1
|
Wei M, Liu D, Xie H, Sun Y, Fang Y, Du L, Jin Y. 3D-printed cannabidiol hollow suppositories for treatment of epilepsy. Int J Pharm 2025; 670:125141. [PMID: 39732218 DOI: 10.1016/j.ijpharm.2024.125141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Cannabidiol (CBD) is widely used to alleviate the syndromes of epilepsy. However, the marketed oral CBD formulation has the prominent first-pass effect. Here, a cannabidiol-loaded hollow suppository (CHS) was developed using three-dimensional (3D) printing technology. CHS was assembled with an inner supporting spring and an outer CBD-loaded curved hollow shell. The spring was prepared using fused deposition modeling 3D printing with thermoplastic urethane filaments followed by splitting. The shell was prepared with a 3D-printed metal mold filled with the mixture of CBD, polyvinyl alcohol, and polyethylene glycol. CHS slowly in vitro released CBD for 5 h and achieved the systemic delivery of CBD. The high in vitro and in vivo safety of CHS was demonstrated. Epilepsy rat models were established by lithium-pilocarpine dosing. Locally administered CHS greatly alleviated the damage to brains and reduced inflammation. Moreover, CBD obviously improved the abundance and composition of gut microbiota and the abundance of beneficial bacteria, including Lachnoclostridium and Akkermansia. Personalized CHS is a promising medication for the treatment of epilepsy.
Collapse
Affiliation(s)
- Meng Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dongdong Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yingbao Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yubao Fang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
2
|
Laaboudi FZ, Rejdali M, Amhamdi H, Salhi A, Elyoussfi A, Ahari M. In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities. Toxicol Rep 2024; 13:101685. [PMID: 39056093 PMCID: PMC11269304 DOI: 10.1016/j.toxrep.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use. Described as a 'treasure trove,' cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer's, Parkinson's, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.
Collapse
Affiliation(s)
- Fatima-Zahrae Laaboudi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Mohamed Rejdali
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Amin Salhi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Abedellah Elyoussfi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - M.’hamed Ahari
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| |
Collapse
|
3
|
Bondok M, Nguyen AXL, Lando L, Wu AY. Adverse Ocular Impact and Emerging Therapeutic Potential of Cannabis and Cannabinoids: A Narrative Review. Clin Ophthalmol 2024; 18:3529-3556. [PMID: 39629058 PMCID: PMC11613704 DOI: 10.2147/opth.s501494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Cannabis is the most used drug worldwide with an estimated 219 million users. This narrative review aims to explore the adverse effects and therapeutic applications of cannabis and cannabinoids on the eye, given its growing clinical and non-clinical uses. The current literature reports several adverse ocular effects of cannabis and cannabinoids, including eyelid tremor, ptosis, reduced corneal endothelial cell density, dry eyes, red eyes, and neuro-retinal dysfunction. Cannabinoids may transiently impair night vision, depth perception, binocular and monocular contrast sensitivity, and dynamic visual acuity. Cannabinoids are not currently considered a first-line treatment option for any ocular conditions. Δ-9-tetrahydrocannabinol been shown to result in short-term intraocular pressure reduction, but insufficient evidence to support its use in treating glaucoma exists. Potential therapeutic applications of cannabinoids include their use as a second-line agent for treatment-refractory blepharospasm, for dry eye disease given corneal anti-inflammatory properties, and for suppression of pendular nystagmus in individuals with multiple sclerosis, which all necessitate further research for informed clinical practices.
Collapse
Affiliation(s)
- Mostafa Bondok
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, ONT, Canada
| | - Leonardo Lando
- Ocular Oncology Service, Barretos Cancer Hospital, Barretos, Brazil
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Gagné V, Merindol N, Boucher R, Boucher N, Desgagné-Penix I. Rooted in therapeutics: comprehensive analyses of Cannabis sativa root extracts reveals potent antioxidant, anti-inflammatory, and bactericidal properties. Front Pharmacol 2024; 15:1465136. [PMID: 39351095 PMCID: PMC11440120 DOI: 10.3389/fphar.2024.1465136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Following the legalization of recreational Cannabis in Canada in 2018, the associated waste, including Cannabis roots, has significantly increased. Cannabis roots, comprising 30%-50% of the total plant, are often discarded despite their historical use in Ayurvedic medicine for treating inflammatory and infectious disorders. This study evaluates the phytochemical and therapeutic properties of Cannabis root extracts from a high tetrahydrocannabinolic acid, low cannabidiolic acid cultivar (variety Alien Gorilla Glue). We performed ultra high-performance liquid chromatography coupled with mass spectrometry (UPLC-QTOF-MS) to identify the chemical components of the Cannabis roots. Extracts using water, ethanol and acid-base solvents were tested for antioxidant activity through free radical scavenging, metal chelation, and lipoperoxidation inhibition assays. Mitochondrial membrane protection was assessed using flow cytometry with the MitoPerOx probe in THP-1 monocytic leukemia cells. Anti-inflammatory potential was evaluated by measuring interleukin-6 levels in lipopolysaccharide-stimulated THP-1 cells. Bactericidal/fungicidal efficacy against Escherichia coli, Staphylococcus aureus, and Candida albicans was determined using the p-iodonitrophenyltetrazolium assay. Additionally, we investigated the anticholinesterase activity of Cannabis root extracts, given the potential role of plant alkaloids in inhibiting cholinesterase, an enzyme targeted in Alzheimer's disease treatments. UPLC-QTOF-MS analysis suggested the presence of several phenolic compounds, cannabinoids, terpenoids, amino acids, and nitrogen-containing compounds. Our results indicated significant antioxidant, bactericidal, and anticholinesterase properties of Cannabis root extracts from both soil and hydroponic cultivation. Extracts showed strong antioxidant activity across multiple assays, protected mitochondrial membrane in THP-1 cells, and exhibited anti-inflammatory and bactericidal/fungicidal efficacy. Notably, soil-cultivated roots displayed superior anti-inflammatory effects. These findings demonstrate the remarkable antioxidant, anti-inflammatory, and anti-microbial activities of Cannabis roots, supporting their traditional uses and challenging their perception as mere waste. This study highlights the therapeutic potential of Cannabis roots extracts and suggests avenues for further research and application.
Collapse
Affiliation(s)
- Valérie Gagné
- Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, QC, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, QC, Canada
| | - Raphaël Boucher
- Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, QC, Canada
| | - Nathalie Boucher
- Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, QC, Canada
| |
Collapse
|
5
|
Keyßer G, Frohne I, Schultz O, Reuß-Borst M, Sander O, Pfeil A. [Procedures of complementary medicine in rheumatology]. Z Rheumatol 2024; 83:549-561. [PMID: 38935116 DOI: 10.1007/s00393-024-01524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
Patients with diseases of the musculoskeletal system are confronted with a large quantity of treatment offers based on methods of complementary medicine. Despite a considerable number of publications on this topic, the scientific evidence is still poor. This article focuses on Ayurvedic medicine (AM), traditional Chinese medicine (TCM), mind-body medicine and homeopathy. These procedures have a longstanding tradition of practice and each claims to have its own theoretical concept; however, the application in the field of rheumatology can only be recommended either for specific entities or, in the case of homeopathy, not at all. In addition, this article summarizes the evidence for dietary recommendations, nutritional supplements and herbal medicine in rheumatology. The latter topics are frequently discussed in the popular press and are a much-debated issue between physicians and patients; however, clear-cut recommendations for the application on a scientific basis are the exception and mainly consist of the endorsement to adhere to the principles of a Mediterranean diet.
Collapse
Affiliation(s)
- Gernot Keyßer
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland.
| | | | | | | | | | | |
Collapse
|
6
|
Gagné V, Boucher N, Desgagné-Penix I. Cannabis Roots: Therapeutic, Biotechnological and Environmental Aspects. Cannabis Cannabinoid Res 2024; 9:35-48. [PMID: 38252502 DOI: 10.1089/can.2023.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Since the legalization of recreational cannabis in Canada in 2018, the number of licenses for this crop has increased significantly, resulting in an increase in waste generated. Nevertheless, cannabis roots were once used for their therapeutic properties, indicating that they could be valued today rather than dismissed. This review will focus on both traditional therapeutic aspects and potential use of roots in modern medicine while detailing the main studies on active phytomolecules found in cannabis roots. The environmental impact of cannabis cultivation and current knowledge of the root-associated microbiome are also presented as well as their potential applications in biotechnology and phytoremediation. Thus, several high added-value applications of cannabis roots resulting from scientific advances in recent years can be considered to remove them from discarded residues.
Collapse
Affiliation(s)
- Valérie Gagné
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
| | - Nathalie Boucher
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
7
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
8
|
Abstract
Cannabidiol (CBD) is one of the most interesting constituents of cannabis, garnering significant attention in the medical community in recent years due to its proven benefit for reducing refractory seizures in pediatric patients. Recent legislative changes in the United States have made CBD readily available to the general public, with up to 14% of adults in the United States having tried it in 2019. CBD is used to manage a myriad of symptoms, including anxiety, pain, and sleep disturbances, although rigorous evidence for these indications is lacking. A significant advantage of CBD over the other more well-known cannabinoid delta-9-tetrahydroncannabinol (THC) is that CBD does not produce a "high." As patients increasingly self-report its use to manage their medical conditions, and as the opioid epidemic continues to drive the quest for alternative pain management approaches, the aims of this narrative review are to provide a broad overview of the discovery, pharmacology, and molecular targets of CBD, its purported and approved neurologic indications, evidence for its analgesic potential, regulatory implications for patients and providers, and future research needs.
