austermuehle A, Bachler M, Mayer C, Wassertheurer S, Inati SK, Theodore WH. Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy. Epilepsia 2016; 58:77-84. [PMID: 27864903 DOI: 10.1111/epi.13606] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Sudden unexplained death in epilepsy (SUDEP) during inpatient electroencephalography (EEG) monitoring has been a rare but potentially preventable event, with associated cardiopulmonary markers. To date, no systematic evaluation of alarm settings for a continuous pulse oximeter (SpO2 ) has been performed. In addition, evaluation of the interrelationship between the ictal and interictal states for cardiopulmonary measures has not been reported. METHODS Patients with epilepsy were monitored using video-EEG, SpO2 , and electrocardiography (ECG). Alarm thresholds were tested systematically, balancing the number of false alarms with true seizure detections. Additional cardiopulmonary patterns were explored using automated ECG analysis software. RESULTS One hundred ninety-three seizures (32 generalized) were evaluated from 45 patients (7,104 h recorded). Alarm thresholds of 80-86% SpO2 detected 63-73% of all generalized convulsions and 20-28% of all focal seizures (81-94% of generalized and 25-36% of focal seizures when considering only evaluable data). These same thresholds resulted in 25-146 min between false alarms. The sequential probability of ictal SpO2 revealed a potential common seizure termination pathway of desaturation. A statistical model of corrected QT intervals (QTc), heart rate (HR), and SpO2 revealed close cardiopulmonary coupling ictally. Joint probability maps of QTc and SpO2 demonstrated that many patients had baseline dysfunction in either cardiac, pulmonary, or both domains, and that ictally there was dissociation-some patients exhibited further dysfunction in one or both domains. SIGNIFICANCE Optimal selection of continuous pulse oximetry thresholds involves a tradeoff between seizure detection accuracy and false alarm frequency. Alarming at 86% for patients that tend to have fewer false alarms and at 80% for those who have more, would likely result in a reasonable tradeoff. The cardiopulmonary findings may lead to SUDEP biomarkers and early seizure termination therapies.
Collapse
Affiliation(s)
| | - Amanda Kuhn
- NINDS, National Institutes of Health, Bethesda, Maryland, U.S.A
| | | | | | | | | | - Sara K Inati
- NINDS, National Institutes of Health, Bethesda, Maryland, U.S.A
| | | |
Collapse
|
42
|
Kinney HC, Poduri AH, Cryan JB, Haynes RL, Teot L, Sleeper LA, Holm IA, Berry GT, Prabhu SP, Warfield SK, Brownstein C, Abram HS, Kruer M, Kemp WL, Hargitai B, Gastrang J, Mena OJ, Haas EA, Dastjerdi R, Armstrong DD, Goldstein RD. Hippocampal Formation Maldevelopment and Sudden Unexpected Death across the Pediatric Age Spectrum. J Neuropathol Exp Neurol 2016; 75:981-997. [PMID: 27612489 PMCID: PMC6281079 DOI: 10.1093/jnen/nlw075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sudden infant death syndrome (SIDS) and sudden unexplained death in childhood (SUDC) are defined as sudden death in a child remaining unexplained despite autopsy and death scene investigation. They are distinguished from each other by age criteria, i.e. with SIDS under 1 year and SUDC over 1 year. Our separate studies of SIDS and SUDC provide evidence of shared hippocampal abnormalities, specifically focal dentate bilamination, a lesion classically associated with temporal lobe epilepsy, across the 2 groups. In this study, we characterized the clinicopathologic features in a retrospective case series of 32 children with sudden death and hippocampal formation (HF) maldevelopment. The greatest frequency of deaths was between 3 weeks and 3 years (81%, 26/32). Dentate anomalies were found across the pediatric age spectrum, supporting a common vulnerability that defies the 1-year age cutoff between SIDS and SUDC. Twelve cases (38%) had seizures, including 7 only with febrile seizures. Subicular anomalies were found in cases over 1 year of age and were associated with increased risk of febrile seizures. Sudden death associated with HF maldevelopment reflects a complex interaction of intrinsic and extrinsic factors that lead to death at different pediatric ages, and may be analogous to sudden unexplained death in epilepsy.