Collapse
Affiliation(s)
- Alexandra Sideris
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
- HSS Research Institute, New York, New York
| | - Lisa V Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
9
|
Colak DK, Coskun Yazici ZM, Bolkent S. Chronic administration of delta9-tetrahydrocannabinol protects hyperinsulinemic gastric tissue in rats. Cell Biochem Funct 2023; 41:1543-1551. [PMID: 38032085 DOI: 10.1002/cbf.3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Hyperinsulinemia (HI) can result from some reasons such as an increase in basal/fasting circulating insulin and/or potentiation of postprandial insulin production. Diabetes mellitus (DM) is indirectly related to HI since it both causes and results from insulin resistance. Understanding the causes of HI and treating this is crucial for preventing DM. Previous research has shown that delta9-tetrahydrocannabinol (THC) has medicinal benefits. In light of this, the relationship between THC and oxidative stress, DNA repair mechanism, apoptosis, and its regulatory impact on appetite hormones in the gastric tissue of hyperinsulinemic rats has been investigated for the first time. Male rats (Spraque-Dawley, total = 32) were used, and they were randomly divided into the following groups (n = 8 in each group): control (CTRL), HI, THC administered control (THC, 1.5 mg/kg/day, during 4 weeks), and THC administered HI (HI + THC) groups. The number of poly (ADP-ribose) polymerase-1 and proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive cells in the HI group was significantly reduced compared to the CTRL group. The number of PCNA and caspase-9 immunopositive cells was significantly increased in the HI + THC group compared to the HI group. Obestatin immunopositive cell numbers in the HI + THC group were higher than in the HI and CTRL groups. The results show that THC administration may affect the regulation of appetite hormones and regeneration in the fundus of rats with HI. Glutathione (GSH) levels were higher in the HI + THC group than in the HI group. Both immunohistochemical and biochemical analyses revealed that THC promotes regeneration and regulates appetite hormones in hyperinsulinemic gastric tissues.
Collapse
Affiliation(s)
- Dilara Kamer Colak
- Department of Medical Biology, Faculty of Cerrahpaşa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpaşa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
10
|
Kollipara R, Langille E, Tobin C, French CR. Phytocannabinoids Reduce Seizures in Larval Zebrafish and Affect Endocannabinoid Gene Expression. Biomolecules 2023; 13:1398. [PMID: 37759798 PMCID: PMC10526363 DOI: 10.3390/biom13091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Cannabis has demonstrated anticonvulsant properties, and about thirty percent of epileptic patients do not have satisfactory seizure management with standard treatment and could potentially benefit from cannabis-based intervention. Here, we report the use of cannabinoids to treat pentylenetetrazol (PTZ)-induced convulsions in a zebrafish model, their effect on gene expression, and a simple assay for assessing their uptake in zebrafish tissues. Using an optimized behavioral assay, we show that cannabidiol (CBD) and cannabichromene (CBC) and cannabinol (CBN) are effective at reducing seizures at low doses, with little evidence of sedation, and our novel HPLC assay indicates that CBC is effective with the lowest accumulation in larval tissues. All cannabinoids tested were effective at higher concentrations. Pharmacological manipulation of potential receptors demonstrates that Gpr55 partially mediates the anticonvulsant effects of CBD. Treatment of zebrafish larvae with endocannabinoids, such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA), altered larvae movement, and the expression of genes that regulate their metabolism was affected by phytocannabinoid treatment, highlighting the possibility that changes to endocannabinoid levels may represent one facet of the anticonvulsant effect of phytocannabinoids.
Collapse
Affiliation(s)
- Roshni Kollipara
- Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (R.K.); (C.T.)
| | - Evan Langille
- Department of Chemistry, Faculty of Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada;
| | - Cameron Tobin
- Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (R.K.); (C.T.)
| | - Curtis R. French
- Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (R.K.); (C.T.)
| |
Collapse
|
11
|
Johnson JK, Colby A. History of Cannabis Regulation and Medicinal Therapeutics: It's Complicated. Clin Ther 2023; 45:521-526. [PMID: 37414502 DOI: 10.1016/j.clinthera.2023.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/08/2023]
Abstract
The genus Cannabis has a complex history, with great variations in the genus itself, as well as in its current uses worldwide. Today, it is the most commonly used psychoactive substance, with 209 million users in 2020. The legalization of cannabis for medicinal or adult use is complex. From its origins as a therapeutic agent in 2800 bc China, to the current knowledge on cannabinoids and the cannabinoid system, to the complex status of cannabis regulation across continents-knowledge gained from the history of cannabis use can inform research on cannabis-based treatments for patients with medical conditions that remain challenging in 21st century medicine, warranting research and evidence-based policy options. Changes in cannabis-related policymaking, scientific advances, and perceptions may result in increasing patient inquiries about its medicinal usage, regardless of personal opinions, thus meriting education and training of clinicians. This commentary outlines the long history of cannabis use, its current therapeutic potential from a regulatory research perspective, and the continued challenges in research and regulation in the ever-changing era of modern cannabis use. It is crucial to understand the history and complexity of cannabis use as medicine to better understand its potential for clinical therapeutics and the effects of modern-day legalization on other health- and society-related issues.
Collapse
Affiliation(s)
- Julie K Johnson
- Massachusetts Cannabis Control Commission, Worcester, Massachusetts.
| | - Alexander Colby
- Massachusetts Cannabis Control Commission, Worcester, Massachusetts
| |
Collapse
|
12
|
Upton R. Nomenclature: Herbal Taxonomy in the Global Commerce of Botanicals. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:221-260. [PMID: 37392313 DOI: 10.1007/978-3-031-26768-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
In the world trade of medicinal plants, the naming of plants is fundamental to understanding which species are acceptable for therapeutic use. There are a variety of nomenclatural systems that are used, inclusive of common names, Latinized binomials, Galenic or pharmaceutical names, and pharmacopeial definitions. Latinized binomials are the primary system used for naming wild plants, but these alone do not adequately define medicinal plant parts. Each system has its specific applications, advantages, and disadvantages. The topic of medicinal plant nomenclature is discussed broadly by underscoring when and how varying nomenclatural systems should be used. It is emphasized that pharmacopeial definitions represent the only naming system that integrates plant identity, relevant plant parts, and the specific quality metrics to which a material must comply, thus affording the most appropriate identification method available for medicinal plant materials.
Collapse
Affiliation(s)
- Roy Upton
- American Herbal Pharmacopoeia, P.O. Box 66809, Scotts Valley, CA, 95067, USA.
| |
Collapse
|
13
|
Araujo dos Santos N, Romão W. Cannabis - a state of the art about the millenary plant: Part I. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Potschka H, Bhatti SFM, Tipold A, McGrath S. Cannabidiol in canine epilepsy. Vet J 2022; 290:105913. [PMID: 36209995 DOI: 10.1016/j.tvjl.2022.105913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
The anticonvulsant effect of cannabidiol (CBD), which has been confirmed by findings from animal models and human trials, has attracted the interest of veterinary practitioners and dog owners. Moreover, social media and public pressure has sparked a renewed awareness of cannabinoids, which have been used for epilepsy since ancient times. Unfortunately, at this moment veterinarians and veterinary neurologists have difficulty prescribing cannabinoids because of the paucity of sound scientific studies. Pharmacokinetic studies in dogs have demonstrated a low oral bioavailability of CBD and a high first-pass effect through the liver. Administering CBD in oil-based formulations and/or with food has been shown to enhance the bioavailability in dogs, rats and humans. Tolerability studies in healthy dogs and dogs with epilepsy have demonstrated that CBD was safe and well tolerated with only mild to moderate adverse effects. In this context, it should be noted that the quality of available CBD varies widely, underscoring the importance of pharmaceutical quality and its control. One clinical trial in dogs with drug-resistant idiopathic epilepsy failed to confirm a difference in response rates between the CBD group and the placebo group, while in another cross-over trial a ≥ 50 % reduction in epileptic seizure frequency was found in six of 14 dogs in the treatment phase, a reduction that was not observed during the placebo phase. Based on the current state of knowledge it is not possible to provide clear-cut recommendations for the use of CBD in canine epilepsy. Randomized controlled canine trials with large sample sizes are needed to determine the range of therapeutic plasma concentrations, develop evidence-based dosing regimens, determine the efficacy of cannabidiol in drug-refractory epilepsy, and explore potential associations between treatment effects and different etiologies, epilepsy types, and drug combinations.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Sofie F M Bhatti
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Andrea Tipold
- Department Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Stephanie McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Colorado, USA
| |
Collapse
|
15
|
Oshiro CA, Castro LHM. Cannabidiol and epilepsy in Brazil: a current review. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:182-192. [PMID: 35976327 PMCID: PMC9491442 DOI: 10.1590/0004-282x-anp-2022-s137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabidiol (CBD) has become a promising therapeutic option in the treatment of epilepsy. Recent studies provide robust evidence that CBD is effective and safe. Limitations in current knowledge and regulatory issues still limit CBD use. CBD use regarding epilepsy types still lacks clear guidelines. OBJECTIVE To critically review the main current pharmacological features and clinical issues regarding CBD use in epilepsy, to provide current regulatory background regarding CBD use in Brazil, and to suggest a practical CBD therapeutic guide in Brazil. METHODS Non-systematic literature review (up to February 2022) of current concepts of CBD and epilepsy, including the authors' personal experience. RESULTS Five pivotal trials have led to CBD approval as an adjunctive treatment for Dravet and Lennox-Gastaut syndromes, and for the tuberous sclerosis complex. Efficacy of CBD in other drug-resistant epilepsies remains not completely understood. CBD adverse event profile and drug interactions are better understood. CBD is well tolerated. In Brazil, CBD is not classified as a medication, but as a product subject to a distinct regulatory legislation. CBD is still not offered by the National Brazilian health system, but can be purchased in authorized pharmacies or imported under prescription and signed informed consent. CONCLUSION CBD is a recognized novel treatment for epilepsy. Future well-designed studies and public health strategies are needed to offer widespread access to CBD, and to improve the quality of life of people living with epilepsy in Brazil.