Collapse
Affiliation(s)
- Hannah C Kinney
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Annapurna H Poduri
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Jane B Cryan
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Robin L Haynes
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Lisa Teot
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Lynn A Sleeper
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Ingrid A Holm
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Gerald T Berry
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Sanjay P Prabhu
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Simon K Warfield
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Catherine Brownstein
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Harry S Abram
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Michael Kruer
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Walter L Kemp
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Beata Hargitai
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Joanne Gastrang
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Othon J Mena
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Elisabeth A Haas
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Roya Dastjerdi
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Dawna D Armstrong
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| | - Richard D Goldstein
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (HCK, RLH, LT, RD); Epilepsy Genetics Program, Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (AHP); Division of Neuropathology, Beaumont Hospital, Dublin, Ireland (JBC); Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (LAS); Department of Genetics and Genomic Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (IAH, GTB, CB); Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (SPP, SKW); Division of Child Neurology, Nemours Children's Specialty Care, Jacksonville, Florida (HAS); Barrow Neurological Institute, Phoenix Children's Hospital, Department of Child Health, University of Arizona College of Medicine Phoenix Children's Hospital, Phoenix, Arizona (MK); Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota (WLK); Department of Cellular Pathology Birmingham Women's Hospital, Birmingham, UK (BH); Division of Mental Health and Wellbeing, University of Warwick, and Coventry and Warwickshire Partnership NHS Trust, Coventry, UK (JG); Office of the Medical Examiner, County of San Diego, California (OJM); Department of Pathology, Rady Children's Hospital, San Diego, California (EAH); Department of Pathology, Baylor College of Medicine, Retired Professor of Pathology, Houston, Texas (DDA); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts (RDG)
| |
Collapse
|
43
|
Verrier RL, Nearing BD, Olin B, Boon P, Schachter SC. Baseline elevation and reduction in cardiac electrical instability assessed by quantitative T-wave alternans in patients with drug-resistant epilepsy treated with vagus nerve stimulation in the AspireSR E-36 trial. Epilepsy Behav 2016; 62:85-9. [PMID: 27450311 DOI: 10.1016/j.yebeh.2016.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Reports of cardiac arrhythmias and cardiac pathology at postmortem examination of patients with epilepsy suggest a possible cardiac component of risk for sudden unexpected death in epilepsy (SUDEP). T-wave alternans (TWA) is an established marker of cardiac electrical instability and risk for sudden death in patients with cardiovascular disease. We determined the TWA level before vagus nerve stimulation (VNS) system implantation and subsequently the effect of VNS on TWA in patients with drug-resistant epilepsy. METHODS Patients (n=28) from the Seizure Detection and Automatic Magnet Mode Performance Study (E-36), a clinical trial of the AspireSR® VNS Therapy System® (NCT01325623), were monitored with ambulatory electrocardiograms (ECGs) ~2weeks before de novo VNS system implantation and following 2- to 4-week VNS titration during a protocol-specified 3- to 5-day epilepsy monitoring unit stay with concurrent EEG/ECG recordings. The TWA level was assessed interictally by the Modified Moving Average (MMA) method. RESULTS At preimplantation baseline, TWA was elevated above the 47-μV abnormality cutpoint in 23 (82%) patients with drug-resistant epilepsy. In 16 (70%) patients, TWA level was reduced during VNS treatment to <47μV, thereby converting positive TWA test results to negative. Peak TWA level in all 28 patients improved (group mean, 43%, from 72±4.3 to 41±2.3μV; p<0.0001). Vagus nerve stimulation was not associated with reduced heart rate (77±1.4 to 75±1.4beats/min; p=0.18). Heart rate variability was unchanged. SIGNIFICANCE These findings suggest significant interictal cardiac electrical instability in this population of patients with drug-resistant epilepsy and suggest that VNS may be a novel approach to reducing risk.
Collapse
Affiliation(s)
- Richard L Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Bruce D Nearing
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Bryan Olin
- LivaNova PLC, Houston, TX, United States
| | - Paul Boon
- On Behalf of the E-36 Study Group, Ghent University Hospital, Ghent, Belgium
| | - Steven C Schachter
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital and Center for Integration of Medicine and Innovative Technology, Boston, MA, United States
| |
Collapse
|
44
|
Auerbach DS, McNitt S, Gross RA, Zareba W, Dirksen RT, Moss AJ. Genetic biomarkers for the risk of seizures in long QT syndrome. Neurology 2016; 87:1660-1668. [PMID: 27466471 DOI: 10.1212/wnl.0000000000003056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The coprevalence, severity, and biomarkers for seizures and arrhythmias in long QT syndrome (LQTS) remain incompletely understood. METHODS Using the Rochester-based LQTS Registry, this study included large cohorts of LQTS1-3 participants (LQTS+, n = 965) and those without a LQTS mutation (LQTS-, n = 936). RESULTS Compared to LQTS- participants, there was a higher prevalence of LQTS1, LQTS2, and LQTS+ participants classified as having seizures (p < 0.001, i.e., history of seizures/epilepsy or antiseizure medication). LQTS+ participants with longer corrected QT interval (QTc) durations were more likely to have seizures. LQTS2 mutations in the KCNH2 pore domain were positive predictors for both arrhythmias and seizures. In contrast, mutations in the cyclic nucleotide binding domain (cNBD) of KCNH2 conferred a negative risk of seizures, but not arrhythmias. LQTS2, KCNH2-pore, KCNH2-cNBD, QTc duration, and sex were independent predictors of seizures. LQTS+ participants with seizures had significantly longer QTc durations, and a history of seizures was the strongest independent predictor of arrhythmias (hazard ratio 4.09, 95% confidence interval 2.63-6.36, p < 0.001). CONCLUSIONS This study highlights potential biomarkers for neurocardiac electrical abnormalities in LQTS.