Collapse
Affiliation(s)
- Carlos André Oshiro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | - Luiz Henrique Martins Castro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Mirlohi S, Bladen C, Santiago M, Connor M. Modulation of Recombinant Human T-Type Calcium Channels by Δ 9-Tetrahydrocannabinolic Acid In Vitro. Cannabis Cannabinoid Res 2022; 7:34-45. [PMID: 33998881 PMCID: PMC8864432 DOI: 10.1089/can.2020.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: Low voltage-activated T-type calcium channels (T-type ICa), CaV3.1, CaV3.2, and CaV3.3, are opened by small depolarizations from the resting membrane potential in many cells and have been associated with neurological disorders, including absence epilepsy and pain. Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound in Cannabis and also directly modulates T-type ICa; however, there is no information about functional activity of most phytocannabinoids on T-type calcium channels, including Δ9-tetrahydrocannabinolic acid (THCA), the natural nonpsychoactive precursor of THC. The aim of this work was to characterize THCA effects on T-type calcium channels. Materials and Methods: We used HEK293 Flp-In-TREx cells stably expressing CaV3.1, 3.2, or 3.3. Whole-cell patch clamp recordings were made to investigate cannabinoid modulation of ICa. Results: THCA and THC inhibited the peak current amplitude CaV3.1 with pEC50s of 6.0±0.7 and 5.6±0.4, respectively. THC (1 μM) or THC produced a significant negative shift in half activation and inactivation of CaV3.1, and both drugs prolonged CaV3.1 deactivation kinetics. THCA (10 μM) inhibited CaV3.2 by 53%±4%, and both THCA and THC produced a substantial negative shift in the voltage for half inactivation and modest negative shift in half activation of CaV3.2. THC prolonged the deactivation time of CaV3.2, while THCA did not. THCA inhibited the peak current of CaV3.3 by 43%±2% (10 μM) but did not notably affect CaV3.3 channel activation or inactivation; however, THC caused significant hyperpolarizing shift in CaV3.3 steady-state inactivation. Discussion: THCA modulated T-type ICa currents in vitro, with significant modulation of kinetics and voltage dependence at low μM concentrations. This study suggests that THCA may have potential for therapeutic use in pain and epilepsy through T-type calcium channel modulation without the unwanted psychoactive effects associated with THC.
Collapse
Affiliation(s)
- Somayeh Mirlohi
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Chris Bladen
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia.,*Address correspondence to: Mark Connor, PhD, Department of Biomedical Sciences, Macquarie University, Sydney 2109, Australia,
| |
Collapse
|
17
|
Wang L, Zeng Y, Zhou Y, Yu J, Liang M, Qin L, Zhou Y. Win55,212-2 Improves Neural Injury induced by HIV-1 Glycoprotein 120 in Rats by Exciting CB2R. Brain Res Bull 2022; 182:67-79. [DOI: 10.1016/j.brainresbull.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
|
18
|
Kitchen C, Kabba JA, Fang Y. Status and Impacts of Recreational and Medicinal Cannabis Policies in Africa: A Systematic Review and Thematic Analysis of Published and "Gray" Literature. Cannabis Cannabinoid Res 2022; 7:239-261. [PMID: 34986005 DOI: 10.1089/can.2021.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Despite cannabis's societal ubiquity, several African states remain traditional prohibitionists. However, cannabis is becoming a more explored frontier from a health, human rights, and monetary perspective. A number of African countries have taken to tailoring their policies to better engage in emerging global dialogs. Nevertheless, the focus is majorly on the crop's financial appeal with less consideration on impacts of policies. This review aimed to specifically focus on the identification of existing or pending policies, indicating national positioning in terms of recreational and medicinal cannabis use and summarizing publications addressing related impacts in Africa. Methods: We systematically searched six academic research databases (including Google Scholar), Google, country specific websites, and websites of relevant organizations. Included publications were in English and published between January 1, 2000, and November 31, 2020 (with exception granted to official legislation not in English and/or published earlier than 2000, but still in effect). Reference lists of included publications were screened for potentially relevant publications. Results were synthesized thematically and descriptively. Results: Cannabis is Africa's most consumed illegal substance, its use entrenched in social, political, historical, economic, and medicinal ties. African users constitute a third of the worldly total and cultivation is a major activity. Policies have led to prison overcrowding, accelerated environmental damage, and sourced regional instability. South Africa, Seychelles, and Ghana have decriminalized personal use with Egypt and Mozambique exploring similar legislation. Eleven countries have existing or pending medicinal cannabis-specific provisions. South Africa and Seychelles stand out as having regulations for patients to access medicinal cannabis. Other countries have made provisions geared toward creating export markets and economic diversification. Conclusion: Cannabis policy is a composite and complex issue. Official stances taken are based on long withstanding narratives and characterized by a range of contributing factors. Policy changes based on modern trends should include larger studies of previous policy impacts and future-oriented analysis of country-level goals incorporated with a greater understanding of public opinion.
Collapse
Affiliation(s)
- Chenai Kitchen
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Centre for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Center for Health Reform and Development Research, Xi'an, China.,Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, China's Western Technological Innovation Harbor, Xi'an, China
| | - John Alimamy Kabba
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Centre for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Center for Health Reform and Development Research, Xi'an, China.,Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, China's Western Technological Innovation Harbor, Xi'an, China
| | - Yu Fang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Centre for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Center for Health Reform and Development Research, Xi'an, China.,Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, China's Western Technological Innovation Harbor, Xi'an, China
| |
Collapse
|
19
|
Anderson LL, Heblinski M, Absalom NL, Hawkins NA, Bowen M, Benson MJ, Zhang F, Bahceci D, Doohan PT, Chebib M, McGregor IS, Kearney JA, Arnold JC. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br J Pharmacol 2021; 178:4826-4841. [PMID: 34384142 PMCID: PMC9292928 DOI: 10.1111/bph.15661] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Cannabis has been used to treat epilepsy for millennia, with such use validated by regulatory approval of cannabidiol (CBD) for Dravet syndrome. Unregulated artisanal cannabis‐based products used to treat children with intractable epilepsies often contain relatively low doses of CBD but are enriched in other phytocannabinoids. This raises the possibility that other cannabis constituents might have anticonvulsant properties. Experimental Approach We used the Scn1a+/− mouse model of Dravet syndrome to investigate the cannabis plant for phytocannabinoids with anticonvulsant effects against hyperthermia‐induced seizures. The most promising, cannabigerolic acid (CBGA), was further examined against spontaneous seizures and survival in Scn1a+/− mice and in electroshock seizure models. Pharmacological effects of CBGA were surveyed across multiple drug targets. Key Results The initial screen identified three phytocannabinoids with novel anticonvulsant properties: CBGA, cannabidivarinic acid (CBDVA) and cannabigerovarinic acid (CBGVA). CBGA was most potent and potentiated the anticonvulsant effects of clobazam against hyperthermia‐induced and spontaneous seizures, and was anticonvulsant in the MES threshold test. However, CBGA was proconvulsant in the 6‐Hz threshold test and a high dose increased spontaneous seizure frequency in Scn1a+/− mice. CBGA was found to interact with numerous epilepsy‐relevant targets including GPR55, TRPV1 channels and GABAA receptors. Conclusion and Implications These results suggest that CBGA, CBDVA and CBGVA may contribute to the effects of cannabis‐based products in childhood epilepsy. Although these phytocannabinoids have anticonvulsant potential and could be lead compounds for drug development programmes, several liabilities would need to be overcome before CBD is superseded by another in this class.
Collapse
Affiliation(s)
- L L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Heblinski
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N L Absalom
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - M Bowen
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - M J Benson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - F Zhang
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - D Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - P T Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Chebib
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - I S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - J A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - J C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Cortopassi J. Warfarin dose adjustment required after cannabidiol initiation and titration. Am J Health Syst Pharm 2021; 77:1846-1851. [PMID: 33016308 DOI: 10.1093/ajhp/zxaa268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PURPOSE A case of a possible interaction between cannabidiol and warfarin is presented along with a brief overview of cytochrome enzymes involved in these drugs' metabolism. SUMMARY A 46-year-old male taking warfarin for treatment of a deep venous thrombosis was initiated on a Food and Drug Administration (FDA)-approved cannabidiol product (Epidiolex, Greenwich Biosciences) for intractable epilepsy. The patient's International Normalized Ratio (INR) was monitored closely during cannabidiol initiation and dose titration. The patient required a nearly 20% warfarin dose reduction to maintain an INR within the goal range after starting therapy with cannabidiol. There is 1 other case report describing a clinically significant interaction between cannabidiol (specifically Epidiolex) and warfarin in a patient receiving warfarin who was enrolled in a study involving the initiation and titration of cannabidiol; that patient developed a supratherapeutic INR of 6.86 and required a 30% reduction in the weekly warfarin dose to reachieve the goal INR. CONCLUSION A previously published report suggesting an interaction between cannabidiol and warfarin is supported by this case report. INR should be monitored frequently in patients taking warfarin who begin to take FDA-approved cannabidiol. Additional studies should be performed to clarify the interaction potential of cannabidiol and warfarin.