Collapse
Affiliation(s)
- David S Auerbach
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Scott McNitt
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert A Gross
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Wojciech Zareba
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T Dirksen
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Arthur J Moss
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
45
|
Chen W, Zhang XT, Guo CL, Zhang SJ, Zeng XW, Meng FG. Comparison of heart rate changes with ictal tachycardia seizures in adults and children. Childs Nerv Syst 2016; 32:689-95. [PMID: 26869054 DOI: 10.1007/s00381-016-3034-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Lower heart rate variability (HRV) is known to make patients more susceptible to tachycardia and possibly sudden unexpected death in epilepsy (SUDEP). The heart rate (HR) at which tachycardia is present may vary by age. To date, no study has been done comparing adult and child seizures at different time points. The purpose of this study was to compare the frequency of HR changes with ictal tachycardia (IT) seizures at different time points in adults versus children. METHODS We retrospectively assessed the changes in the HR of 99 IT seizures in children and 96 IT seizures in adults. The difference between adults and children in gender, hemispheric lateralization or sleep/wakefulness, or seizure type on the HR changes and the difference between children and adults during 10 s preictal, ictal onset, and ictal and 60 s postictal were separately assessed. RESULTS The HR difference and maximum HR increase with aging in children. The seizure duration in adults lasted longer as compared with that in children. There are higher HR at different points and HR difference at 10 s preictal as compared to baseline in children. CONCLUSIONS The study illustrates that age and duration were respectively related to HR differences distinguishing children from adults. There may be an age-related effect of HR changes associated with seizures, with higher HR at different times and HR difference at 10 s before seizure onset as compared to baseline in children, which might explain that children are more likely to predict epileptic seizures than adults, contributing to subclinical seizures and treatment efficiency in refractory patients.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, 252000, Shangdong province, China
| | - Xi-Ting Zhang
- Department of Neurology, Liaocheng Central Hospital, Liaocheng, 252000, Shangdong province, China
| | - Chang-Li Guo
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, 252000, Shangdong province, China
| | - Shu-Jing Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, 252000, Shangdong province, China
| | - Xian-Wei Zeng
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China.
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
46
|
Seizures and brain regulatory systems: consciousness, sleep, and autonomic systems. J Clin Neurophysiol 2016; 32:188-93. [PMID: 25233249 DOI: 10.1097/wnp.0000000000000133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research into the physiologic underpinnings of epilepsy has revealed reciprocal relationships between seizures and the activity of several regulatory systems in the brain. This review highlights recent progress in understanding and using the relationships between seizures and the arousal or consciousness system, the sleep-wake and associated circadian system, and the central autonomic network.
Collapse
|
47
|
Zhan Q, Buchanan GF, Motelow JE, Andrews J, Vitkovskiy P, Chen WC, Serout F, Gummadavelli A, Kundishora A, Furman M, Li W, Bo X, Richerson GB, Blumenfeld H. Impaired Serotonergic Brainstem Function during and after Seizures. J Neurosci 2016; 36:2711-22. [PMID: 26937010 PMCID: PMC4879214 DOI: 10.1523/jneurosci.4331-15.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/23/2016] [Indexed: 12/30/2022] Open
Abstract
Impaired breathing, cardiac function, and arousal during and after seizures are important causes of morbidity and mortality. Previous work suggests that these changes are associated with depressed brainstem function in the ictal and post-ictal periods. Lower brainstem serotonergic systems are postulated to play an important role in cardiorespiratory changes during and after seizures, whereas upper brainstem serotonergic and other systems regulate arousal. However, direct demonstration of seizure-associated neuronal activity changes in brainstem serotonergic regions has been lacking. Here, we performed multiunit and single-unit recordings from medullary raphe and midbrain dorsal raphe nuclei in an established rat seizure model while measuring changes in breathing rate and depth as well as heart rate. Serotonergic neurons were identified by immunohistochemistry. Respiratory rate, tidal volume, and minute ventilation were all significantly decreased during and after seizures in this model. We found that population firing of neurons in the medullary and midbrain raphe on multiunit recordings was significantly decreased during the ictal and post-ictal periods. Single-unit recordings from identified serotonergic neurons in the medullary raphe revealed highly consistently decreased firing during and after seizures. In contrast, firing of midbrain raphe serotonergic neurons was more variable, with a mixture of increases and decreases. The markedly suppressed firing of medullary serotonergic neurons supports their possible role in simultaneously impaired cardiorespiratory function in seizures. Decreased arousal likely arises from depressed population activity of several neuronal pools in the upper brainstem and forebrain. These findings have important implications for preventing morbidity and mortality in people living with epilepsy. SIGNIFICANCE STATEMENT Seizures often cause impaired breathing, cardiac dysfunction, and loss of consciousness. The brainstem and, specifically, brainstem serotonin neurons are thought to play an important role in controlling breathing, cardiac function, and arousal. We used an established rat seizure model to study the overall neuronal activity in the brainstem as well as firing of specific serotonin neurons while measuring cardiorespiratory function. Our results demonstrated overall decreases in brainstem neuronal activity and marked downregulation of lower brainstem serotonin neuronal firing in association with decreased breathing and heart rate during and after seizures. These findings point the way toward new treatments to augment brainstem function and serotonin, aiming to prevent seizure complications and reduce morbidity and mortality in people living with epilepsy.