Collapse
Affiliation(s)
- Josh Cortopassi
- Kirklin Clinic Specialty Pharmacy, University of Alabama at Birmingham Hospital, Birmingham, AL
| |
Collapse
|
21
|
Orjuela-Rojas JM, García Orjuela X, Ocampo Serna S. Medicinal cannabis: knowledge, beliefs, and attitudes of Colombian psychiatrists. J Cannabis Res 2021; 3:26. [PMID: 34225825 PMCID: PMC8259442 DOI: 10.1186/s42238-021-00083-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background The use of cannabinoids in mental health has gained strength in recent years due to emerging scientific evidence and the lifting of prohibitionist laws that prevailed for years in many countries, including Colombia. This study describes the results of a survey of Colombian psychiatrists on some aspects of medicinal cannabis, such as attitudes towards its potential use, perceived knowledge, and beliefs surrounding its regulation and safety. Methods We conducted a cross-sectional survey of 145 psychiatrists in 14 territories of Colombia between November 2019 and July 2020. The survey consisted of 28 items on topics related to medicinal cannabis, including attitudes and clinical experience (4 items), perceived knowledge (4 items), indications for use in psychiatric pathologies (6 items), indications for use in nonpsychiatric pathologies (8 items), and concerns and awareness about safety and efficacy (6 items). The results were summarized using descriptive statistics. In addition, possible associations among variables were examined using Fisher’s exact test. Results Eighty-two percent of the psychiatrists agreed that medical cannabis should be available for different medical conditions, and 73.1% stated that they wanted to be able to prescribe it. However, 66.2% said they did not know how to help their patients legally access it, and only 25% understood the legal status of medicinal cannabis in the country. The mental health indications that received the highest approval levels for cannabis use were insomnia (35.2%), anxiety disorders (29%), and agitation in dementia (18.6%). The greatest disapproval of cannabis use was indicated for schizophrenia, with 66.9%. The most approved nonpsychiatric medical conditions were cancer-related chronic pain (87.6%), chemotherapy-related nausea and vomiting (78.6%), and chronic pain not associated with cancer (72.4%). Multinomial stepwise logistic regression analysis showed that female psychiatrists who did not agree with MC to treat psychiatric symptoms were more likely to agree with non-psychiatric use. Conclusions Our results showed that this sample of Colombian psychiatrists have a favorable attitude towards the prescription of medicinal cannabis; however, there is a serious lack of knowledge of the legal status of medicinal cannabis in the country and the methods through which patients can gain access to government-regulated products. Most of them approve the use of MC for nonpsychiatric conditions and, in general, disapprove of its use in mental illnesses. They generally consider medicinal cannabis as a safe treatment compared to other psychotropic drugs and medications with potential risk of dependence, such as opioids and/or benzodiazepines. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-021-00083-z.
Collapse
|
22
|
Bou Nasif M, Koubeissi M, Azar NJ. Epilepsy - from mysticism to science. Rev Neurol (Paris) 2021; 177:1047-1058. [PMID: 34218946 DOI: 10.1016/j.neurol.2021.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 10/21/2022]
Abstract
The understanding of epilepsy has been in progressive evolution since Antiquity, with scientific advances culminating in the last few decades. Throughout history, epilepsy was plagued by mystical misconceptions involving either demonic possessions, witchcraft, or divine interventions. This has frequently altered or even halted any real progress in its scientific understanding or its social perception. This metaphysical context is also at the core of the stigma revolving around this condition, some of which still lingering today. This review explores the origins of these mystical beliefs, and describes the chronological evolution of epilepsy from mysticism to science across different civilizations and eras.
Collapse
Affiliation(s)
- M Bou Nasif
- Department of Neurology, George-Washington University, Washington, DC, USA
| | - M Koubeissi
- Department of Neurology, George-Washington University, Washington, DC, USA.
| | - N J Azar
- Realtime Tele-epilepsy Consultants, 37203 Nashville, TN, USA
| |
Collapse
|
23
|
Sobo EJ. Cultural conformity and cannabis care in the wake of intractable pediatric epilepsy. Anthropol Med 2021; 28:205-222. [PMID: 34075822 DOI: 10.1080/13648470.2021.1893583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Biomedicine controls seizures for many children with epilepsy - but not all. In such cases, parents struggle in the wake of various structural, cultural, and corporeal ruptures. Continued use of ineffective medications can lead, iatrogenically, to frightening and serious symptoms and debilitations whose effects, along with those of uncontrolled seizures, ripple outward in challenging ways. Using data from 25 Californian (US) parents who favored providing cannabis to their ill children to meet the iatrogenic burdens of biomedical epilepsy treatments in 2015, well before cannabis's present destigmatization, this paper explores parental refiguration of the effects of clinical iatrogenesis as inevitable - and as productive of evidence necessary to finding better options. In attending to the generative dimensions of iatrogenesis, this paper strives to help clarify the dilemma for parents who critique biomedicine's isolating, materialist, and sometimes apparently haphazard approach to their children, but depend on biomedical and associated systems for their family's well-being nonetheless. Along the way, this paper underscores raced and gendered dimensions of their experiences. Rather than rejecting biomedicine, most hung on tightly, blaming the uncontrolled seizures and their aftermath on a lag in 'the science' and pointing to the cultural idea that every child is unique in explaining their own children's non-responsiveness to treatment thus far. Likewise, they worked to determine effective cannabis regimens with scientised rigour. However, in the end - and in keeping with a culture of (male) Whiteness - stigmatisation, fatigue from chronic care provision, faith in science, and a need for a biomedically-mediated form of social belonging underwrote a majority desire for cannabis's incorporation into the official biomedical pharmacopeia.
Collapse
Affiliation(s)
- Elisa J Sobo
- Department of Anthropology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
24
|
Tijani AO, Thakur D, Mishra D, Frempong D, Chukwunyere UI, Puri A. Delivering therapeutic cannabinoids via skin: Current state and future perspectives. J Control Release 2021; 334:427-451. [PMID: 33964365 DOI: 10.1016/j.jconrel.2021.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Adequate evidence exists in the literature indicating a relatively positive shift with regards to the legal acceptance of cannabis and cannabis-derived products for medicinal purposes in some countries. Concomitantly, scientists are showing renewed interest in cannabis-related research work. Over the years, clinical and preclinical studies have demonstrated the therapeutic significance of cannabinoids for diverse indications. Additionally, efforts are being made to develop cannabis-related products into acceptable prescription products. FDA authorization for the commercial use of four cannabinoid-derived products, available as oral dosage forms is a significant progress already. However, there are certain drawbacks associated with the conventional delivery forms of cannabinoids. These include low oral bioavailability due to hepatic degradation, gastric instability, poor water solubility, and the side effects experienced upon the use of high doses of psychotropic cannabinoids associated with heightened plasma concentrations of the drug. These are however, limitable with the aid of transcutaneous drug delivery. Emerging topical and transdermal strategies could be exploited for the successful development of highly effective delivery systems for cannabinoids. This review discusses the feasibility of delivering therapeutic cannabinoids via skin and provides a comprehensive account of the supporting research studies that have been reported in the literature till date.
Collapse
Affiliation(s)
- Akeemat O Tijani
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Divya Thakur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Dhruv Mishra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Umeh I Chukwunyere
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
25
|
Geskovski N, Stefkov G, Gigopulu O, Stefov S, Huck CW, Makreski P. Mid-infrared spectroscopy as process analytical technology tool for estimation of THC and CBD content in Cannabis flowers and extracts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119422. [PMID: 33477086 DOI: 10.1016/j.saa.2020.119422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most notable Cannabis components with pharmacological activity and their content in the plant flowers and extracts are considered as critical quality parameters. The new Medical Cannabis industry needs to adopt the quality standards of the pharmaceutical industry, however, the variability of phytocannabinoids content in the plant material often exerts an issue in the inconsistency of the finished product quality parameters. Sampling problems and sample representativeness is a major limitation in the end-point testing, particularly when the expected variation of the product quality parameters is high. Therefore, there is an obvious need for the introduction of Process Analytical Technology (PAT) for continuous monitoring of the critical quality parameters throughout the production processes. Infrared spectroscopy is a promising analytical technique that is consistent with the PAT requirements and its implementation depends on the advances in instrumentation and chemometrics that will facilitate the qualitative and quantitative aspects of the technique. Our present work aims in highlighting the potential of mid-infrared (MIR) spectroscopy as PAT in the quantification of the main phytocannabinoids (THC and CBD), considered as critical quality/material parameters in the production of Cannabis plant and extract. A detailed assignment of the bands related to the molecules of interest (THC, CBD) was performed, the spectral features of the decarboxylation of native flowers were identified, and the specified bands for the acid forms (THCA, CBDA) were assigned and thoroughly explained. Further, multivariate models were constructed for the prediction of both THC and CBD content in extract and flower samples from various origins, and their prediction ability was tested on a separate sample set. Savitskzy-Golay smoothing and the second derivative of the native MIR spectra (1800-400 cm-1 region) resulted in best-fit parameters. The PLS models presented satisfactory R2Y and RMSEP of 0.95 and 3.79% for THC, 0.99 and 1.44% for CBD in the Cannabis extract samples, respectively. Similar statistical indicators were noted for the Partial least-squares (PLS) models for THC and CBD prediction of decarboxylated Cannabis flowers (R2Y and RMSEP were 0.99 and 2.32% for THC, 0.99 and 1.33% for CBD respectively). The VIP plots of all models demonstrated that the THC and CBD distinctive band regions bared the highest importance for predicting the content of the molecules of interest in the respected PLS models. The complexity of the sample (plant tissue or plant extract), the variability of the samples regarding their origin and horticultural maturity, as well as the non-uniformity of the plant material and the flower-ATR crystal contact (in the case of Cannabis flowers) were governing the accuracy descriptors. Taking into account the presented results, ATR-MIR should be considered as a promising PAT tool for THC and CBD content estimation, in terms of critical material and quality parameters for Cannabis flowers and extracts.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, North Macedonia.