Collapse
Affiliation(s)
- Qiong Zhan
- Departments of Neurology, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | | - Wei Li
- Departments of Neurology, Department of Neurosurgery, Jinling Hospital, School of Medicine Nanjing University, Nanjing Jiangsu 210002, China, and
| | - Xiao Bo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - George B Richerson
- Departments of Neurology and Molecular Physiology and Biophysics, and Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Hal Blumenfeld
- Departments of Neurology, Neuroscience, and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520,
| |
Collapse
|
48
|
Spray J. Seizures: awareness and observation in the ward environment. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2015; 24:946-55. [PMID: 26500124 DOI: 10.12968/bjon.2015.24.19.946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The preconceived 'foaming' and 'violent' seizure stereotypes are misrepresentations, particularly by non-specialist health professionals. Thus the vast semiology (signs and symptoms) of seizures and their subtle signs too easily go unrecognised by the untrained eye. Nevertheless, a significant proportion of adult patients admitted to the ward for treatment of their current illness will have a pre-existing seizure disorder (epilepsy). Furthermore, such hospitalised patients are more likely to suffer a seizure within the ward environment as triggering factors are unavoidably present. Thus, it is essential that nurses are prepared to encounter seizures, irrespective of the reason for admission. This article discusses the clinical semiology of the various seizure types in association with the underpinning neuropathophysiology, as well as the potential seizure triggers. It thereby enhances nurses' awareness and observations of seizure activity in patients in the ward environment.
Collapse
|
49
|
Schiecke K, Wacker M, Benninger F, Feucht M, Leistritz L, Witte H. Advantages of signal-adaptive approaches for the nonlinear, time-variant analysis of heart rate variability of children with temporal lobe epilepsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6377-80. [PMID: 25571455 DOI: 10.1109/embc.2014.6945087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major aim of our study is to demonstrate that signal-adaptive approaches improve the nonlinear and time-variant analysis of heart rate variability (HRV) of children with temporal lobe epilepsy (TLE). Nonlinear HRV analyses are frequently applied in epileptic patients. As HRV is characterized by components with oscillatory properties frequency-selective methods are in the focus, whereby application of nonlinear analysis to linear filtered signals seems to be doubtful. Signal-adaptive methods that preserve nonlinear properties and utilize only the signal data for an automatic computation of the result could benefit to nonlinear analysis of HRV. Combinations of (1) the signal-adaptive Matched Gabor Transform with time-variant nonlinear bispectral analysis and of (2) signal-adaptive Empirical Mode Decomposition methods with time-variant nonlinear stability analysis are investigated with regard to their application in the analysis of specific HRV components (respiratory sinus arrhythmia and Mayer wave associated low-frequency HRV components) of 18 children with TLE. Changes of timing and coordination of both HRV components during preictal, ictal and postictal periods occur which can be better quantified by advanced signal-adaptive methods. Both approaches contribute with specific importance to the analysis.
Collapse
|
50
|
Abstract
Sudden unexpected death in epilepsy is likely caused by a cascade of events affecting the vegetative nervous system leading to cardiorespiratory failure and death. Multiple genetic, electrophysiological, neurochemical, and pharmacological cardiac alterations have been associated with epilepsy, which can affect autonomic regulation of the heart and predispose patients to sudden unexpected death in epilepsy. These cardiac and autonomic changes are more frequently seen in patients with longstanding and medication refractory epilepsy and may be a prerequisite for sudden unexpected death in epilepsy. Cardiac changes are also observed within the immediate periictal period in patients with and without preexisting cardiac pathology and could be the tipping point in the cascade of events compromising autonomic, respiratory, and cardiac function during an epileptic convulsion. Better understanding if and how these cardiac alterations can make a particular individual with epilepsy more susceptible to sudden unexpected death in epilepsy will hopefully lead us to more effective preventative strategies.
Collapse
|