| | - Gjose Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, North Macedonia
| | - Olga Gigopulu
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, North Macedonia
| | | | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB - Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia.
| |
Collapse
|
26
|
Johannessen Landmark C, Potschka H, Auvin S, Wilmshurst JM, Johannessen SI, Kasteleijn-Nolst Trenité D, Wirrell EC. The role of new medical treatments for the management of developmental and epileptic encephalopathies: Novel concepts and results. Epilepsia 2021; 62:857-873. [PMID: 33638459 DOI: 10.1111/epi.16849] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are among the most challenging of all epilepsies to manage, given the exceedingly frequent and often severe seizure types, pharmacoresistance to conventional antiseizure medications, and numerous comorbidities. During the past decade, efforts have focused on development of new treatment options for DEEs, with several recently approved in the United States or Europe, including cannabidiol as an orphan drug in Dravet and Lennox-Gastaut syndromes and everolimus as a possible antiepileptogenic and precision drug for tuberous sclerosis complex, with its impact on the mammalian target of rapamycin pathway. Furthermore, fenfluramine, an old drug, was repurposed as a novel therapy in the treatment of Dravet syndrome. The evolution of new insights into pathophysiological processes of various DEEs provides possibilities to investigate novel and repurposed drugs and to place them into the context of their role in future management of these patients. The purpose of this review is to provide an overview of these new medical treatment options for the DEEs and to discuss the clinical implications of these results for improved treatment.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Program for Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Hospital, Public Hospital Network of Paris, Paris, France.,Mixed Unit of Research NeuroDiderot U1141, University of Paris, Paris, France
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Svein I Johannessen
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Leszko M, Meenrajan S. Attitudes, beliefs, and changing trends of cannabidiol (CBD) oil use among caregivers of individuals with Alzheimer's disease. Complement Ther Med 2021; 57:102660. [PMID: 33418066 DOI: 10.1016/j.ctim.2021.102660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES With the increasing popularity of CBD-based products, especially CBD oil, it is increasingly important to understand what motivates caregivers of individuals with Alzheimer's disease (AD) to use CBD oil as part of treatment. The purpose of this study was to identify the attitudes and beliefs of caregivers of individuals with AD toward CBD oil in Poland, to identify factors that might be associated with the decision to use CBD oil among caregivers, and to explore whether such a decision was discussed with a healthcare professional. METHOD A cross-sectional online survey was conducted in Poland. Participation in the study was entirely voluntary and completely anonymous. Caregivers (n = 73) were asked about their practices and attitudes regarding CBD oil. RESULTS The most common source of knowledge about CBD oil was an online support group for caregivers. The vast majority of caregivers found CBD to be effective in managing behavioral symptoms of AD and believed that healthcare professionals should offer CBD oil as a part of treatment. However, only 63 % (n = 46) reported consulting with their physician about using CBD oil. The study also demonstrated that some caregivers thought that CBD oil use was illegal in Poland and that their care-recipient may develop a dependence and withdrawal symptoms if they stopped using it. CONCLUSIONS The results of the study highlight the positive and negative perceptions among caregivers of people with AD. The study also emphasizes the importance of enhancing communication between caregivers and healthcare professionals to discuss the use of CBD oil in the treatment of individuals with AD.
Collapse
Affiliation(s)
- Magdalena Leszko
- University of Szczecin, Department of Psychology, ul. Krakowska 69, 71-017 Szczecin, Poland.
| | - Senthil Meenrajan
- University of Florida, College of Medicine, 1600 SW Archer Rd m509, Gainesville, FL 32610, United States
| |
Collapse
|
28
|
Weigelt MA, Sivamani R, Lev-Tov H. The therapeutic potential of cannabinoids for integumentary wound management. Exp Dermatol 2020; 30:201-211. [PMID: 33205468 DOI: 10.1111/exd.14241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022]
Abstract
The increasing legalization of Cannabis for recreational and medicinal purposes in the United States has spurred renewed interest in the therapeutic potential of cannabinoids (CBs) for human disease. The skin has its own endocannabinoid system (eCS) which is a key regulator of various homeostatic processes, including those necessary for normal physiologic wound healing. Data on the use of CBs for wound healing are scarce. Compelling pre-clinical evidence supporting the therapeutic potential of CBs to improve wound healing by modulating key molecular pathways is herein reviewed. These findings merit further exploration in basic science, translational and clinical studies.
Collapse
Affiliation(s)
- Maximillian A Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Raja Sivamani
- Department of Dermatology, University of California-Davis, Sacramento, CA, USA.,Department of Biological Sciences, California State University, Sacramento, CA, USA.,School of Medicine, California Northstate University, Elk Grove, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA
| | - Hadar Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Puteikis K, Mameniškienė R. Use of cannabis and its products among patients in a tertiary epilepsy center: A cross-sectional survey. Epilepsy Behav 2020; 111:107214. [PMID: 32580133 DOI: 10.1016/j.yebeh.2020.107214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate whether the topic of using cannabis as a treatment option for epilepsy is relevant among adult patients with the disorder and assess the possible determinant attitudes for having a history of cannabis consumption or being inclined to try it for medical purposes. MATERIAL AND METHODS Willing adult (≥18 years) patients with diagnosed epilepsy participated in a cross-sectional survey study at a tertiary epilepsy center. The questions were related to cannabis use and opinions towards the safety and efficacy profile of cannabis for treating epilepsy. RESULTS From 250 respondents, 41 (16.4%) reported prior use of cannabis or its preparations (15 [36.6%] for self-treatment). There were 81 (32.4%) participants further interested in cannabis use for treating epilepsy. In a binary regression model (Nagelkerke R2¯ = 0.331), the opinion that cannabis is safer because of its natural origin (β = 0.749, p = 0.027) and the premise of understanding its legal status (β = 0.418, p = 0.024) positively predicted which participants have reported cannabis use. These patients were also more likely to consult internet sources (p = 0.004) and agree that cannabis as an epilepsy treatment option is effective (U = 2231.5, p < 0.001), safe (U = 1822.0, p < 0.001) and has no side effects (U = 2470.5, p = 0.004). Patients who had not tried cannabis were more likely to envision the products as potentially addictive (p = 0.012) and presumably be deterred from using them due to beliefs in harmful effects (β = -0.632, p = 0.025). In general, nonusers were not inclined to try cannabis for treating epilepsy (Md = 2, range 1 to 7). However, those interested in the possibility of using cannabis to treat epilepsy would be more willing to try the respective preparations (p < 0.001). CONCLUSION Among adult patients with epilepsy, we report no particularly high rate of cannabis use or interest in applying cannabis for medical purposes. In order to clarify the scientific and legal status of the preparations, treating neurologists should consult prior users and patients interested in the possibility of trying cannabis as an epilepsy remedy.
Collapse
|
30
|
Le Marois M, Ballet V, Sanson C, Maizières MA, Carriot T, Chantoiseau C, Partiseti M, Bohme GA. Cannabidiol inhibits multiple cardiac ion channels and shortens ventricular action potential duration in vitro. Eur J Pharmacol 2020; 886:173542. [PMID: 32910945 DOI: 10.1016/j.ejphar.2020.173542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Cannabidiol (CBD) is a non-psychoactive component of Cannabis which has recently received regulatory consideration for the treatment of intractable forms of epilepsy such as the Dravet and the Lennox-Gastaut syndromes. The mechanisms of the antiepileptic effects of CBD are unclear, but several pre-clinical studies suggest the involvement of ion channels. Therefore, we have evaluated the effects of CBD on seven major cardiac currents shaping the human ventricular action potential and on Purkinje fibers isolated from rabbit hearts to assess the in vitro cardiac safety profile of CBD. We found that CBD inhibits with comparable micromolar potencies the peak and late components of the NaV1.5 sodium current, the CaV1.2 mediated L-type calcium current, as well as all the repolarizing potassium currents examined except Kir2.1. The most sensitive channels were KV7.1 and the least sensitive were KV11.1 (hERG), which underly the slow (IKs) and rapid (IKr) components, respectively, of the cardiac delayed-rectifier current. In the Purkinje fibers, CBD decreased the action potential (AP) duration more potently at half-maximal than at near complete repolarization, and slightly decreased the AP amplitude and its maximal upstroke velocity. CBD had no significant effects on the membrane resting potential except at the highest concentration tested under fast pacing rate. These data show that CBD impacts cardiac electrophysiology and suggest that caution should be exercised when prescribing CBD to carriers of cardiac channelopathies or in conjunction with other drugs known to affect heart rhythm or contractility.
Collapse
Affiliation(s)
- Marguerite Le Marois
- High Content Biology, Integrated Drug Discovery, Sanofi-Aventis R&D, Vitry-sur-Seine, France
| | - Véronique Ballet
- Investigative Toxicology, Preclinical Safety, Sanofi-Aventis R&D, Alfortville, France
| | - Camille Sanson
- High Content Biology, Integrated Drug Discovery, Sanofi-Aventis R&D, Vitry-sur-Seine, France
| | - Magali-Anne Maizières
- High Content Biology, Integrated Drug Discovery, Sanofi-Aventis R&D, Vitry-sur-Seine, France
| | - Thierry Carriot
- Investigative Toxicology, Preclinical Safety, Sanofi-Aventis R&D, Alfortville, France
| | - Céline Chantoiseau
- Investigative Toxicology, Preclinical Safety, Sanofi-Aventis R&D, Alfortville, France
| | - Michel Partiseti
- High Content Biology, Integrated Drug Discovery, Sanofi-Aventis R&D, Vitry-sur-Seine, France
| | - Georg Andrees Bohme
- High Content Biology, Integrated Drug Discovery, Sanofi-Aventis R&D, Vitry-sur-Seine, France.
| |
Collapse
|
31
|
Abstract
Cannabis ranks among the most commonly used psychotropic drugs worldwide. In the context of the global movement toward more widespread legalisation, there is a growing need toward developing a better understanding of the physiological and pathological effects. We provide an overview of the current evidence on the effects of cannabinoids on the eye. Of the identified cannabinoids, Δ9-tetrahydrocannabinol is recognized to be the primary psychotropic compound, and cannabidiol is the predominant nonpsychoactive ingredient. Despite demonstrating ocular hypotensive and neuroprotective activity, the use of cannabinoids as a treatment for glaucoma is limited by a large number of potential systemic and ophthalmic side effects. Anterior segment effects of cannabinoids are complex, with preliminary evidence showing decreased corneal endothelial density in chronic cannabinoid users. Experiments in rodents, however, have shown potential promise for the treatment of ocular surface injury via antinociceptive and antiinflammatory effects. Electroretinography studies demonstrating adverse effects on photoreceptor, bipolar, and ganglion cell function suggest links between cannabis and neuroretinal dysfunction. Neuro-ophthalmic associations include ocular motility deficits and decrements in smooth pursuit and saccadic eye movements, although potential therapeutic effects for congenital and acquired nystagmus have been observed.
Collapse
|
32
|
Szaflarski M, McGoldrick P, Currens L, Blodgett D, Land H, Szaflarski JP, Segal E. Attitudes and knowledge about cannabis and cannabis-based therapies among US neurologists, nurses, and pharmacists. Epilepsy Behav 2020; 109:107102. [PMID: 32442891 DOI: 10.1016/j.yebeh.2020.107102] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Use of cannabinoid therapies is on the rise in the United States, but responses of healthcare professionals and their knowledge of these therapies have been mixed. More information is needed about factors associated with healthcare professionals' attitudes and knowledge about medical cannabis. We conducted an online survey of US-based neurologists, nurse practitioners (NPs)/nurses, and pharmacists in August-September of 2018 (n = 451). We constructed perceived knowledge and attitudes scales and a knowledge index from multiple items and assessed state cannabis laws, participant's sociodemographics, workplace type and policies, and patient population. We used ordinary least-squares regression to examine associations among study variables. Over 80% of participants supported use and legalization of medical cannabis, especially cannabidiol (CBD) for epilepsy and when prescribed by a medical provider, but 40-50% (depending on item) felt unfamiliar with cannabinoid pharmacology and clinical applications. A total of 43% favored legal recreational cannabis. Pharmacists scored higher on the knowledge test than neurologists and NPs/nurses, but NPs/nurses had more favorable attitudes than neurologists and higher perceived knowledge than pharmacists. Both knowledge indicators predicted attitudes. State cannabis access and favorable workplace policies were associated with higher knowledge and more favorable attitudes. Healthcare professionals see potential in cannabis therapies but report significant knowledge gaps. Professional cannabinoid education is needed to address growing patient and provider demand for knowledge about cannabinoid therapies.
Collapse
Affiliation(s)
- Magdalena Szaflarski
- Department of Sociology, University of Alabama at Birmingham (UAB), HHB 460H, 1720 2nd Ave South, Birmingham, AL 35294-1152, USA.
| | - Patricia McGoldrick
- Division of Child Neurology and Epilepsy, Boston Children's Health Physicians of Westchester and Maria Fareri Children's Hospital, Valhalla, NY, 141 South Central Ave, Hartsdale, NY 10530, USA
| | - Lauryn Currens
- Department of Neurology, University of Massachusetts, 55 Lake Ave North, Worcester, MA 01655, USA.
| | - Dustin Blodgett
- Department of Psychiatry, University of Kentucky, 245 Fountain Court, Lexington, KY 40509, USA.
| | - Hunter Land
- Canopy Health Innovations, Smiths Falls, Ontario, Canada
| | - Jerzy P Szaflarski
- UAB Epilepsy Center, Department of Neurology, University of Alabama at Birmingham, 312 Civitan International Research Center (CIRC 312), 1720 2nd Avenue South, Birmingham, AL 35294-0021, USA.
| | - Eric Segal
- Northeast Regional Epilepsy Group, Hackensack University Medical Center and Hackensack Meridian School of Medicine, 20 Prospect Avenue, Suite 800, Hackensack, NJ 07601, USA.
| |
Collapse
|
33
|
Marchese F, Vari MS, Balagura G, Riva A, Salpietro V, Verrotti A, Citraro R, Lattanzi S, Minetti C, Russo E, Striano P. An Open Retrospective Study of a Standardized Cannabidiol Based-Oil in Treatment-Resistant Epilepsy. Cannabis Cannabinoid Res 2020; 7:199-206. [PMID: 33998856 PMCID: PMC9070734 DOI: 10.1089/can.2019.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Introduction: Cannabidiol (CBD) has antiseizure properties but no psychoactive effects. Randomized controlled trials of an oral, pharmaceutical formulation of highly purified CBD are promising; however, data regarding other formulations are sparse and anecdotal. We evaluated the effectiveness of add-on therapy with a standardized CBD-based oil in treatment-resistant epilepsy (TRE) patients. Materials and Methods: An open retrospective study was carried out on patients with refractory epilepsy of different etiology. We reviewed clinical data from medical charts and caregiver's information. Participants received add-on with 24% CBD-based oil, sublingually administered, at the starting dose of 5–10 mg/[kg·day] up to the maximum dose of 50 mg/[kg·day], based on clinical efficacy. Efficacy was evaluated based on patients being seizure free or experiencing at ≥50% improvement on seizure frequency. Tolerability and suspected adverse drug reaction data were also analyzed. Results: We included 37 patients (46% female) with a median age of 16.1 (range: 2–54) years. Twenty-two (60%) patients suffered from epileptic encephalopathy, 9 (24%) from focal epilepsy, and 6 (16%) from generalized epilepsy. Mean follow-up duration was 68 (range: 24–72) weeks. The average age at seizure onset was 3.8±2.1 years (range: 7 days–21 years). The median achieved CBD-based oil dose was 4.2±11.4 (range: 0.6–50) mg/[kg·day]. At 40-month follow-up, 7 (19%) patients were seizure free, 27 (73%) reported >50% improvement, 2 (5%) patients reported <50% improvement, and 1 patient discontinued therapy due to lack of efficacy. Weaning from concomitant antiepileptic drugs was obtained after 24 weeks from CBD introduction in 10 subjects. Mild and transitory adverse events, including somnolence or loss of appetite, occurred in nine (25%) patients. Discussion and Conclusion: We showed the efficacy of a CBD-based oil formulation with few significant side effects in patients with TRE of various etiologies.
Collapse
Affiliation(s)
- Francesca Marchese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maria Stella Vari
- Paediatric Neurology and Muscular Disease Unit, IRCCS "Giannina Gaslini" Institute, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS "Giannina Gaslini" Institute, Genoa, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Rita Citraro
- Department of Science of Health, School of Medicine and Surgery, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS "Giannina Gaslini" Institute, Genoa, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine and Surgery, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS "Giannina Gaslini" Institute, Genoa, Italy
| |
Collapse
|
34
|
Marinotti O, Sarill M. Differentiating Full-Spectrum Hemp Extracts from CBD Isolates: Implications for Policy, Safety and Science. J Diet Suppl 2020; 17:517-526. [PMID: 32543253 DOI: 10.1080/19390211.2020.1776806] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The passage of the 2018 United States Agriculture Improvement Act removed industrial hemp, defined as Cannabis sativa L. containing less than 0.3% THC content by dry weight, from Schedule I of the Controlled Substances Act and made it an agricultural commodity. Following these changes, the popularity of hemp-derived cannabidiol (CBD) dietary supplements by consumers has greatly exceeded the scientific understanding of purported benefits, safety and composition of these botanical extracts. Further complicating CBD hemp supplement regulation, Food and Drug Administration (FDA) considers CBD to be an approved drug (Epidiolex) in the treatment of severe epilepsy disorders, Dravet and Lennox-Gastaut syndromes. At the same time, hemp-derived CBD supplements can contain a complex phytochemical matrix from the hemp plant, distinguishing the composition of these products from isolated CBD preparations. This work aims to provide clarity on differentiating botanical full-spectrum hemp extracts containing CBD from isolates, from a phytochemical, toxicological and regulatory perspective.
Collapse
Affiliation(s)
- Osvaldo Marinotti
- Science, Regulation & Education, CV Sciences, Inc, San Diego, CA, USA
| | - Miles Sarill
- Science, Regulation & Education, CV Sciences, Inc, San Diego, CA, USA
| |
Collapse
|
35
|
Application of Cannabinoids in Neurosciences. Crit Care Nurs Q 2020; 43:216-231. [DOI: 10.1097/cnq.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Abstract
Epilepsy is a chronic disease characterized by recurrent unprovoked seizures. Up to 30% of children with epilepsy will be refractory to standard anticonvulsant therapy, and those with epileptic encephalopathy can be particularly challenging to treat. The endocannabinoid system can modulate the physiologic processes underlying epileptogenesis. The anticonvulsant properties of several cannabinoids, namely Δ-tetrahydrocannabinol and cannabidiol (CBD), have been demonstrated in both in vitro and in vivo studies. Cannabis-based therapies have been used for millennia to treat a variety of diseases including epilepsy. Several studies have shown that CBD, both in isolation as a pharmaceutical-grade preparation or as part of a CBD-enriched cannabis herbal extract, is beneficial in decreasing seizure frequency in children with treatment-resistant epilepsy. Overall, cannabis herbal extracts appear to provide greater efficacy in decreasing seizure frequency, but the studies assessing cannabis herbal extract are either retrospective or small-scale observational studies. The two large randomized controlled studies assessing the efficacy of pharmaceutical-grade CBD in children with Dravet and Lennox-Gastaut syndromes showed similar efficacy to other anticonvulsants. Lack of data regarding appropriate dosing and pediatric pharmacokinetics continues to make authorization of cannabis-based therapies to children with treatment-resistant epilepsy challenging.
Collapse
|
37
|
Rocha L, Frías‐Soria CL, Ortiz JG, Auzmendi J, Lazarowski A. Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy? Epilepsia Open 2020; 5:36-49. [PMID: 32140642 PMCID: PMC7049809 DOI: 10.1002/epi4.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cannabis has been considered as a therapeutic strategy to control intractable epilepsy. Several cannabis components, especially cannabidiol (CBD), induce antiseizure effects. However, additional information is necessary to identify the types of epilepsies that can be controlled by these components and the mechanisms involved in these effects. This review presents a summary of the discussion carried out during the 2nd Latin American Workshop on Neurobiology of Epilepsy entitled "Cannabinoid and epilepsy: myths and realities." This event was carried out during the 10th Latin American Epilepsy Congress in San José de Costa Rica (September 28, 2018). The review focuses to discuss the use of CBD as a new therapeutic strategy to control drug-resistant epilepsy. It also indicates the necessity to consider the evaluation of unconventional targets such as P-glycoprotein, to explain the effects of CBD in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Luisa Rocha
- Departamento de FarmacobiologíaCentro de Investigación y de Estudios AvanzadosMéxico CityMéxico
| | | | - José G. Ortiz
- Department of Pharmacology and ToxicologySchool of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| | - Jerónimo Auzmendi
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alberto Lazarowski
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
38
|
Li H, Liu Y, Tian D, Tian L, Ju X, Qi L, Wang Y, Liang C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer's disease. Eur J Med Chem 2020; 192:112163. [PMID: 32109623 DOI: 10.1016/j.ejmech.2020.112163] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/05/2023]
Abstract
Herein, 11 general types of natural cannabinoids from Cannabis sativa as well as 50 (-)-CBD analogues with therapeutic potential were described. The underlying molecular mechanisms of CBD as a therapeutic candidate for epilepsy and neurodegenerative diseases were comprehensively clarified. CBD indirectly acts as an endogenous cannabinoid receptor agonist to exert its neuroprotective effects. CBD also promotes neuroprotection through different signal transduction pathways mediated indirectly by cannabinoid receptors. Furthermore, CBD prevents the glycogen synthase kinase 3β (GSK-3β) hyperphosphorylation caused by Aβ and may be developed as a new therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Danni Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xingke Ju
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Liang Qi
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
39
|
Prospéro-García O, Ruiz Contreras AE, Ortega Gómez A, Herrera-Solís A, Méndez-Díaz M. Endocannabinoids as Therapeutic Targets. Arch Med Res 2020; 50:518-526. [PMID: 32028095 DOI: 10.1016/j.arcmed.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
Most of the drugs of abuse affect the brain by interacting with naturally expressed molecular receptors. Marihuana affects a series of receptors including cannabinoid receptor 1 (CB1R) and CB2R, among others. Endogenous molecules with cannabinoid activity interact with these receptors naturally. Receptors, ligands, synthesizing and degrading enzymes, as well as transporters, have been described. This endocannabinoid system modulates behaviors and physiological processes, i.e. food intake, the sleep-waking cycle, learning and memory, motivation, and pain perception, among others. The rather broad distribution of endocannabinoids in the brain explains the different effects marihuana induces in its users. However, this very same anatomical and physiological distribution makes this system a useful target for therapeutic endeavors. In this review, we briefly discuss the potential of small molecules that target the endocannabinoids as therapeutic tools to improve behaviors and treat illnesses. We believe that under medical supervision, endocannabinoid targets offer new advantages for patients for controlling multiple medical disorders.
Collapse
Affiliation(s)
- Oscar Prospéro-García
- Departamento de Fisiología, Laboratorio de Canabinoides, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alejandra E Ruiz Contreras
- Laboratorio de Neurogenómica Cognitiva, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alette Ortega Gómez
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Andrea Herrera-Solís
- Laboratorio Efectos Terapéuticos de los Canabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Mónica Méndez-Díaz
- Departamento de Fisiología, Laboratorio de Canabinoides, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | |
Collapse
|
40
|
Abstract
In recent years, cannabis has been gaining increasing interest in both the medical research and clinical fields, with regard to its therapeutic effects in various disorders. One of the major fields of interest is its role as an anticonvulsant for refractory epilepsy, especially in the pediatric population. This paper presents and discusses the current accumulated knowledge regarding artisanal cannabis and Epidiolex®, a United States Food and Drug Administration (FDA)-approved pure cannabidiol (CBD), in epilepsy management in pediatrics, by reviewing the literature and raising debate regarding further research directions.
Collapse
Affiliation(s)
- Bruria Ben-Zeev
- Pediatric Neurology Department, The Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- E-mail:
| |
Collapse
|
41
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Leite JP, Garcia-Cairasco N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci Biobehav Rev 2020; 111:166-182. [PMID: 31954723 DOI: 10.1016/j.neubiorev.2020.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is a neurological disorder characterized by the presence of seizures and neuropsychiatric comorbidities. Despite the number of antiepileptic drugs, one-third of patients did not have their seizures under control, leading to pharmacoresistance epilepsy. Cannabis sativa has been used since ancient times in Medicine for the treatment of many diseases, including convulsive seizures. In this context, Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been a promising compound for treating epilepsies due to its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. In this review, we summarize evidence of the CBD anticonvulsant activities present in a great diversity of animal models. Special attention was given to behavioral CBD effects and its translation to human epilepsies. CBD anticonvulsant effects are associated with a great variety of mechanisms of action such as endocannabinoid and calcium signaling. CBD has shown effectiveness in the clinical scenario for epilepsies, but its effects on epilepsy-related comorbidities are scarce even in basic research. More detailed and complex behavioral evaluation about CBD effects on seizures and epilepsy-related comorbidities are required.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - Raquel A Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Rui M P da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - João P Leite
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
42
|
|
43
|
Abstract
Objective: In recent years, the use of cannabidiol in the treatment of refractory epilepsy has been increasingly investigated and has been gaining public support as a novel way to treat these disorders. Marijuana has been used for medical purposes for thousands of years, and a lot of research has been conducted over the last several decades into the chemistry and pharmacology of marijuana and its many compounds, including cannabidiol. Methods: Using PubMed, we performed a review of the literature regarding the history of cannabinoid use in treating epilepsy. Results and conclusions: There are historical and recent scientific developments that support the use of cannabidiol in rare severe epilepsy syndromes.
Collapse
Affiliation(s)
- Alexander Doyle
- Department of Neurology, UTSW Epilepsy Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jay Harvey
- Department of Neurology, UTSW Epilepsy Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
44
|
Picardo S, Kaplan GG, Sharkey KA, Seow CH. Insights into the role of cannabis in the management of inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819870977. [PMID: 31523278 PMCID: PMC6727090 DOI: 10.1177/1756284819870977] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, interest in the therapeutic potential of cannabis and its constituents (e.g. cannabidiol) in the management of inflammatory bowel diseases (IBD) has escalated. Cannabis has been increasingly approved for a variety of medical conditions in several jurisdictions around the world. In animal models, cannabinoids have been shown to improve intestinal inflammation in experimental models of IBD through their interaction with the endocannabinoid system. However, the few randomized controlled trials of cannabis or cannabidiol in patients with IBD have not demonstrated efficacy in modulating inflammatory disease activity. Cannabis may be effective in the symptomatic management of IBD. Given the increasing utilization and cultural acceptance of cannabis, physicians need to be aware of its safety and efficacy in order to better counsel patients. The aim of this review is to provide an overview of the role of cannabis in the management of patients with IBD.
Collapse
Affiliation(s)
- Sherman Picardo
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Gilaad G. Kaplan
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, AB, Canada,Department of Community Health Sciences, University of Calgary, AB, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, AB, Canada
| | | |
Collapse
|
45
|
VanDolah HJ, Bauer BA, Mauck KF. Clinicians' Guide to Cannabidiol and Hemp Oils. Mayo Clin Proc 2019; 94:1840-1851. [PMID: 31447137 DOI: 10.1016/j.mayocp.2019.01.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023]
Abstract
Cannabidiol (CBD) oils are low tetrahydrocannabinol products derived from Cannabis sativa that have become very popular over the past few years. Patients report relief for a variety of conditions, particularly pain, without the intoxicating adverse effects of medical marijuana. In June 2018, the first CBD-based drug, Epidiolex, was approved by the US Food and Drug Administration for treatment of rare, severe epilepsy, further putting the spotlight on CBD and hemp oils. There is a growing body of preclinical and clinical evidence to support use of CBD oils for many conditions, suggesting its potential role as another option for treating challenging chronic pain or opioid addiction. Care must be taken when directing patients toward CBD products because there is little regulation, and studies have found inaccurate labeling of CBD and tetrahydrocannabinol quantities. This article provides an overview of the scientific work on cannabinoids, CBD, and hemp oil and the distinction between marijuana, hemp, and the different components of CBD and hemp oil products. We summarize the current legal status of CBD and hemp oils in the United States and provide a guide to identifying higher-quality products so that clinicians can advise their patients on the safest and most evidence-based formulations. This review is based on a PubMed search using the terms CBD, cannabidiol, hemp oil, and medical marijuana. Articles were screened for relevance, and those with the most up-to-date information were selected for inclusion.
Collapse
Affiliation(s)
| | - Brent A Bauer
- Section of Integrative Medicine and Health, Mayo Clinic, Rochester, MN
| | - Karen F Mauck
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
46
|
Franco V, Perucca E. Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy. Drugs 2019; 79:1435-1454. [DOI: 10.1007/s40265-019-01171-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
48
|
Samanta D. Cannabidiol: A Review of Clinical Efficacy and Safety in Epilepsy. Pediatr Neurol 2019; 96:24-29. [PMID: 31053391 DOI: 10.1016/j.pediatrneurol.2019.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
Abstract
Several new antiepileptic medicines became available for clinical use in the last two decades. However, the prognosis of epilepsy remains unchanged, with approximately one-third of patients continuing to have drug-resistant seizures. Because many of these patients are not candidates for curative epilepsy surgery, there is a need for new seizure medicines with better efficacy and safety profile. Recently, social media and public pressure sparked a renewed interest in cannabinoids, which had been used for epilepsy since ancient times. However, physicians have significant difficulty prescribing cannabinoids freely because of the paucity of sound scientific studies. Among the two most common cannabinoids, cannabidiol has better antiepileptic potential than tetrahydrocannabinol. The exact antiepileptic mechanism of cannabidiol is currently not known, but it modulates a number of endogenous systems and may have a novel anticonvulsant effect. However, it has broad drug-drug interactions with several agents, including inducer and inhibitor of CYP3A4 or CYP2C19. Cannabidiol can cause liver enzyme elevation, especially when co-administered with valproate. The US Food and Drug Administration (FDA) has approved pharmaceutical-grade cannabidiol oil for two childhood-onset catastrophic epilepsies: Dravet syndrome and Lennox-Gastaut syndrome. The Drug Enforcement Agency also reclassified this product as a schedule V agent. However, other cannabidiol products remain as a schedule I substance and are primarily used without regulation. Additionally, the FDA-approved pharmaceutical-grade cannabidiol oil is expensive, and insurance companies might approve this only for the designated indications. In despair, many individuals may resort to unregulated medical cannabis products in an attempt to control seizures. Rather than spontaneous treatment without medical supervision, adequate medical oversight is indicated to monitor and manage the proper dose, side effects, validity of the product, and drug-drug interactions.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
49
|
Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders. Lancet Neurol 2019; 18:504-512. [DOI: 10.1016/s1474-4422(19)30032-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
|
50
|
Perry MS. Don't Fear the Reefer-Evidence Mounts for Plant-Based Cannabidiol as Treatment for Epilepsy. Epilepsy Curr 2019; 19:93-95. [PMID: 30955420 PMCID: PMC6610406 DOI: 10.1177/1535759719835671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effect of Cannabidiol on Drop Seizures in the Lennox-Gastaut Syndrome Devinsky O, Patel AD, Cross JH, et al; GWPCARE3 Study Group. N Engl J Med. 2018;378:1888-1897. doi:10.1056/NEJMoa1714631 Background: Cannabidiol has been used for treatment-resistant seizures in patients with severe early-onset epilepsy. We investigated the efficacy and safety of cannabidiol added to a regimen of conventional antiepileptic medication to treat drop seizures in patients with the Lennox-Gastaut syndrome, a severe developmental epileptic encephalopathy. Methods: In this double-blind, placebo-controlled trial conducted at 30 clinical centers, we randomly assigned patients with the Lennox-Gastaut syndrome (age range, 2-55 years) who had had 2 or more drop seizures per week during a 28-day baseline period to receive cannabidiol oral solution at a dose of 20 mg/kg of body weight (20-mg cannabidiol group) or 10 mg/kg (10-mg cannabidiol group) or matching placebo, administered in 2 equally divided doses daily for 14 weeks. The primary outcome was the percentage change from baseline in the frequency of drop seizures (average per 28 days) during the treatment period. Results: A total of 225 patients were enrolled; 76 patients were assigned to the 20-mg cannabidiol group, 73 to the 10-mg cannabidiol group, and 76 to the placebo group. During the 28-day baseline period, the median number of drop seizures was 85 in all trial groups combined. The median percentage reduction from baseline in drop seizure frequency during the treatment period was 41.9% in the 20-mg cannabidiol group, 37.2% in the 10-mg cannabidiol group, and 17.2% in the placebo group (P = .005 for the 20-mg cannabidiol group vs placebo group, and P = .002 for the 10-mg cannabidiol group vs placebo group). The most common adverse events among the patients in the cannabidiol groups were somnolence, decreased appetite, and diarrhea; these events occurred more frequently in the higher dose group. Six patients in the 20-mg cannabidiol group and 1 patient in the 10-mg cannabidiol group discontinued the trial medication because of adverse events and were withdrawn from the trial. Fourteen patients who received cannabidiol (9%) had elevated liver aminotransferase concentrations. Conclusions: Among children and adults with the Lennox-Gastaut syndrome, the addition of cannabidiol at a dose of 10 or 20 mg/kg/d to a conventional antiepileptic regimen resulted in greater reductions in the frequency of drop seizures than placebo. Adverse events with cannabidiol included elevated liver aminotransferase concentrations. (Funded by GW Pharmaceuticals; GWPCARE3 ClinicalTrials.gov number, NCT02224560.) Long-Term Safety and Treatment Effects of Cannabidiol in Children and Adults With Treatment-Resistant Epilepsies: Expanded Access Program Results Szaflarski JP, Bebin EM, Comi AM, et al; CBD EAP Study Group. Epilepsia. 2018;59(8):1540-1548. Objective: Since 2014, cannabidiol (CBD) has been administered to patients with treatment-resistant epilepsies (TREs) in an ongoing expanded access program (EAP). We report interim results on the safety and efficacy of CBD in EAP patients treated through December 2016. Methods: Twenty-five US-based EAP sites enrolling patients with TRE taking stable doses of antiepileptic drugs (AEDs) at baseline were included. During the 4-week baseline period, parents/caregivers kept diaries of all countable seizure types. Patients received oral CBD starting at 2 to 10 mg/kg/d, titrated to a maximum dose of 25 to 50 mg/kg/d. Patient visits were every 2 to 4 weeks through 16 weeks and every 2 to 12 weeks thereafter. Efficacy end points included the percentage change from baseline in median monthly convulsive and total seizure frequency and percentage of patients with ≥50%, ≥75%, and 100% reductions in seizures versus baseline. Data were analyzed descriptively for the efficacy analysis set and using the last-observation-carried-forward method to account for missing data. Adverse events (AEs) were documented at each visit. Results: Of 607 patients in the safety data set, 146 (24%) withdrew; the most common reasons were lack of efficacy (89 [15%]) and AEs (32 [5%]). Mean age was 13 years (range, 0.4-62). Median number of concomitant AEDs was 3 (range, 0-10). Median CBD dose was 25 mg/kg/d; median treatment duration was 48 weeks. Add-on CBD reduced median monthly convulsive seizures by 51% and total seizures by 48% at 12 weeks; reductions were similar through 96 weeks. Proportion of patients with ≥50%, ≥75%, and 100% reductions in convulsive seizures were 52%, 31%, and 11%, respectively, at 12 weeks, with similar rates through 96 weeks. Cannabidiol was generally well tolerated; most common AEs were diarrhea (29%) and somnolence (22%). Significance: Results from this ongoing EAP support previous observational and clinical trial data, showing that add-on CBD may be an efficacious long-term treatment option for TRE. Randomized, Dose-Ranging Safety Trial of Cannabidiol in Dravet Syndrome Devinsky O, Patel AD, Thiele EA, et al; GWPCARE1 Part A Study Group. Neurology. 2018;90(14):e1204-e1211. Objective: To evaluate the safety and preliminary pharmacokinetics of a pharmaceutical formulation of purified cannabidiol (CBD) in children with Dravet syndrome. Methods: Patients aged 4 to 10 years were randomized 4:1 to CBD (5, 10, or 20 mg/kg/d) or placebo taken twice daily. The double-blind trial comprised 4-week baseline, 3-week treatment (including titration), 10-day taper, and 4-week follow-up periods. Completers could continue in an open-label extension. Multiple pharmacokinetic blood samples were taken on the first day of dosing and at end of treatment for measurement of CBD, its metabolites 6-OH-CBD, 7-OH-CBD, and 7-COOH-CBD, and antiepileptic drugs (AEDs; clobazam and metabolite N-desmethylclobazam [N-CLB], valproate, levetiracetam, topiramate, and stiripentol). Safety assessments were clinical laboratory tests, physical examinations, vital signs, electrocardiograms, adverse events (AEs), seizure frequency, and suicidality. Results: Thirty-four patients were randomized (10, 8, and 9 to the 5, 10, and 20 mg/kg/d CBD groups and 7 to placebo); 32 (94%) completed treatment. Exposure to CBD and its metabolites was dose proportional (AUC0-t). Cannabidiol did not affect concomitant AED levels, apart from an increase in N-CLB (except in patients taking stiripentol). The most common AEs on CBD were pyrexia, somnolence, decreased appetite, sedation, vomiting, ataxia, and abnormal behavior. Six patients taking CBD and valproate developed elevated transaminases; none met criteria for drug-induced liver injury and all recovered. No other clinically relevant safety signals were observed. Conclusions: Exposure to CBD and its metabolites increased proportionally with dose. An interaction with N-CLB was observed, likely related to CBD inhibition of cytochrome P450 subtype 2C19. Cannabidiol resulted in more AEs than placebo but was generally well tolerated. Classification of Evidence: This study provides class I evidence that for children with Dravet syndrome, CBD resulted in more AEs than placebo but was generally well tolerated.
Collapse
|